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On the Definition and Estimation of Spectrum Occupancy
A. D. SPAULDING AND GEORGE H. HAGN, SENIOR MEMBER, IEEE

Abstract-Spectrum occupancy for channels and bands of similar
channels is defmed. A distinction is made between transmission occu-
pancy and message occupancy. The measurement time required to de-
termine if a given channel is occupied is considered as well as the time
required to estimate the degree of transmission occupancy with a given
statistical confidence. Nonparametric (distribution-free) statistical tech-
niques are employed to obtain this estimate and to determine the
sample size required to establish confidence bounds for a set of channel
or band transmission occupancy values.

I. INTRODUCTION

T HIS PAPER defines spectrum occupancy and addresses
the problem of the measurement time required to esti-

mate the occupancy of radio channels and bands to within
some accuracy limits with some given degree of confidence.
There are four basic questions:

1) What is spectrum occupancy for a channel and for a
band of similar channels?

2) What measurement time is required to determine if a
given channel is occupied? We might term this "basic detec-
tion."

3) What measurement time is required to estimate the
degree of occupancy (percent of total time signals exist on
some given channel or in a band of similar channels)?

4) What statistical confidence bounds can be placed upon
the sample distribution obtained from a set of occupancy
estimates for a channel or band of similar channels.

We address the first question from the standpoint of provid-
ing an unambiguous definition of spectrum occupancy on a
channel-by-channel basis in a manner amenable to statistical
description. We address the last three questions using a mini-
mum of assumptions concerning a priori knowledge about the
actual structure of the messages (signals) on a channel. Non-
parametric (distribution-free) statistical methods are employed
to the extent possible in order to avoid continual testing of
distribution hypotheses.

We start by defining a random process on which we are to
perform the statistical analysis. We use this process to define
precisely what we are attempting to measure (or estimate),
i.e., "spectrum occupancy." The simplest case (independent
samples) is treated first. This case is the most efficient in
terms of estimation. Sampling rates are considered, and the
case of dependent sampling is also treated. Selected channel
models are presented which can be used to estimate the degree
of dependency in the measurements and how this might vary
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with sampling rate, transmission lengths, etc. Distributions of
channel transmission occupancy values for the same channel
sampled at different times are considered, and these results
are extended to distributions of channel occupancy for a band
of similar channels. Numerical examples are given as appro-
priate.

II. DEFINITION OF CHANNEL TRANSMISSION
OCCUPANCY

We first define the transmission occupancy of a selected
channel as a two-state random process. The first state is
labeled "occupied" and is defined as the event that, during an
observation, the signal strength at a monitor receiver is above
a given threshold. The complementary event is that the signal
strength is below this threshold. Because the state of the chan-
nel is random, its state at any given measurement time cannot
be predicted. However, its state can be described in terms of a
probability law. Traditionally, the unconditional probability
that a random sample will be above a threshold has been
defined as the "occupancy" of the channel. It has also been
expressed as a percent.

If we could observe the occupancy pattern of a channel
continuously for an entire hour, we could state with zero
error the occupancy for that hour. But if we can make only
limited observations of the occupancy pattern, then we can
only estimate the occupancy for that hour. It is the task of
experimental design to obtain as much information as possible
conceming a random process (the random process here being
the dynamic occupancy pattern) with the minimum of experi-
mental work. If we use a scanning receiver and take some
number of observations of a channel during an hour, we base
our estimate of the occupancy of the channel on this number
of observations.

Several time scales are important for spectrum occupancy
measurements with a scanning receiver. The most basic of these
is the time of an individual transmission. Ideally, the scanning
receiver should sweep rapidly enough so that all signals in the
monitored area are observed several times per transmission.
Let us use land-mobile radio as an example. It is important to
sort out the undesired impulsive noise fTom the desired land-
mobile transmissions, as well as to record all transmissions.
Hence, the shortest sampling time of interest is the time inter-
val between consecutive observations of a given channel. The
next time scale of interest, after transmission length, is the
time of an individual message (which is usually composed of
more than one transmission). The next time of interest is the
time of sampling of a given channel. Clearly, we must sample
rapidly enough and long enough to resolve the variations of
interest, if we can. The other scales of interest are related to
trends of use of the channels, such as hourly, daily, weekly,
seasonal, and annual variations.
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Fig. 1. Transmissions on a channel.

where

E[V]
m=

E[V] +E[W]

and

E2[V] var [W] +E2[W] var [V]

Now, let us define channel transmission occupancy in a

rigorous manner. Fig. 1 depicts our arbitrary channel.
In Fig. 1, the random variable V is the tran'smission length,

or more precisely, the length of time a signal continuously
exists above some threshold level Li during the ti-me interval
T. The random variable W is the length of time between
transmissions, and T is the total time during which measure-

ments of the channel are made. We assume that T is large
compared to' the mean values of V and W. The random vari-

ables V and W have distributions, but we will not specify
them.

Consider the two-valued random process: X(t) = 1, if
signal at time t is above threshold level Li, and X(t) = 0, other-
wise.

The process X(t) has "states" 0 and 1. V is the time con-

tinuously in state 1, and W is the time continuously in state 0.
Let X(t) = xi so that our sequence of measurements, xl, x2,

x3, * Xn is represented 'by a sequence of 0's and l's, where 1

means the detected power in the channel exceeds a given

threshold, and 0 means that the detected power in the channel
does not excee'd that threshold. We are interested in 3(Li, 7),

the fraction of the measurement'time T, that X(t) is in state
1, i.e., that the detected power in the channel exceeds thres-
hold level Li.'Since V and W are random variables, 3(Li, 7)

is a random variable which we will call channel transmission
occupancy.1

We now make two simple assumptions: V and W are inde-
pendent random variables, and V + W has a continuous dis-
tribution.

For our purposes, it suffices to know the behavior of the
zero-one process after it has been operating for a long time.
Two limit theorems provide very simple 'answers:

lim P[X(t)= 1] = E[V]
T-°° E[V] +E[W]

(1)

U2 = (4){E[V] +E[W]}3

where var [VI is the variance of V; etc.
The proofs of the above are quite involved 2 and the details

are of no interest to us. Independent of the actual distribu-
tions of V and W, we have now defined channel transmission
occupancy, i3(Li, 7) (asymptotically, at least) in terms of the
means and variances of V and W. From now on we will be
concerned with the determination of the single number m
above. We might even call m "the average channel transmis-
sion occupancy." Note that by using the artifact X(t), we have
been able to use two powerful results for two-valued processes

and have specified our statistical estimation problem as the
problem of estimating m above. Note further that m = P[X(t) =
1] = p. Therefore, terming p the probability of success (i.e.,
obtaining a 1, or a measurement of signal above our thres-
hold), we have framed our problem to the case of estimating
the probability of success in Bernoulli trials, since our sequence

of measurements has been represented as a sequence of 0's
and l's. For the case of independent trials, this is the well-
known case of binomial sampling, for which many results are

available ([4] and the references therein).

III. INDEPENDENT SAMPLING

Our problem, that of estimating p, the probability of suc-

cess, in Bernoulli trials, has been treated in detail by Crow
[4] for independent trials. We start here by considering the
effect of the actual measurement time. We seldom have truly
"instantaneous" measurements of the energy in a channel. We
require a small measurement time to, and we will demonstrate
that this will not have an effect on- our basic results. Suppose
that N transmissions occur during time period T and that
they occur via the Poisson process, i.e.,

(aT)N

p(Al)= -a e-aT
!

(5)

where E[VI is the expectation or mean value of V, etc.
The fraction of time f3(Li, 7) of the interval 0 to T that the

process has the value I for threshold level Li is asymptotically
normally distributed; i.e., for every real number x,

iimP[) i eY2/2 dy

(2)

1 See [1 ] for a discussion of the difference and relationship between
transmission occupancy and message occupancy. Spectrum users are
more concerned with fitting into the gaps between messages which may
consist of one or more transmissions.

where a is the mean number of transmissions per unit time
(seconds). The Poisson process for the occurrence of "events"
arises from very basic assumptions. The assumption (5) means
that the number of changes of state in X(t) or transversals
(0 to 1 or 1 to 0), k, in time period T is given by

(bT)k

p(k,T)= ebT (6)

where b = 2a. In order for the scanning receiver system to

2 For proof of (1) see Parzen [2] , and for (2) see Renyi [3].

3.m1
'a

(3)
.-
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detect a signal, where t0 is the measurement time, we have
that P (detection) = P[X(t) = 1] X P [zero transversals in
times to] . So

P [detection] - E[V] e- 2ato0
E[V] +E[WJ (7)

As an example, suppose the average transmission length is
10 s = E [V], the average number of transmissions per hour is
20, so E[V + W] =3600/20 s, then p = 10 X 20/3600 =
0.0556 (5.56 percent). Let to = 1.0 ms3 so that the factor
due to to is exp [-2 X 20/3600 X 10-3] = 0.99998. In
this example, P [detection] and p are, for all practical pur-
poses, the same.

In the above, it would appear that we have demonstrated
the obvious. However, in such problems, small things like to
can sometimes have big effects, and it is not safe to neglect
them out of hand.
We now consider our second question regarding "basic

detection." The probability of m detections in M scans (or
measurements) is given by

(M>)(P)m( p)Mm (8)

so the probability of at least one detection (success) in M
trials is

P =1-(1 p)M. (9)

For a 0.99 probability (say) of at least one success

O.99 = 1 -(I _p)M (10)

or forM the required number of trials (measurements),

[1g[ P (11)
log [1 -PI

where P is our required confidence (0.99 above). Table I
illustrates the results obtained from (11).

For example, the above tells us that if we take 4603 meas-
urements (on a given channel) and detect no signals, then we
are 99 percent confident (99 times out of 100) that occu-
pancy is below 0.1 percent. Remember this is for independent
samples.

3Modern spectrum monitoring systems [5]-[7] can make many
measurements in a given channel in 1 ms. The Federal Communications
Commission (FCC) system van [S] typically uses 0.5 ms when sampling
the nongovernment land-mobile band and the Office of Telecommuni-
cations (OT) van [6] uses 0.8 ms when sampling bands in the frequency
range 100-500 MHz. The OT system currently takes 40 measurements
in 0.8 ms and then uses the minimum of these measurements for the
channel signal level. This technique is effective in reducing erroneous
measurements due to impulsive noise. The FCC system software consi-
ders three adjacent scans and states that if a signal having an amplitude
at least 6 dB above threshold is received on a particular frequency pre-
ceded and followed by signals on the same frequency having amplitudes
near threshold, the higher level signal is impulse noise. Samples con-
sidered to be impulse noise are not used in the occupancy computation.

TABLE I
TRIALS (MEASUREMENTS) REQUIRED TO DETERMINE WITH

9.9-PERCENT CONFIDENCE IF A GIVEN CHANNEL IS
OCCUPIED (INDEPENDENT SAMPLES)
Occupancy (p_x 100)% M (99% confidence)

50 7
20 21
10 44
1 459

0.1 4,603
0.01 46,050

We now give a procedure for obtaining confidence limits
for the estimation of the probability of success p. We use
procedures that are designed to be quite accurate for p 6 0.1
(i.e., channel occupancy < 10 percent). The following results
are valid for any value of p, but forp > 0.1, other techniques
are available which give somewhat "tighter" confidence limits
[8]. For any fixed measurement time (number of samples),
the smaller p is, the less accurate our estimate of p is, so we
are primarily interested in confidence limits for small p. The
situation is identical for large p; in fact, the estimation pro-
cedures are -completely symmetrical about p = 0.5. For p >
0.5, the results below are applied to the complimentary
event q(q = 1 - p). This then, of course, establishes confi-
dence limits for p, p >0.5.
A confidence interval (or set of confidence intervals) for

p is a set of random intervals such that, whatever p is, the
random interval covers p with a probability at least equal to a
prescribed number called the confidence level. The confidence
level is denoted as 1 -2a; that is, for a confidence level of
0.9 (90 percent ), o = 0.05. The occurrence of successes
(l's) in our sequence of measurements (n samples) is governed,
for independent samples, by the binomial distribution. For
large n and small p (or small q), the case we have here, it is
well known that the Poisson distribution provides an excellent
approxlmation.

If we denote the number of successes by c, and the total
number of samples by n, then the "best" (in terms of un-
biassedness and efficiency) point estimate ofp is simply

(12)
c

p=-.
n

To obtain confidence limits for this estimate we use the upper
(U) and lower (L) confidence factors given by Crow and
Gardner [8]:

5: 1 3
2

1 1
=C±-+-U,2+ UC c±-+-uo,22 8 2 8 (13)

where uc,& is the upper 100 a/2 percentage point of the normal
distribution of mean 0 and variance 1.

Values of u,t are given in Table II.
If we let Pu and PL denote the upper and lower confidence

limits for p, and U and L the corresponding limits for the Pois-
son mean [from (13) above], then Anderson and Burstein
[9], [10] have given simple but accurate confidence limits
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TABLE II
CONFIDENCE LIMITS (AND LEVEL OF SIGNIFICANCE)

VERSUS ue
Confidence a u~~~~~a

80% 0.1 1.282
90% 0.05 1.645
95% 0.025 1.960
99% 0.005 2.576

forp,

U
Pu =

n + (U- c)/2

L
PL

n (c- I - L)/2
(14)

As an example, suppose n = 4000 measurements and c was 80
successes, then

A

= 80/4000 = 0.02, or we would say 2 per-
cent channel occupancy. From (13), at the 90 percent confi-
dence level, U = 96.3 and L = 65.8, so, from (14), Pu =
0.0240 and PL = 0.0165. That is we are 90 percent confident
that channel occupancy is between 1.65 and 2.40 percent.
At the 99 percent confidence level, U= 106.2 andL = 58.90,
so Pu = 0.0266 and PL =0.0148. If n = 400 and c = 8 p=
0.02, but at the 90 percent confidence level pu = 0.0357 and
PL = 0.00981. The accuracy of our estimate depends on the
number of successes, c.

Rather than an absolute confidence interval as above,
we are probably more concerned with relative accuracy,
especially with p unknown, in deciding how long we must
measure. A percent half-length is given, for n relatively large,
by

U-L
percent (%O) half-length = X 100.

2c (15)

c -u
Of

a)
0--Ta)

L)a

0

Number of Successes, c

Fig. 2. Relative precision in estimating p from large samples for in-
dependent sampling.

cc

CL
E

Channel Occupancy, Percent

Fig. 3. Number of required independent samples versus channel
occupancy.

Before proceeding however, we here mention a test to deter-
mine independence. Probably one of the easiest, and best
known, tests for independent samples is the run test which is
based on the total number of runs in a sequence of measure-
ments. A sequence of k identical symbols that is preceded and
followed by a different symbol or no symbol is called a run
of length k. For example, consider the sequence

000111011010110.

The percent half-length tells us (at a given confidence level)
our relative accuracy. In the above numerical example, at the
90 percent confidence level, we have, for c = 80, (U-L)-
160 = 0.19, or a relative accuracy of ±19 percent and for
c = 8, (U - L)/16 = 0.656 or a relative accuracy of ±66 per-
cent. The results given in (13) and (15) have been used to
prepare Fig. 2. This figure gives the number of successes c
required to achieve a given percent half-length of accuracy.
For example, to achieve ±10 percent relative accuracy at the
95 percent confidence level, we require about 390 successes.
Or, for a channel occupancy of, say 1 percent, c/n = 0.01,
or n = 390 (100) = 39 000 measurements required. Fig. 3
shows, for various relative accuracies, the number of required
measurements, n, for a given channel transmission occupancy.

All the above assumed independent samples, and it makes
no difference whether we take one sample per year or one
sample per second. However, since our actual sampling interval
is less than a typical average transmission length, we can be
quite confident that we will not have independent samples
for any reasonably dense sampling scheme. This more realistic
situation of dependent sampling is covered in the next section.

There are five runs of length 1, 2 runs of length 2, and 2 runs
of length 3, for a total of nine runs. The total number of
runs, ,u, in a sequence of independent samples is influenced by
the number of 0's, NO, and the number of I's, Nl. For a large
number of samples, the normal approximation of the distri-
bution of,u is quite satisfactory:

E[U] = 2N0N + 1
NO + N1

(16)

and

2N0NI(2NON1 - No - N1)
var [,u] =

(No + Nl)(No + ll-1)

If the observed number of runs is less than

E[MI =u. var [j I (17)

we reject the hypothesis of independence at the ot signifi-
cance level. Since here we use a one-sided test, ,, is the
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100a percentage point of the normal distribution of mean 0
and variance 1. For example, if the observed number of runs is
less than E[,] + 2.326 vr [j], we reject the hypothesis of
independence at the 1 percent significance level (a, = 0.01).
That is we are 99 percent sure that the samples are dependent.

IV. DEPENDENT SAMPLING

In this section we will represent our sequence of 0's and l's
by a first-order Markov chain. Testing whether a sequence
can be represented by a Markov chain of first order, or any
order for that matter, is a special case of the problem of testing
the goodness of fit of a general Markov chain, which has been
discussed extensively in the statistical literature. For a summary
of such tests see Crow and Miles [11]. Many more compli-
cated mathematical models have been suggested, but for
situations of interest to us here, the complex results from such
complex models differ little from first-order Markov results.

By a first-order Markov chain, we mean that the probability
of success on the ith trial depends on what happened on the
i- Ith trial, but not on the i - 2nd trial, etc. We assume that
the Markov process has been operating for a long time and has
achieved steady-state conditions. As before, we have P[xi =
1] = p, and we are interested in estimating p. We have two
constant parameters

p =P[xi = 11

X=P[xi= 1 Ixi-1 = 1] (18)

where P[I] indicates the conditional probability of the event
given first occuring, given that the event given second has
occurred. We have the following

P[xi=0]=1 -p=q

P[xi=0 x -1] I -X. (I19)

The second relation in (19) simply says that the process must
go from state 1 either to state 1 (probability X) or to state 0
(probability 1 - X). If we let

of n samples are determined by p, X, and n. Also, X = p
means the samples are independent, and X > p means the
l's and 0's luster. Our problem is now to estimate p for a
given X or to estimate both p and X. The larger X is, the more
dependent our samples are.

As before, we first consider the question of "basic detec-
tion," and we let P denote the probability of at least one
success in M trials [and p is the probability of success (signal)] .
Let nM(l) be the number of l's inM samples. Then

P = Pr [nM(l) > ] = 1-Pr[nM(l) = 0]

P = 1 - Pr [xl = 0] Pr [nextM - 1 samples are zero]

P = 1 -Pr [x, = 0] [P(Xi = 0 x-l = O)M-1

or

-P=q[-1 -2p + Xp M-1
1-P=q ~q (23)

Solving for M, we have

Mlog (I1-P) - log (1 -P)
m = ~~+1.

(1 - 2p + Xp)log
(24)

Previously, for independent samples, we saw that at the 99
percent confidence level and for 1 percent occupancy,M was
459. Suppose X = 0.6. Now for P = 0.99, p = 0.01 as before,
from (24), M = 1136. That is, now to be 99 percent confident
that occupancy is less than 1 percent, we need 1136 measure-
ments of no signal.

Obviously, X is a function of the transmission length statis-
tics and our sampling rate.

We now consider the problem of estimating p for the case
of dependent samples. Klotz [12] derived estimates of p and
X that are consistent and asymptotically normally distributed.
They are

(20)

then the steady-state equations for our process are

q=qooo +POol

p = q'lo +Pll -

Solving, we obtain

p = c/n

and

X =-(c - )- [r- c + t + (2c- t - ) + {[r- c + t
2

(21) (26)

where

Poo=P[xi = 0 Ixi-1
I- 2p + Xp

=0] =
q

n n

Xi, t=xl +xn
i=2 i=l

Ooi =P[xi= 1 Ixi-i = ] =p(l ) (22)
q

The four 'k l's are termed the "transition probabilities."
In the above, the probability properties of an entire sequence

An intuitive estimate of X, not making full use of the data, is
the relative frequency estimate.

r
c= - p (28)
c-p

(25)

(27)
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The simplest and most appropriate confidence limits for
p for cases of interest here (p < 0.1, large sample size) have
been developed by Crow and Miles [11] as a modification to
the Anderson-Burstein limits [9], [10] for independent
samples discussed in Section III:

Pu =P + (PUI

where PuI and PLI are the Anderson-Burstein limits for
independent samples, and

)-p
P A_ ' (30)

1 p

If the PL calculated from (29) tums out to be negative, then
(29) should be replaced by

I + A 1/2
PU = (PUI-PLI)( - A PL =0° (31)\1 -p

In terms of relative precision, for large n, the percent half-
length is, from (29) or (31).,

X 100 \2 \1 =1,) X 100 (32)
2c 2

where UI and LI now denote the upper and lower confidence
factors for independent samples [from (13)].

In order to use the above, we need an estimate of X. This
can be obtained from the actual measurements via (26) or (28)
or calculated from some assumed channel model.

Suppose we are given the maximum value of X expected,
Xmax. If we let cind be the number of successes required to
achieve a given relative accuracy at some confidence level
for independent samples (Fig. 2), then, to achieve the same
prescribed precision approximately, the number of successes
required for dependent samples is given in [1 1] by:

\l+ Xmax /
c --:Cind V ,a

(33)

The next question is that of stationarity. If it is believed
that p and/or X may change during the acquisition of data,
the data should be separated into subsamples considered to be
homogeneous and tested for differences between the sub-
samples. Crow and Miles [ 1] gave procedures for doing this.

An Example

Suppose we have 40 transmissions per hour and our average

transmission length is 6 s, then E[V] = 6,E[W] = 84, and
transmission occupancy = E[V]/E[V + WI = 6/90 = 6.67
percent. Suppose we want to estimate p to ±10 percent relative

accuracy at the 95 percent confidence level. For independent
samples, Fig. 2 tells us that we need 390 successes, or, for the
above situation, n = 390/0.0667 = 5850 measurements. Let
us denote our sampling time interval of T and let r ; 4 s.4
That is, any given channel has a measurement taken every 4 s.
Suppose the transmission lengths above are exponentially
distributed with mean value 6 s. A recent study by Lauber and
Macklon [13] shows that the usually assumed exponential
distribution for transmission lengths is a reasonable assump-
tion-at least for some channels. We use this assumption here,
however, only to get an estimate of X. We have

Pv(v) = ae-aU a = 1/6

P[xi1xIxi- =1] =P[V>r =f ae-axdx=e-at

The above result is independent of where, during a message,
xi-1 occurs. This is due to the "memorylessness"-property of
the exponential distribution. The exponential distribution is
the only distribution that has this property. [Note that, if we
know that the message lengths are exponentially distributed,
then we can estimate the average message length from an
estimate of X via (26) or (28). That is, a = -(In X)/Tr. For
r = 4 s then

X = e-4/6 = 0.513.

If we decide this value of X is the maximum we expect, then
the required number of successes to achieve the same relative
accuracy as above (±10 percent, 95 percent confidence) is

/1 + 0.513\
c =390 = 1212

1 - 0.513/

or n = 1212/0.0667 = 18 166. At a measurement every 4 s,
then, for independent samples, we require a measurement
time of 6.5 h, but for dependent samples (X = 0.513), we need
a measurement of time of 20.2 h. Many channels of interest
may not be stationary over such a long interval because of
-diumal variations of channel usage.

Another Example
Suppose we have three bands and we can scan each band in

4 s. Suppose we want ±10 percent relative accuracy at the
95 percent confidence level; then, for independent samples, we
require 390 successes. We want to determine channel occu-
pancy for all channels in the three bands with the above rela-
tive accuracy down to occupancy of 5 percent. We consider
two options:

1) Scan the first band for the required amount of time and
then go to the second band, etc.

2) Scan all three bands together.

4A current procedure [6], for example, scans a band of channels
such that each channel is revisited every 4 s.
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Obviously, for independent samples, there is no difference
between options 1) and 2). Suppose, now, we assume trans-
mission length statistics as in the above example (E[V] = 6 s,
etc.) and that this is true for all channels of the three bands.
Under option 1),

x e-4 /6 =0.513

and the number of successes we require is, therefore, 1212.
Then, n = 1212/.05 = 24 240 scans or a measurement time of
27 h/band for a total measurement time of 81 h.

Under option 2),

X = e-1216 = 0.135

so, now, the minimum number of successes required is

/1 + 0.135\
390 =512.

1 - 0.135/

Then, n 512/0.05 = 10 240 scans, or a total measurement
time of 12 X 10 240/3600 =34 hs.

Suppose we want ±10 percent relative accuracy at the 95
percent confidence level, occupancy down to 0.1 percent
(p = 0.001). For option 1), T =4 s and X = 0.513. We require
1212 successes:

512
n=-= 1 212 000 scans or 1347 h/channel

0.001

For option 2),

1 + 0.135\
c=9 1=12

1 - 0.135/

12
n = = 12 000 scans

0.001

on total time = (12 X 12,000)/3100 = 41 h.
One possible area of concern, statistically, is whether a

little used channel would exhibit the same sort of discipline
as a heavily used channel. In a crowded channel, the user is
likely to use procedures to minimize actual time on the air
(e.g., the "10 code"). These would tend to make transmissions
shorter on heavily used channels. On the other hand, the user
of a little used channel has no reason to be efficient and may
feel more sure of himself if he talks a bit more. Therefore, the
transmissions on a little used channel may average several times
the length of those on a heavily used channel. Suppose we have
p = 0.001 to measure, and the average transmission length is now
30 s. Then X exp(-/r30), so that for r = 4 s, X = 0.875,
and for r = 12 s, X= 0.670. For option 1), 95 percent confi-
dence, ±10 percent relative accuracy,

/1 +0.875\
c=390 =5859

1- 0.875/

or

n = 5 859 000 scans per band
or

3 X 1347 = 4040 h total measurement time.

For option 2),

512
n =~ = 512 000 scans

0.001

so total measurement time is

12 X 512 000
= 1707 h.

3600

Suppose now we want down to 0.1 percent (p = 0.001)
occupancy but ±50 percent relative accuracy at 80 percent
confidence level, so

Cind = 9 samples.

For option 1),

1 + 0.513\
c=9 128

1 - 0.513

28
n = = 28 000 scans or 31 h/band

0.001

total time = 3 X 31 or 93 h.

so total time = (3 X 4 X 5 859 000)/ 3600 = 19 530 h.
For option 2), 95 percent confidence, ±10 percent relative

accuracy,

/1 +0.670\
c = 309 =1977

1 - 0.670

or total measurement time = (12 X 1 977 000)/3600 =
6590 h.

The above examples show that if we insist on tight relative
accuracy with high confidence for small p, the required meas-
urement times can quickly become quite large.

The Example of Section III [Following (14)] for Dependent
Samples

As in Section III, suppose n was 4000 measurements and
c was 80 successes. We saw that the p = 0.02 and that at the
90 percent confidence level and for independent samples, p ui =
0.0240 and PLI = 0.0165. Suppose now we know that X = 0.6.
Then, from (29) and (30) we have

A 0.6 -0.02
- 0.592

1 - 0.02

(1 +0.592\1/2
Pu = 0.02 + (0.0240 - 0.02) 1
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Pu = 0.0279

i1 +0.592\2
PL -0.02 -(0.02-0.0165) )1)2

PL - 0.0131.

Or, we are 90 percent confident that p is between 1.31 and
2.79 percent. For independent samples, the relative accuracy
was ±19 percent with dependent samples from (32), the rela-
tive accuracy is

/ 1 + 0.592\ 1/2
±19 = +377.5 percent.

\1 -0592/

For further examples and results, see Appendix I. An example
of data obtained in two channels during the same hour are
examined in Appendix II to illustrate the lack of stationarity
which can be encountered in practice.

V. DISTRIBUTIONS OF CHANNEL OCCUPANCY VALUES

The previous sections have defined channel transmission
occupancy as a random variable and have established confi-
dence bounds on individual occupancy estimates obtained by
sampling a channel through the use of distribution-free (non-
parametric) statistics. This single value, m, is applicable only
for time periods for which the channel statistics remain
stationary. We do not expect stationary statistics over long
time periods (daytime versus night-time, Monday versus Sun-
day, for example). For these long-term variations, we will have
a number of occupancy values which we want to use to make
statements like: The channel transmission occupancy is greater
than 50 percent more than 80 percent of the time, etc. Also,
we; may want to discuss occupancy for a band of channels and
make statements like: 62 percent of the channels in the band
have occupancies greater than 40 percent etc. In short, we are
interested in distributions of channel transmission occupancy
values. This section will consider such distributions and a
means of placing confidence limits on such distributions.

The average occupancy m of the hth channel for threshold
level Li over the jth time interval Tj, defined in the preceding
sections, forms the basic building block of the cumulative
distribution function of channel occupancy over the much
longer time interval Tk. Over a long time interval Tk, we have
77 values of occupancy for a channel of interest Ch. From the
previous sections, we let m = O(Ch, Li, Tj, Tk) = transmission
occupancy. The 7q values of O(Ch, Li, Tj, Tk) computed will
be rank ordered, normalized to obtain any estimate of the
probability of a given occupancy level, and plotted as a func-
tion of occupancy (0,) to generate the cumulative distribution
function (CDF) for the interval Tk. The occupancy data for a
given threshold over this time interval can be neatly sum-
marized on a diagram as illustrated in Fig. 4. This process
can then be repeated for the other thresholds, which can then
be plotted on the same diagram. [A corresponding situation
is the cumulative distribution of ir values of channel occu-
pancy for h channels forming a band of channels].

oD 0; D
Al
0

~~05~ ~ ~ .,-~Median

a 025 Maximum
E 25uortileJ (Peak)

0.1Deie'
-Decile Range

0 0.25 0.5 0.75 1.0
Occupancy -C

Fig. 4. Hypothetical example of sample cumulative distribution
function of channel occupancy for time interval Tk, hth channel,
and. threshold Li.

Such a plot is a very useful summary, because one can
read directly fromn it the following occupancy measures for
the channel for interval Tk:

peak (Om ax)

median (°med)

minimum (Omin)

quartiles (°uq °0 i)
deciles (Oud, Old)

quartile range

decile range.

The cumulative distribution functions also provide the
vehicle, when coupled with distribution-free statistics, for
putting confidence limits on the measured occupancy cumula-
tive distribution.

One nonparametric measure of the deviation between the
sample distribution F,(x), and the "true" occupancy distri-
bution, F(x), is the Kolmogorov-Smirnov (KS) statistic, N/47
supremum I F, (x) - F(x) i, [14] -[171. The KS statistic is
based on independent samples.

The KS statistic is useful for determining the sample size
(7i) required to approximate the occupancy cumulative distri-
bution function, F(x), by the sample distribution function
F,(x) within a prescribed accuracy with a prescribed level
of confidence. For example, if we have the hypothesis that
the distributional error never exceeds ±0.15 (±15 percent),
then i7 > 80 is required for the hypothesis to be accepted at
the 95 percent confidence level (see Fig. 6). Tables of this
statistic have been given by Massey [14] for levels of signi-
ficance (oa Type I error) of 0.20, 0.15, 0.10, 0.05, .and 0.01,
which correspond to confidence levels of 80, 85, 90, 95, and
99 percent, respectively. Figs. 5 and 6 give the half-length
confidence interval versus sample size 71 in terms of the confi-
dence level (1 -a) that the hypothesis is accepted, given that
it is true.
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Fig. 5. Number of required samples, 7, for a given half-length confi-
dence interval for the distributional error.

1-a=080

@P103 ~ a
~~~~=095

~~~~=099

E
a a=Prob [Hypothesis is rejected,
LO 102 given that it is true]

(0.1%) (10%) (10%) (100%)
Holf Length Confidence Interval

Fig. 6. Number of required samples, q, for a given half-length confi-
dence interval for the distributional error.

When the sample size i? > 35, then Smirnov's [18], [19]
asymptotic forms can be used [14]:

.67,0.95 1.3581 n-1/2

6,09 1.6276 7-1/2.

The KS statistics are applicable to independent observations
with a common (unknown) continuous distribution function
F(x). We note in passing that the KS statistics can also be used
to test the goodness of fit of a completely specified cumula-
tive distribution [14] -[16] .

Let us now consider an example CDF: a land-mobile chan-
nel in Chicago [20]. The CDF data shown in Figs. 7 and 8
were obtained for a Special Emergency channel (33.080 MHz)
on the same day, at approximately 0700 and 0900. Invalid
data consisting of impulsive noise (IN) samples and inter-
modulation products (IM) were removed, using the methods
discussed by McMahon [5].5 At 0652 hours local time, the

'The IM algorithm used a 3-dB attenuator switched in and out on
alternate scans of a given channel (r = 0.5 ms). This algorithm was con-
servative in that it tended to reject valid data with contained amplitude
fluctuations > 6 dB (e.g., due to propagation) occurring during 1 ms.

Location
41°51'42" N
87049'48" W

Day/Date Wed. 10-11-72
Time 0900 hrs local time
_

LI

L2
It

-- ---

_-
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U 0U.Z .1 U0?5
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Fig. 7. CDF of lightly loaded 33-MHz channel.
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0
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E

(0

Special Emergitacy (PS)iency (PS)

FCC Tape 581
Tr0.5 s

Tiz 4 sec

Tk' 4.8 min

L3

33.080 MHz
L1 =-140 dBW -

L2 -128 dBW
-- L3=-116 dBW

------ L4=-104dBWn=84
I n=54 -----

a=0.05
e= 0.17

10 025 0.5 0.15 1.0
Occuponcy -

Fig. 8. CDF of relatively heavily loaded 33-MHz channel.

channel was lightly loaded, but at 0900 hours the usage of the
channel had greatly increased., This can easily be seen by
comparing CDF's.

At 0652 hours, there were 627 valid samples with only one

case of IN and six cases of IM. The average transmission time
was 2 s. The maximum observed level was - 117 dBW, and the
minimum observed level was -163 dBW. The mean transmis-
sion occupancy values, m, computed over the entire 4.7-min
interval were 26, 24, and 19 percent for -140, -134, and
-128-dBW thresholds, respectively; the occupancy was zero

for higher thresholds. At 0900 there were only 435 valid
samples with three cases in IN and 206 cases of IM. The
average transmission time was 1.7 s, and the maximum and
minimum observed levels were -110 dBW and -151 dBW,
respectively. For L2 (-128-dBW threshold), the mean trans-
mission occupancy level for the entire 4.8-min interval was

72 percent, and it increased to only 74 percent at L1 (the
-140-dBW threshold). The occupancy level dropped off to 35
percent at L3 (the -11 6-dBW threshold) and to only 1 percent
at a threshold of -110 dBW.

Special Emergency (PS)

33.080 MHz Location
L1 =-140 dBW 4151'42" N
L2 = -128 dBW 87049-48" W
L3= -116 dBW Day/Date Wed. 10-11-72
n = 8 Time 0652 hrs local time
n 78 FCC Tape 581
a=0.05 r-0.5s
e=Q14 Tj 4 sec

TV 47 min

_QLI

L2

I) It
An n^rAC r "I

u-, -.-

D

Special Emerge

nl I I
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About 15 percent of the data were discarded for the 0652
hours sample and about 30 percent of the 0900 hours sample.
Nevertheless, the confidence bound En,0.95 (Smirnov's
asymptotic form) increased only from about 0.14 to 0.17, a
much better result than if whole blocks of data had been
discarded because small sections were invalid.

As noted previously, the methodology for placing confi-
dence bounds on the CDF of a channel can be used for bands
of channels. For example, one might compute for the same
time interval Tk the median occupancy for each of h channels
in a band of similar channels. The CDF for the band occupancy
could then be computed, and confidence bounds could be
applied using the KS statistics. Such band occupancy statis-
tics could be used to study the time variation of band usage
over longer periods of time.

VI. CONCLUSIONS

This paper has defmed channel transmission occupancy
as a measure of a random process: specifically, the quantity
a(Li, 1) is the fraction of time T that the received power in
the channel exceeds the threshold level Li. We have shown
how, independent of the actual statistical distributions of the
individual transmission lengths (V) and the gaps between
these transmissions (W), we can describe ,3(L, 7) asymptoti-
cally in terms of the means and variances of V and W over the
interval T. The problem of estimating transmission channel
occupancy has been reduced to the problem of estimating
p(= m), the probability of success in Bernoulli trials, a prob-
lem for which many results are in the literature. We have
examined how long it takes to measure m to a given accuracy
with a given level of confidence for both independent and
dependent samples-independent of the actual transmission
structure on the channel. We have discussed a method for
determining the independence of the samples as well as the
time stationarity of the sequence of samples. Once a minimum
value of m is set, it is possible, previous to making measure-
ments, to determine the measurement time required to deter-
mine m to within a given relative accuracy with a given level
of confidence (the degree of dependence between measure-
ment samples, X, must also be assumed, or estimated). We have
explored the tradeoffs between measurement time and meas-
urement accuracy, and shown that if it is desired to get ex-
tremely accurate estimates of low-occupancy (or high-occu-
pancy) channels that there may be a problem with lack of
sufficient stationarity, due to the required large measurement
times.

After discussing the measurement of mean transmission
occupancy, m, we showed how a group of m values could be
rank-ordered and normalized to form an occupancy cumula-
tive distribution function (CDF) for a channel or for a
band of similar channels. Confidence bounds on the CDF
were computed using distribution-free techniques that are
useful in estimating (before the measurement) the number of
m samples required to estimate the occupancy distribution
function to a given accuracy with a given level of confidence.
Finally, it should be noted that CDF's can be generated on
level for a fixed time as well as on time for a fixed level. The
same statistical methods would pertain.

O .
0

o ~~~~~~~~~~0.2

80% Confidence
- 4 sec scan time

exponentially distributed A=O.0O5
message lengths (Independent
channel occupancy -05% Samples)

lo ioo110
Measurement Time, Hours

Fig. 9. Measurement time for various degrees of sample dependence,
A.

APPENDIX I

FURTHER RESULTS AND EXAMPLES

We use the results obtained previously to develop various
figures that illustrate the kind of results possible. The basic
results are those of Fig. 2 and all others proceed directly
from the number of successes c. The first of the figures (Fig.
9) gives measurement time versus relative accuracy for various
channel occupancy levels. On Fig. 9 we assume 80 percent
confidence, and exponentially distributed transmission lengths
with a mean of 6 s, so that, as we saw previously, X = 0.513.
The relative accuracy is given by (32). For example, for
5 percent occupancy, or = 0.05, we obtain from (30) that
p = 0.487, and then from (32) for ±5 percent relative accuracy,

tUI-Lt ~~~A1-p\/2UIL
2 0.05(1 + . = 0.0293 or 2.93 percent.

Then from Fig. 2, the required c is 1800; therefore

(1800\
I X4s

0.05/
measurement time = 40.0 h.

3600 s/h

Notice that if we use the approximate upper bound expression
(33) with Xmax = 0.513, c is 2019, and the measurement
times is 44.9 hr. This example points out that (33) gives an
approximate result (upper bound), but (33) is somewhat easier
to compute. Fig. 9 was developed via (32).

As we have seen, the required measurement time critically
depends on the parameter X, which, in turn, depends on the
transmission length statistics and the rate at which we take
measurements on any given channel. Using the assumption
of exponentially distributed transmission lengths, for example,
we have seen that

[ m-easurement interval__
X=exp - .

average transmission lengthj

Fig. 10 shows the effect of X on measurement time, where
we have chosen 80 percent confidence, channel occupancy
of 0.5 percent (p = 0.005), exponentially distributed trans-
missions, and a 4-s scan time.
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Fig. 10. Measurement time versus relative accuracy for various channel
occupancies.
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Fig. 11. Relative accuracy versus confidence level for various measure-
ment times.
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Fig. 12. Measurement time per band versus relative accuracy.

Fig. 11 shows the realtionship between relative accuracy

and confidence level for various measurement times. A channel
occupancy of 0.5 percent (p = 0.005) is used with a scan time
of 4 s and exponentially distributed transmissions with 6-s
average length.
On Fig. 12, the difference in required measurement time

between scanning one band at a time and scanning more than
one band is shown. Fig. 12 shows the measurement time
per band. As before, each band can be scanned in 4s, and
exponentially distributed messages of 6-s average length are
assumed. Suppose we have three bands and want ±20 percent

relative accuracy for channel occupancies down to 0.5 percent.
We see from Fig. 12 that, if each band is scanned separately,
each band requires 30.5 h of measurement time, or a total
of 91.5 h for all three bands. However, if all three are scanned
together (so that the sampling interval for each channel is 12 s
rather than 4 s) then the measurement time per band is 13.3 h,
or a total required time of 39.9 h.

APPENDIX II

EXAMPLES OF CHANNEL TRANSMISSION OCCUPANCY
COMPUTED OVER DIFPERENT TIME INTERVALS

DURING THE SAME HOUR

Monitoring data [201 were obtained by the FCC for a
period of several hours on January 17, 1973 at the City of
Chicago South Water Filtration Plant, 3200 East 78th Street
(41045'24"'N, 87032'36"W), as part of a special test. For this
test we have data in 5-min simple data sets (i.e., T, = 300 s)
for every other 5-min period over several consecutive hours.
Each channel was sampled about every 0.5 s for the period
between approximately 1530 and 1720 hour local time.
Data in two 150-MHz business radio channels from the first
hour of observation were reduced as simple and compound
data sets to illustrate the compound technique and, more
importantly, to show how transmission occupancy computed
for a 5-min interval can differ from that computed over longer
periods up to an hour.

The two channels studied were 151.865 and 151.895 MHz.
Occupancy was computed for seven thresholds for each chan-
nel for the first 5 min (simple data sets beginning at 1531
hour), after the invalid data had been removed. The results
of these calculations are given in Table III. Also shown in this
table are the number of valid samples, the number of invalid
data (IN and IM), and the maximum and minimum observed
signal levels. Next, a compound data set was formed for each
channel by using the first (simple) data set for the given
channel and data from the next available 5-min period (which
actually began 10 min after the beginning of the first set).
The transmission occupancy calculations were then repeated;
they are recorded in Table III in the rows labeled 10 min.
Finally, all the similar data obtained during the first hour
were combined to give transmission occupancy values com-
puted over the equivalent of a 30-min period (see Table III).
These tests revealed some interesting things, as discussed
below.

The 151.865-MHz channel was essentially unoccupied over
the first 5 min; and the same situation existed from the 10-min
sample (Table III). A relative increase in occupancy was noted
for the 30-min sample. On an absolute scale, the channel was
still lightly loaded, but the 5- and 10-min samples (while
similar to each other) were not good estimators of the 30-
min sample.

In the 151.895-MHz channel, also lightly loaded, a signifi-
cant increase in activity was observed between the 5- and 10-
min samples. The data taken during the 10-min sample were
reasonably representative of those taken during the first hour
(the 30-min sample in Table III) for thresholds above -140
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TABLE III
CHANNEL TRANSMISSION OCCUPANCY FOR DIFFERENT

SAMPLE INTERVALS DURING THE SAME HOUR

Total Total Sign
requency Interval Elapsed Mean Transmission Occupancy vs. Threshold No. of Samples Signal
(MHz) Scanned Time (percent No._of_Saples__dBW

(min) (min) -140 dBW - 34 dBW - 128 dBW - 122 dBW - 116 dBW - 110 dBW -104 dBW Val id IN IM Maximum Minimum

151.865 5 5 5.0% 1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 378 4 2 - 127 - 160
151.865 10 15 6.0 1.0 0.5 0.0 0.0 0.0 0.0 722 4 42 - 124 - 161
151.865 30 55 9.6 3.9 2.9 1.4 0.7 0.4 0.0 2093 31 323 - 106 - 161
151.895 5 5 11.0 2.0 1.0 1.0 1.0 1.0 0.0 366 8 10 - 105 - 159
151.895 10 13 11.5 5.0 4.0 3.5 3.0 2.0 0.0 721 18 29 - 105 - 160
151.895 30 55 11.1 4.1 3.9 3.3 2.5 1.4 0.4 2298 42 107 - 104 - 160

dBW. The data taken during the first 5 min were reasonably
representative of the first hour, for the -140-dBW threshold
(about 20 dB above the level of the minimum observed "sig-
nal"). This sample illustrates the need to consider threshold level
when evaluating how representative data from a given 5-min
interval are for the hour from which they came. One might
expect greater similarity of occupancy data on lower thres-
holds, especially near the noise level.
A conclusion from this brief study of time stationarity

(in the loose sense) is that it is important to try different
groupings of the same data when evaluating the adequacy
of any sampling plan that looks at each channel for only 5
min of each hour. More data should be taken over longer
continuous intervals, and attention should be given to the
results for channels with greater occupancy than the two
cited here.
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