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STATEMENT OF MISSION

The mission of the Office of Telecommunications in the Department
of Commerce is to assist the Department in fostering, serving, and
promoting the nation’s economic development and technological
advancement by improving man’s comprehension of telecommuni-
cation science and by assuring effective use and growth of the
nation’s telecommunication resources.

In carrying out this mission, the Office

e Conducts research needed in the evaluation and development
of policy as required by the Department of Commerce

e Assists other government agencies in the use of telecommuni-
cations

e Conducts research, engineering, and analysis in the general
field of telecommunication science to meet government needs

e Acquires, analyzes, synthesizes, and disseminates information
for the efficient use of the nation’s telecommunication re-
sources.

e Performs analysis, engineering, and related administrative
functions responsive to the needs of the Director of the Office
of Telecommunications Policy, Executive Office of the Presi-
dent, in the performance of his responsibilities for the manage-
ment of the radio spectrum

e Conducts research needed in the evaluation and development
of telecommunication policy as required by the Office of Tele-
communications Policy, pursuant to Executive Order 11556
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CONFIDENCE LIMITS FOR DIGITAL ERROR RATES
FROM DEPENDENT TRANSMISSIONS

Edwin L. Crow and Martin J. Miles*

Approximate confidence limits for error rates
(probabilities of an error) of digital communica-
tion systems are derived under the assumptions that
the sample is large, the error rate is constant
and the dependence between transmissions is governed by
a stationary first-order Markov chain model. Five
different approximations are given: normal distribu-
tion, Edgeworth two-term and four-term, Pearson system,
and modified Poisson-Anderson-Burstein. Results by
Gabriel and by Klotz are used. The limits are compared
with Ladd's small-sample limits and illustrated on
telephone data. Methods for testing the validity of
the model are described. A computer program for
applying the limits is presented, and an extensive
Monte Carlo simulation to test the accuracy of the
limits is summarized. Methods for designing the experi-
ment so as to achieve a specified precision are given.

Key words: Bernoulli trials, chi-squared test,
confidence limits, confidence region,
design of experiments, digital communica-
tion systems, Edgeworth series, Freeman-
Tukey deviates, likelihood ratio test,
Markov chain, Monte Carlo simulation,
nonstationarity, Pearson system

1. INTRODUCTION
The successive transmissions of bits or words by a communica-
tion system show dependence in the incidence of errors, error
"bursts" for example. Hence the classical Bernoulli model of
independent trials with constant error rate (probability of
error) is inadequate for calculating confidence limits or

"error bars" for the error rate. One would expect the error

*The authors are with the Institute for Telecommunication
Sciences, Office of Telecommunications, U.S. Department of
Commerce, Boulder, Colorado 80302.



bars calculated from the Bernoulli model to be shorter than the
correct error bars due to the dependence. The purpose of the
present report is to obtain realistic confidence limits by taking
first-order account of the dependence between successive trans-
missions. This is done by introducing just one additional
parameter, the conditional probability of an error given that an
error has just occurred. The resulting model is a stationary
Markov chain with two states.

Gabriel (1959) and Klotz (1973) derived many properties of

this model: the exact distribution and moments of the number
of errors ("successes"), sufficient statistics, estimates of the
parameters, and their large-sample distributions. Ladd (1975)

published a small-sample algorithm and tables recently. For
communications applications the large-sample distributions are
what are required. Exact results are impractical and unnecessary.
Hence five different approximations to confidence limits for the
error rate are derived herein based on the work of Gabriel and
Klotz.

Finite Markov chains were introduced by A.A. Markov in
1907 (Cox and Miller, 1965, p. 141) and have been widely applied.
Many more complicated mathematical models have been suggested for
communication systems. Perhaps the first and simplest to take
account of dependence is that of Gilbert (1960). He assumed that
the system could have two different states, a good one, G, that
is error-free and a bad one, B, that has a non-zero probability
of producing an error. The model has three parameters, the error
probability when it is in state B and the two transition prob-
abilities, from G to B and from B to G.

Elliott (1963) generalized Gilbert's model to allow a non-
zero error probability in the good state also. Subsequent
authors (cf. Fritchman, 1967) have used six or more parameters
for the purpose of describing the data more completely. The
models have been applied to probabilistic description of digital

data transmission, in particular to the evaluation of codes.



To introduce the model assumed throughout this report, we
follow Klotz (1973) and consider a sequence of identically
distributed random variables Xl’XZ""
on just two values: 1, corresponding to an error, and O,

,Xn each of which can take

corresponding to a correct transmission (the two states of our

Markov chain). The model has two constant parameters,
p = P[Xi=l] =1 - P[Xi=0]' i=1,2,...,n, (1.1)
A= PIX,=1[X;_;=11, i=2,3,...,n, (1.2)

where P[ ] denotes the probability of the indicated random event

and P [|] denotes the conditional probability of the event

indicated first, given that the event indicated second does

occur. By definition

PL(X;_1=3)&(X;=k)]
P[X =k] !

=3 |X, .=k] = j=0,1;k=0,1. .
PX, j 1%, _=k] j=0,1;%k=0 (1.3)

i-1

The constancy of p and A means that the chain is stationary,
and the condition that A is made to depend only on the
immediately preceding transmission (trial) is the defining Markov
chain property. Since there are only two states, it follows from
(1.2) that

P[X,=0[X,_;=1] = 1 - . (1.4)
Just as in (independent) Bernoulli trials we let g=1l-p. Since
P[X;=1] = P[(Xi=l)&(Xi_l=l)] + P[(Xi=1)&(xi_l=0)],
P[Xi=0] = P[(Xi=0)&(Xi_l=l)] + P[(Xi=0)&(Xi_l=0)],

it follows from (1.1)-(1.3) that
P[Xi=l\Xi_l=0] (1-)\)p/4g, (1.5)

P[Xi=O|Xi 0] (1-2p+Xp) /q. (1.6)

-1
Since all of the probabilities are between 0 and 1, the para-
meters are restricted by 0<ps<l and max(0,2-1/p)<A<l. Furthermore
the probability properties of an entire sample of n transmissions
are determined by p, A, and n. We see that

A = p means the transmissions are independent,

A > p means clustering of 1's and 0's, and

A < p means 1l's and 0's tend to alternate.
3



It can be shown that the above stationary two-state Markov
model is the special case of Gilbert's (1960) model in which
his two transition probabilities are equal. Although it is
therefore a very specialized model, the parameter A does
take dependence into account and appears to permit realistic
approximation to confidence limits for p, as is argued
further in section 10.1.

Section 2 states some of Klotz's (1973) results and applies
them to deriving confidence limits for p and for A and a joint
confidence region for (A,p) based on the asymptotic (large-
sample) normal distribution of the estimates (X,@). Section 3
obtains presumably a better approximation to the confidence
limits for p by using a two-term approximation for the distri-
bution of p, the first term being the normal distribution, the
second being proportional to the asymmetry (skewness) measure
provided by the third central moment of P. Section 4 gets
limits by extending the same Edgeworth series to four terms
using the fourth moment. Four-moment alternative limits are
provided in Section 5 using the Pearson system of distribution
curves. The simplest approximate limits of all are suggested in
Section 6, simply a lengthening (by a ratio of standard devia-
tions) of the Anderson-Burstein (1967, 1968; see also Crow,
1974, 1975; and Crow and Miles, 1976) refinement of the Poisson
approximation to binomial confidence limits.

These approximate confidence limits are compared in Section
7 for small samples with Ladd's (1975) limits, which are exact
if A is known. Their use is illustrated by application to some
real telephone data (Cox and Lewis, 1966) in Section 9. 1In
Section 10 it is shown how the assumption of the Markov chain
model can be tested (as well as the assumption of independent
transmissions). Also in Section 10 is a test for abrupt changes
in regime, that is, abrupt changes in (A,p) at specified times.
These tests of the assumptions are illustrated in detail on the
Cox-Lewis data.

A computer program for the five pairs of confidence limits

for p is reproduced in Appendix B and discussed in Section 8.
4



The validity of the approximations was tested by Monte Carlo
simulation of 1000 samples for a range of parameter values:
.0003<p<.5; A=.3,.8;50<n<1000; confidence level = 90%, 95%.

A complex program was developed for performing the simulations
and recording an extensive summary of the results of each case.
These summaries are reproduced in Appendix A and discussed in
Section 11.

All of the above material concerns the analysis of given
data, i.e., a given sequence of errors and correct transmissions.
Section 12 considers the prior problem of designing an experiment
to determine the error rate p and the conditional error rate A\
with a specified precision or a specified budget. Numerical
examples are given.

Broad conclusions to the entire study are stated in Section
13. Section 15 comprises a substantial list of references; it

does not constitute a complete bibliography.

2. CONFIDENCE INTERVALS AND REGIONS FROM THE
NORMAL APPROXIMATION
Klotz (1973) has derived estimators of p and A that are
consistent and asymptotically normally distributed, and he
gives their asymptotic variance-covariance matrix. They are

the sample mean

p =x = s/n (2.1)
and
i = X(ﬁ) = %(S—ﬁ)_l[r—s+t+(25—t—l)@
+ {[r-s+t+(2s-t-l)fa]2 + 4r(s—@)(l-2©)}%], (2.2)

where n is the sample size (number of transmissions or trials),

1P, (2.3)

n n
r= ) X. .X., 8= ) X, t=x +X
2o 1 1™ Y
and xi=l if the ith trial results in a success, Xi=0 if it
results in a failure. (There are slight changes from Klotz's

notation and form.) If s=0, then



and A is indeterminate.
An intuitive estimator of A is essentially the relative
frequency,

x - T _ nr
s (o-D)s

(s>0) . (2.4)

[After this report was essentially completed, Devore (1976)
published "modified maximum likelihood" estimates of p and X that
differ slightly in effect from (2.1), (2.2), and (2.4) and the
detailed properties of which it would be of interest to investi-
gate.]

Following the pattern of Pearson and Hartley (1966,
Sec. 22.2), we seek a central 100(1l-2a) percent confidence
interval for p by determining two values of p, Py, and Py
such that

s
) f(i|pL,X,n) =a, ) f(inU,A,n) = a, (2.5)
i=s i=0

where f(i|p,%,n) denotes the probability function of the random
variable s='z X, with parameters p, A, and n. Here i is
unknown, a ﬁﬁ}sance parameter, and we replace it by A from (2.2)
or A* from (2.4), relying on a sufficiently large n and the
consistency of i to produce about as many intervals that fail to
include p by being too short as ones that include p by being too
long.
To obtain a normal approximation confidence interval for

p, we replace the sums in (2.5) by a normal integral with mean
and standard deviation those of s with an appropriate p value.
The mean of s is np. The variance of s, given by Klotz (1973)
(with an incorrect exponent n rather than n-1) and by Gabriel
(1959), can be written as
_1-p”
1-p

where p=(A-p)/q is the correlation coefficient between

), |ol<1, (2.6)

Var s = © = npgq +

Xi—l and xi. For large n and p bounded from 1, the term pn
can be neglected (e.g., 0.950=O.005), so that



G % = _EEQ_E(l_p -20) (2.7)

(1-p)

We assume 0<p<0.5 from this point on, including later sections.
If, further, p is assumed to be small relative to g and A and
confidence limits for p are sought, then the coefficient of p

on the right-hand side of (2.7) can be estimated from the

sample by
vV = __Eﬁ_i(l-ﬁz_gﬂq (2.8a)
(1-9) n
where
b = (A-D)/g, for |p]|<Ll. (2.8b)

We let u, denote the upper 1000 percentage point of the

standardized normal distribution, so that

_1
]

2
(2m) e % /2dx

a

(2.9)

I
Q

c£—38

The normal approximation of the first left-hand sum in (2.5) is

) 2 2

-y -1 - (x-
[ (2m) Fog lom(xmmpp) /(2057 ) gy =
S—%

1
2

2
(2m) "~ e~ 4 /2du

wWe— 8

S—

5 (2.10)
s

where the Og of (2.6) or (2.7) is evaluated with pP=pr, and q=qy,-
We approximate 0y as VpL, using (2.8). The lower limit of

the right-hand integral in (2.10) becomes

s—%-np
L
W ' (2.11)

2
\Y pL
which must then equal u, - Similarly,

Sthnp
- = u = -u_. (2.12)

gt - Lf

Solving quadratic equations for P, and Py gives the normal

approximation confidence limits for p,



ey
£

Puo = (2n°) ivu 2+ (2s+l)n+{[vu *+(2s+1)n)% - (25+1)%n? ],
1
A ~ %
Pro = (2n2) l[Vu 2+(25—l)n—{[Vu 2+(25—l)n]2 - (2s-l)2n2} 1,
a a
OﬁprO-ipUOEl. (2.13)

The ambiguity in sign is resolved by the knowledge that Puo
should exceed s/n, and s/n should exceed Pro- If Puo tufns out
to exceed 1, then Py is taken as 1. If s=0, then p and V
cannot be calculated; pL=O, of course, and Py is indeterminate,
though we expect from (2.6) that Py2Py1 if A2p, where Py is the
upper confidence limit for independent trials, and in any case
pUsl—a, which is the limit for n=1.

Probably more accurate limits could be obtained by taking
P as pp Or py throughout Var s, but a higher-degree equation
would result and preclude a simple explicit solution. After the
limits (2.13) have been calculated, they can be substituted for
p in (2.8) and G corrected in (2.13) to produce corrected values
of Puo and Pro- If these differ appreciably from the original
values, a further iteration can be made, and so on. However,
iteration seems unwarranted in view of the error of the normal
approximation and the replacement of XA by X.

Since n%(;—k,ﬁ-p) has a limiting bivariate normal

distribution with variance-covariance matrix

A(1-X)/p a
gr pq(l—2p+k)/(l—x)) (2.14)

[Klotz, 1973, eg. (4.1)]1, it follows that, approximately, for

large n,

[P(X-K)z 2(X-X)(@—p) - (ﬁ—p)2 Xg 22 }
P - A 4+ N AN SO < =X

(1
A(1=-X) 1-2p+A pq (1-2p+A) B n
= 1-2aq, (2.15)

where X§ 20 is the upper 2000 percentage point of the chi-squared
4

distribution with 2 degrees of freedom. The equality within

the brackets of (2.15) defines the boundary of a confidence

region for (A,p). It is of degree 4 in p and 3 in A.



An elliptical approximation for the region can be obtained
by taking p=p, g=4, A=; in the variances and covariance. This
may not be a good approximation for small p. In that case a
better approximation is obtained by replacing only q by § (in
its one occurrence) and p by P in the combination 1-2p+A. This
reduces the degree in p to 2. Hence the boundary of the 1-2a
confidence region for (A,p) for small p is given by the solutions

of the gquadratic equation in p,

D2 (A (1-1)2 + 281 (1-1) (A=1) + G(1-2p+1) (A-2) 2]
-pA (1-) [2B(1-3) + 2B3(A-1) + x5 , @(1-2B+)) /n]
+ 82 (1-02 = o, (2.16)

for assigned values of A. An example of the application of
(2.16) is given in Section 9 (and Figure 1 therein).

The probability that the bivariate confidence region
includes the true (A,p) is 1-2a (aside from the normal
approximation and replacement of p by P in three non-critical
places). Hence the probability that the extreme values of p
on the boundary of the region include the true p is at least
1-2a, whatever the value of A. These extreme values provide
a conservative confidence interval for p. If they enclose the
interval of (2.13), they then furnish a check on the replacement
of A by ; in going from (2.7) to (2.8).

An approximate confidence interval for X by itself can be

obtained from (2.14). With probability 1-2a in large samples,
| A=A <,
[A(1-X)/(np)] 2

Approximating np by np=s and solving for A gives the confidence
limits
A ~ ~ 1/
u 2428+ (u_2428X) %-4sr% (u_“+s)17
o - Q. a
> (2.17)

Rougher but simpler confidence limits for A follow by replacing

A by A in the standard deviation:

A+ ua[A(l—A)/S]%. (2.18)
9



Examples of (2.13) and (2.18) are given in Sections 9 and 12.
If s is very small or very close to n, the normal approxi-

mation of the probability sums in (2.5) is very poor. However,

in those cases, at least for s=0, 1, n-1, or n, it is practical

to calculate the exact probabilities; see Section 7.

3. CONFIDENCE INTERVALS FROM THE EDGEWORTH
TWO-TERM APPROXIMATION
Better approximations for confidence limits for p should
be obtainable from more accurate representations of the sums
in (2.5) by Johnson transformations, Pearson curves, or
Edgeworth expansions. The Edgeworth two-term approximation for
the probability density function of a standardized variable

(mean 0 and variance 1) is [Cramér, 1946, eq. (17.7.3)]

.
fw = o - 330 @ (3.1)

where Yy is the standardized third central moment,

2
o(u) = (2m) /20 /2,

and ¢(3)(u) is the third derivative of ¢ (u). The corresponding

cumulative distribution function is

g 1,2
JE(x)ax = o(u) - 57 -1)¢ () (3.2)
where
u
®(u) = [ ¢(x)dx

Thus, if Yq is known, the Edgeworth two-term approximation for
discrete probability sums such as in (2.5) can be evaluated
for any given u from readily available tables (National
Bureau of Standards, 1953; Abramowitz and Stegun, 1964).

The third central moment of s, derived by Gabriel (1959),

is

10



E((s-B5)>] = npq(g-p) + BHARIO[(n-1) (1-p™") — (n+1) (p-o™)1,
(1-0)
lo|<1. (3.3)
For large n and p bounded from 1, the powers of p are negligible
in (3.3).

Approximate confidence limits for p can therefore be
obtained from the two-term Edgeworth expansion by substituting
(3.2) for the left-hand sums in (2.5) with u taken as (2.11)
and the left-hand member of (2.12) respectively. Since the
term in Yq approaches zero as n becomes infinite, it can be
approximated by substituting sample values for p, g, and o,
or, better still, P10 and Pyo from (2.13) since (2.5) is an
equation to be solved for p. The solution can then be iterated
to eliminate any approximation except the use of ; for A and the
use of the Edgeworth expansion for the sums in (2.5).

To be explicit, we let

. -
= (r=p. ) /g

“Li i’ /S Gopy <y,
ne. .
_ L1 R 2_ "
Vii = 7 (I=opy —20p/m)
(1-2, )
.J-L
B = (6v. 3% g (1-2p. )<atee. . (1-a. ) Pacl- (a+1)pe 1]
Li Li Ari 7 ebo g/ - arhe, R T8 ATETAATL Py
i=20,1,2,.... (3.4)
[For A very near 1 and n small, the term —ZQLi/n of VLi should
be multiplied by (l—pL?) in accordance with (2.6); likewise the

last bracket in (3.4) should be replaced by the last bracket in
(3.3) with p=pLi.] The notation for upper limit quantities

is analogous, with L replaced by U throughout. If in fact p

is as small as P then the standardized third central

moment of S is

3 "
CBl(s-ES)) - m
Y1 7 3 = 6BpyPp; 7 8D 51Dy

S

(3.5)

It follows from (3.2) - (3.4) that the first equation of (2.5)

is approximated by

11



S_-/P'-_np . 1 1 .
L1 3] fs-h-np . \2 §—%-Np. .
’ vE . _pF fLoi-1Pra{ ——2 ) - afef—— = 1-a,
A VL, i-1PLi VL, i-1P1ns
i= 1121"'1 (3.6)

which is to be solved for Pri- Since the second term on the
left-hand side is expected to be relatively small, an iterative
solution can be obtained by replacing Pr,i by pL,i—l in it.

Hence we define

-1 2
.. =a - B . .p. . . °(u -1) ¢ (u ) (3.7)
Li L,1i-1L,1-1 aL,i—l a1, i-1
where i=1,2,...; O =07 and 0<aLi<%. (If aLisO or aLiz%,
we stop the iteration and set pL=O.) Thence (3.5) is replaced
by
S—%-Np. .
o (—T—~—AE%*)= I - =, (3.8)
V’z ] pfz . 1
L,l—l_Ll
or
s=%-np. .
L1
LT S Uy (3.9)
VL, i-1PLi Li

the left-hand member of which is of the same form as (2.1l1).
The solution is thus of the same form as (2.13). The upper

limit Pyi follows analogously, except that

Ay = @ * By 1Py, i-

where i=1,2,...; aU0=

we stop and set pU=l). Thus

- (2n®) 7Y 2 4 (2s+1)n+[{Vy . _

Pui VU,i—lua .
U1l

~(2s+1) %n?17%}

12



2 _l{V 2

2 2
Pry = (2n7) VL 5 94,

u +(2s=-1)n}

+ (2s=1)n = [{v_ ._
L,i-1 ar s

Li
- (2s—l)2n2]%}

0 1, i=1,2,.... (3.11)

= Pri * Pyj ©
The solutions Py and Pr, will have been obtained when successive
iterates agree to an acceptable number of significant figures;
two or three seem sufficient in practice. Examples of appli-

cation of (3.11) and (2.13) are given in Section 9.

4, CONFIDENCE INTERVALS FROM THE EDGEWORTH
FOUR-TERM APPROXIMATION
If the first four moments of a random variable are avail-
able, its cumulative distribution function can be further
approximated by the Edgeworth expansion [Cramér, 1946,

eq. (17.7.3)]
Y1, (2) Yo (3) 1°Y12 (5)

u
[E(x)ax = o(u) - 3T (W) + 27977 (0) + —=0¢

(u) (4.1)

where u has mean 0 and variance 1 and Yo is the kurtosis
measure (standardized fourth central moment less 3). Substitu-
tion for the sums in (2.5) may then produce an iterative
solution for a higher-order approximation for the confidence
limits for p.

Gabriel (1959) gives the asymptotic value for the Yo
value of s:

1-6pg . 1+10p+p°

Yo (4.2)

To obtain an iterative solution for Ppr we approximate py2/4!

by

2

-6p! ! +10pt 0!,

1=6ppidy;  LFL0ep *o; . :

Li © “2dnq', T =z T 0Lz (4.3)
L1

13



where the primes are used to distinguish four-term iterates
from two-term iterates. We define Cﬁi analogously. Substitu-
tion of (4.1) for the sums in (2.5) leads to iterative solutions

of the precise form (3.11]) with o'. and a!. replacing o and

Ui Li Ui
o where

Li’

+

2 4 (5)

)+ HBLY 00 IR Y

: . 1= — . 'o<l. <L, vo<
where i=1,2,...; Ago=%1,0=%7 0<uUl<2, 0<aLl<2 If aUl<0

(
or uéiz%, we stop and set pU=l; if aiiso or aiizg, we stop

_ Cy . 1 1
and set P 0.) The quantities BU,i—l and BL,i—l

3 s ] ]
(3.4) with primes added, and CU,i—l and CL,i—l by (4.3), U

being substituted for L for the upper limit quantities. The
(j)(x) are tabulated by Abramowitz and Stegun (1964,

are given by

derivatives ¢

Table 26.1).
The effect of using three-moment iterates at various points

may be negligible. If the Edgeworth two-term approximation

has been carried to convergence prior to starting the four-term

approximation, then it should be a better starting value than

the normal approximation.

5. CONFIDENCE INTERVALS FROM THE PEARSON SYSTEM APPROXIMATION
When the third and fourth moments of s are approximated

as in Section 4, the distribution of s can alternatively be

represented by the Pearson system of distributions. By virtue

of tabulation of the percentage points of the Pearson distribu-

tions as functions of Bl=y12 and 82=y2+3 by E.S. Pearson and

14



M. Merrington (1951) and by Johnson et al. (1963) (reproduced in
Pearson and Hartley, 1966, 1972), an iterative solution for
confidence limits for p can be found with less calculation than
required by the Edgeworth four-term approximation.

Using the notation of Sections 3 and 4, we calculate

_ 2 -1
Bin,i-1 = 30Br i-1P1,i-17
_ -1 L
Bor 41 = 3+ 2400 L iPrTiqs il,2,..., (5.1)

where BLi and CLi are given by (3.4) and (4.3) [deleting the
primes in (4.3)]. We then read uaLi as the upper 100a percent
point of Table 32 in Pearson and Hafrtley (1972) and substitute
it in (3.11) to find Pr;- (This assumes pL,i_lso.S.) We can
then substitute in (5.1) to iterate if necessary. Similarly,
we find Py starting with (5.1) with L replaced by U and u,
found as the lower 100a percent point of Pearson and Hartlg§'s
Table 32. (If pU,i—l>0'5’ substitute "upper".)

The derivation of these approximate limits follows immedi-
ately from the definition of Bl and 82 and the approximation of
the sums in (2.5) by probability integrals of Pearson curves.

All of the approximations in Sections 2 through 5 would
be expected to be better the larger the sample size n is, the
smaller the confidence level 1-2a is, the closer the conditional
probability A is to the unconditional probability p, and the
closer p or p is to 1/2. 1If p is near zero, then Pr, ié even
smaller, and the occurrence of Pr, i-1 in the denominator of
(3.7) and of pi,i—l in the denominator of (4.4) may result
in values of ar s and aii outside the range (0,0.5). Thus for
P near zero, p; may be relatively poorly approximated, if at all,
while Py is well approximated. However, pL=0 is probably a
good approximation anyway, and Py, is often not of interest for
small P, an upper limit only being desired. Similarly, the Pearson
system approximation may fall short by yielding values of
Bl or 82 beyond the limits of Table 42 of Pearson and Hartley's
Vol. I (1966) or Table 32 of their Vol. II (1972) (less often

15



for the latter), but it may be sufficient then to use the tabular
value for the nearest (81,82). (Some extrapolation of the

tables is feasible also.) The trial values 5 in (2.8) and i in
(3.4) (and Oui likewise) may exceed 1 in absolute value; the
approximations then fail. The solutions tend to fail if the
trial values of p fall close to +1 even though below it. Just
how widely p, A, n, and o may vary is investigated empirically in
Section 11.

When s=0, X and A* cannot be calculated. Consequently none
of the confidence intervals of Sections 2-6 can be calculated.
However, if an upper bound to A (less than 1) can be established
from prior experience, this bound can be substituted for X in
the limit formulas to obtain conservative (overly long) confi-
dence intervals for p. The interval based on independent trials
(Crow, 1974) is too short, so the "true" interval is somewhere

between these two.

6. MODIFIED POISSON-ANDERSON-BURSTEIN APPROXIMATE
' CONFIDENCE INTERVALS

The approximating probability distributions discussed thus
far may tend to be better approximations of the distribution of S
the closer p is to %. Is there an approximation that, 1like
the Poisson relative to the binomial, tends to be better the
smaller p is? Any answer is complicated by the need to estimate
A, for which a large value of s is desirable. The answer
provided here is a rough but simple modification of Anderson
and Burstein's improvement (1967, 1968; Crow, 1974) of the
Poisson approximation of binomial confidence limits.

The roughest sort of confidence limits are those obtained
as the point estimate of the parameter plus and minus a factor
times the estimated standard error of the point estimate, based

on asymptotic normality. Such symmetric limits become
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unsatisfactory for asymmetric distributions, for example when
p is very small. An alternative is to achieve asymmetry by
lengthening the confidence interval of Anderson and Burstein

by the asymptotic factor in the standard error of s resulting

from dependence. Thus we get from (2.7), for P<0.1,
A oy (145 s
PU = D + (pUI PJ (l“,ﬁ) r
- B - ) (222} (if p. 20) (6.1)
Pp, 7P T WTPLT-E ) S A ‘

where Pyt and pr are the Anderson-Burstein limits for
independent trials (Crow, 1974) and p=(A-p)/§. If the P
calculated from (6.1) turns out to be negative, then (6.1)

should be replaced by

Py = (pUI—pLI}(%%)A, p, = 0. (6.2)

Despite their limitations, (6.1) and (6.2) may be better
than the normal, Edgeworth, or Pearson approximation limits in
certain regions of the (p,A,n,a) space; see Section 1l1.

For small P it may not be of interest to bound p below
(other than by zero). An upper 100(l-2a) percent confidence
limit for p may then be obtained that is smaller than the
upper end of the central 100(1-20) percent confidence interval.
It is in fact simply the upper end of the central 100(1l-4a)

percent interval.
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7. COMPARISON WITH EXACT CONFIDENCE LIMITS
Before considering the exact limits in general, we shall
provide them for the cases of zero or one error, s=0 or s=1, for
then none of the approximations except perhaps the modified
Poisson-Anderson-Burstein is satisfactory and it is practical
to use the exact limits. However, a prior value of )X must be
available if s=0, as the sample provides no information on X.
From (1.1)-(1.6) and (2.5),
P[s=0|p,\,n] £(0]lp,2,n)
= ql(1-2p+ip) /q1™7F, (7.1)
P[s=l]p,x,n] = f(l\p,%,n)

n
= ) P[1l on ith trial & 0 on others]
i=1
= p(1-2) [ (1-2p+xp) /gl
n-1 ..
+ T q(1-2) (p/Q) (1-2) [ ((1-2p+2p) /q]
i=2
+ ql(1-2p+ip) /a1 ™ 2 (1-0) p/qg
= 2p(1-)) [ (1-2p+ip) /q] ™2
+ (n-2)p(1-1) %[ (1-2p+rp) /q1 ™2
(p/q) (1-2) [ng (1-1)+2 (A-p) ]
. [(1-2p+ip) /q1 ™7 3. (7.2)

If s=0, it is intuitively evident that there is no informa-

2

tion on A in the sample. This is confirmed by the fact that the
probability or likelihood of the sample s=0 is 1 for p=p=0
whatever the value of A if- Thus we cannot calculate Py from
(2.5) and (7.1) with any X or A* from the sample, and we cannot
calculate Py at all unless we are furnished with a prior value
of X or an upper bound on A. Since p=0, we take pL=O also.

Provided with a prior value of X or an upper bound on XA, we
can solve the right-hand equation (2.5), with (7.1) substituted,
by iteration. From

qtllm(l—l)pu/qu]n_l =

18
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we find that

-1
1- (a/q) /(27D
Py = > 1/ (n-1) (7.3)
2-A—(a/qU)
Example 1. A=.3, a=.05, n=50, s=0. An initial approxima-

tion to substitute for qy on the right-hand side of (7.3) can

be found from the modified Poisson-Anderson-Burstein approxima-

tion (6.2). From table 1 of OT Report 74-51 (Crow, 1974),
U=3.00, so
. 3.00,1.3,1/2 .
qU = qo = l—po = 1_51.5( .7) / = l—-079 = .92
. 1-(.05/.92)1/49
Py = 1/49 .07616,
1.7-(.05/.92)
p, = .076253, Py = .076252 = Py
accurate to at least 5 decimal places (DP). If XA=.8 rather than

.3, then we get p3=.21464=pU to at least 3 DP.

Since Py is a monotone increasing function of A, a prior
upper bound on A would enable us to compute from (7.3) a
conservative upper confidence limit on p. If .8 were an upper
bound on A in Example 1, we could say that we are 90% confident
that p is .215 or less. (Aside from the approximations, the
confidence limits of sections 2-6 are conservative anyway
because the discreteness of s precludes attaining the exact
confidence level 1-2a, short of artificial post-sampling
randomization, and we always err on the upper side.) If we are
interested at the outset (prior to seeing the data) only in
upper limits, then we could say that we are 95% confident that
p is .215 or less. As X approaches 1, we have effectively in
the limit just one independent observation and Py approaches
l-o if s=0. 1In Example 1, pU+.95 as A+1l. With A=.999, pU=.9150.
With independence, A=p, and pU=l—al/n=.0582. If A=0 (extreme
negative dependence), pU=.0550. Thus, in the example n=50, s=0,
1-0=.95, as X varies over its entire range from 0 to 1, Py

increases monotonically from .0550 to .9500.
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Proceeding similarly for s=1, we have from (2.5), (7.1), and

(7.2) after some algebra

Py T 3oa-a (7.4)
where
ae }l/(n-B)
1
A= e 2 2 T2
L+p,- [ (n=2) (1-7)“=2] - p“[(n-1) (1-}) “-1]

Like (7.3), this can be solved iteratively using the Anderson-
Burstein appfoximation initially.

Example 2. A=.3, o=.05, n=50, s=1. Then p=.025, pL=O by
the Anderson-Burstein approximation, and

1/2

- 4.7 1.3 _ _
Py = 51.850( 7 = .124, Ay = .91201,
P1

.1116, p, = .1097, Py = .10967 = Pyyr

correct to at least 4 DP. If A=.8 rather than .3 then we get
p3=.24782=pU to at least 4 DP. If A=p, then p3=.09l4=pU to 4 DP.
If A=0, then p3=.0854=pU to 4 DP. As ) varies from 0 to 1, Py
varies from .0854 to 1.

If s=1, it is possible to calculate ; and A* from the sample
using (2.2) and (2.4), but the only possible value of r is 0, and
the only possiblg values of t are 0 or 1. With either value of

t, the value of A in (2.2) [as well as of A* in (2.4)] 1is seen to

be 0. The estimate (2.2) for A is not necessarily good for small
s (cf. Klotz,Al973, Sec. 4), and this is definitely the case for
s=1; to take A=0 always when A may in general vary from max(0,2-
p—l) up to 1 is unrealistic. It is to be hoped that some prior

value or upper bound for A can be assumed.

For sz2, we use Ladd's (1973,1975) algorithm for sequentially
calculating the cumulative probabilities (2.5). The algorithm
follows all the possible "random walks" from the first trial
through the second, ..., (K-1)th, and Kth trials (transmissions in
the telecommunications application) with a fork in the path to

success or failure (error or correct transmission, hit or miss)
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at each trial. We present the formulas in Ladd's notation
except for using our p and q instead of his P and 1-P and

fin=f(i|p,k,n) for the probability of i successes in n trials,

as in (2.5), instead of his ®j,k(P’Phh’th)' Let
Py = P[xi=1|xi_l=1] = 2,
1-P,, = P, = P[xi=olxi_l=1],
Py = PIX;=1]|x;_,=01,
1-p =P = P[Xi=0|xi—l=0]
[cf. (1.2)-(1.6)] Then
fl,n - g1,n + ni,n (7.5)
where
gi n = P[i successes in n trials & nth trial succeeds],
Ny o, = P[i successes in n trials & nth trial fails];
14
20,1 =0 &y, =P By, TR
No,1 = % M1 =0 foq =
goln = 0,
= p - ap n-1 _ £ .
"o,n = "0,n-1"mm 9" m o,n’
&i,n = %i-1,n-1%nh T "i-1,n-1"nmn’
ni,n - gi,n—leh * ni,n—lem’ i=l,2,...n-1;
= = n-1 _
tn,n = n-1,n-1%nn = PPhn fh,n
n =0 n=1,2,.... (7.6)

n,n
The cumulative probabilities (2.5) are then found by summing
(7.5).

A computer program was written to solve (2.5) for P, and

Py for A, s, and n using the exact probabilities (7.5). It can
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of course be used as an approximation when X is unknown by
substituting ; from (2.2). For large n it is more economical and
sufficiently accurate to use the program in Section 8 for the
approximate intervals of Sections 2-6, which can be applied with
a prior value of ) rather than ; also. We proceed to illustrate
the application of both programs.

Example 3. A=.3, a=.05, n=50, s=5. Then pP=.1l. The "exact"
90% confidence limits from the computer program based on (7.6)
are pU=.2105 and pL=.02880. The Anderson-Burstein limits (6.1)-
(6.2) using p=(A-p)/g=.222 are

1/2
_ 10.5 11 _
py = -1 + (5555 - -1) (=) = .224,
_ _ ~1.97, ,11,1/2 _
pp = -1 - (l-g552) (55) .025.

The approximate limits from the other computer program are

Normal Edgeworth 2 Edgeworth 4 Pearson
Py .24546 .21030 .21060 .21031
D .042646 .030286 .036049 .034111

Tl
The last three Py approximations are thus excellent, the other
two Py approximations are a bit high. All the Pr approximations
except the Anderson-Burstein are somewhat high. The times for
running the "exact" and "approximate" programs on the CDC 6600
computer were 3.48 and 1.67 seconds, respectively. The
normal and Anderson-Burstein formulas can of course be evaluated
quickly on a pocket calculator.

Example 4. (a) Same as Example 3 except ; calculated from
r=0, s=5, t=0. From (2.2), ;=O. Since the asymptotic standard
deviation of ; for A=.3 and s=5 is approximately (.3x.7/5)l/2=.2,
the value ;=O is a not improbable sample result when A=.3. The
Anderson-Burstein limits (6.1)-(6.2) are, since 6=(;—§)/@=—l/9,
pU=.189, pL=.O47. The "exact" limits from the computer program
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.

under the assumption A=A=0 are pU=.1805, pL=.O42Ol. The

approximate limits from the other computer program are

Normal Edgeworth 2 Edgeworth 4 Pearson
Py .19803 .18113 .18113 .18136
Pr, .04708 .04078 .041668 .041175

All of the approximations except the normal seem close enough in
practice. The times for running the "exact" and "approximate"
programs were 2.99 and 1.54 seconds, respectively.

Example 4. (b) Same as Example 4 (a) except X calculated
from r=3, s=5, t=0. From (2.2) ;=.597. This also is a not
improbable sample result when A=.3. The Anderson-Burstein
limits (6.2) are pU=.296, pL=O. The "exgct" limits from the

computer program under the assumption A=X=.597 are pU=.264l,

pL=O. The approximate limits from the other computer program are
Normal Edgeworth 2 Edgeworth 4 Pearson
Py .34851 .26638 .26695 .26784
Pr .025493 0 .02687 .019904
The normal is again the poorest approximation, again on the high
side. Only the Anderson-Burstein and Edgeworth 2 values of P,
are as close as desirable. The changes in Py and P, with

possible variations of A in Examples 3 and 4 are interesting and
perhaps not disturbing for this small sample size. The times for
running the "exact" and "approximate" programs were 2.01 and

1.57 seconds, respectively.

Example 5. A=.3, a=.05, n=150, s=15. Then p=.1 as in
Examples 3-4, but the sample size is 3 times as large. That is
the largest sample size that can be run on the CDC 6600 with
the "exact" program as written. The "exact" 90% limits from
the computer program are pU=.%59O and pL=.05377. The Anderson-

Burstein limits (6.1) taking A=) are pU=.163 and pL=.053. The

approximate limits from the other computer program are
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Normal Edgeworth 2 Edgeworth 4 Pearson
pU .16886 .15937 .15959 .15932

P, .058197 .052996 .053823 .053629.

Here the approximations, except for the Anderson-Burstein, are
substantially better than in Examples 3 and 4, because of the
increase in sample size. The times for running the "exact"
and "approximate" programs on the CDC 6600 computer were 24.94
and 1.68 seconds, respectively. Thus the exact program is the
faster only for sample sizes up to the order of 100 and 1is
impractical for the sample sizes needed in telecommunications.
Example 6. (a) Same as Example 5 except ; calculated from
r=2, s=15, t=0. From (2.2), X=.l33. Since the asymptotic
standard deviation of X for X=.3 and s=15 is approximately
(.3x.7/15) /%=

result when A=.3. The Anderson-Burstein limits (6.1l) are

.118, the value r=2 is not an improbable sample

pU=.152, pL=.O6l. The "exact" limits from the computer program
under the assumption A=A=.133 are pU=.l4882, pL=.060204. The

approximate limits from the other program are

Normal Edgeworth 2 Edgeworth 4 Pearson
Py .15539 .14908 .14916 .14919
P, .06341 .059816 .060145 .060116

The times for running the "exact" and "approximate" programs
were 28.80 and 1.63 seconds, respectively. R

Example 6. (b) Same as Example 6 (a) except X calculated
from r=8, s=15, t=0. From (2.2), X=.532. This also is a not
improbable sample result when A=.3. The Anderson-Burstein
limits (6.1) are pU=.l84, and pL=.O36. The exact limits from the
computer program under the assumption A=A=0 are pU=.l8Ol4,

pL=.O42554. The approximate limits from the other program are
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Normal Edgeworth 2 Edgeworth 4 Pearson
Py .19878 .18095 .18146 .18036
P, .049188 .040640 .043013 .042284.

As in Examples 4(a) and 4(b), the confidence intervals for large
X are longer than for small ;, as expected, but the variation is
probably acceptable, and the number of intervals that are "too
short" (i.e., fail to cover the true p frequently enough) will
in the long run be essentially balanced by those that are "too
long" (i.e., cover the true p too frequently). The times for
running the "exact" and "approximate" programs were 25.72 and
1.67 seconds, respectively.

The results of Examples 3-6 are summarized in Tables 1 and

2 to three decimal places. Since all of the iterative solutions
(Edgeworth 2- and 4-term and Pearson) agree to 3 DP usually, only
the average values are given for these, under a common heading.
The following conclusions can be drawn, although they cannot
necessarily be generalized to other confidence levels or sample
characteristics:

1. The Edgeworth 2-term and 4-term and Pearson limits
agree to 2 or 3 DP with the "exact" limits as well
as with each other.

2. The Poisson-Anderson-Burstein lower limit is fairly
close to the exact lower limit, either above or below,
while the upper limit is higher.

3. The normal limits are the poorest approximations to the
exact limits, both lower and upper limits being too
large. Thus the length of the interval does not
differ as much relatively as the limits.

4. The change in eiEher exact or approximate limits due
to variation in A (and thus in the number r of pairs
of successive errors) is much greater than the

difference between any of the types of limits. This
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Table 1. Summary of Examples 3-6 Comparing Exact and
Approximate 90% Confidence Limits for p When
p=.1, A=.3, and Either n=50 or n=150

Ex. A Exact And.-Burstein Normal Edgeworth 2, 4
& Pearson

Pr Py PL Py PL Py PL Py
n=50
4a low .042 .180 .047 .189 .047 .198 .041 .181
3 A .029 .210 .025 .224 .043 .245 .033 .210
4b high .000 .264 .000 .296 .025 .349 .02 .267
n=150
6a low .060 .149 .061 .152 .063 .155 .060 .149
5 A .054 .159 .053 .163 .058 .169 .054 .159
6b high .043 .180 .036 .184 .049 .199 .042 .181
Table 2. Computer Execution Times Required for Table 1 Results*
(90% Confidence Limits for p When pP=.1 and A=.3)
n Example A Exact Limits Approximate Limits
50 4a low 2.99 sec 1.54 sec
3 A 3.48 1.67
4b high 2.01 1.57
150 6a low 28.80 1.63
5 A 24.94 1.68
6b high 25.72 1.67

*The above times are in addition to the constant compilation
time, which is 1.81 sec for the exact limits program and about
7 sec for the approximate limits program. Both compilation
and execution times will vary from computer to computer.
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does not mean that the limits are wrong due to
ignorance of XA, for the intervals still cover the
true value p in approximately 90% of the cases, as
verified in Section 11, and that is all that they

are supposed to do. It does mean that the approxima-
tions are quite accurate enough. (The limits for the
low value of i are about the same as those obtained
assuming independence.)

5. The change in limits due to variation in ; decreases
substantially with sample size. For example, the
ratio of confidence interval lengths at high and low
; is about 2.0 for n=50 and about 1.6 for n=150.

6. The computation time for the exact limits increases
rapidly with sample size, whereas that for the
approximate limits stays essentially constant. For
the case considered, the exact limits take less time
for sample sizes less than about 100, more time

beyond that point.

8. COMPUTER PROGRAM FOR APPROXIMATE CONFIDENCE LIMITS

This section outlines the important features of the main
program (CONLIM) and each of its subroutines for calculating the
approximate confidence limits for p and A derived in Sections 2-6.
Comments are scattered throughout the listing (Appendix B) to
further aid the user in understanding the logic of the program.

The program is written in FORTRAN IV for the CDC 6600. The
dimensioned variables occupy 13,600 words. The compilation
time is about 7 seconds, and the execution time is about 2
seconds.

The program utilizes three routines that are not available
to all users. The upper 1000 percentage point of the standardized
normal distribution, u, (eg. 2.9), and the upper 2000 percentage

point of the chi-squared distribution with 2 degrees of freedom,
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xg 24 (eg. 2.15), are both determined by routines from the Inter-
14

national Mathematical Statistical Libraries, Inc. Also the
confidence region for (A,p) is plotted (subroutine PLOT) on the

CDC-250 microfilm recorder using routines developed by NOAA.

Program CONLIM. This is the main calling program. It
provides for the five basic input variables n, s, r, t, and «
(defined in section 2) and the four precision variables:

1. NPTS

number of points used to define the boundary
of the confidence region for (A,p).,

maxXximum number of iterations tolerated for

2. MAXIT
the Edgeworth and Pearson system approxima-

tions,

3. MINSIG minimum number of significant figures of
agreement desired from successive iterations

(relative precision),

4. MINDEC minimum number of decimal places of agreement
desired from successive iterations (absolute
precision).

The program calls subroutine DEPEND which, in turn, calls
8 other subroutines. The program also provides printed output
of the confidence limits for A and p and the points of tangency
for the confidence region for (A,p). See Figure 1 which shows

the logic among the subroutines.

Subroutine DEPEND. This subroutine calls 8 subroutines
(PARAM, REGION, PLOT, LIMLAM, NORMAL, EDGEW, PSA, and ANDBUR).
The first, PARAM, defines some basic parameters, and must be
called first. After that, the calling order is immaterial except
that REGION must precede PLOT and NORMAL must precede both EDGEW
and PSA.

Subroutine PARAM. This subroutine calculates P, ;, A*, ;,

and 9, which are defined in Section 2 and Section 11.3.

28



N
O

CONLIM
(Provides Input Values a.n.r.s.and t,

Calls Subroutine DEPEND, and
Prints Limits)

E
i
{

OEPEND

(Calls the Following Eight Subroutines)

|

i

PARAM LIMLAM REGION PLOT NORMAL (€ EDG[EV;/ . PSA P ANRB(ljJR
geworth 2 Term {Poisson Anderson
{Detnes feq 217) (Locates (Plots Boundaryof (Normal T T o (Pearson System P
| Parameters) Tangents) Confidence Region Approximation Approximations pproxugatmn Approximation
| >,0) on Microfilm) eq 213) eqs 311 and 4 4) eq 51 egs 61and 6.2)
CURVES SIGFIG PEART SIGFIG Fh 40
(Checks Relative {Reads Pearson {Checks Relative {Reads Pearson
{eq 216) Accuracy of and Hartley Accuracy of and Hartley
lterations) Table]gllszs')\lm“ Iterations) Table 40.1966)
kﬂ__J L N ) —— — — - - )
—_—
CONFIDENCE CONFIDENCE CONFIDENCE
LIMITS REGION LIMITS
for ior for
A (A, p) P

Figure 1.

Flow diagram of computer program,

CONLIM.



Subroutine REGION. This subroutine calculates the boundary
and points of vertical and horizontal tangency for the normal
approximation confidence region (2.16) of (A,p). It divides the
interval 0s<A<l into ten equal subintervals and searches for the
extent of the confidence region. This is done merely to utilize
better the NPTS points that define the boundary (the tangents can
be located more accurately than if the points were spread over
the entire [0,1] interval). Of course, if more subdivisions are
used the tangents can be determined more accurately.

The symbol KX denotes the number of points used for the
microfilm plot of the boundary. Here KX=100.

Next, subroutine CURVES is called NPTS times to define the
boundary and to locate the vertical and horizontal tangents. The
two vertical tangents (limits on A) are found by noticing when A
is first in and then out of the confidence region. The two
horizontal tangents (limits on p) are found by noticing when,
moving from A=0 to A=1, the slope of the upper boundary changes
from positive to negative, and the slope of the lower boundary
changes from negative to positive.

The coordinates (A,p) of the lower boundary of the confidence
region are denoted by (GP,GL) and those of the upper boundary
by (GP,GU).

Subroutine CURVES. This subroutine defines the lower and
upper boundary (PL and PU, respectively) of the confidence region
for (A,p). It will be called once for each of the NPTS values of
A. If X=0 (e.g. when r=0), we factor X from equation 2.16. This
is handled in the subroutine by going to statement 13 instead of
statement 14.

Whenever X lies beyond the confidence region, assign
PL=PU=-lO6. This arbitrarily chosen, unrealizable value is used

in subroutine REGION to locate the vertical tangents.

Subroutine PLOT. This subroutine plots the boundary of the

confidence region for (A,p). It utilizes the CDC-250 microfilm

30



recorder and subroutines peculiar to the NOAA CDC 6600 computer.

Note that GL(KE), GU(KE), and GP(KE) are the KE values of the

lower boundary, upper boundary, and abscissa. These are in

the common block PLT in subroutine REGION. Users who must write

their own plotting subroutine can access these values through
COMMON/PLT/GL (500), GU(500), GP(500), KE.

Subroutine NORMAL. This subroutine computes the normal

approximation confidence limits for p, Pror and Puo (eg. 2.13).

Subroutine LIMLAM. This subroutine computes the normal

approximation confidence limits for X (eq. 2.17).

Subroutine EDGEW. This subroutine determines the Edgeworth
2- and 4-term approximation confidence limits for p (Secs. 3-4).
The lower and upper 2-term limits are PLI and PUI, respectively.
The lower and upper 4-term limits are PPLI and PPUI, respectively
(throughout this subroutine, the extra P in the 4-term equations
is added to simulate the prime used in Section 4).

Initially these four limits are assigned the values obtained
by the normal approximation. Each successive approximation,
obtained by iteration, is checked with the previous one. Sub-
routine SIGFIG 1is called to determine if two successive values
differ by less than a specified number (MINSIG) of significant
figures (i.e., relative precision). A second test is made to see
whether or not successive values differ by a specified number
(MINDEC) of digits (i.e., absolute precision). If successive
values of all four limits pass either test, iteration is halted.
In any case, iteration is halted after MAXIT iteration. MINSIG,
MINDEC, and MAXIT are specified in the main program.

Subroutine SIGFIG. This subroutine tests to determine if

two consecutive iterative values (from either subroutine EDGEW or

subroutine PSA) differ by less than JSIG significant figures.
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The loop is satisfied when the values are multiplied by a power
of 10 that is large enough to render the resulting value equal

to an integer with JSIG digits.

Subroutine PSA. This subroutine determines the confidence
limits for p from the Pearson system approximation (Section 5).
The distribution of s can be represented by the Pearson system of
distributions.

Subroutine PEART reads the tabular values, ua, for the
0=.025 or a=.050 percentage points of the Pearson distribution.
One table is used for the lower limit and another for the upper

11,i-1 3¢ Bpp,i-1
beyond the table, assign it the tabular value nearest it. Since

limit. Locate B in the table. If a value is
the table is two dimensional, we use double interpolation to
determine u (similarly for u, ). Then u, is substituted
. Li Ui Li

into Prs (eg.-73.11).

Iteration proceeds precisely as it does in subroutine EDGEW

(see above).

Subroutine PEART. This subroutine uses the data cards which
contain (2 decimal places) the upper and lower Pearson and
Hartley Table 32 (vol. II, 1972) for a=.025 and o=.050. It
manipulates the data from the cards to resemble the tables (for
interpolation). It then extends the tables, both up and down, by
assigning as unlisted values the nearest value listed, either
above or below. [Pearson and Hartley's Table 32 (1972) has been
used to extend their Table 42 (1966), which is not indicated in
Figure 1.]

Subroutine ANDBUR. This subroutine computes the modified
Poisson-Anderson-Burstein approximate confidence limits for p
(Section 6). The lower and upper confidence limits for
independent trials, SLOWER and SUPPER, are provided by subroutine
PH40. These values are then substituted in (6.1) and (6.2)
to determine the modified Poisson-Anderson-Burstein confidence
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Subroutine PH40. This subroutine contains the 80, 90, 95,
and 99% confidence limits for‘the mean of a Poisson distribution
(independent errors) (Pearson and Hartley, 1966, Table 40; Crow,
1974, Table 1). It then interpolates if there are between 30 and
100 errors. The table cannot be used if s>100. The lower and
upper limits, called SLOWER and SUPPER, are used in subroutine
ANDBUR.

9. APPLICATION TO COX-LEWIS TELEPHONE DATA

The calculation of all of the confidence intervals for
error probability, p, of the confidence interval for the
conditional error probability, A, and of the confidence region
for (A,p) derived in Sections 2-6 is illustrated here on tele-
phone data. The calculations are easily, though a little
tediously for the Edgeworth and Pearson, performed with a
pocket calculator, and the steps are recorded here for checking
by the interested reader. However, the steps are unnecessary
for those in possession of the computer program described in
Section 8.

Cox and Lewis (1966, pp. 256-257) tabulate the intervals
between successive errors in a sequence of telephone messages,
which was "obtained in joint work by IBM Germany and the German
Postal Administration." Slightly over one million characters
were transmitted and received, but the first 20,000 will be used
for this example. It will be assumed that the error probability
is constant for all characters. Since only the intervals are
listed, it is not known whether the first transmission is in
error or not, but it is assumed to be correct. There are then

38 errors and 13 pairs of successive errors in the 20,000 trans-

missions. In the notation of Section 2,

n = 20,000, r =13, s = 38, and t = 0.
From (2.1),

p = 38/20,000 = .0019, § = 1-p = .9981.

From (2.2) and (2.8)

A = .342097, ©§ = .340844.
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We shall calculate 90% confidence intervals, so that o=.05 and
ua=l.64485 [from Abramowitz and Stegun (1964), Table 26.5, for
example].

The computer program described in Section 8 gives

immediately the following upper and lower confidence limits for p:

Anderson-

Burstein Normal Edgeworth 2 Edgeworth 4 Pearson
Py .0027406 .0028023 .0027580 .0027633 .0027537
Pr, .0012207 .0012817 .0012451 .0012517 .0012517

These agree remarkably well, to 4 or 5 DP and 2 or 3 SF, due to
the large sample size and substantial values of s and r. The
program also gives the normal approximation limits (90%) on A
by itself (2.17),

.22984 < ) < .47535,
and the coordinates of the vertical and horizontal tangents of
the 90% (joint) confidence region for (A,p):

(A=.4500, p=.00365)

(.1802, .00148) (.5237, .00234)

(.3000, .00114)
The confidence region will be discussed further after the pocket
calculator results are obtained step by step.

The modified Anderson-Burstein limits (6.1) or (6.2) are

the easiest to obtain. By linear interpolation in Table 1 of
OT Report 74-51 (Crow, 1974), U=49.6, L=28.48. By the formulas
given there the confidence limits under the assumption of

independent transmissions are

_ U ~ 19.6
Pyr © n¥(0-s)/2 ~ 20,005.8 ~ -002479,
= L - _28.48 _ 01424,

PLT ~ n-(s-1-L)/2 ~ 19,995.7
(These are guaranteed to be accurate to only 2 SF, but more
figures are carried to avoid roundoff error in the final result.)
Hence by (6.1)
Py = .001900 + .000579x1.4262
pp = .001900 - .000476x1.4262

.002726
.001221

.0027,
.0012,
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and it is not necessary to use (6.2). Slight differences between
the hand calculation using Table 1 of OTR 74-51 and the computer
program results are possible because the program incorporates

the more accurate Poisson confidence limits of Pearson and
Hartley (1966), while Table 1 is purposely rounded because the
method is designed for simplicity to guarantee only 2-digit

accuracy.

Proceeding to the normal approximation, we first calculate,
from (2.8), §=40,604.8. Then we have immediately the normal
approximation limits from (2.13):
(8xlO8)—l[40,604.8xl.644852+77x20,000

+{(40,604.8x1.64485°+77x20,000) 2
.0028023,
P10 .0012817.
The normal approximation 90% confidence limits for A are,

from (2.17),

Puo )
2:%
-(77x20,000) “}72]

AUO = .47535, ALO = .22984.

Somewhat more quickly obtained but less accurate normal limits

for A are available from (2.18), which gives .46869 and .21551 in
this case, respectively 1.4% and 6.2% less than the (2.17) results.
The use of (2.18) is not recommended except for a quick, temporary
calculation. However, considering the width of the confidence
interval, one would probably be satisfied with 2-digit results
anyway. Even the (2.17) results are probably accurate to no more
than 3 digits.

The Edgeworth two-term approximation (3.11) is initiated by

calculating (3.4) from the normal approximation limits Puo and

Pro*
Pyo = .340248, P10 = . 341252,
VUO = 40,513.4, VLO = 40,667.5,
BUO = .00230626, BLO = .002315009.
From (3.10) and (3.7)
Ayp = .0576634, arq = .0386251.
Hence from (3.11)
Pyp = .0027571, Prq = .0012461.
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These differ from Puo and P in the third significant figure
(SF), so we iterate (3.4)-(3.11):

Pyl = .340278, Pr1 = .341276,
VUl = 40,518.0, VLl = 40,671.1,
BUl = .00230643, BLl = .00231529,
Oyp = .0575093, Opo = .0383288,
Pyp = .0027580, Pro = .0012451.

Examining the sequences pUO’ pUl’ pU2 and pLO’ le, pL2 indicates
that the last iterates are accurate (as far as the convergence

to the Edgeworth two-term limits is concerned) to at least 4SF
and 6 decimal places (DP).

The Edgeworth four-term approximation could be initiated

using the values calculated from Puo and P10 also, but we have
presumably better values from the two-term calculations above.

Hence we start with

péo = .002758, pio = .001245,
QGO = .340277, pio = .341277,
Voo = Vol Vio = VL1’
Byo = Bur- BLo = Pri-
From (4.3) Céo = .0000104995, CiO = .0000106129. Substituting
in (4.4) and using the Abramowitz and Stegun (1964) Table 26.1
gives
&61 = _056509¢6, &il = .0402368.
Then from (3.11)
pél = .0027635, pil = .0012515.
These agree with péo and pio to 3SF, but we confirm with another
iteration:
pél = .340274, pil = .341273,
Vél = 40,517.4, Vil = 40,670.6,
Bél = .00230648, Bil = .00231528,
Cal = .0000104992, Cil = .0000106128,
aéz = .0565425, aiz = .0402871,
péz = .0027633, piz = .0012516.
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The Pearson system approximation could be initiated using

the values calculated from Puo and P10 also, but the Edgeworth
four-term limits are presumably better and provide a running
start in (5.1):

Byo = Boar Bro = Bri
Cyo = Cur1- Cro = Cr1
Blyo = -06931, Biro = -15419,
Boyg = 3-09119, Byrg = 3-20351.

From Table 42 of Pearson.and Hartley (1966, Vol. I) [or Table 32
of Pearson and Hartley (1972, Vol. II)

u = 1.568, u

1.752.

aUl aLl

Then from (3.11)
= .0027530,

Pyq p ; = -0012503.

Iteration does not change these values, to the limited accuracy
available from Table 42. Table 32 is more accurate, as well as
having a larger range of values of Bl and 82, but the accuracy of
Table 42 is adequate. Thus the Pearson system confidence limits
for p, either those immediately above or those shown earlier from
the computer program, are probably accurate just to 3SF (5DP)
simply due to using a table of Pearson system percentage points
with 2DP. [Although Table 32 has 4DP, it was replaced in the
computer program by a table with 2DP and uniform increments in
Bl (by interpolation) to conform with the Table 42 previously
incorporated in the program.]

This completes the calculation of 90% confidence limits for
p by itself and confirms the limits from the computer program
tabulated early in this section. Noting the essentially constant
length of the intervals, we conclude that any one pair gives a
satisfactory 90% interval, and we state that .00125<p<.00276.

The boundary of the 90% confidence region for (A,p) is

I}

obtained from (2.16) by substituting $=.0019, §=.9981, A=.342097,

and the upper 10% point of chi-squared with 2 degrees of freedom,

xg 10=4.60517 (Harter, 1964, but any standard table will do):
;.
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p2 A (1-1)%+1.9962% (1-2) (.342097-1)+.9981 (.9962+1X) (.342097-2) ]

2

-pA(1-2) [.0038(1-A)+.00379278(.342097-1)+.000229821(.9962+A)]

2

+.0000361A(1-A)" = O.
Substituting A=.3 yields
l669.398526p2 - 6.546873p + .0053067 = 0,

so two points on the boundary are

(A, p) =

.3, .0011447), (.3, .0027770).

Other points are found similarly:

A

.35
.40
.45
.50
.55
.52
.53
.5235

P1

.0011687
.0012294
.0013515
.0016489

complex

.0020197

complex

.0022567

Py Discriminant
.0031639
.0034964
.0036500
.0032801 1.85233
complex -2.13405
.0027085 0.29655
complex -0.50561
.0024239 0.17202

Therefore by interpolation the extreme A is .5237 to 4SF,

occurring at p=.00234,

compared with the upper 90% limit

The left-hand part of the confidence

AUO=.47535 on X by itself.
region is likewise calculated:
2 P1

.25 .0011570

.20 .0012491

.15 complex

.18 complex

.1803 .0014569

Py Discriminant
.0023636
.0018731 1.51879
complex -2.24046
complex -0.014255
.0015038 0.008748

Therefore the lower extreme X is .1802 to 4SF at p=.00148,

compared with the lower 90% limit A, ,=.2298 on A by itself.

L0

A few more points are desirable to ascertain the extreme values

of p:

A

.48
.46
.44

Py Py
.0014891 .0035315
.0013892 .0036357
.0013166 .0036470
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The resulting 90% confidence region is plotted in figure 2, along
with the 90% confidence limits for A by itself and the various
90% limits for p by itself.

We see from Figure 2 that the smallest value of p of points
in the confidence region is .00114, occurring at A=.30, and that
the largest such value is .00365, occurring at A=.44. Since we
are 90% confident that the region contains (A,p), we are
a fortiori at least 90% confident that p is between .00114 and
.00365, which are thus conservative 90% confidence limits on p.
We already have what appear to be excellent approximate limits
for p, but they were calculated assuming that X=.342097 is a
satisfactory approximation for the unknown A. The assumption
is reasonable because K is a consistent and asymptotically
normal estimate of A and will tend to be too small about as
often as it is too large, so that the confidence interval will
be "too short" about as often as it is "too long" in different
samples. This intuitive argument is not fully confirmed by the
Monte Carlo simulation in Section 11, ; being found to have
negative bias. The confidence region for (A,p) provides re-
assurance about the confidence interval for p alone because it
assumes neither K=X nor a prior value of A.

Thus we can view the 90% confidence limits on p alone as
providing a 90% confidence region for (A,p) also, as indicated
by the dashed lines in Figure 2, the boundary of the region
in the XA direction being the line segments at A=0 and A=l.

The width of this region in the p direction is smailer than that
of the oval by virtue of relaxing the claim on A. It is easy to
imagine that both regions have a "confidence content" of 90%.

Alternatively the same argument could be made for the 90%
confidence limits on A. Since P and ; are correlated, the
rectangular intersection of the two 90% rectangles is not an
81% confidence region for (A,p). Likewise, our oval 90% region
for (A,p) is not rigorously comparable with the rectangle
obtained by calculating 100(.90)%=94.9% confidence intervals for

p and for A separately. However, the rectangle obtained as the
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intersection of separate 95.0% confidence intervals for p and
for A is a rigorous confidence region for (A,p) with confidence
level at least 90.0%. More generally, the rectangle obtained as
the intersection of a l—al confidence interval for A and a l—az
confidence interval for p is a confidence region for (A,p) with
confidence level at least l—al—az. This follows from the simplest
"Bonferroni Inequality" (Feller, 1968, p. 110; Dunn, 1974).

The Cox-Lewis data are also used as the example for the
computer program in Appendix B, wherg the limits are slightly

wider because A is used rather than A.

10. TESTING THE VALIDITY OF INDEPENDENCE AND MARKOV CHAIN MODELS

10.1. Introduction

The present development of confidence limits for the
error rate p was motivated by the obvious departure of the
pattern of errors in transmission from the classical Bernoulli
model of independent trials with constant error rate. What
justification is there that the model adopted herein of a
stationary first-order Markov chain is a satisfactory model?
This model has just two parameters, p and A, whereas several
studies (Gilbert, 1960; Elliott, 1963; Fritchman, 1967) have
indicated the need for as many as five or six parameters to fit
digital communications data fully. Nevertheless, there is
considerable justification for the adopted model:

(1) The added parameter A provides a measure of dependence
completely lacking in the Bernoulli model, so the
confidence intervals should be considerably better
approximations then those from the Bernoulli model,
if there is dependence. Since the Bernoulli model
is a special case with A=p, there is no appreciable
harm done if trials are actually independent except
complication in computing the limits.

(2) There is no "true" model of any physical phenomenon,

only closer and closer approximations. The (A,p)
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model may be likened to fitting an inclined straight
line to data for which a horizontal straight line
would be a first approximation analogous to the model
of independent trials.

(3) In the course of calculating the (Poisson-)Anderson-
Burstein-type approximation for confidence limits,
one gets the limits based on independence also and
can thus observe how different the two pairs of
limits are. It is reasonable to conclude that going
to a more complex model, such as a second-order Markov
chain, would introduce less change than going from
zeroth-order (independent trials) to first-order
chain, and often the change would be negligible in
practice.

(4) Except for the Anderson-Burstein approximation, the
formulas for confidence limits presented herein are
already fairly messy, and a higher-order approximation
could be expected to be even messier and hence
perhaps beyond practical interest.

(5) The finite sample size of data presents only a
limited amount of information, which may be in-
sufficient to calculate the further parameters of a
more complex model, or at least to calculate them
with useful precision. It is already impossible
to calculate ; in (2.2) or A* in (2.4) if no errors are
observed. The effective sample size for estimating A
is the number of errors, s, not the number of trans-
missions, n [cf. equation (12.5)]. Similarly, the
effective sample size for estimating a second-order
conditional probability would be the number of pairs of
errors, r. Thus the amount of information available for
further parameters tends to decrease geometrically.

If it is believed prior to the experiment that the errors

may occur independently and the data obtained are consistent

with that hypothesis, then the classical binomial confidence
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limits of OT Report 74-51 (Crow, 1974), should be used. An easy
test of independence, the total number of runs, is described in
Section 10.2. If the hypothesis is rejected by that test, then
the confidence limits of the present report will probably be
satisfactory, but the assumption of a stationary first-order
Markov chain should be tested by one or more of the three

tests outlined in Section 10.3 (Pearson X2, likelihood ratio
statistic G2, sum of squared Freeman-Tukey deviates FT2).

Going to a first-order or higher-order Markov chain is
hardly the only possible generalization of independent trials.
Gilbert (1960), Elliott (1963), Fritchman (1967), and others
have introduced further models. A communication system might
depart from independent trials with constant error rate by
changes of state with different error rates in different states.
Gilbert and Elliott considered such models in which the changes
occurred at random so that the model still represents a
stationary process. The Klotz model of this report is the
special case of the Gilbert model in which the transition
probability from a good state, G, to a bad state, B, is the same
as that from B to G.

It is possible that changes of regime might occur at
systematic rather than random points in time, such as sunset
and sunrise or changes of personnel shifts. Within each
regime the stationary first-order Markov model of this report
may apply, and large-sample tests for differences between
the values of P and ; can be made in a standard way based on
the asymptotic normality of distributions, as discussed in
Section 10.4.

10.2. Run Test of Independence
Consider the following sequence of bits
,0,0,1,0,1,1,1,0,0,0,0,1,1
in which the occurrence of an error is denoted by a 1. A
sequence of k identical symbols that is preceded and followed

by a different symbol or no symbol is called a run of length k
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(Dixon and Massey, 1951, p. 254). Thus, in the above sequence
there are 2 runs of length 1, 1 of length 2, 2 of length 3,

and 1 of length 4. If there is dependence between trans-
missions such that errors tend to occur together, then there
will tend to be fewer runs than with independent transmissions.
(In other situations there might be more runs than with
independence.) Consequently a test of independence can be

based on the- total number of runs. In the above sequence

the total number of runs is 6.

The total number of runs, say u, in a sample of independent
transmissions is influenced by the number of 0's, say NO,
and the number of 1's, say Nl' For small values (20 or less)
of NO and Nl the critical numbers of runs beyond which the
hypothesis of independence is rejected are tabulated (Dixon
and Massey, 1951, Table 11), but for the large samples needed in
communications systems the normal approximation of the distri-
bution of u is needed and is satisfactory. The mean and

variance of u are (Dixon and Massey, 1951, p. 256)

u NO+Nl
. 2 _ 2N0-1(2N0N1~N0-Nl)
u _ 2 _
(NO+N1) (NO+N1 1)

Thus, if the observed number of runs were less than uu+2.3260u,
we would reject the hypothesis of independence at the 1%

significance level (one-sided test).

10.3. Test of the Order of a Markov Chain
Testing whether a sequence of correct and incorrect trans-
missions can be represented by a Markov chain of first order,
or any order for that matter, is a special case of the problem
of testing the goodness of fit of a general Markov chain, which

has been discussed extensively in the periodical statistical
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literature (e.g., Bartlett, 1951; Hoel, 1954; Anderson and
Goodman, 1957; Billingsley, 1961; Guthrie and Youssef, 1970;
Yakowitz, 1976). However, perhaps the best exposition for
application is in the book by Bishop, Fienberg, and Holland
(1975), in Sections 7.2-7.4, especially Example 7.4-1.

The method is similar to that of testing independence in a
2x2 contingency table: The observed frequencies are compared
with the expected frequencies under the null hypothesis of
independence and a measure of the combined differences, Pearson
X2 or the likelihood ratio in particular, is calculated and
compared with a tabulated chi-squared percentage point. For
testing whether a (Markov) chain is of first order it is
assumed that the data come from no more than a second-order chain.
Notation and formulas will be given first for that case but
generalize to any order. They will be illustrated on the tele-
phone data tabulated by Cox and Lewis (1966) and used in
Section 9.

We consider only two states, 0 or 1, and a single sequence
of n transmissions, for most of which we expect a 0 to be
recorded, inaicating a correct bit is received, while 1 indicates
an error. There will be n-1 one-step transitions of the four
types 00, 01, 10, 11, and n-2 two-step transitions of the eight
types 000,001,...,111. Let xijk denote the number of transitions
of type ijk, where i, j, and k each take on the value 0 or 1.

Let the sum of xijk over any subscript be denoted by replacing
that subscript by +. For example,

= ¥110 * *111°

Similarly the sum over two subscripts is denoted with two +;s,

X114+

e.g.,
= = x X ble + X = § Xiq o
X, X109 + X13 100 + 101 + 110 111 ' ijk

Finally, the sum over all subscripts is denoted by X and must

equal n-2.
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The likelihood ratio statistic is

2 *i4k
G5 =2 ] x, . 1ln =35 (10.1)
i, 3,k Y ijk
where fi.., is the expected frequency calculated from the marginal

1jk
sums and proportions with the same one-step transitions, that

is, under the null hypothesis that the process is first order,

X .
R, = x _t+ik

ijk ij+ x (10.2)

+3+
When the null hypothesis is true and the ﬁijk
small," say not less than 2, G2 is distributed approximately as

are "not too

chi-squared with 2 degrees of freedom (d.f.) (in this case of the
two-state chain of second order or less) and may be judged
therefore by comparison with the tabulated XZ percentage point.
If the null hypothesis is not true, xijk and ﬁijk will tend to
differ more and G2 will tend to be larger than the tabulated
percentage point. However, as illustrated in the example below,
the chi-squared distribution may be a poor approximation in the
case of some telecommunications data.
The Pearson X2 statistic is
(x..,-f,. )2

2 ) ijk " ijk . (10.3)

i, 3,k Mk

The statistic X2 is also asymptotically distributed as chi-

squared with 2 d.f. when the chain is in fact of first order.
Finally, the sum of squared Freeman-Tukey deviates (Bishop
et al., 1975, p. 137) is

FT2 = ) (V.. L+l - /4mi

ikt /xi ot 2
i, 3,k J J

+1)°. (10.4)

jk
It also is asymptotically distributed as chi-squared with 2 d.f.
when the chain is in fact of first order. The approach to the
limiting distribution may be quite different for the three
statistics defined above.

Example. Cox and Lewis (1966) tabulate the intervals

between successive errors in a sequence of telephone messages,
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which was "obtained in joint work by IBM Germany and the German
Postal Administration." Slightly over one million characters
were transmitted, but the first 20,000 will be used for this
example. Since only the intervals are listed, it is not known
whether the first transmission is in error or not. If we take
it as correct, there are 38 errors, 13 pairs of successive
errors, and 5 triples of successive errors. Counting the other
triples also, we found the data in Table 3. Thus the numbers of

one-step transitions are the same whether arrived at as x. or

1j+
X+jk’ but both are shown for exposition and direct substitution
in (10.2). The expected cell frequencies (10.2) under the first-

order hypothesis are then

ﬁlll = 13x13/38 = 4.447, ﬁlOl = 25x25/19,960 = .03131,

Mgy = 25x13/38 = 8.553, Mygq = 19,935%x25/19,960 = 24.969,
My10 = 8.553, Mg = 24.969,
My19 = 16.447, MNoog = 19,910.031.

We note that there are only two independently determined
expected frequencies among these eight, consistent with the
statement that the limiting chi-squared distribution has 2 d.f.
under the null hypothesis. One of these expected frequencies,
ﬁlOl’ is drastically less than the minimum frequency of 2 for
the approximating chi-squared distribution to hold, but we shall
calculate G2, X2, and FT2 anyway for lack of something better.
It would thus be desirable to have a limit approximation for
which a single expected cell frequency is allowed to be arbi-
trarily small (cf. Bishop et al., 1975, p. 140; Yarnold, 1970).
From (10.1)
G2 2[5 1n5/4.447 + 2 1n2/.03131
8 1n8/8.553 + 23 1n23/24.969

8 1n8/8.553 + 23 1n23/24.969
17 1nl7/16.447 + 19,912 1nl19,912/19,910.031]

13.167.

+ o+ 4
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Table 3.

Numbers of Two-step and One-step Transitions

in the First 20,000 Telephone Transmissions
Tabulated by Cox and Lewis (1966)

Two-step Transitions:

Position t

1

Position t-1

0

Position t-1

Position t-2 1 0 1 0
1 ¥11172  %30172 11078 ¥pp0723
0 xOll=8 x001=23 010‘17 x000=l9,9l2
One-step Transitions:
Position t
Position t-1 1 0
1 411713 x4 0725
0 +Ol=25 x+00=l9,935
Position t-1
Position t-2 ; 0
1 Xll+=l3 x10+=25 Xl++=38
0 XOl+=25 x00+=19,935 xo++=l9,960
x+l+=38 x+0+=l9,960 x+++=l9,998
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The tabulated chi-squared percentage points for 2 d.f. at the
0.5% and 0.1% levels are X§,_005=10-597 and Xg’.001=13.8l6.
Hence, according to the G~ statistic, the data are not consistent
(at the 0.5% significance level) with the hypothesis of a
first-order process.

Similarly, from (10.3),

X2 = 124.2 with 2 d.f.
Comparing this with the same Xg percentage points as above, we
see that the X2 statistic rejects the first-order hypothesis
even more strongly than G2.

From (10.4),

FT2 = 4.776 with 2 d.f.,
whereas X§,_1=4.605, X§’_05=5.99l. Hence, according to the
FT2 statistic, the hypothesis that the process is of first
order would not be rejected at the often used 5% significance
level, though it would be, barely, at the 10% level.

Thus the three different criteria for judging the first-
order model give widely differing results, but FT2 may be the
most reliable from the evidence presented by Freeman and Tukey
(1950) and the fact that it was specifically designed for small
(Poisson) frequencies.

It is also instructive to compare the individual observed

and expected frequencies and the individual terms in G2, X2,

and FT2. The term in mlOl=0.03l3l accounts for 124.1 of X2:
4.349 of FT2, and 16.628 of G2! (G2 has three negative terms
also, two of them -3.778). Thus all of the apparent departure
from the first-order model is accounted for by an observed
frequency of 2 where 0.03131 is "expected" (on the average).
The Poisson distribution probably applies quite well to this
particular cell; for it the probability of a 0 count is
exp(-0.03131)=0.96917; of 1, 0.03034; and 2 or more, 0.00048.
This confirms that the observed frequency of 2 is inconsistent
with the first-order model.

There are two conclusions to all of this calculation and
discussion:
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(1) The first 20,000 transmissions of the Cox-Lewis data

are inconsistent with a first-order Markov chain model.

(2) The formal criteria, G2, X2, and FT2, given for

judging goodness of fit in large samples cannot be
applied unquestioningly to telecommunications or other
data where probabilities or error rates may be very
small.

The logical first hypothesis to test would have been that of
independence (i.e., zeroth order), but we discussed the test of
first order first because it is of most interest, there being
no doubt, usually and in this case in particular, of the lack
of independence. Independence can be tested by the standard X2
test of a 2x2 table, but that can also be seen to be the same
as (10.2)-(10.3) with one subscript dropped. There is also only
1l d.f. with the marginal totals fixed. Statistics (10.1) and
(10.4) can also be applied. 1In the 2x2 table at the bottom of

Table 1, the expected frequencies under. independence are

Myq, = xl++x+l+/x+++ = 0.07221, Moy = 37.92779,
mol+ = 37.92779, mll+ = 19,922.07221.
Hence
G2 = 119.2, X2 = 2147.1, FT2 = 48.8.

These are all much larger than the corresponding values for
testing the first-order model (and are furthermore to be
compared with the smaller XZ percentage point with just 1 d.f.).
One would expect this; if the process is not of first order, it
is a fortiori not of zeroth order, i.e., not a sequence of
independent random variables.

We proceed naturally to testing whether the process is a
second-order Markov chain, given that it is of not more than
third order. It is necessary to go to the original Cox-Lewis
data and tabulate the numbers xijkl of all of the different
three-step transitions, as in Table 4. The total number of
At 19,997, which is 1 less than

the number of two-step transmissions in Table 3. The last

three-step transitions is x

50



w
—

Table 4. Numbers of Three-step Transitions in the First 20,000 Transmissions
Tabulated by Cox and Lewis (1966)
Observed:
X1111 X1011 = 2 X1791 = O %1001 ~ 0
*1110 T X1010 = O X1100 = 8 %1000 23
%0111 Xg011 = °© X101 = ° %0001 ~ 23
X0110 = Xg010 = 17 Xp100 = 1° X000 ~ 19,888
Expected:
A\ - A — F A - A\ —
fy111 .923 011 0.640 101 0.640 501 0.02654
110 = 3-077 fi1g19 = L-360 fy190 = 7-360 R 000 = 22.973
flgp1, = 3-077 fygyy = 7-360 fig197 = L-360 fyo01 = 22.973
Mgy = 4-923 figg1o = L15-640 figpgp = 15-640 fygog = 19,888.027




four transmissions were in fact correct, so the only change in
two-step and one-step transitions in Table 3 is a reduction by 1
x000+=l9,9ll, x+00+=l9,934,
=19,959. The expected frequencies are calculated by the

of those numbers involving only 0's:

X10++
analogue of (10.2):

Xrike
+jk+

Migke = *igjk+ (10.5)

The statistics G2, X2, and FT2 are calculated from the

analogues of (10.1), (10.3), and (10.4) with summation over four
subscripts, so that there are 16 terms. In G2, terms involving
xijk2=o are taken to have the limiting wvalue 0. Calculations
from Table 2 give

G% = 6.628, X° = 5.677, FT> = 5.628.
We note in Table 4 that not less than 3 of the 16 expected
frequencies are independently determined. Actually 4 are
independently determined, the coincidence being an artifact
of the particular observed frequencies. The theory shows that,
in testing whether a chain given to be third order may be
second order, the d.f. of the limiting chi-squared distribution
is 4. Thus the above values of G2, X2, and FT2 are to be

compared with percentage points of X27 XZ = 7.779, so the data
;e

are consistent with the hypothesis of seconé order even at the
10% significance level, according to all three statistics.

It is noteworthy that Gz, X2, and FT2 are about equal under
the second-order hypothesis, whereas they differ greatly under
the first-order and zeroth-order hypothesis. This illustrates
the general theory that all three statistics are asymptotically

distributed as chi-squared with the same d.f. when the null

hypothesis is true, but not otherwise. The approximate equality

provides some reassurance about comparing them with chi-squared
when some expected frequencies are so far below the usually
designated minimum allowable.

In the same way, a Markov chain with two states (0 and 1) of

any order r can be tested for consistency with the hypothesis
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that it is of order r-1. The only essential change is the
number of degrees of freedom of the limiting chi-squared distri-
bution, which is 2r—l (Hoel, 1954). Note that a chain of order
r is described with r+l1 subscripts.

Although the Cox-Lewis data are inconsistent with a first-
order model, the points cited in Section 10.1 can be invoked to
justify using the confidence limit approximations of this report

based on the first-order model.

10.4. Test of Nonstationarity

If it is believed that the error rate p and the conditional
error rate A may change during the acquisition of data, the
data should be separated into subsamples considered to be homo-
geneous and tested for differences between the subsamples. Only
a large-sample test based on the asymptotic normality of (;,ﬁ)
and their asymptotic variance-covariance matrix (2.14) will be
given (and indeed an exact test can hardly be expected). In
the use of (2.14), it is assumed that within each subsample the
first-order Markov chain model applies.

Suppose that in a single long sample of size n there are k
homogeneous sgbsamples of §ize Ny sNyypeee Dy and estimates
Byrry)e (Byiry)uenn, (B sA,). Under the null hypothesis that
all the p; are equal and all the Xi are equal, we may eftimate
the common values of p and A by the P of (2.1) and the X of
(2.2). Consequently, from £2.l4), for large samples, the variance-

covariance matrix of each (Ai,ﬁi) can be estimated by
2

= (10.6)
I 2 A0 A A A
2By 55, gr/n; P (1-2p+A) /[n; (1-1) ]
We first give the tests for p and A separately. Under the

null hypothesis, (L’Si—p)/sl3 is asymptotically normally distri-

buted with mean 0 and standard deviation 1. Hence
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° A 2
2 k (Pi‘P)
X - Z —_—
. 2
1=1 s,
p

(10.7)
i
is asymptotically distributed as chi-squared with k degrees of
freedom. Expression (10.7) could be used to test whether the
data are consistent with a given value of p, but usually we
are simply interested in testing whether the @i are consistent
with each other and we do not know p. In this case we
substitute p for p and must then reduce the d.f. of (10.7) to
k-1. Thus we can test the null hypothesis that all p. are
equal by comparing (10.7), with p set equal to P, with an upper
percentage point of xz with k-1 d.f.
Similarly, we can test the null hypothesis that all Ai are

equal by comparing

K (h-\) 2
= ] ——— (10.8)

i=1

> N

S/\
A
i

with an upper percentage point of Xi—l'

More efficiently, making use of (2.15), we can test the
combined null hypothesis that all of the pairs (Ki,pi) are

equal by comparing

R R 2 A “ R ~ ~ “ ~ ~ 2
5 k (B,-B) " (=2 2(B;-B) (A.=n)  B(A =)
x2 | = n, | ————n - . + ———|(10.9)
Py i=1 B (1-2H+1) (1-2p+)) A (1-2)

with an upper percentage point of XZ with 2(k-1) d.f.

Example. We again make use of the Cox and Lewis telephone
data (1966). We use the first 60,000 transmissions, arbitrarily
dividing them into three successive groups of 20,000 each for
convenience even though this fails to illustrate the fact that
the group sizes need not be equal. The summary data and para-
meter estimates of (2.1)-(2.3) are given in Table 5, where Sy
is the number of errors in the ith sample, r, is the number of
pairs of adjacent errors, and ti is the number of errors on the

first and last transmissions. It appears that errors occurred

more frequently initially and that the subsamples may differ
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Table 5. Data Summary and Parameter Estimates for
First 60,000 Transmissions Tabulated by
Cox and Lewis (1966)

Sample No. i 1 2 3 Pooled

n. 20,000 20,000 20,000 60,000

r. 13 0 1 14

S5 38 0 14 52

t. 0 0 0 0

gi .001900 0 .000700 .000867

Ai .342097 Indeter- .071425 .269228
minate

significantly. We shall test the null hypotheses of no difference
between the Pjs between the Ai, and between the (Ai,pi). The
tests are not independent of one another.

The estimated variance-covariance matrix (10.6) of each
(ii’ﬁi) calculated from the pooled estimates P and ; is
2 5

5

1.3450 x 10

(1.1351 x 10 >
7.5095 x 10° 2/ .

1.3450 x 10

From (10.7) with p=p,

xé = 24.59 with 2 d.f., )
whereas even the 0.1% of the chi-squared with 2 d.f., X2,.OOl’
is only 13.82. Hence the @i differ significantly at even the
0.1% significance level.

~

There are only two Ai to compare, but we calculate (10.8)
with A from all the data still:

xi = 3.23 with 1 d.f., x} = 3.84,

~

so the difference between Xl and A3 is not significant.

Comparing the (Xi,ﬁi) pairs presents a non-standard

o

situation since there are three B; and two Ai. However, it can

be argued intuitively that the two terms in XZ—K in (10.9) simply

do not exist, or are zero, so that (10.9) becomes
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X; Y = 24.59 + 3.23 - 2.38 = 25.44 with 3 d.f.,

wheras X§,.001= 16.27. Thus the three samples differ highly
significantly, but all of the difference is attributable to
the ﬁi.

It should be recalled that the tests are approximate because
the variance-covariance matrix is estimated from the pooled
data. After the ﬁi have been found to differ significantly, it
might be felt that further testing should be limited to the two
samples that provide estimates of Ai’ even though samples No. 2
and No. 3 differ least in r. and S, - Doing this, estimating
the variance-covariance matrix from samples No. 1 and No. 3 only,

has been carried out and found not to change the high

significance of X; and Xé 3 but does change Xi enough to render
’
it significant at the 5% level:
2 _ 2 _ 2 _
Xp = 13.78(1 d.f.), Xy = 6.18(1 d.£f.), Xp,X = 15.32(2 d.f.).

The conclusion of the statistical analysis is that the tele-
phone transmission process changed more during the first 60,000
transmissions than can be attributed to random sampling
fluctuations, and most of the change is attributable to the
absolute error rate rather than the degree of dependence
between successive transmissions. Some assignable cause for the

real change in error rate should be sought.

11. VALIDATION OF INTERVAL FORMULAS BY MONTE CARLO SIMULATION

11.1. Introduction
It is impractical to test the five approximations to a
confidence interval for the error rate p derived in Sections
2-6 by comparison with the "exact" interval for the large sample
sizes for which they are of most interest. Furthermore, as

mentioned in Section 7, the "exact" interval is not really exact
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because it, like the approximations, requires knowledge of A.
The theory behind the derivation implies that the interval
approximations will cover p with at least the desired frequency
1-2a if the sample size is "sufficiently large", but gives no
indication what that sample size is in any particular case.
While more sophisticated theory might yield information, for

the normal approximation in particular, the most readily avail-
able method for testing the approximation seems to be simulation
of a large number of samples and the corresponding intervals on
a large computer.

An extensive program was written for generating samples of
Markov chains with given p, A, and n, calculating all five
confidence interval approximations for each sample, and recording
the most interesting summary characteristics for 1000 such
samples. The parameter values assumed were

A= .3, .8;

p=.5 .3, .1, .03, .003, .001, .0003.
The sample size n was varied to be at least minimally adequate
for estimating p. Thus the (p,n) combination used for both
values of A and a=.05 (90% confidence level) were

p .5 .3 .1 .03 .03 .003 .001 .0003

n 50 50 100 100 500 1000 1000 1000.
ExXcept for the last two, these were also used for A=.3 and
a=.025. One other case evaluated was A=.3, a=.025, p=.1l, n=500.
The smallest p used is nearest to, but still relatively far from,
error rates in digital telecommunications; the sample size for
it is inadequate (expected number of errors of 0.3 per sample!),
but larger sample sizes would lead to larger, perhaps too large,
computing costs.

The summary results of all these computations are presented
in Appendix A. In general these results consist of the mean
valEe and some measure of dispersion over all 1000 samples of
P, A, X*, the fraction of each type of interval covering p
(i.e., the empirical counterpart of 1-2a), the ratio of the length

of the interval to that of the modified Anderson-Burstein
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interval, and the number of iterations required for convergence
of the three iteratively calculated intervals. In addition,
six different events that might occur in a sample and cause
difficulty in calculating sensible intervals are counted, as

shown at the top of each case summary.

11.2. Simulation Computer Program

Before analyzing the results of the simulations, the
computer program for obtaining them will be discussed briefly.
The program is very long and is not referenced in this report
but may be obtained by writing to Martin J. Miles (Institute for
Telecommunication Sciences, U.S. Dept. of Commerce, Boulder, CO
80302).

Using 1000 samples, the program conducts Monte Carlo simula-
tions. Given a value of each of o, p, n, and X, the program
obtains a value of each of s, r, and t (2.3) for each random
sample. From (1.1), (1.2), and (1.5), define p=P[Xi=l],
P[Xi=l

pllzxz
X, _1=11, and p01=(l—A)p/q=P[Xi=l|Xi_l=0]. Now to obtain

s, r, and t, the following procedure was conducted once for each
sample:

A random (or, more precisely, pseudorandom) number, y, is
generated by the computerl. The value of y is such that 0<y<l.
Now if y<p, an error is indicated, and s and t are incremented by
1 (s, r, and t being initially set at zero). Then n-1 additional
random numbers y are generated successively and subjected to one
of two tests:

Test 1: If the previous random number indicated an error,

and if YS<Pyq- another error has occurred.

Test 2: If the previous random number indicated an error
had not occurred, and if yspOl, an error has
occurred.

If test 1 indicates an error, both s and r are incremented by 1.

If test 2 indicates an error, only s is incremented by 1.

lThe random number is obtained by calling the function RANF,
which is defined in Fortran Common Library Mathematical
Routines, Control Data Corporation.
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Finally, if the last random number indicates an error, t is also
incremented by 1. If neither test indicates an error, none of
s, r, and t 1is incremented.

With the values of s, r, and t thus determined, the program
evaluates and prints the statistics related to the five confidence
limit approximations.

The results of the Monte Carlo simulations presented in
Appendix A are based on 1000 samples except for two cases of
2000. Further 1000-sample repeat runs were run to establish the
biases of i and A* more precisely but are not included in

Appendix A.

11.3. Analysis of the Simulated Point Estimates of p and A
It is known theoretically that P=s/n is an unbiased estimate

of p; that is, its expectation EPp is equal to p whatever p, A,
and n are, and this is confirmed by the simulation summaries in
Appendix A in all cases. The mean of the simulated 1000 sample
values of P, to be denoted by P, is of course not exactly p, but
it differs only by sampling error as measured by its standard
error,

1
]
’

=~ = Sa 1000
S5 sp/ ( )

where Sﬁ is the item labeled SIGMA in the column labeled P HAT
of Appendix A. In fact, 21 of the 23 values of p differ from p
by less than 55 (91 percent compared with the theoretical normal
68 percent).

The estimation of X is known theoretically to be more
complicated than that of p, and that is confirmed by the
simulations. The estimates ; and A* differ so negligibly from
each other that the simpler A* seems preferable to g. In 21 runs
of 1000 simulations each for A=.3 of the samples ranging in size
from 50 to 1000 (}ncluding some not reproduced in Appendix A4),
the overall mean A was just .00015 less than that of A*, ranging
from .00155 less to .00014 more. The standard deviation of i

(in a run of 1000 simulations) averaged just 0.17 percent less
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than that of A*, ranging from 0.93 percent less to 0.13 percent
more. The differences are greater for A=.8, but still negligible:
In 12 runs of 1000 simulations each the overall mean ; was

.00115 greater than that of A*, ranging from .00063 less to
.00266 more (more in 11 of the 12 runs). The standard deviation
of ; averaged just 0.05 percent less than that of A*, ranging
from 3.46 percent less to 0.16 percent more. It should be noted
that although there are 1000 simulations in each run, A cannot be
estimated when s=0; hence in a few runs, the samples of K and

A* are relatively small, down to 51 in one case (which has been
replaced in Appendix A by a run of 2000 simulations with 111
values of ; and A*).

Although ; and A* differ negligibly from each other, they
both differ considerably from A on the average. Table 6 shows
that they have uniformly negative biases. As shown in the table,
many of the cases were repeated with different pseudorandom
numbers toAconfirm the results. The standard errors of the mean

P>
values of X and X* (and thus of the biases) based on s =s /N*

~ ~

demonstrate the reality of the biases. It was found e%pi%ically
that the bias is a function of n and p only through the product
np, at least approximately. Thus the bias of X (or A*) 1is
plotted as a function of np in Figure 3 for the two values of A
for which we have information, .3 and .8. Table 6 shows four
cases in which the same np is obtained from two different pairs
of n and p. In only one of those four cases are the biases
significantly different from each other [X=.8, (n,p)=(50,.3),
(500,.03)], and the two biases are shown separately in Figure 3
for that case.

Figure 3 does confirm the theoretical conclusion that the
bias of ; is negligible if the sample size is sufficiently
large (Klotz, 1973). However, the bias is not negligible for
the sample sizes of many important practical applications. The
effect of underestimating A is to underestimate the length of

the confidence interval for p and thus possibly to fail to
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Table 6.

~

Monte Carlo Biases of A and )*

np n
50 500
25 50
15 50
500
10 100
3 100
1000
1 1000
.03 1000

o]

.03

.03

.003

.001
.0003

|

.025

.025
.05
mean

.025
.05
.025
.05
mean

.025
.05

mean

.025
.05

.025

.05

mean
.05
.05

mean

N=no. of ~
estimates b (X)
1000 .00442
1000 .00761
1000 .01044
2000 .00902
1000 .02174
1000 .01479
1000 .02204
1000 .02199
4000 .02012
999 .03204
998 .02956
999 .03234
1997 .03131
900 .08751
895 . 08044
891 .09190
881 .07923
879 .07780
887 .07216
884 .07909
6217 .08116
481 .10006
167 .16780
184 .14687
174 .10934
525 .14134

61

.00210

.00297
.00290

.00207

.00372
.00383
.00386
.00386
.00191

.00477

.00481
.00479
.00339

.00759
.00761
.00739
.00765
.00769
.00781
.00771
.00288

.01156

.01837
.01865
.02003

F1099

pO*)

-.00441

-.00764
-.01056
-.00910

-.02129
-.01478
-.02217
-.02213
-.02009

-.03206

-.02948
-.03247
-.03134

-.08705
-.07889
-.09164

-.07930-

-.07788
-.07207
-.07905
-.08084

-.09979

-.16763
-.14668
-.10910
-.14114

.00210

.00299
.00290
.00208

.00376
.00384
.00386
.00386
.00192

.00478

.00482
.00480
. 00340

.007e61
.00764
.00739
.00765
.00769
.00781
.00771
.00289

.01158

.01840
.01867
.02005
.01100



Table 6 (continued)

25
15

10

|3

50
50

500

100

100

1000

1000
2000

mean
.03

mean

mean
.03
.003
mean
.001
.0003

= .8 (all o = .05)
N A "~
B
1000 -.02367 .00288
979 -.05237 .00539
995 -.04987 .00478
1974 -.05112 . 00360
954 -.07079 .00616
959 -.07198 .00617
1913 -.07138 . 00565
904 -.10444 .00789
908 -.11363 .00795
1812 -.10904 .00560
445 -.15225 .01355
475 -.18185 .01429
418 -.15228 .01420
1338 -.16213 . 00809
172 -.19751 .02466
111 -.24127 .03271
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.02375

.05503
.05057
.05280
.07154
.07247
.07200

.10635
.11585
.11110

.15362
.18386
.15282
.16343

.19926
.24063

.00298

.00550
.00492
.00369
.00617
.00616
.00571

.00794
.00797
.00563

.01353
-01427
.01420
.00809

.02462
.03275



e——— T TT ﬁ'T_—T T —‘ _.'_"_l_—[_ - IF_'_I_W

C ]
r :
4
< N
L Dos -
() —
w
<_[ -
= I |
= i
‘C._'D ! :
=L
0.01—
y
[
=
0.005-—
oML . S WIS U0 SN U VL 0 A NS O S B U A R
0.l 05 1.0 50 i0.2 500

np

Fiqure 3. The negative bias of the estimator A as a function
of np and A. Approximate 95% confidence (20)
limits are included.
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achieve the stated confidence level. Hence we now introduce a
correction, c., for the bias of ; (or A*) based on Figure 3.

The biasxof ; is a function of np and A. We can estimate
np unbiasedly by np=s, but not of course A by i. Nevertheless it

is reasonable to seek an approximate removal of the bias with

s

a new estimator A that is a linear function of A,
A= a + di. (11.1)

o~

We denote the negative of the bias of X for a given X by C,r SO

that CA>O‘ The conditional expected (average) value of X for a

given s (as well as given n, p, and A) is

ESX = a + dESX = a + d(h—ck). (11.2)
We require that ESA=A, and we know = for two values of A (for
each s). Hence,

-3=a+d(-3_c 3)[

.8 = a + d(.8-c 8). (11.3)
Solving for a and d and substituting in (11.1) yields

; _ >\+l.6c.3—0.6c.8 (11.4)

1-2(c g=¢ 3)

The new estimator A cannot be expected to be exactly
unbiased even for given s and \A=.3 and A=.8 because the sample
values of X vary randomly and the correction applied to a given

A (not knowing A, in particular A=.3 or A=.8) will almost always

not be the one appropriate for A=.3 or A=.8. Furthermore, since
A, C 3 and c 8 are nonlinear functions of s and the latter two
occur nonlinearly in (11.4), the (unconditional) expected value

of X could hardly be A. Nevertheless (11.4) should correct
much of the bias of K (or A%*).

The linear fit embodied in (11.4) may be expected to inter-
polate better than }t extrapolates. In extreme cases it even
produces values of A outside the admissiblg interval (0,1).

For example, when s=10 and r=0, A*=0, and A=-.016 from (1114)
and Figure 3, and when s=10, r=9, and n=100, A*=.909, ang A=1.058.
[Here (1l1.4) is applied substituting the simpler A* for A.]
Hence it is desirable to use two other interpolation formulas
(similarly derived) for ;\<.3—c.3 and ;>'8_C.8:
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0.3 "

>

= 5T§:E_§ , 0<A<0.3-c 4; (11.5)
~ 0.2X+c 8 ~
A = 677:5_5_’ 0.8-c g<Asl. (11.6)

At their common points of applicability, (11.5) and (11.6) yield
the same values (0.3 and 0.8 respectively) of ; as (11.4), which
then is used only in the interior interval, Q.E—c.3siso.8—c.8. It
can be easily shown from (11.4)-(11.6) that AzA\.

When A is estimated to be 1, all of the approximate
confidence intervals for p blow up. In effect there is only one
independent observation, and the confidence interval for p is
consequently to be taken immediately as (pL=O, pU=l—a) if s=0
and (pL=a, pU=l) if s=n. However, A is rarely, if ever, estimated
as 1 from (11.6). .

To assess the estimator A, six of the simulation cases were
repeated (one of them with 2000 samples) with the same random
numb§rs, but with A calculated from (11.4-11.6) and substituted
for A in determining confidence intervals. The summaries of
these runs are the last six in Appendix A and are easily
identified by the additional column of MEAN, MIN, MAX, and SIGMA
labeled LAMBDA TILDE. The estimation is further summarized as

follows:
A P n N A X S S~
A A
.3 .1 100 999 .268 .301 .152 .169
.0003 1000 174 .191 .241 .264 .331
.8 .3 50 995 .750 .805 .151 .136
.1 100 913 .684 .752 .240 .243
.003 1000 418 .648 .721 .290 .302
.0003 1000 111 .559 .631 .345 .371

The column labeled N is the number of samples obtained less the
number of samples for which s=0 (and thus for which A cannot be
estimated). We see that A is indeed less biased than ); most,

even all, of the bias is removed if np is sufficiently large,
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greater than 10 say, and A is not too near 1. The reduction in
bias is achieved at the expense of a slight increase in variance
in 5 of the 6 cases.

Hence it has been confir@ed empirically that the empirical
modification of ; (or A*) to A does remove much of the bias in
estimating A. It remains to be seen in Section 11.4 below what

the effect on the confidence limits is.

11.4. Analysis of the Simulated Confidence Intervals for p

The computer printout summaries of Appendix A contain
considerable information on the distributions of confidence
intervals of simulated samples. The essence of it is most
easily grasped from Figures 4-6, in which the fraction of the
intervals covering p is plotted vertically and the average ratio
of the length to the length of the modified Anderson-Burstein
interval for the same sample is plotted horizontally. Figures
4 and 5 give the results for A=.3, 90% and 95% confidence level,
respectively, while figure 6 gives the results for A=.8 and
90% confidence level. All of these intervals were calculated
using ;, since the bias of ; and A* was discovgred from these
same simulations. The effect of substituting A will be discussed
later.

Since the measures of dispersion in Appendix B indicate
that both the fractions of coverage and the average relative
lengths are correct to about the nearest .01, we can immediately
draw the following conclusions from Figures 4-6 about the five
approximate confidence interval formulas for p calculated using
X to estimate A:

1. When A=.3 and np (the expected number of errors or
"successes") is greater than about 3, all five formulas
satisfy the specification that the fraction of intervals
covering p is at least as large as the confidence level.
(This holds for the two confidence levels experimented with,

90% and 95%, and past experience suggests it will hold more
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strongly with smaller levels, like 80%, less strongly

with larger levels, like 99%.) As np decreases below
about 1, the coverage becomes more erratic.

When A=.8, the fraction of intervals covering p fails to
attain the specified confidence level (90%) in 27 of the 40
cases plotted, although it falls greatly below (<83%) in
only 7 cases, all of which have p<.003 and np<3.

There is no correlation between fraction of coverage and
average relative length of the various types of intervals.
The normal interval tends to be longest and the Pearson

the shortest, but the Pearson has just as good coverage.
The Pearson, Edgeworth 2-term, and Edgeworth 4-term
approximations, which are the intervals requiring iterative

solution, tend to have the same coverage and length.

The modified Anderson-Burstein interval, which is the easiest

to calculate, tends to have better coverage than the other
intervals, failing to cover the specified fraction of the
time only by small amounts in just 2 cases. It is inter-
mediate in length to the normal interval and the three
iterative solutions, although the differences in length

are not large. The good behavior of the modified Anderson-
Burstein interval is not surprising in our many cases of
small p, since it is a generalization of the Poisson
approximation for independent trials, but the good behavior
for large values of p also is a pleasant surprise.

Most of the parameter combinations were simulated 1000
times, but for small np many cases of s=0 occur, for which
A cannot be estimated. The most extreme case is that of
p=.0003, A=.8, n=1000, for which only 51 values of ; and

A* could be calculated. Subsequently the number of
simulations for this case was doubled, resulting in 111
samples with s>0, as shown in Appendix A. Further simula-
tions were obtained in some other cases also, as recorded
in Table 6, up to 3000 in one case, but not all are

reproduced in Appendix A.
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We turn now to the effect on the congidence ingerval
approximations of replacing ; (or A%) ?y A. Since AZX, it seems
intuitively that an interval based on A should be larger than
(and cover) the corresponding interval from the same sample based
on i and hence cover p more often. From (6.1) and (6.2) it is
seen immediately that this is true for the modified Anderson-
Burstein interval. Since Var s in (2.6) increases with p, it
can be seen from (2.8) that % increases with § (at least for
large n) and from (2.13) that the normal approximation's upper
limit Puo increases with p. By taking the derivative, it also
follows that P10 decreases as { increases. The Edgeworth and
Pearson limits are too complicated for such simple analysis, but,
as refinements of the normal limits, are expected al§o to expand
if X is replaced by the larger X. Hence the use of A should
yield a larger fraction of coverage of p than the use of X, and
the change should be greater when the bias of ; is greater, and
that occurs when np is smaller, less than about 10. The cases of
inadequate coverage in Figures 4 and 6 tended to be those for
which np<3. Ideally a system of confidence intervals should be
just long enough to provideNthe specified probability of coverage
and no longer. The use of )\ appears to help meet that criterion.

To verify and quant}fy the improvement in confidence
intervals by the use of A, §ix simulation runs were made with 90%
intervals calculated using X rather than i on the identical
samples. These cases form the last six pages of Appendix A and
are further summarized in Table 7. The following conclusions can
be drawn. _

6. The fraction of intervals using X that cover p is never

less than that of intervals using ;, but the increase is

small for intervals already covering with the specified

confidence level of 0.90 and usually dramatically large

for those with poor coverage: from .243 to .919, .405 to

.667, .514 to .667, and .586 to .891. There was one

exception, from .775 to only .813. Failure to achievg

the specified coverage is associated with failure of ) to
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Table 7. Comparison of Characteristics of 90% Confidence
Intervals for p Calculated Using A and A

| >

Fraction of Average
Type of intervals relative
P n interval covering p length
A A
.1 100 And.-Burstein, A .907 .913 1.050
Normal, N .916 .920 1.051
Edgeworth 2 .909 .916 1.046
Edgeworth 4 .912 .916 1.043
Pearson, P .907 .914 1.044
.0003 1000 A . 937 .937 1.144
N .805 .885 1.196
2 .994 1.000 1.171
4 . 586 .891 1.194
p .874 .885 1.158
3 50 A .880 .920 1.170
N .861 .895 1.187
2 .858 .904 1.148
4 .858 .904 1.136
P .841 .887 1.118
.1 100 A .843 .909 1.226
N .844 .860 1.308
2 .835 .903 1.198
4 .818 .888 1.207
P .826 .889 1.169
.003 1000 A 1.000 1.000 1.238
N .866 .895 1.375
2 . 998 .998 1.302
4 .775 .813 1.356
P .900 .923 1.283
.0003 1000 A 1.000 1.000 1.238
N .405 .667 1.379
2 1.000 1.000 1.313
4 .243 .919 1.368
P .514 .667 1.288



remove all of the bias in X, as shown in the text tabula-
tion in section l}.3.
7. As expected, the A intervals are longer than the ; intervals.
(The "average relative lengthz in Table 7 is not the
average of the ratios of the A interval length to the ;
interval length in the same sample but is an indirect
measure of their relative lengths obtained by taking a
ratio of the ratios available in the Appendix A summaries.)
The increase in length is small when no increase in length
is needed, e.g., in the first case, A=.3, p=.1l, and
n=100.

Thus the estimator X is successful in improving the

performance of the confidence interval approximations, but it is
not perfect because it does not remove the bias in X completely.
The last type of information on the simulation summaries
is the number of iterations required for the iterative intervals
(Edgeworth 2- and 4-term and Pearson) to reach agreement of
the last two iterates, both upper and lower limits, to either
3 significant figures or 4 decimal places, whichever is attained
first. The mean, minimum, and maximum number of iterations is
given for each type of interval.
If such agreement was not reached in 20 iterations, the
computer was instructed to stop and accept the last interval.
(It is simply assumed that agreement was good enough then.)

The last line of the summary, labeled "No. of Failures," gives
the number of samples for which agreement was not reached.
Nineteen of the 31 summaries (of 1000 simulations each except

for two with 2000 simulations) show no failures at all, and there

are only 4 summaries that show more than 30 failures:
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Table o n P A No. of Failures
Edge. 2 4 Pearson
A.11 .025 50 .5 3 60 77 0
A.18 .05 50 .5 .8 307 298 399
A.19 .05 50 .3 8 172 185 332
A.28 .05 50 .3 .8 240 272 345

The first three of these apply to interval§ calculated from ;,
the last one to intervals calculated from A. A complete
explanation of the incidence of the failures to converge is
lacking, but apparently small sample size and large X are
factors, not offset by the zero or small skewness of the distri-
bution of s. The Pearson system iterations converge better than
the other two for A=.3 but worse for A=.8. Even in the above
four summaries agreement between successive iterations was often
reached fairly early; some of the simulations required as few
as 2 iterations, as can be seen at the bottom of Tables A.18,
A.19, and A.20.

Despite the above concern with failures to converge, it
is emphasized that the intervals can all be calculated and
agree well for practical needs in the great majority of cases.
The five intervals produced by the user program of Section 8
can be inspected and any appreciable lack of agreement noted.
Often, perhaps usually, there will be no need to go beyond the

modified Anderson-Burstein and normal approximations.

12. DESIGNING THE EXPERIMENT

12.1. Introduction
The design of an experiment to estimate an error rate, p,
when trials are dependent is necessarily more complicated than
when they are independent, but the goals enunciated in OT

Report 74-51 (Crow, 1974) apply: to estimate p with a specified

74



precision or a specified budget, and both if possible. The
following discussion will be restricted to small p, say p<0.1l.
Bai (1975) has generalized DeGroot's (1959) result for inde-
pendent trials that the only sampling plans that yield efficient
estimates of p are the plans with prescribed sample size and the
plans with prescribed number of errors. Bai's results are
complex and are concerned only with transition probabilities, and
will not be specifically applied here. However, combined with
DeGroot's result, they suggest that to estimate both p and A
efficiently one should sample until both a prescribed number, say
c, of errors and a prescribed number, say c', of pairs of
successive errors are attained. If one is not interested
directly in A, then it is not essential to prescribe the number
of pairs as c', but it is clear from the confidence limit
formulas for p that X must be estimated at least minimally if p
is to be estimated reasonably well.

If A is near p, then there is little difference from
independent trials and it will not be important to determine
A itself with precision. On the other hand, if A is large,
then obtaining a sufficient number, c, of errors will also
secure, with high probability, a number of pairs of errors of
the same order as c (but necessarily less than c). The
approach taken here will be to prescribe the number of errors
as c both to estimate p with a prescribed relative precision
and to estimate A with a prescribed absolute precision. The
sample size, n, will then not be prescribed and may exceed
that permitted by a given budget. The sampling may be
terminated at the sample size permitted by the budget, or
allowed to proceed until c errors are attained, and confidence
limits calculated by the formulas of Sections 2 through 6.
These formulas are all large sample size approximations and
thus apply whether n is prescribed or not. If c errors have
not been attained, then the prescribed precision will of

course not be attained either.
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12.2. Estimating p with a Prescribed Precision
The case in which there is no direct interest in estimating
A with prescribed precision is considered first. It is necessary
to be given the maximum value of A expected, Amax‘ First c is
determined so as to estimate p<0.1 with prescribed relative
precision as if the trials are independent. This is done from
Crow's Figure 3 [1974, Example (2), page 36], thus obtaining a

value of c that we shall denote Cin From (2.1) and (2.2)

a-

2 +pq, l+p _ pg , 1-2p+A

°% = n " I=p T n = 19X (12.1)
That is, the variance of P in the dependent case is the
variance of p for the independent case multiplied by

1-2p+A _ 1 Pmax (12.2)
1-A - 1= : :
max

Hence to achieve a prescribed precision (measured by Oﬁ)
approximately, it is necessary to multiply the sample size, n,
by (l+Amax)/(l—AmaX). For the large sample sizes to which
(12.1) applies, there is no difference in the precision measures
such as Oﬁ or confidence limits for direct sampling (prescribed
n) and inverse sampling (prescribed number of errors c).

Hence the number of errors to be observed in inverse sampling
may be multiplied by the same factor. Thus, to estimate p with
a prescribed relative precision, the sampling should continue

until the number of errors (or "successes") is

1+A

_ max
C =Cing =% - (12.3)
max
Example 1. It is desired to estimate the bit error prob-

ability p of a telecommunications system with 90% confidence
limits within about 50% of p. While p is known to be small,
surely less than 0.1, the conditional probability, A, of an
error, given that an error has just occurred, is surely much
larger but known to be less than 0.5. How should the experiment

be done?
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Solution. To attain the prescribed relative precision of
+50%, a stream of bits should be transmitted until a prescribed
number of errors c has been observed. To determine c, we first
read from Figure 3 of OT Report 74-51 (Crow, 1974), using the

curve labeled 90%, the number cin =12, the number of errors if

d
trials were independent. Since Amax=0.5, we calculate
1+X
_ max _ L1-5 _
© = Cinga T=x___ - % " o5 = 36
max

Hence we should run the experiment until 36 errors have been
observed.

Example 2. In Example 1 the experimenter is told that
the budget will not permit a sample size any larger than 20,000.
How does this affect the sampling plan and the achievable
precision?

Solution. Sampling should proceed until 36 errors have
been observed or until 20,000 bits have been transmitted, which-
ever occurs first. The precision attained will be the prescribed
precision or better if sampling continues until 36 errors have
occurred and the sample estimate of ; turns out to be less than
the gufranteed limit Amax=0.5 on A. Even if A is less than

Amax’
calculated from the sample (as measured by confidence limits)

A may be greater than Amax and result in a precision

short of that prescribed, but that should not occur often if

Amax is correctly prescribed. If sampling is stopped at n=20,000
characters with less than 36 errors observed, then the error
probability will be estimated by p=s/20,000, s=0,1,...,35, with
bounds on 90% confidence limits that can be predicted by the

Poisson-Anderson-Burstein method. The factor

1/
1+51Y7
1-7

in (6.1) and (6.2) is replaced by its upper bound
(1+A \ %
max |
)
max
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which has the value /3=1.732 in this example. If s were to
turn out to be 35, then from Table 1 of OT Report 74-51,
1L=25.9, U=46,

p = .00175, p ., = .0013, py = .0023;
py = -00175 + (.0023-.00175)1.732 = .00270,
p, = .00175 - (.00175-.0013)1.732 = .00097.

The half-length of the 90% confidence interval is then .00086,
which is 49% of the estimate of p, .00175, and thus still
happens to satisfy the desired 50% relative precision even
though the required number of errors for that, 36, has not
been attained. That simply results from the fact that the
determination of ¢ is graphical and thus hardly accurate to
two digits.

As s decreases (with n fixed at 20,000), the half-length
of the confidence interval decreases, so that the absolute

precision improves, but the relative precision worsens:

s B Py P, Py-Pr, 50 (py=py ) /P
35  .00175 .00270 .00097 .00173 49%
30 .00150 .00245 .00077 .00168 56%
20 .00100 .00179 .00042 .00137 68%
10  .00050 .00111 .00010 .00101 101%
5 .00025 .00074 .00000 .00074 148%
0 .00000 .00026 .00000 .00026 © .

These predicted confidence limits are all calculated as
illustrated for s=35 with the maximum "expansion factor" V3
expected. Calculations like these indicate what can be

expected from a proposed experiment design and enable a suitable
compromise between precision and expense to be determined.

After the experiment is performed, the data can be used to
calculate ; as well as P and one or more approximations to

the confidence limits.



12.3. Estimating A With a Prescribed Precision

The conditional probability of an error given an error on
the previous trial, A, can be estimated with at least a
specified precision in large samples without knowing an upper
bound Amax because pairs of errors behave effectively
independently in the first-order Markov model that has been
assumed throughout this report. This follows from Klotz's
(1973, Sec. 4) demonstration that i is asymptotically normally

distributed with asymptotic variance

gz = lll:_l . (12.4)
hY np

Equation (12.4) was derived from the likelihood function of
the sample, and that function is the same whether the sampling
is direct or inverse. In direct sampling, np is the expected
number of errors (successes), E(s); in inverse sampling, the
number of errors, s, is prescribed as c, and c=pE(n).
Asymptotically in either case, np in (12.4) can therefore be
replaced by the observed number of errors, s or c, so that

02 = AUZA) , (12.5)

N c

which is the same as the formula for c independent trials in
which A is the probability of a success ("success" being a
pair of successive errors in this case). The right-hand side
of (12.5) increases steadily as A tends toward 1/2 from either
side but changes little for 0.3<A<0.7. Hence if X has any
possibility of being in that range, we may as well replace
(12.5), for design purposes, by

Maxo® = = . (12.6)
c
A
If X is not expected to be in the range 0.3 to 0.7, then to
avoid planning for too large an experiment [by the use of (12.6)]
it is necessary to use the maximum expected value of (12.5),
which is obtained by replacing X by Amax (necessarily specified)

for ASAmaX<O.3 or by replacing A by xmin for kzkmin>0.7.
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Equation (12.6) [or (12.5) similarly] is used in experiment

design by specifying the max OK acceptable and solving for c.

~

A
length of the 95% confidence interval for A and thus that

Alternatively 20, can be taken in large samples as the half-
length can be prescribed to determine c. Another value for c
may have been determined tc estimate p with prescribed relative
precision as 1in Section 12.2, which requires a specification of
Amax' Then inverse sampling would be carried out until the
number of errors reaches the larger of these two values of c
(unless the sample size first reaches the limit controlled by
the budget).

Example 3. In Example 1 it is also desired to estimate
A with 90%Aconfidence limits expected to be within 0.1 of the

estimated A. Should the experiment design be modified?

~

Solution. The maximum value of OX to be allowed is
0.1/1.645=0.0608. Hence

c = L = L = 68
4MaXOA2 4x.00370

A

The experiment should be continued until 68 errors (rather

than 36 as in Example 1) are observed. If a bound on the
sample size of 20,000 has also been imposed as in Example 2,
that may override the goal of getting 68 errors.

Example 4. Suppose in Example 3 that the experiment has
been carried out to 68 errors and results in a sample size
n=21,300, s=c=68 errors, r=43 pairs of errors, and first and
last observations not errors so that t=0 in the notation of
Section 2. Calculate p, X, and 90% confidence limits for p

and for A.

Solution.
From (2.1) p = 68/21,300 = .0031925.
From (2.2)
A= >%€7.99€8 [-25+135%x.0031925+(603.636+172x67.9968x.993615) ~]
= .63235.

80



This differs little from the relative frequency estimate (2.4),
A* = 43/(68-.00319) = .63238.

From (6.1)
5 = .62916/.99681 = .63117,
A
(liﬁ) = 2.1030,
1-0
py = -00319 + (83/21,300-.00319)2.1030 = .00467,
p, = -00319 - (.00319-55/21,300)2.1030 = .00191.
From (2.8) and (2.13)
v = 21'3O°X°99g8l (1-.6117%-1.26234/21,300) = 93,891,
(.36883)
2. 71 2
Pyo = (2%21,300%) ~(93,891x1.6449%+137x21,300+1, 243, 810)
= .00487, 1
By - (2x21,300%)  (93,891x1.6449%+135%21,300-1,235,082)
= .00209.

Since these normal approximation limits are not far from the
preceding Poisson-Anderson-Burstein limits, it is not essential
to calculate the more complicated Edgeworth or Pearson
approximation limits. We can assert .0020<p<.0048 with 90%
confidence. The relative precision in estimating p is

.00487-.00209 _
2%.00319

.435 or 43.5%,

better than the 50% relative precision sought in Example 1
since the experiment was run to 68 errors rather than 36,
glthough the improvement is partly canceled by the fact that
A turned out somewhat larger than the Amax assured prior to

the experiment, 0.5.

Approximate 90% confidence limits for X are, by (2.18),

~ - - i
A+ 1.6449([x(1-))/cl*

.63235 + .09618

= .536 and .729.
Thus the goal of estimating A with absolute precision +0.1

(as measured by 90% confidence limits) has been attained.
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If the experiment had been truncated at n=20,000, then the
desired precision for p and A might not have been attained, but

confidence limits for them can be calculated in the same way.

13. CONCLUSIONS AND RECOMMENDATIONS

1. Confidence limits for the digital error rate p of a
communication system for which successive transmissions are
dependent may in principle be calculated by Ladd's (1975)
algorithm for the exact cumulative probability of the
number of errors or from any one of the five approximate
formulas derived herein. Ladd's algorithm appears to be
practical only for smaller sample sizes (up to the order of
100 or 200) and only if a large computer is available. The
approximate formulas are satisfactory for sample size n as
.small as 50 if the number of errors (successes) s is 10 or
more; they are useable down to s=2, and they become better
approximations as n increases. It is necessary either to
know A, the conditional probability of an error given an
error on the preceding transmission or to estimate A from
the data using (2.4) and (11.4)-(11.6). All of the results
apply also to the general statistical problem of calculating
confidence limits for a proportion from dependent trials.

2. The five approximate confidence intervals are, in order of
ease of calculation, the modified Poisson-Anderson-
Burstein (Anderson-Burstein more briefly) (6.1)-(6.2), the
normal (2.13), (2.8), the Edgeworth two-term (3.11), (3.7),
(3.4), the Edgeworth four-term (4.4), (4.3), (3.4), (3.11),
and the Pearson system (5.1), (4.3), (3.4), (3.11). 1In all
cases, if s22, A is estimated by (11.4)-(11.6) using either
; (2.2) or A* (2.4) to get i. If s=0 or s=1, a prior or
external estimate of A should be used; furthermore the lower
confidence limit should be taken as 0 and the upper
confidence limit should be calculated by the "exact"

formulas (7.3) or (7.4), respectively. All five approxima-
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tions may be obtained simultaneously using the computer
program of Section 8 and Appendix B.

The extensive set of simulations of Section 11 shows that,
for the large range of sample sizes used, the two approxima-
tions making use of the fourth moment of the number of
errors (successes), the Edgeworth four-term and the Pearson
system, provide no advantage over the Edgeworth two-term,
which uses only the first three moments. They are retained
in the computer program of Section 8 for comparison,
however, and for sufficiently large sample sizes may well
provide better approximations.

Use of the computer program of Section 8 is not essential
but is recommended if a substantial number of samples are
to be analyzed. The Anderson-Burstein and normal approxi-
mations are calculated easily in a few minutes on a pocket
calculator. It is recommended that they be obtained first.
If they agree closely enough (i.e., to the user's
satisfaction), then no further calculation is needed.

The normal approximation usually is the poorest of the five
approximations. The Edgeworth two-term (as well as the
four-term and Pearson system) may require some iteration

to verify the solution and thus may be somewhat tedious
without a computer program, but is useful if there is any
question of the closeness of the normal approximation.

For small p, say <0.1, the lower confidence limit tends

to be a poorer approximation relatively than the upper
limit (for any of the five formulas), but the user may well
be interested only in an upper limit anyway. If so, his
confidence level is 1l-a (e.g., 95% rather than 90%).
Klotz's (1973) estimator ; of A and the estimator A¥*
proposed herein (2.4) [as well as Devore's (1976) modified
maximum likelihood estimator apparently] are substantially
biased when the expected number of errors (successes)

is small, say less than 10 (Section 11.3 and Figure 3).
Much of the bias is removed by the empirical transforma-
tion (11.4)-(11.6) to A.
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The validity of the stationary first-order Markov chain
model may be tested by the methods of Section 10. 1In
practice, non-stationarity due to change of conditions

may be the most common violation of the assumptions and
should be tested and dealt with as in Section 10.4. Even
if the system is not strictly a first-order Markov chain,
that model can be considered a first-order approximation

to the true model of dependence and will very often be a
satisfactory approximation. The change in going from it

to the true model would usually seem to be less than the
change in going to it from the independence (Bernoulli

or binomial) model, so the latter change can be used as

a basis for judgment.

An experiment for estimating the error rate p should be
designed with care, as in Section 12. A prior estimate of
(or upper bound on) the conditional error rate A is required.
The approach is to determine the number of errors
(successes) to be observed in order to estimate p with a
prescribed relative precision and to estimate A with a
prescribed absolute precision. Example 1 of Section 12
shows that the information on p will be very minimal unless
the number of errors observed is of the order of 10 or more.
Full information on the first-order Markov model is gained
by a normal approximation joint confidence region for

(A,p) as specified by equation (2.16) and illustrated in
Section 9 and Figure 2. This region is included in the

computer program of Appendix B.
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APPENDIX A. SUMMARIES OF MONTE CARLO SIMULATIONS

Each of Tables A.1-A.31 summarizes the results of simulating
samples of dependent transmissions (trials) according to the
Markov model of Section 1. All except two (A.25 and A.31) have
1000 samples each, and those two have 2000 each. Tables A.1-A.25
have ccnfidence intervals calculated using i (2.2) as the
estimate of the conditional probability of an error given an
error (A), while Tables A.26-A.31 use the less biased estimator
A (11.4)-(11.6).

The tables are further subdivided as follows:

Tables A.1-A.10: A=.3, a=.05 (90% confidence level)
Tables A.11-A.17: A=.3, a=.025 (95% confidence level)
Tables A.18-A.25: A=.8, a=.05
Tables A.26-A.27: A=.3, a=.05
Tables A.28-A.31: A=.8, a=.05

Within these groups the tables progress from large error rate p
(P on the computer printouts forming these tables) and small
sample size n (N on the printouts) to small p and large n.

These summaries are discussed in Section 11.
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Table A-1.

ALPHA= o LEC N=

NOs OF SAMPLZIS WITH ALPHA LI

53

QUTSIO=z JF

P=,5300

Summary of 1000 Monte Carlo

LAMBDA=430C

(GyG.5)

NCe OF SAMFLES WITH ALPHA LI PFRIME OUTSIDc OF ({,43.%)

NO. OF ADYe VALUE OF KHG HAT GREATER THAN 1

NO. OF 2U¢ GR-ATE~ THAN 1
NJe OF 5=3

NUe 0OF SAMPLE> WITH BETA LI BIYONL FEARSON-HARTLEY TAELE

P HAT LAMEDA HAT LAMBDA STAR
A AN= «5024%0L+(C 23247+ 00 2292313+00
MIN= «32G33C+00 0. '
MAR= eBJIJE+UC «50113€+C0 «55GS8E+(0D
SIGYA= «46934E-C1 «93775£-G1 «9439u2-01
FRACTION OF CONFIOENCE INTERVALS COVERING P
ANO-8URSTEIN NC=MAL EDGcWORTHZ EDGEWORTHG
aLt 1:9¢ «936E7E+SC «937606C+GE +31283E¢00 91283430
1ST 5.0 « A5 GLLT #30 «9523ui+30 «918J0E+Cu «918GUE#00
2MU 5CL 32369403 «92368c+il e30763E+00 «937635¢030
XATIC GF CONFIULENCE INTERVAL LZNGTH TO ANCERSON=-SURSTEIN LENGTH
(FIRST CCLUMN IS RATIO OF ANDERSON-BURSTEIN LENGTH
TO ANDEXRSON-BURSTZIN LENGTH WITH INOcPENOENCE ASSUMzD)
MIAN= «0l439CE+0] «1f164E %01 «10210E+01 «10233E+01
MIMN= e 346410 ¢0C «33252e+00 «3622€EE+00 eS56138c+0¢§
MAX= «10107t+01 «11326£+01 «11352c+01 «11493£+01
SIGMA= «1L56CE+00 «2G018k-31 «27134E-01 «28351E-41
NO. ITERATIONS
MEAN= «81323E+401 0 82034E+01
PIN= «503d3E+01 «40G030E5+01
MAX= «2000GE+02 «20000&+02
NO. OF FAILURES= 8 4
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oo NC O

PEARSON

«91182E+00
«91600&E+06
«30763€+080

«10234E+01
«95302E+¢30
«11613E+01
«31403€-01

«71954E401

«40000E+01

«13000E+02
0



Table A-2.

NO. OF SAMPLES WITH ALPHA LI OUTSIOE OF (0y0.5)
SAMPLES WITH ALPHA LI PRIME OUTSIDE OF (0,0.5)

NO. OF
NO. OF
NO. OF
NO. OF

NO. OF

ALPHA=.050

Summary of 1000 Monte Carlo Simulations

N= 50

P=.3000

AB3. VALUE OF RHO HAT SREATER THAN 1
PUD GREATER THAN 1

S=0

SAMPLES WITH 3ETA

LI BEYOND PEARSON-HARTLEY TABLE

LAMBDA=.300

D o000 o

LAMBDA STAF

«27884E+CO

0.

«61224E+00
«11311£+00

COGEACRTH%

«91800E+G0
«91400£+030

P HAT LAMBOA HAT
MEAN= «30162E+00 «27845E+00
MIN= «10000E+00 -.18126E~-14
MAX= +54000E+00 «59516E+00
SIGMA= .65523E-01 «11808E+00
FRACTION OF ZONFIBENCE TINTERVALS COVERING P
ANB=-BURSTEIN NORMAL EDGEWORTH2
ALL 1000 «91700E+00 «90800E+00 «91800£+00
1ST 500 +»31800E+00 «91000E+00 «91%00E+Q0
2ND 500 «91600E+00 «90600E+0D «92200E+00

«92200z+00

RATIO OF CONFIDENCE INTERVAL LENGTH TO ANDERSON=-BURSTEIN LENGTH

HEAN=
MIN=
MAX=
SIGMA=

(FIRST COLUMN IS RATIO OF ANOEZRSON-BURSTEIN LENGTH

TO ANDERSON-BURSTEIN LENGTH WITH IMDEFENDENCE ASSUMED)

«97662E+00
«H66974LE+DD
«15678E +01
«13808E+00

«96750E+00
«88923E+010
«10244E+01
«21591E-01

NO. OF ITERATIONS

«10172t+01 «97052E+00

«35145%400 «30534E+00

«10614E+01 «10230E+01

«17154E-01 «19162E-01
MEAN= «54300E+01
MIN= «30000E+01
MAX = «10000E+02
NO. OF FAILURES= 0
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«54130E+01

+»30000E+01

«13000E+02
0

PEARSON

«91500E+00
«90800E+00
«92200c+00

«36668E+00
«90072£+00
«10100E+01
«17371E-01

«54250E+01

«30000E+01

«12000E+02
0



Table A-3. Summary of 1000 Monte Carlo Simulations

BLPHAR=ETY W ITu =L I CANGSLA=3TG

NOe OF SAMPLES WITH aLFHA L1 QUTSIDE OF (Qec.5) 2
AT TF SEFMPLET WITH LLFHA LI PRIME CUTSIOE OF (T, T.%7

NO. OF ABSe VALUE OF RHO HAT GREATER THAN 1

NO. OF ™Ul GEIATEF TRLN T

NJO. OF S=J

oo

®

Ne GF SAMPLES wITH BETA LI BZIYONC PEARSON-HARTLEY TAEBLE

P RLT LAMBUA HAT CAMBUA™ STAR™
MEhWN= «1IL57E 400 #23766Z¢130 «26753E+00
HIvE T e (NS
Max= «2510TES]) 74307t +(C «75758E+0C
STGVR= L 3I7TL3ITE=TI VIS1EIE+TT «IS167E+0T
FRACTICN OF CONFIOJENCE INTERVALS COVERING P
TNC=5URSTEIN “NURHLL EUGEWORTHZ EOGEWORTHY PEARSON
ALL 129¢C «9(691E¢20 +S1532E+2¢C «93831E+0C «91191E+00 «90631E+00
IST 5I¢T «31335E¥TC e 9c385c¥JC v1330LEFTT <925 BSE¥TT +GI9BLE+IT
2ND 5454 eb9L]0L+0C «9(0200L+3C «33300E+C0 «89300E+00 «694%00E+0C
FRTIT TP TORFTUENCT IRTEXVAL UENGTA TO ANDERSON=BURSTEIN LENGTH
(FI<ST GOLUMN IS RATIO OF AMUERSON=BURSTEIN LENGTH
TG ANDTRSONSTURSTEIN LERNGTH WITH INDEPTUNDENCE ASSUMED)”
MTAN= «12327E+C1 «10273€E+31 «96773E+00 «35750E+00 «35607E+00
In= «BETISEFTT ¢3TIGIC+TT WBL3I1HE+IT «855615E43T «3T7TS61E+IT
Mixz e 2577% 41 125332401 «1U34iE+DL «99559E+00 +99694LE+DC
SICMA= # 2D3T2EWTIT «1736%T-701 «15031£-01 «20SHTE=T1 «20373E+01
NOe OF ITERATIONS
MZIaN= 337658401 e JULSLESDL «335C4E+0 T
MIN= «2.30CE#JL «2L0JJE*IL «20300€+01
TVIRX= «6ITCJJE+01 «E0500E+I1 «80000E+TL
MOe OF FRILURES= 3 G 0
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Table A-4. Summary of 1000 Monte Carlo Simulations
ATPHESTETT WET CIY PRLUYT LERSDAT. 393
NO. Of SAMPLES WITH ALPHA LI OUTSZIiE OF (640e5) 465
NO. NF SATPLES WITR RLUPKA UT PFIME OUTSIUOE TF (0,0.%) 2
NCe OF AB3e¢ ¥YuLUE OF RKHO HAT GRtaATES THAN 1 [4
N3J. 3F TUT GRTATIR TRANT] )
NO. OF S=¢C 109
NOo OF SAMPLES wITH BETA L1 BZYONU PEARSON-HARTLEY TABLE 395
P RAT LAM30AHAT "TAWBOA STAR
Mc EN= o JL1BIE~JL «2JB10E+GG «20836E#+00
MIN= T e T.
MaX= e16.00E¢90 W77HO25E4] «757SBE+CO
SIGMA= T2SRIE~3T J2ITSSEFGT +2Z0BHESDD
FRACTICN OF CONFIGENCE INTERVALS COVERING P
ANOSZURSTETT RORAT EDGEWORTHZ EOGEWORTHG PEARSON
ALL 1407 CGI5LIEeSE CSB5I1E4IC $382I4E4CS «97531E+0C <96092E+00
15T 51T «ATYRT2EFRTT «IRTLITHIT «9B17LEOT JITUBIEFTT «93I7HE* 0T
2Ny 5Z¢ ¢ SEHTHEHCL «9426.r#J0 «36234E¢C0 «97572€400 «38013E+00
SETIC TF CONFICENTE INTEXVAL TENGTH TO ANDERSON-BURSTEIN LENGTH
(FIFST COLUMN IS ~ATIO OF ANOERION-JUSKSTEIN LENGTH
TT FNCERSUONBURSTEIN CTMGTH RITH INUDEPENDENCE ASSUMED)
MIA M= e12232<+{1 010303E+01 «38331E+0C 2396223€E+402 +95365E¢00
MIF= " 3ITTEEHITT TITTTITHIT .8383I3E+T0 JB2STHEFIT o 84STIEFOT
MaXs= «27042=¢01 0132574351 e13300E¢J1 «10227E #9012 e 994 30E+G0
SIG™A= TIFITSEFIT SABEBEESUL «Z8T32E-01 .335S7E0T <36T4SE.02
NCes OF ITERATIONS
FERNT S3TTHIE+TT 735163E¥IL +31953E% 0L
NIN= +30030€E¢01 «30C00E+J1 «3J000E+0L
FARE" «B3CITE4TL «STIITEHIT sSTOUTE+TL
NO. OF FaILUKES= 3 0 0
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Table A-5. Summary of 1000 Monte Carlo Simulations

ALPHA=,05( N=  5C¢ =.03¢C L AMARD A=, 300
MO. OF SAMPLES wWITH ALPHA LT OUTSTIRE OF (0,0.5) 0
NO. JOF SAMPLES NITH ALPHA LI PRIME NUTSIDE OF (0.0.5) 0
NO. OF AAQS. VALUF OF RHD MAT GREATER THAN 1 0
NO. OF PU3 GREATER THAN 1 0
Ng. OF S=¢ 0
ﬁO. OF SAMPLES WITH BETA LI BEVOND PEARSON-HARTLEY TABLE L]

P HAT

«30C32E-01
«453000€E-02
«56000E-01
«10334E-01

FRACTION

AND-"URSTE IN

ALL 1r%2 «92200F+00
18T 5066 «92200€E¢+0)
2ND 5121 «32200E+00

LAMBOA HAT

«27301E+00
~+«31A43E-184
«61374E+00
«12216E+00

NOOMAL

«39500F+0°0
«AG40CE+0C
«89600E+00

EDGEWORTH2

«91200€+0
«91200<+0
«91200F+0

LAMBOA STAR

«27787E+00

Ce

«52029E¢00
«12216E+00

NF CONFIDENCE INTEPVALS COVERING P

EDGERORTHG
0 «90800€¢00
0 +«90400E+0C
0 «9120CE+00

RATIO OF CONFIODENGE INTERVAL LENGTH TO ANDERSON-BURSTEIN LENGTH
(FIIST COLUMN IS RATIO OF ANDERSON-BURSTEIN LENGTH
TO ANJSSON=-SURSTEIN LENGTH AITH INDEPENDENCE ASSUMED)

HEAN=

MIN=
MAX

SIGMA=

«13168E+01
«37160E+00
2 20064E¢01
«17414E+0Q

«10138E+01
«10000€401
«10719€+01
«35511E-02

MEAN=
MIN=
MA X=

NO. OF FAILURES=

«99144E400
«9794LBE+00
«10212E4+01
«652L4LE~-02

NO.

«28590E+01

«20000E+01

«50000E+01L
0
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«98753€E+00
«9T211E+00
«10177€+01
«68655E-02

OF ITERATIONS

«29440E+01

«20000E+01

«40000E*01L
0

PEARSON

«90800E+00
«90400E*00
«91200€E+00

«97862E4+00
«95288E+00
+10070E+01
«92532€E-02

«25260E401

«20000E+01

+40000E+01
0



Table A-6.

NO, OF 3AMPLES WITH ALPHA LI OUTSIOE OF (5,545) N
MO. OF SAMPLES WITW AUPKA LI PRI™E TUTSITT OF (,7.5) T
NO. MF 435. VnLUE OF 3G RAT GSrATER THAN 1 3
NO. OF PUT 5REATER THAN I X!
ND. OF 3= 11€
NO. OF SKMPLES WITH BETK oI BEYONL PEARSON-HATLEY TASLE 414
PEAT TAYBOA HAT LANBDA “STAR
MEnM= L 29733E-32 «22091E+i2 ¢ 2209 5E4G3
MIN= TV e T,
MAX= $15303F-51 75989460 $75075E+0G
SIGMA= JZTIIHIE-TT \2232IE+35 +22938E400
FRaCTICN OF CONFIJENCE INTEFVALS COVERING P
NNT=BURSTETN WORMAL EJGERORTHZ ZOGEWORTHE
ALt 1.0 v906L3EE T c956uBE+3) CYBLYLERLY «9TI6LEDD
1ST 370 ~ITBITERTT SSE13TEHOC «37IB7E+TE <ITTBITHIT
2me 51¢ $36627E410 «YTI2BEHTL ©95598E4 L0 «98169E¢GE

TALPRATLIST RS LETY P=,037 0 CLAMEDL=,.33T

FRTIJTOF CURFIGENCE "INTEXVAL LINGTH TO ANDERSCN-BUKSTEIN LENGTH

MEAN=

MAX=

JIGI =

(FIFST COLU4N

«13167Z451

0119202441

IS <AT10 OF ANGERSON=-JURSTEIN LENGTH
T INTZISONFEURSTEIN LERGTH WITH INGCEPENJIENCE ASSUMED)

210 333E+401

o TF¥0T STITTUTE+TY 2 26133E+0C

«26390C4+01 el2931c+i1 210973E¢01

37172 = TR TTESIL 220543E-01

NO.

PEAN= + 2835TE*UL
MIi= $232J0E+GL
FRX= «LTUJITEHIL
NO. OF FrILUFES= )]

96

e1G103E+31
*«38937E+TT
o 11115E+401
e23213E-01

OF ITERATIONS

«27S11E4121

«20J3GE+J1

«HOTITEHDT
0

Summary of 1000 Monte Carlo Simulations

PEARSON

«3807T7E+00
«ITIBTEHTT
«933169E+Q10

«98356E+00C
«94296E+GT
«10093E+02
1C2524E~-01

«28326€431%

+25000E¢C1

«400TBJIE+T1
0
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Table A-7. Summary of 1000 Monte Carlo Simulations
ALPHA=, 7689 M= 1000 P=,001 LAMAN A=, 280
NO. OF SAMPLES WITH ALPHA LI OUTSIODE OF (0,0.5) 416
NO. OF SAMPLES WITH ALPHA LI PRIME OUTSIDE OF (C40,5) i
NO. QF 8nS, VALUF OF 940 HAT GREATFR THAN 1 1
NO. 0F PN GREATE® THAN 1 0
NO. OF S=1 519
NO. OF SAMPLES WITH RETA LI BEYOND PEAPSON-HARTLEY TABLE 400
P HAY LAMBDA HAT LAMBDA STAR
MFAN=  ,99207£-03 +19094E+"0 «23021E+00
MTN= 2, e 0.
MAxX= «80007E-02 «32726E400 «833417E+00
STGMA= . 14OGLE-DZ «25362F+ (0 «25394E+00
FRACTION NF CONFIOFNCE INTESVALS CO¥ERING P
AND-3TURSTEIN NOFMEL ENGFROD T HE EOGEWORTHS PEARSON
ALL 1700 +98960E400 +9126°E+400 +93960E+00 +87734E+00 +95218E¢03
18T 50T .99149E+00 BBE{1F+ 00 <A9149F¢ 00 .83830€+0C «9LL6BE+OD
2ND 570 «98730 €470 293972E4¢C" .987805¢00 «91463E+00 «95935E+00
BATIN OF CORFIDENCE INTERVAL TFNGTH TN ANDERSON-BURSTEIN LENGTH
{FIFST COLUMN TS RATIO OF ANNERSON-BURSTEIN LENGTH
TO ANOFRSON=BURSTEIN LFMGTH WITH INDEPENDENCE ASSUMED)
MEAM= ¢ 13114F+01 L1260 401 21046 0E+01 «10328E+01 «98668E+00
MIN= .99701E+03 LI0003F+31 < 99873E+0y «99398E+00 «94296E+00
MAX= « T3049E 401 +13306F+01 o11108E401 +11258€+01 «19093€E+01
SIGMA= S LeNTIE400 SRRZQFE-04 < 14876E-01 «25901E-01 «21899€E-01
NO. OF ITERATIONS
MEAN= «296L7E+01 «29127E¢01 «30042E¢01
MIN= «20000E+01 «20000E+01 «20000E+01
MAX= «30000E+01 «40300E+01 .50000€+01
NN, OF FAILURES= 0 0 0



Table A-8.

NG,
MO,
NO,
ND,
NO.

N3

ne
aF
0F

0rc

MIiN=

t1iti=
MLy =

Sic™

Al
197
2"

-z

ALPHAZ 055 Nz 1000 P=,0003 LAMGOA=,300

SAMPLIS WITH ALFHA LI OUTSIGE OF (CeGe5)
2a™PLIS WITH ALPHA LI PFIMEC OUTSIIJE OF (J+545)
AESe VALUE OF AHU HaT GREATEFR THAN 1

23] ORTATER THaN 1

~—

SAMPLIS WITH 3ETA i 3FYONW PEARSON-HARTLEY TABLE

O HaT LAMEDA HAT
e 202 4JE=T3 .19065E-01
Yo ls
FLLINESGE eRIZcHTES
«T2315E-33 .26418E+00

163

826

163

LuM30A STAR

«190590E+03

Qe

«03617E400
e26451E+400

TRACTICH OF COMPTOENCI INTERVALS LOVESING P

“EYC-CURSTEIN NCKHAL EUGEWDRTH2
o 3673k 00 +53425€400
3105760 00 H «9c350E 400
96154ES I 035637+, 0 e1G0CE+CL

EDGEWORTHY

«56621£¢00
«55238E+0G
«62821E43C

SETID OF TONFIDENCE INTERVAL LENGIH TD aNJE<SOMN=GURSTEIN LENGTH
(FLEST GOLJMN [S SATIO OF AlDERSON=TUKSTLIN LENGTH
TO INCEPSON=FJURSTEIM LEN5TH «ITH INDEPEIMDENCE ASSUMED)

SitH

e

«130h3E4Q1 e1143ZE 431 elivcob+dl

e s9EIIETT e1llilee eluilE4QL

WI3l6IE]1 +133%6c+31 «11173E491

e5-g E4{{ LY PR NE 013464E~-31

NGe OF

ME A NE N I LY I
91 W= 334k
vz W3UNTUESTL
WUs OF FAILUFESS b

98

o 1G416E+31
<10500E+01
¢11255E¢01
e26178E-11

iTERATIONS

«30517E+J1

203036441

ew0J0CE+IL
0

Summary of 1000 Monte Carlo Simulations

PEARSON

+87356€+00
<833IITEROC
«923C8E+UG

e98369E400
«94296E435
«100G0E+01
«1956GCE-01

«30172E+401

«30GC3E+0L

««0CJ0E+OL
0



Table A-9. gSummary of 1000 Monte Carlo Simulations

ALPHA=.351 K= 10Gd f=,0003 LAMOGA=.300

NO. OF SAMPLES with wLPRA LI OUTSIGE OF (0,T.5) 160
NO. OF SAMPLES WITH ALPHA LI PRIME OUTSIDE OF (J+045) 0
NO. OF ABS, VALUE OF RHO mAT GLREATER THAN 1 b
NO. OF PUL GREATER THAN 1 )
NO. OF $=( 833
MC. OF SAMPLES WITH BIT8 LI 35Y0NL PEARSUON-HARTLEY TABLE {60

P HAT LAMBDA HAT LAMBDA STAR
MEWN= «2330CE-03 «13220€+ 00 «13237E+00
MIN= Ce 0. s 0 . L
Max= «+JC0CE=-C2 P 989E+ 0T «75075E+T0
SIGMA= ,5925GE=03 +23745E+00 «23775SE+00
FrRuCTI0N D¢ CONFIJENCE INTERVALS TOVERING P
AND-BURSTEIN NORMAL EDGENWORTH2 EDGEWORTHG PEARSON
ALL 1030 +95808€+00 «86226E+30 «10800E+G1 «71257E+00 “92814E¢0C
1ST 500 +95652E+3C «83696E+00 «10000E+01 «68478E+00 +»92391E+00
2ND 560 <9600 JE+0GC «69333E+00 «170J0E+C1 +TLBBTEFDD JS3IIITIEFTO
RATIO OF CONFIDENCE INTERVAL LENGTH TO ANDERSON-BURSTEIN LENGTH
(FIRST COL =3 ERSON~HURST
TO ANDERSON<-BURSTEIN LENGTH WITH INDEPENDENCE ASSUMED)
MEAN= LA213TERGT «11350€+01 »10649E+01 «10389E+01 “99403E+00
MIN= «5%80CE+00 +10300E+01 »10000E+01 «10000E+01 «S4550E+00
MAX= L PE3TDERDL «12931E+401 . {0973E+01 . + <10090E+01
SIGMA= «33777E+03 «49932€-21 «11669E-01 «21022€-01 «16795E-31
NO. OF TTERATIGRS
MEAN= +30000E+01 +30479E+01 «30060E+01
MIN= «30000E+01 «20000E+01 «3000GE+01
MAX= «30000E+01 +40GOJE+0L «40000E+01
NO. OF FAILURES= (1] 0 G
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Table A-10.

MOs OF 3aMPLIS WITH ALFHA LI OUTSIDE OF (J+(.S)
NG. OF SAMPLES WITH EUFHI LI PRIME GUTSIJE OF (343.%)
NOe OF AdSe YALUZ OF #HO 4AT GnEATEF THAN 1
NJ. OF PUT SRIATER THAR 1
NYe OF S={
12 0r S2MPLED WiTr abTd L0 J2YIMS POLRIZOM=HIRTLEY Tuolit

¥ HAT LAMEOA HAT
MobN= «28%02E-33 «15313E¢ (30
M= e T
MAX= HLo2RE-CR2 «799G1LE+ ()
SIGMA= 7LZ3IE-T3 «2525cc+lC

FxaGUTION OF CONFIDENCE

ENTG<BURSTEIN MORMAL Z0GEWORTHZ
All 1224 P97826F+ (T «6532hAC*]C «13330E+01
IsST o0 0e97336T#LT «3350672+130 «1233CE+321
2ND 5C¢ «97721T430¢C 00505754 3L e1JJ2CE+LL

MET

F=,0323

TAMAGCA=LY0D

LAMBOA STAR

«15332E+930
E.

«8Jd0060E+GL

025324E+00

INTERVALS COVERING P

FOGEWORTHA

«75109c+00
«751033E438
«7G0115£+035

SARTTIT OF TORFIDENCE INTERVAL LENGTH TO ANDERSON-BURSTEIN LENGTH
XATIU OF ANGERSON=-3URSTEIN LENGTH
TU BNCERSON-BURSTTIN LENGTH WITH INDEPENJENCE ASSUMED)

(FIKST COLUMN IS

MZAN= ¢12545E+401
MIT= « F9EITUCT¥TT”
MAX= «23909Z+C1
SIGURE TESIRTEFTY

«11305E+01
SITITTE#TL
0131405401
«5217T7TE-T01

TEATT=
MIN=
LY.

NO. OF FAILURES=

c1J450E+01
«1CCITERQL
»11060E401
«137332-01

No.

«Z9JLBEFCT

«20C308+01

«3CISUERDL
2

100

«10382E+01
«99634E+QT
+11136E+01
«231T3E-J1°

OF ITERATIONS®

«2934BEFIT

«2G00CE+C)

<GLTTOE¥TI
J

Summary of 1000 Monte Carlo Simulations

PEARSON

«88043E+00
«87623E+TT
«B88506E+0C

«99205E+00C
«94236E+00
«10C9JE®0L
<1865 3E-01

«30GISEFVT”

«20000E+G1

«S500CJE+0L
0



Table A-11. Summary of 1000 Monte Carlo Simulations

ALPHA=.025 N= 50 P=.5000 LAMBDA=.300
NO. OF SAMPLES WITH ALPHA LI JUTSIDE OF (0,0.5) 0
NO. OF SAMPLES WITH ALPHA LI PRIME OUTSIOE OF (0,0.5 0
NO, OF ABS. VALUE OF RMO HAT SREATER THAN 1 18
NO. OF PUO GREATER THAN 1 0
NO. OF S=0 0
NO. OF SAMPLES WITH BETA LI BEYOND PEARSON-HARTLEY TABLE 0
P HAT LAMBOA HAT LAMBDA STAR
MEAN=  .50048E+00 _+29247E+00 _«29231E+00
MIN= . 32000E+00 . 0.
MAX=  +66000E+00 +56 113E+00 -55958E+00
SIGMA= .46934E-01 .93775E- 01 «94390E-01
FRACTION OF 3INFIDENCE INTERVALS COVERING P
AND=BURSTEIN NORMAL EOGEWIRTH2 EOGEWORTH4 PEARSON
ALL 1000 .97556E+00 <3664 0E+00 <94399E+00 «94399E+00 <94908E+00
1ST 500 .97963E+00 .97556E¢00 <9551 9E+00 «95519E+00 «95927E+00
2ND 500 <9714 9E+00 «95723E+00 «93279E400 .93279E+400 <93890E+100
RATIO OF CONFIDENCE INTERVAL LENGTH TO‘ANDERSON-BURSTEIN LENGTH
(FIRST COLUMN IS RATIO OF ANDERSON-BURSTEIN LENGTH
TO ANDERSON<-BURSTEIN _ENGTH WITH INDEPENDSNCE ASSUMED)
MEAN= +6LEIBE+00 <10133E401 <10197E+01 «10190E+01 .10252E+01
MIN= «346L1E+00 «93324E+00 «964L35E+00 «95900E+00 «95783E+400
MAX= <10107E+01 C11153E401 +10950E+01 «10966E+01 <11341E+01
SIGMA= «10328E+00 +26192E-01 «22313E-01 L24262E-01 .30523E-01
NO. OF ITERATIONS
MEAN= W12221E402 C12312E402 «97770E+01
MIN= .60000E+01 +50000E+01 <40000E+01
MAX = .20000E+02 .20000E402 «19000E+02
NO. JF FAILURES= 50 77 0
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Table A-12.

NO. OF
NO. OF
NO. OF
NO. OF

M0. OF

NO. OF

ALPHA=.025 N= 50 P=.3000 LAMBOA=,.300

SAMPLES WITH ALPHA LI OUTSIDE OF (0,0,5)
SAMPLES WITH ALPHA LI PRIME OUTSIDE OF €0,0.5)

ABS. VALUE OF RHO HAT GREATER THAN 1

PUO GREATER THAN 1

Q=0

SAMPLES WITH BETA LI 3EYOND PEARSON-HARTLEY TABLE

P HAT LAMBDA HAT LAMBDA STAR
MEAN= «30162E+00 «27845E+00 «27304E#00
MIN= = _.10000E+00 -+18126E~-14 0.
MAX= - .54000E+00 +59515E+ 00 «51224E+00
SIGMA= .65523E-01 «11808E+00 .119115+00
FRACTION OF CONFIDENCE INTERVALS COVERING P
AND-BURSTEIN NORMAL EDGEWORTH2 EDGEWORTH4
ALL 1000 «96100E+00 «95300€+00 «96300E+00 .96300E+00
1ST 500 +96200E+08 +96600E+00 «96000E+00 «96000E+030
2ND 508 .96000E+00 «95200E+00 «96600E+00 «9660UE+00

Summary of 1000 Monte Carlo Simulations

o000 WWw

RATIO OF CONFIDENCE INTERVAL LENGTH TO ANDERSON-BURSTEIN LENGTH

MEAN=
MIN=
MAX=
SIGMA=

(FIRST COLUMN IS RATIO OF ANDERSON-BURSTEIN LENGTH

TO ANOERSON-BURSTEIN LENGTH WITH INDEPENDENCE ASSUMED}

« 97662E +00 «10259E+01 «96507E+00

«66974E+00 .95595E+00 «88596E+00

«15678E+01 <10808E+01 «10685E401

«13808E+00 «16906€-01 «20109€-01

NO. OF

MEAN= «B7IL0E+DL
MIN= «40000E+01
MAX= «20000E+02
NO. OF FAILURES= 1

102

«96033E+00
.88866E+00
«10710E+01
«20637E-01

ITERATIONS

«67910E+01

«40000E+01

«18000E+02
0

PEARSIN

«96300E+00
«96000E+00
96600400

«96043E+00
«87326E+00
«10069E+01
«18043€£-01

«69310E+01

«40000E+01

«14000E+02
0



Table A-13.

ALPHA=,(28

P=,100 L AM3D A=, 33¢C

NJ. IF SAMOLTS WITH ALPHA LI QUTSTCE OF (04045)
MO. DF ZAMOLES WTITH ALPHA LI PRIME OUTSIDE OF (Ge0.5)
MC. NF A7S, VALUF OF 2HC HAT GREATER THAN 1

N2e IF 200 GREATFP THAM
NNe OF S=C

NC. OF SAMFLES WTITH 3€TA LT PEYOND PEARSON-HARTLEY TABLE

P HAT

MEAN= .
MIN= T
MAX= « 2570 IF+3"
SIGMA= ,37627FE-C1

15C8AF +0N

FRACTION

AND=URSTEIN

ALL 18238 «G45I5E AL
157 s5° 9579274170
ayp 5ne <STHINF 4G

OF FANFIOFNCE

+O6NA5EeQ"
«9567345¢00
«33400E¢00

LAMBDA HAT

.26796E+00

C.
«TURRATE+CO

.15083€+00

NORMAL EDGEWORTH2

«94895F+00
«956132F+00
«93600F+00

295
158

ic

LAM3DA STAR
«25794E+00
0.
«75758E¢00
«15111€E+00
INTERVALS COVERING P

FOGEWORTHGL

«94L795E+0C
«95392E+00
+93500€400

CATTN OF GINFIDENCF INTERVAL LFNGTH TO ANDSRSON-BURSTEIN LENGTH
(FIST rILUMN IS 2LTIN OF ANNFRSAN-BURSTETN LENGTH
YO AMIERSON=YRSTEIN LENGTH WITH INDEPENDENCE ASSUMEOD)

M= AM= 0127275401
MIN= « 2431325490
MAX= « 257725 +G1
STGMA= e 20356F#30

«17L91F«01
£103C9E401
«17916F401
«2L307E-01

«99197F+09
«90317€E+00
«112R2E¢01
«57587E-01

NOD.

«40531E+01
«300004+01
«2CCONE+D2

NF FATLUYRES= 13

113

«37480E+00
«89527€+00
«10959F¢01
«35959E-01

ITERATIINS

«40180E¢01

«30000F+01

«15000€E+C2
0

Summary of 1000 Monte Carlo Simulations

PEARSON

«94795FE+00
«959932E+00
«93600E¢00

«95166E+00
«85420E400
«99256E+00
«22939€-01

«37608E+01

+30000E+01

«80000E+01
0



Table A-14.

Summary of 1000 Monte Carlo

5407 P=.10" LaM3na=,znn

NO. 3F SAMPLES WTITH ALPHA LI OQUTSIDF OF (3,C.5)
NO. OF SHYFLES WITH ADSHA LI PRTME OUTSINE OF (04%.5)
NO. O0F AR5, VALUE OF RHO HAT GREATER THWAN 1

NO. OF PUT GIZATEP THEN 1

NO. 3F S=0

NN, OF SAMPLES WITH BETA LI REYOND

F HAT
MEAM= «1CCO3E+OC
i = J52CNIF-01
MEX= «15200E+CC

STGVA=  \18927E-01

LAMR0DA HAT

«295583E+00
«10237C+00
«49961E+ G0
«656523E-31

PEAPSON-HARTLEY TABLF

[=N=NeRalel

<3

LAM3NDA STAR

#+29559E+00
«10277E+00
«50100E+00
«AHUTLIE-CL

FRACTION OF CONFIJENCE INTERPVALS COVERING P

AN G- FORS TR IN

ALL 10793 +949007+00
1ST 5070 94 2CCE+TT
2ND 50¢ +956C0E+03

NORMAL EDGENQOTH2
.05500F+00 «93300F+30
«9539{F+035 «9u230E+00
«9605CE+03 «96400F+00

EQGEWNRTHY

«9530CE+00
«942JCE+DD
«36430E+00

RETIN TF THONFINENCE INTFRVAL LENGTH TO ANDERSON=-3URSTEIN LENGTH

(FIRST TQOLUMN IS RATIC OF ANDERSON-AURSTEIN LENGTH

TG ANAEISON-BURSTEIN TENGTH WITH INNEPENDEZNCE ASSUMED)

MEAN= «12527E401
HIN= <1070CE+01
MAX= . 160A6F +01
3TGHA= TE9R2BESGT

«10708F+01 «982R82E400

«97527F+00 2+95527E+00

«1G272€+01 210132F+01

< IARLTE-02 «97603E-02

NO.

HEAN= «22340E+01
MIN= «2G000F+01
MAX= «90000E¢01
NO. OF FAILURES= 0

104

«98252E+400
«9SLTTE+0D
«10128FE¢01
S 9777 2E-02

OF ITERATIONS

+22490E+01

«20000E+01

«50000E+01
0

Simulations

PEARSON

«35300E+00
«94200E+090
«96L00E*00

«38076E+400
«35298E+00
«10110E+01
«97959E-02

«23240E401

«20000E+01

«50000E+01
0



Table A-15. Summary of 1000 Monte Carlo Simulations

ALPHA=,C25 Nz 10) Px.030 LAMADAZ , 300
NO. NF SAMPLES WITH ALPHA LI OUTSINE OF (0,0.,5) 860
NO, OF SAMPLFS WITH ALPHA LI PRIME OUTSIDE OF (0,0.5) Sit
NN, NF ABS, VALUF OF RHO HAT GREATER THAN 1§ 0
NO, OF PUJ GREATEP THAN 1 0
NO. 0F S=0 100
NO. OF SAMPLES WITH RETA LI PEYOND PEARSON-HARTLEY TABLE «06
P HAT LAMBOA HAT LAMBOA STAR
MEAN= ¢« 3C16JE-01 «2124954+ 00 «21295€E+00
MIN= Jde 0. 0.
MAX= «16000F+00 «TL887E+00 e757S8E+CO
STGMA= ,22187F-01 «22773E¢00 «22822E+00
FRACTINN OF CONFIOFNCE TNTERVALS COVERING P
AND=-RURSTEIN NORPMAL EDGEWORTH2 EDGEWORTHL PEARSON
ALL 1022 «99778€4+20 «97667E¢00 +99AR9E+ 00 +99778E+00 e 9WLLESDD
1ST S0¢ «99779€+00 +9R009€E+00 «11090F¢01 «99779E¢0C «99558€+¢30
2M0 S5:¢ «99777E+10 «97321€400 «93777€+00 «99777E+0C ¢99330€+00
RATIO OF CONFINENCE INTERVAL LENGTH TN ANOCRSON-BURSTEIN LENGTH
(FIRST COLUMN IS RATIO OF ANOERSON=-AURSTEIN LENGTH
TO ANNDFRSON=JURSTEIN LENGTH WITH INDEPENDENCE ASSUMED)
MEANZ «12KA9E+01 e1104L4GES0Y «10919E+01 «99818E¢00 ¢ 96909E+00
MIN=z +938CARE+JU «1CCCOECDY «AT7959€¢0Q «89335€+00 «83512€+00
MAYE «25779E +01 «15720€+01 «11161E4+01 «10899€+01 «98749E+ 0
SIGMA = «36723€E4¢00 «69928E-C1 «41157E-01 «¥2732E-01 ¢38356E-01
NO, ITERATIONS
MEAN=z +39211E+01 «36783E¢01 «35478E¢01
MIN= «30000E«01 ¢30000Fe01 «30000E+01
MAX= «20000E+02 «15003E+¢02 «50000E+01
NO, OF FAILURES= 21 0 0
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Table A-16.

LPHA=,. 228

503 Pz,.0%J  LAMMYAE, 300

NN, NF SAMPLES WITH ALPHA LI NUTSIOE OF (0,9.5)

NQ. NF SAMPLES QITH T 4{rsHA LT SHIME OUTSIOE OF (Je2e®

NO. OF AS8S,

ND. 0F S=g

NO. OF SA“PLES WITH 3ETA LI SEVOND PEAPSON-HARTLEY TABLE

MFAM=

MIN=
MAX =

STGMA=

ALl 1°03
{51577
2vp 562

MEAN=

MTN=
MaX=

STG*a=

P HAT

« 390 33E-01
TL0S0JE-A3
«BELYTF=-01
«10339F=C1

FRACTION

AMI=20ISTEIN

95300720
<Gu801E+3)
<958087E+30

VALU‘ OF RHO HAT GRTATER THAN 1
‘NO. 3F PU7T GREATES THAN 1

LAMBDA HAT

«27796E400
- 31543E-14
+H1874Ee 00
«12291F+90

‘NODVAL

«34R107400
542007+ 02
<954 00E¢00

ENGFWIRTH2

«931yCECCT
«GUROCEeCN
«956100%¢00

110

LAMBDA STAF

027 783E+00

«h23129E+00
«12199€+00

OF CONFIDNDENGE TNTERVALS COVERING P

EOGEWORTHU

+Q5100E400
«948JCE+QC
+9540CE*CO

SAYIO OF CONFIDENSF INTEAVAL LFNGYH TO ANNEPSON-SURSTEIN LENGTH

(FIRST rOLUMN IS 2ATIC OF ANNERSON=-3UPSTEIN LFNGYH

W130B7ENL
<37160F 33
«20364E 401
JATIAGE D

.10308F+01
©10000€+71
<11391€401
130919F-J1

MEANZ

MIN=
MAY=
ND, OF FATLURFS=

10

«100657+01
«96543€43]
C11%L2E401
C4BAGTTany

M0e. OF

«6093I0E+LY

«20703°+01

«2000JE¢02
26

6

FOOANIETSAN-3URPSTEIN LENGTH WITH INDEPEMDENCE ASSUMED)

«99563E+400
«I7TI53E+GT
«11299E+¢01
«18466F-01

ITZRATIONS

«27370F¢01

«20003E+01

«203033E402
1

Summary of 1000 Monte Carlo Simulations

PEARSON

«35100E200
«96BOCE+Q0
«954 00E+ 00

«97909E+00
+95763E¢019
«10073E+01
¢ BLST7BE-J2

«27920E¢01

«20000E491

«5J000E¢01
0



Table A-17.

ALPHA=,.025 N= 10

NO. OF
NO. OF
NO. OF
NO. OF
NO. OF

SAMPLES WITH ALPHA LI
SAMPLES WITH ALPHA LI
ARS. VALUE OF RHO HAT
PUD GREATER THAN 1
S=0

NO. OF

P HAT

MEAN= «301235€E-02
MIN= N

MAX= «15000E-01
STGMA= ,23705E-02

FRACTION

AND=3URSTEIN

ALL 1903
1ST s5@¢
2ND 5CC

«93431E+400
«9931%E+J0
«9954L4E+00

00 P=.003 LAMBOA=,.300

OUTSIDE OF (040.5)
POIME OUTSIDE OF (9+0.5)
GREATER THAN 1

SAMPLES WITH BETA LI REYOND PEARSON-HARTLEY TABLE

LAMBDA HAT

«22220E400
0.

«79991E+00

«22793E+00

Summary of 1000 Monte Carlo Simulations

852
487

121

434

LANBDA STAP

«22212E+00
o.

«80080E+00

«22799E+00

OF CONFIDENCE INTERVALS COVERING P

NORMAL EOGEWORTH2 EDGEWORTH4
«97725E+0C «99772E+00 992 04E+0C
«97273€+03 «93773E+00 «99318E+00
«38178E+00 «99772E+00 «990389E+00

PATIO OF CONFIOENCE INTERVAL LENGTH TO ANOERSON=-BURSTEIN LENGTH
(FIRST COLUMN IS RPATIO OF ANDERSON=-BURSTFEIN LENGTH
TO ANOERSON=-SUPSTEIN LENGTH WITH INDEPENDENCF ASSUMED)

MTAN= «13177E+01 «11437E+01 «10575€+01 «10638E+01

MIN= «99197F+0) «10000F+01 «98432E+00 «10000E+01

MAX = «29909E+01 «14659€+01 «11708E+01 «11661E+01

STGMA= «37071E4+10 «77913E-01 «?25516€-01 «25978E-01

NO. OF ITFRATIONS

MEAN= «29852E+01 «25119E+01
MIN= «20000E+01 «20000€+01
MAX= «40000E+01 «40000F+01
NO., OF FATLURES= 0 0
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PEARSON

«98862€E+00
«98636E+00
+39089E+00

«98732E+00
«95232E4070
+10098E+01
«20965E~01

«29761E+401

«20000E+01

«40000E+01
0



Table A-18. Summary of 1000 Monte Carlo Simulations
ALPHA=,050 N= 50 P=,5000 LAMBDA=.800
NO. OF SAMPLES WITH ALPHA LI OUTSIDE OF (0,0.5) 27
NO. OF SAMPLES WITH ALPHA LI PRIMKE OUTSIDE OF (0,0.5) 0
NO. OF ABS. VALUE OF RHO HAT GREATER THAN 1 105
NO. OF PUD GREATER THAN 1 38
NO. OF S=0 0
NQ. OF SAMPLES WITH BETA LI BEYOND PEARSON-HARTLEY TABLE 2
P HAT LAMBDA HAT LAM3DA STAR
MEAN=  .50462E+00 <77969E+ 00 «77936E+00
MIN= <16000E+00 «32878E+00 «34014E+00
HAX= «92000E+00 <96449E+00 «97604E+00
SIGMA= . 14274E+00 «93772€-01 .97 330E-01
FRACTION OF CONFIDENCE INTERVALS COVERING P
AND-BURSTEIN NORMAL EDGEWORTH2 EDGEWORTHA4
ALL 1000 <90838E+00 <8994 4E+00 «B7374E400 «87374E+00
1ST 500 <91209E+00 < 90549400 .88352E+00 .88352E+00
2ND 500 +90455E+00 <83318E+00 «86364E+00 +86364E+00
RATIO OF CONFIDENCE INTERVAL LENGTH TO ANDERSON-BURSTEIN LENGTH
(FIRST COLUMN IS RATIO OF ANDERSON-BURSTEIN LENGTH
TO ANOERSON=-BURSTEIN LENGTH WITH INDEPENDENCE ASSUMED)
MEAN= «19245E+01 «92828E+00 «89377E+00 «87600E400
MIN= <10000E+01 <59224E+00 <59224E+00 «59224E+00
MAX= ¢+ 38296E+01 «11532E+01 «10436E+01 <10318E+01
SIGMA= «37739E+00 +56187E-01 .41 884E-01 <51506E-01
NO. OF ITERATIONS
MEAN= «15103E+402 «14993E+02
MIN= 40000E+01 <40000E+01
MAX= <2000 0E402 <20000E+02
NO. OF FAILURES= 307 298
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PEARSON

«87933E+00
«89011E+00
«86818E+00

» 83743E400
«56026E+00
«12105E+01
«78363E-01

«16135E+02

«20000E+01

«20000£E+02
399



Table A-19.

ALPHA=.050 N= 50 P=,.30012 L AMBOA=.800
NC. OF SAMPLES WITH ALPHA LI OUTSIDE OF (0,0.5}% 388
NO. OF SAMPLES WITH ALPHA LI PRIME CUTSIODE OF (0+8.5) 3
NO. OF ABS. VALUE OF RHC HAT GREATER THAN 1 54
NO., OF PUO GREATER THAN 1 56
NO. OF S=0 5
NO. OF SAMPLES WITH BETA LI BEYOND PEARSON-HARTLEY TABLE 201
P HAT LAMBGA HAT LAMBDA STAR
MEAN= «30376E+00 «75013E+00 «74SL3E+0D
MIN= 0. 0. 0.
MAX= «86000E+00 «97781E+00 «97604E+00
SIGMA= .15357E+00 «15073E+00 «15520E+00
FRACTION OF CONFIDENGCE INTERVALS COVERING P
AND-BURSTEIN NORMAL EDGEWORTH2 EDGEWORTHU4
ALL 1000 «87991E+00 «86079E+00 «85760E+00 «85750£+00
1ST 500 «8644L1E+00 «B85159E+00 «85381£+00 «85381E+00
2ND 500 «83552€E+00 «86934E+00 «86141E+00 «86141E+0C

Summary of 1000 Monte Carlo Simulations

RATIO OF CONFICENCE INTERVAL LENGTH TO ANDERSON-BURSTEIN LENGTH

(FIRST COLUMN IS RATIO OF ANDERSON=-3URSTEIN LENGTH
TO ANCERSON-BURSTEIN LENGTH WITH INDEPRENOENCE ASSUMED)

MEAN= «23210E+01 «10066E+01
MIN= «95917E+00 «66346E+00
MAX= «69051E+01 «13842E+01
SIGMA= «64323E+00 «83381E-01

MEAN=

MIN=

MAX=

NO. OF FAILURES=
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«86620E+00
«66346E+00
«11630E+01
«53948E~01

NO.

«12385E+02

«30000E+01

«20000E+02
172

«80710E+00
«58745E+00
«11630E+01
.709852E-01

ITERATIONS

«12375E+02

«40000E+01

«20000E+02
185

PEARSON

«84060E+00
«83686E+00
+84435E+400

«84846E+00
«31925E+010
«12105E+401
«13516E+00

«12371E+02

«20000E+01

«20000E+02
332



Table A-20. Summary of 1000 Monte Carlo Simulations

ALPHA=,05( N= 196 P=,13GC LAMBDA=.80C

NO. OF SAHPLES WITH ALPHA LI OUTSIOE OF (045.5) 742
NO. OF SAMPLES WITH ALPHA LI PRIME OUTSIDE OF (Qs345) 15
NO. OF ABS. VALUE OF RHO 4AT GREATER THAN 1 L
NO. OF PUI GREATEF THAN 1 3
NO. OF S=0 87
NO. OF SAMPLES WITH BETA LI BEYOND PEAR3ON-HARTLEY TABLE 557

P HAT LAMEDA HAT LAMBOA STAR
MEAN=  ,99551E-01 «53334E+GD <68164E+00
JiNz 4. c. 0.
MAX= L S5CITE4J? L9TL7LESSD «97403E+0D
SIGWA= .E4SG5E-C1 c240LBE+ QD <24189E4+0D

FRACTION OF CONFIDENCE INTERVALS COVERING P

ANL=-BURSTEIN NORMAL FOGEWIRTH2 EOGEWORTHA PEARSON
ALL 12C2 «84337€4030 «8L4L47E+OC «B3461E+00 «81818E+00 «82585E+00
1ST 510 «83772c+00 «83553E+00 «82675€+0C «81363E+00 «81573E+GO
2ND 52¢ «b4932C¢090 «85333E+00 «84245E400 82276400 «33583E+00

R4TIO OF CONFILENCE INTERVAL LENGTH TO ANOERSON-BURSTEIN LENGTH
(FIRST COLUMN IS RATIO OF ANWOERSON-BUKSTEIN LENGTH
TO ANUDERSON-BUKSTEIN LENGTH WITH INDEPENDENCE ASSUMEZD)

MEAN= «2523CE+01 «1C971E+01 «30G75E+00 «84168E+D0 «839L1E+00
MIN= «96354E+00 «8G763E+05 0« 694JIE+0C «S9423E+20 «22867E+00
MAX= +02485E 401 «iL711E401 210368E+31 «10227€E+01 «29386E+41
SIGHA= «9G0794LE+00 01436 4E+QD «11298E+00 «11865E+3°0 «14756E+00

NO. OF ITERATIONS

MEAN= 2 59136E+01 «b00L6E+31 «54308E+01
MIN= «30030E+01 «30000E+01 +30000E+01
MAX= «20000E402 .20500E+02 .20000E+02
NO. OF FAILURES= 113 9 12
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Table A-21. Summary of 1000 Monte Carlo Simulations
Eedi=,.5" M= 107 ==,13" LaMata= A"
NQ. OF SAMPLES WITH ALPHA LI OUTSIOE OF (0, Ce5) 451
MO, NF SAMPLES WTTH ALPHA LI PRIME NUTSIDE OF (0,9.%) 24
NO. OF 47S, VALYIZ OF 2HO HAT GSEATES THAN 1 1
NO. OF P2 GPEATFR THAN 1 3
MC. OF 35=2 525
NO. OF SAYPLES WIV1 {1 3574 LI SZYOND 2EARSON-HARTLEY TASLE 438
P 4AT LAMBOA HAT LAMBDA STAR
MEAN= . 2C73CE-01 +61315€400 +61614E+00
MIN= e T 0.
MAX= «38002Z+100 «37C05E+ 10 «I7527E+00
SIGMA= S51HLSF-01 «31142F 4010 «31105€E+00
FRACTION NF CONFIDENCE INTESVALS COVERING P
ANB=UFSTEIN rMORPMAL ENGEWC RTHZ EDGEWORTH4 PEARSON
ALL 12C2 997395414 +BHLIBE+]] <99367E+00 <81646E+00 +92616E490
18T 57 «170C0E+31 «23432°+02 «CA2673E+00 «829F7E+0C «92460€E¢00
2mp 53¢ L97E5( 0400 +B42345400 <990 39E400 <80180E+00 <92793E+00
FATIO NF rOMFINSNCE INTEFVAL LENGTH TN ANDERSON-BURSTEIN LENGTH
(FIRIS™ COLUMN IS RATIN OF ANDZRSON-BUASTEIM LENGTH
TN ANCERSOM=RUSSTEIN LFNGTH WITH INNEPENDRENCE ASSUMED)
MEAN= 257902411 L11821E+01 291721E+00 <8691 3E+00 +284331E+00
MIN= «J773825400 «I26B5E+2N «691255400 «589300E+00 «33780E+00
MpX= »23773E401 L 1N711E401 «15173E+01 <10227€+01 «29386E+01
STGMA= «1132RE4N1 «92160c=-01 « 76489E-C1 «10344E+00 «16377E+019
NO. OF ITFRATIONS
MEAN=Z .57707F+01 .59002E+01 «52463E+01
MIN= 3620 0E+01 +30000E+01 2 30000E+01
MAX = 20000492 +20000E+02 «20000E402
NO. OF FATLURES™ Q 6 21
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Table A-22. Summary of 1000 Monte Carlo Simulations

APELN=E, TD] M= S o-.27 LAHRCE=.ATD
MC, OF SAMPLET WITH ALPHA LI QUTSITE OF (0,0.5) 732
NTe IF SAVMOLET ATTH ALPHA LT 25TME QUTSTIIE COF (2,7.5) 3
NNy NF A<, YALYFE DF OHM HAT AGTATES THAN 1 ¢
MCe DF 0NN GSTLTEC THAN 1 G
NO, 41
M. M C
NC. ACLE 1 WITH BITL LT SLvnMp DTASION-HARTLEY TARBLF 548

0 OHAT LAMAR™A HAT LAMB0A STAR
Mepn = 230222671 «72R22E+170 «72753E+00
MIN= T Ce Je
MAX= e1727.E4C7 £O77135400 «95hLEF+ 0D
STGMA= 21411501 «19732E+0Q0 «19088E+00

FRACTION OF CONFIDENCE TINTESVALS COVERIMG P

AM2=PURSTETN NOPMAL ENGFWORTH2 EDGEWORTHY PEARSON
ALL 1C.: 2393893+ «89054C+00 «89468E+0) +883L7E+OC «8894L7E*00
1°7T 571 «9Y952F+ 20 «ATL1RQE (T «37644T+0C .90229F+00 «90229E+00
2MD 5% 2931215+00 «38912E+0°8 «8R285E+00 +87657E#9C «37657E+00

CATTO CF TONFIDENCFE TMTERVAL LFNGTH TO ANDTPSCN=-BURSTETN LENGTH
(FI2S™ ZOLUYN IZ FATTIQ 9F ANTSRSON=-3UPSTEIN LENGTH
TQ AMNIE SAM-QU2STEIN LENGTH WITH INDEPEMDENNFE ASSUMED)

MEANE «2R41792E 471 «111828401 «10234F 401 «97794E400 «94216E+00
M™M= s COTORE 427 «103CCE+C1 +38191E5+00 «81590E+00 «84516E+00
MAX = «T37GRE 401 « 163410401 «11721F4+01 «12521E+401 «10345€401
SIGMA= « RBLT72E 4N «31972F=01 «36940F-C1 «39368F-01 «13985€E-01

MFAN=
MIN=
MAY=

NO. 0OF FATLURES=
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ND. OF ITERATIONS

«35h61 0E+01 «34463E+01 «31287E+01

«230G0E+CY «2002J0E+01 «20000E+01
«20300F+(C2 «600JJE+01 «60G00E+01
11 0 0
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Table A-23. Summary of 1000 Monte Carlo Simulations
WLPHAZL L6, Mz 15d° P=.d.3  LAA30k=.005
NO. OF SAMPLES WITH ALPHA LI OUTSIOE OF (dsCe5) 413
NO. OF _LmoL:s WITH ALPHA LI PFIM: OUTSINE OF (0sCe5) %
UE OF wHC AT GREATER THAN 1 b
ATER THAN 1 2
582
N, 3F SANPLES J1TH 3ETA oI 3TYOND PEARSON=nARTLEY TADLE 457
P hHat LAMBGA HaT LAM3DA STAR
MEANZ 29034657 eBLTF2LEDT W64718E400
MIN= T Ce Ge
Mux= WBBLY LR «3583LE4C0 L+ §5929E400
SICMAS JEL7=li=uf WZICIBE+ LS W 29129E4%5
FRECTICE OF COMFIJSHGE INTESVALS LCVERING P
TNT-3UKSTELN MORMAL EGGEWORTHZ ‘EDGEWORTHY ‘PEARSON
Wbl pl00 c06ET3C40E 235701 ELIC +T7512E408 +89952E+50
187 574 ec36393E438 LALIGCE+LL WTi732E+Q0 «BOBLMEHDD
2NC 5. id 292132438 -299537E¢LC 1BIT96E+IT «33981E+00
~iTLC OF CONFIUEMGE INTERVAL LEHGTH TO ANDERSON-3URSTEIN LENGTH
(FIKST COLUMN 13 _FATIO OF ANUEXSON-BURSTEIN LENGTH
TO ENJIERSON-BURSTRIM LEMGIH Witk INDEPENOENGE ASSUMIo)
ME LNz 2 27624E 401 2123238471 210 76dE+01 210671E401 +37623E+0C
Itz «39S3CEHUE 1700136601 183108451 “03B54E+]D .92202E+0C
Max= WH7696E4%1  J1EUELE4DL s 12453E44L +13396E+01 «10780E+01
SIGMaz ©12552E404 TL146E405 c36247E=31 <54 320E-31 S22454E-01
NO« OF ITERATIONS
ME&N= WILTTIESLT «33636E+061 J3G091E+01
_MiN= L20dATESGL +20305E+21 +2U00JE+CL
HAX= CEGIISE4DL «6030GE+GL SGO00JE+01
NO. OF FAILURES= ¢ b g



Table A-24.

Summary of 1000 Monte

Carlo Sinmnulations

ALPHA=.C5C k= 1.0.0 P=,0%1 LAMEDA=,800
NO. OF SAMPLES w1TH wLFdad LI QUTSLUE OF_(0,0.5) 169
NO. OF SAMPLES WiTH ALPHa LI PRIME OUTSIDE OF (0+0.5) 3
NQ. OF A4B3. VALUE OF RhQ HAT GREATER_ THAN 1 2
NO. OF PUT GREATER THAN 1 [}
NO. OF 3=. 428
A3 Or ZAMPLES WITH 3eTa L1 BEYING PEARSON-MARTLEY TABLE 469
P HAT LAMBOA HAT LAMBDA STAR
MIENS 4 39703£-33 632495400  +60074ES00
MINT  f. 0. Ge
Hax= W29 .0CE=uL <95550£+ 35 «96648E+GC
3IGMaz o L2142E=(2 .32333E+C3 +32286E400
FR&CTLCN OF CUNFIJENGCE INTERVALS COVERING P
ANU=3U<STEIN NORMAL EDLEWORTH2 EDGEWORTHU PEARSON
ALL 1.7 C133T3ESTA W7L93LESSC +1G0JJE+TL «59834E+D0 «73837E+06
15T 3.0 12903431 0690727 +u ¢ «133030c+01 «60215E+00 «74194E+00
280 5., ellu B¢l W72152E4,C +1G00GE+CL «SIUILEHDD «73418E+00
SATID GF CONFIGONGE INTERVAL CENGTH TO ANDERSON=BUKRSTEIN LENGTH
(FIFST COLUMN 15 FATIO OF ANGCEXRSON=8URSTEIN LENGTH
TS ANUER3ON=8UASTEIN LENGTH AITh INODEPENDENCE ASSUMED)
T W Z7113E¢(1 W 125136401 16779461 «1G805E+31 +98302E40C
1im= e 590 0TE 45T ei.lolEt0l «1J03JE+Q1 «30668E+00 «94322E+00
4y = STLIS7EESYL S1EZE1Z+91 «12453E+01 «13396E+d1 +10785E+31
3ICva= e14 313545 $122198433 «33130€-C1 «SHu24E=01 «20622E-314
NO. OF ITERWTIONS

MEAN= «32267E431 «34C12E+01
MIN= «3000JE4+01 «30030E+01
MA L= «631JCE+DL «4GCUJE+IL
MOs OF FAILURES= b 0
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e J3L2LULE+D]

«20000E+01

«50003E+01
'}



Table A-25.

LLRRA= T

Summary of 2000 Monte Carlo Simulations

H= 1033 P=,0303

NOe OF SAMPLES WITH aLPKA LI JUTSIOE IF (%,
NO. OF SAMPLES wITH ALPHA LI PRIMZ OUTSIDE

NO« OF A3CS. VALUE OF ~HO AT LFEAT=Z~ TH&N 1

NOs OF PU. GReéT%r THAN
NO. 0OF S=3

MZeMN=
MIM= -
MAX =
SIGMA=

BLL 2734y
1S7 1000
2NN 1000

P HAT

el =223

e 33.30e-21
«1R35CE-32

LAMSLA=.300

<eS)

OF (J9245)

MOL IR ZAPLLL WITh BFTE LI @IYOHD PEARDIM-#mAFTLEY TAoLZ

LAMBTA HAT

«53873E+ 0

v

+35968E+13
«34LO7E+00

FRACTION OF CUNFIDENSGE

ANO=-BURSTEL

N

NOXMAL

ehrd6lE+yl
«39216E¢4C
«L1B6ETZ400

111

1669

111

LAMBDA STAR

559372400

Ce

«97J67E+03
e34506E4 0y

INTEZFVALS COVERING P

CULEWORTH2

213J00E+CTL
e1UJIUESCL
«10J00E+C1

EDGEWOKTH~

«2432LE+DY
25497 E+C)
¢23333E+02

*ATIQ OF CONFI{ENCE INTERVEL LINGTH TO ANUERSON=-bURSTEIN LENGTH
(FI~ST COLUMN I3 FATIO OF AMGCERSON=-BURSTEIN LENGTH
TG ANUERSCN-BURSTEIN LENGTH WITH INDE®ENDZNCE ASSUMED)

MEALN=
MIN=

SIGMA=

ecbliole+dl
»3974CE+
e7924lc 401
«155641E+01

eil4B6E+)1
13931201
«96Cs8E-01

MEZAaN=

MIN=

MAX =

M)e OF FATILUFIS=

«1C747E¢01
«10301E+01
«1115JE+01
«286431E-01

NOe. OF

«31622E+01

e SJTITEHIL

«5JG05E+0L
3
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«10787E+31
e 9993LE+DG
¢11276E+J1
«38032E-31

ITERATIONS -

«33784LE+01

«30G50JE+31

«E6C00UIE+IL
]

PEARSON

«51351E+0C
«5294L1E+IT
«53030E+LL

«9B8LBGE+TO
e3¢ 322E+00
«1CC3LE+IL
«15456E-01

«3L505E+401

«3090CE+01

«50000€E+01
0



Table A-26. Summary of 1000 Monte Carlo Simulations ~
with Intervals Calculated From Lambda Tilde (})

ELOHe= 5] N= 141¢ P=ellll LA4ANA= 305
NCe GF SAMFLTS WITH ALPHA LI OQUTSIDE OF (9, 0.5) 38
NCe OF SAMPLES WITH ALPHA LI POIME OUTSIJE CF (3s2.°9) 1
NO. 2F A3S, vALYUE 0F QHC HAT GREATEF THAN 1 M
MOe OF PUS GRIATER THAN 1 g
NCe 3F S=0 1
NOeo JF SAMOLES WITH 85ETA LI S2EYCOND 2EARSON-HARTLEY TABLE 21

P HAT LAMBNA HAT LAM3DA STAF LAMBOA TILODE
roat= «10L57E4CC «26766E¢C0 «26753E¢ 00 «3C14bE+CU
MIN= S Ce Q. 0.
MAX= #2505 (400 oTHURRTESTD «75758t¢0 «85731E¢L3
SIGMA= L3748 2c-01 «15151E+ 20 «15167E+( C T e16926E¢(0

FRACTICN OF CCNFIDZNCE INTERVALS COVERING P
ANT="URSTEIN HOIMAL EOGEWORTH2 EOGEAORTH4 PEARSON

ALL 1CT0 «91231F+90 #51992E+00 «91592€+3C «91592€E+0C «31391E+20
18T 580 «q2585F¢75 «9378RE¢ 3¢ «929A36E+0C «32936E+0C «92585E¢00
2rn 5238 923265420 «322L0E+G0 «90200E+00 «9320CE+IC «33200E¢00

RATIC GF CONFICENCE INTERVAL LENGTH TN AMDERSON-BURSTEIN LENGTH
(FIZSY COLUMN IS PATIO CF ANDERSON=-BUSSTEIN LENGTH
TC ANIFPSCN-RJRSTEIN LENGTH WITH INDEPENJENCF ASSUMED)

MIAN= «12361E401 «12283E¢,1 e 354T35 400 e I5204E+043 «95263E+00
MIN= 363125400 «GQ1E3E+0Y «907CL1E+0C «30355E4+03] «81913E+00
MbX= e I5297F 401 «1LLHKTEL] «10323E+(1 «99553E+0) «93694E+379
STGHA= P« ZBHIIRESY) «23202¢-4d1 $20%33E-C1 e2LI45E~CL «25101E-01

NO. OF TTERATIONS

MFEAN= e 3432454C1 «33524E¢01 « 351256401
MTIN= «20CG0E+LY «2000dJE%utL «22000E¢01
MAY = «70203E+CL «70554E+(L «11000E402
NO. OF FATLUPES= o 0 0
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Table A-27.

NO« OF
NU. OF
NO. OF
WD OF
N9. OF

NJO. OF

MIAN=
MIN=
MAX=
SIGMA=

AL 170
157 L7
2NC 5°7¢C

ALPHAT L5 N= 1003 P=,03C3 LAMBCA=,30C

SAMPLES WITH ALPHA L1
SEMPLES WITh ALPHA L1
4Cxe YulUZ CF wHG HAT
PUL GRoéTEF THAN 8

-._ -
yE

JUTSIDC OF (0yGe5)
PRIME OUTSIOE OF (Qy3e5)
GFEATZR THAN 1

SAMPLES WITh BETA oI BSYONU PEASSON=-HARTLEY TABLE

P HAT LAMSOA HAT

«13C65E+4G0
Je

«83726E+C0

«26L18E+L0

e 2823CE~C3
«6CT30E-T2
«72319t-03

1oé4
53

82b

163

LAMBJA STAR

«14030E+00
G

«83GLTE+GC

«26451E+400C

E0LEWORTHY

«39J8GE+DO
«86450E4+30

FRACTIOMN OF CONFIOENCE INTERVALS COVERING P
END=-CURSTEIN NORMAL EO0GEWORTHR
! «93678C403 «885C6E¢]0 «12J70E¢01
fGLBETES D] «BSLITES L e 023EeS)
«9E1S4E+00 «32303£430 «1C300E+C1

«92306E430

~ATIN OF CCNFIUENCE INTERVAL LENGTH TO ANDERSON~-BURSTEIN LENGTH
(FIRST COLUMN I35 XATIO OF ANDERSON=BURSTEIN LENGTH
TO ANLFFSON-BURSTEIN LENGTH WITH INCEPENOENCE ASSUNED)

MELM=
MIN=
Moy =
SIGMA=

e 14353E4301 el1951E401L «1G716E401

e 39305 +30 «1200J€+01 +13030E®L

e36235 401 «15593E+u1l ¢122)2E+01

e 7THELZE®DC 0135845407 «53437E-01

NO. OF

MEAN= «290085E+01
MIN= «2030)E+01
MAX= «4GJGJIESDL
NO. OF FAILURES= J
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«10570E+401
«100GJE¢J1
«13113E+51
¢ 32385E-31

ITERATIONS

¢32356E+01

«30235E+01

«b0JJGE+DL
0

Summary of 1000 Monte Carlo Simulations ~
with Intervals Calculated From Lambda Tilde ()

LAMBDA TILUE

«264U66E+CL
J'

e 9JUT75L+43T
«33G53E+00

PEARSON

+88506E+CC
«850617E¢sC
«92308E¢04

1001 3E+431
«Je778E#J0
«10622E¢01
«19387€~-01

«308C5E+C1

«20000E#D1

«0000E+01
0



Table A-28.

Summary of 1000 Monte Carlo Simulations

with Intervals Calculated From Lambda Tilde (A)

ALPHA=. 35T

53 P=.35ul LAMBDA=,800

N3« OF SAMPLES WITH ALPHA LT QUTSIOE OF (0,0.5)
NO. OF SAMPLES WITH ALPHA LI PRIME OUTSIDE OF (G+0.5)
NO. OF A335. VALUE OF RHO HAT GREATER THAN 1

NO. OF PUL GRcATER THAN 1

NO. OF S=C

NC. OF SAMPLES WITH BETA LI BEYOND PEARSON-HARTLEY TABLE

P HAT

LAMGDA HAT

«750132¢00
0.

«37781E+0D

«15G73E+G0

479
41
72

110

270

LAMBDA STAR

«76943€+00
0.

«97604E+00D

+15520£¢00

FRACTION OF CONFIDENCE INTERVALS COVERING P

NORMAL EWORTR2
«AG431E+5C «90358E+00
5831254430 +89177E+30
«90672-40C «91540E+GO

EDGEWORTHS:

«90358L+00
«89177E+00
«9154G0c+04

RATIO OF CONFIRENCE INTERVAL LENGTH TO ANDERSON-BURSTEIN LERNGTH
(FIRST COLUMN IS RATIO OF ANDERSON-3URSTEIN LENGTH
TO ANDERSGN-BLRSTCIN LENGTH WITH INDEPcRDZNCz ASSUWED)

MEAN= «$037RF+AN
MIN= O
MAX= «E8B0JIuE+GY
SICMA= 415357E+Qu
AND=~-BURSTEIN
ALL 1uc? «91933E+433
15T 52§ «909uSE+0u
2NC 506 «930L5%92+06
MEAN= «27165€+01
MIN= «95917E+3C
MAX = «73%68c+01
SIGMA= «79505£+0°¢

«1021GE+J1
«6C885E+3 0
«16079c+01
«11318E+00

MEAN=
MIN=
MAX=
NO. OF FAILURES=

«84941E400
«65885E+00
«11792t+01
«72730E-01

NO. OF

«14388E+D2

«3G300E+01

«20000E+02
249

«78361E+00
«ST842E+DD
«11792E+01
«96362E-01

ITERATIONS

«14534E+402

«40000E+D01

«200D0E+D2
272

LAMBOA TILDE

«80469c+00

«98057E+00
«13576£+00

PEARSON

«88732€+00
«87229E¢00
«90239E+00

«81075E+00
«L5878E+00
«12524E£+401
«1600%E+007

«13100E+02

«20000E¢01

«20000E+02
345



ND. OF
NJO. OF
NO. OF
N3. OF
NO. GF

NO. OF

MCEN=
MIN=
M4LX=
SIGMA=

ALL 1@
1ST 520
2NG 57°C

Table A-209. Summary of 1000 Monte Carlo Simulations ~
with Intervals Calculated From Lambda Tilde (AX)

ALPHA=40SC N= 103 P=,1300 LAMBDA=,60L

SAMPLES wiTH ALPHA LI OUT3IDE OF (Qyu.5)
SAMPLES WITH ALPHA LI PRIME OQUTSIOE OF (GsG.C)
4BSe VALUE OF RHO HAT GREATER THAN 1

PUC GREATER THAN 2

S=0

SAMPLES WiTH BETA LI BEYONU PEZARSON-MARKTLEY TABLE

P HAT LAMBUA HAT
«599554t~-(1 «68384E¢1)
Je Je
e55CJuE+UC e I71TLE+CD
«245G05E-01 e 24 24L8E+CD

808

LANBIA STAR

«63164E+0L
0'

e ITLI3EFC0

«24139E+00

FrACTION OF CONFIUEBNCE INTERVALS COVERING P

AN G=GU<STEIN NORMAL EQGEWORTHZ
2 93829k 2 «£5950E+C «9534LE¢ul
«CT11CE+GT e65710E+0C «82011E+0C
«916LT7ESL] «bb1EbLE +40 «91667E+.0

EOGEWORTHY

«88804E+CO
«67312E+00
+839633E+30

RATIO OF CONFIOENCC INTEXVAL LENGTH TO ANDERSON=-BUKSTEIN LENGTH
(FIKST LOLUMN IS RATIO OF ANDERSON=-QURSTEIN LENGTH
TC ANJERSON=BURSTZIN LENGTH WITH INUCPENDENCE ASSUMED)

MEAN=
MIN=
MAX=
SIGMA=

e 3C236E¢01 «11707E401 «53070E+ 5.
¢ IE95LE+GT «39727E+00 «H35LUE®DG
«83610E401 «1737wE®GL «13618E+31
elU362E+01 «14139E+00 ¢ 75625E~-01

«62038E+]C
«59147E+00
«13613E+51
«13221E+3C

NO. OF ITERATIONS

MEAN= oTH148E+01
MIN= «3C003JE+01
MAX= «200J3E+02
NO., OF FAILURES= 21

119

«76881E4¢01

«300J2E+01

«20003E+32
28

LaMBUA TILOE

«75175E+0C
JC

«I76CTE+DC

024257E4+00

PEARSON

+88913E+3¢
03747 3E+00
«90351E+00

«8J051E+00
«27135E400
«34758E+01
17963406

e 693464T7E4IL

+30C0CE+GL

«20000E¢52
51



Table A-30. Summary of 1000 Monte Carlo Simulations ~
with Intervals Calculated From Lambda Tilde (A)
ALPHA=,u50 1600 P=,0030 LAMBDOA=,800
NO. OF SAMPLES WITH ALFHA LI OUTSIDE OF (04345) 413
NO. OF SAMPLES WITH ALEHA LI PRIME OUTSIDE OF (0,045 236
NO. OF ABS. VALUL JF RHU HAT GREATER THAN 1 C
NOes OF PUOD GREATcR THAN 1 4
NOs OF S=13 582
NOe OF SAMPLES WITH 3£TA LI BEYONO FEARSON-HARTLEY TABLE 413
P HAT LAMBOA HAT LAMBLA STAR LAMBDA TILDE
MEANT  .23930E-.2 CBL772E+35 WBuTLBE+T. «7T2130E+00
MINZ (. Ge Ge de
A X = ev0000z-u1 «92831E+400 «95929E4G 0 +95315E4GC
SIGMA= ,54791E-u2 e290 38E 400 «29029E 4023 «33233E4+(6
FRACTIGN GF CONFILENC:é INTERVALL COVERING F
AND=-BURLTEIN HCRMAL ZDGEWORTHZ EDGENGCRTHL PZARSIN
ALL 1au0 el1005E+DL e 39L74E+GC «383751+404 «8134L0E+0C e3230nE+0uy
1ST 304 eiv..oill «04053E 440 W1.0d0otdl $74752E 404 NPT RSTERN
2ND 534 Cieau Etul «93331E4 00 V993537403 WB750CE +10 «9537. 4

RATIO OF COiWF1dztC:
(FIKST CULUMN IS KATI3Z CGF AWJLRSIN=dURSTLIN LEZNGTH
TO ANUERLUN=3URSTEIN LENGTH WITH 1INUERPENUZNCE

MZAN= e3suliictlil
4IN= e JJOLLE*SL
MAX= elciud~ztyl
SIGMA= eludci 4l

INTERVAL LENGTH TJ ANDERSON=BURITeIN LLNGTH

«13036E+J1
elusductdl
013003401
«18317 3403

MEAN=
MIN=
MAX=

NO. OF FAILURESS=

ALIUME

Wli33uE+LL
«37513E¢00
W1629ZE+0L
o 7TE34TE-C1

NO. OF 1Tk

350 JJE¢DL

«20uulletl

«p0udGE+TL
J

u)

eliv9uE+ 1
#«93791E ¢
«15325E+01
e12238E 401

KATIONS

«37297E+01

«30udUE+DL

«7L000E+0L
G

f151cuz 41
«9225cc tuy
e12090n 401
P LA VS §

e35457 2431
eclydoi4ul
S0l t+ul

v



Table A-31.

Summary of 2000 Monte Carlo Simulations

with Intervals Calculated From Lambda Tilde

ALPHA=.U50 Nz 1000 =.03003 LAMBDAZ,800
NOe OF SAMPLES MWITH ALPHA LI OUTSIDE OF (043450 111
NOe OF SAMPLES WITH ALPHA LI PRIMZ OUTSICE OF (04045} 7¢
NO. UF A2Se. VALUt OF RHU HAT GRZATER THAN 1 0
NCs OF FUQ GKEATER THAN 1 c
NOe OF S=u 1889
NO, OF SAMPLES> WITh 3ETA LI BEYOND PEAFSON=HARTLEY TABLE 111
P HAT LAMBGA HAT LAM3CA STAR
MEAN= «23.05E-03 «55873E+a3 «55937E+00C
MIN= Ce e 0.
MAX= e 33G0JE-CL «9c968E+00 «97067E+00
SIGMA= ,18205E-G2 «34LETE+UC e36504E+0C
FRACTLION OF CONFIGENCE INTERVALS COVERING P
ANU=BURSTEIN NORMAL EDGEWORTH2 EDGEWORTHG
ALL 200¢ e1000dc¢0l «66067E¢u0 «10000E+01 «91892E+00
1ST 1000 «10C00E+3L «66667E+6L0 «1J0000E+012 «88235E+GC
2ND 1000 «1000uEeul s0bb67ECGY «10J00E¢012 «95500€E¢30
RATIO UF CONFIBEMNCZ INTERVAL LENGTH TO ANDERSON=BURSTEIN LENGTH
(FIRST COLUMN IS RATIO OF ANDERSON=BURSTEIN LENGTH
TO ANOJCRSON=BURSTEIN LENGTH WITH INODEPENUENCE ASSUMED)
MEAN= «32312E¢01 «13708E+012 «116J2E+02 011926E+¢01
MIN= e93903iE¢+ud «10000E*IL «100J3E+(2 «10G000E+01
MAX= e82165:¢01 «15621E+01 +122J06E+01 «13113E+01
SIGMA= «18111c+01 «17764E*0D «73930E-01 «1153EE+00
NOs OF ITERATIONS
ME A= ¢33704E401 «38286E¢01
MINz «300J0E+01 «3000CE+01L
MAX= «00000E+01 «70000E+01
“n AE CATI IIDECe L] r

121
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(A)

LAMBOA TILDE

PEARSON

«66667E+400
«66667E+00
«66667E+00

«10263E¢01
+95522E+00
«1062ZE+01
«30232€-01

«35315€E+¢01

«20000E+01

«50000c+01
n

«63114E+CG
0.

«97176E+G0O

«37138E+0C



APPENDIX B. COMPUTER PROGRAM FOR CONFIDENCE LIMITS FOR
A PROPORTION OR ERROR RATE

PROGRAM CONLIM(INPUT,OUTPUT)
CONMMON/LIMITS/PL,PU,PLO,PUJ,PLI,PUI,PPLI,PPUI,PLP,PUP,XL1,XL2
CONMON/NMJN/PH,QH,RHOH , XLH,N,S,R,T,ALPHA ,UA,XLS
COMMON/TAN/SL,SU,2ZL,2U,RL,RU,BL,BU,HL,HU
COMMON/PI/S1LI,S2LI,S1UI,S2UI
COMMON/EI/D1LI,D2LI,D1UI,D2UI,D1PLI,D2PLI,D1PUI,D2PUI
COMMON/QUT /JT2,JT4,JT,LT2,LT4,LT
COMMON/SMALL/XLG

2 ~JIRMAT(/)

3 FORMAT(1H1)

5 FORMAT. 1X ,I12,* PERCENT CONFIDENCE INTERVAL FOR LAMBDA = (*,E12
1.5.%,%,E12.5,%)*)

6 FORMAT(1X ,I2,* PERCENT CONFIDENCE INTERVAL FOR P=)

7 FORMAT(1X, *PARAMETER VALUES....... o *
1 +*N= *,15,6X,*S=z *,F4.0,6X,*R= *,F4.0,6X,*T= *,F2.0,6X,
1*ALPHA=%*,F4.3)

8 FORMAT(1X,*ACCURACY VALUES.........*
1,*MINSIG=*,I1,6X,*MINDEC=*,I1,5X,*MAXIT=%,12)

9 FORMAT(tX, *PARAMETER VALUES....... ¥
1 +*N= *,15,6X,*S= *,F4.0,6X,*R= *,F4.0,6X,*T= *,F2.0,6X,

1*xALPHA=* ,F4.3,6X,*LAMBDA= *,F4.3)

20 FORMAT(7X,*ANDERSON-BEURSTEIN =#%,19X,*(*,E12.5,#%,%,E12.5,%)%)

21 FORMAT(7X,*NORMAL =#,30X,*(*,E12.5,%,%,E12.5,%)*)

22 FORMAT(7X,*EDGEWORTH 2-TERM*,2X,*ITERATICN NO.*,I2,%x=%, 4X,
1%(*,E12.5,%,%,E12.5,%)*)

23 FORMAT(7X,*EDGEWORTH 4-TERM=*,2X,*ITERATION NO.=*,I2,*=%, 4X,
1%(* E12.5,%,%,E12.5,%)*)

24 FORMAT(7X,*PEARSON SYSTEM *,2X,*ITERATION NO.*,I2,% =%, 3X,*(=*
1,E12.5,%,* ,E12.5,%)*)

25 FORMAT ( 1X,*TANGENTS OF *,I2,* PERCENT CONFIDENCE REGION=*)

26 FORMAT(32X,*HORIZONTAL TANGENT*,1BX,*VERTICAL TANGENT=*)

28 FORMAT(34X,*(LIMITS FOR P)#*,19X,*(LIMITS FOR LAMBDA)*)

27 FORMAT(32X,*P#*,12X,*LANBDA*,18X,*P*,12X,*LAYZDA*)

31 FORMAT(10X,*UPPER*,10X,2(E12.5, 3X,E12.5,10X))

32 FORMAT(10X,*LOWER*,10X,2(E12.5, 3X,E12.5,10X))

33 FORMAT(1X,*NO INFORMATION ON LAM3DAx*)

34 FORMAT( 1X,*USER MUST FURNISH PRIOR KNOWN VALUE OF LAMBDA. SAMPLE
1PROVIDES NO ESTIMATE OF LAMBDA®*)

35 FORMAT(7X,*EXACT LIMITS FOR P =#*18X,*(*,E12.5,*,%,E12.5,%)*)

36 FORMAT( 1X,*REGION FOR (LAMBDA,P) IS APPROXIMATE FOR SMALL S AND
INOT APPLICABLE FOR S=0 OR S=1.x)

37 FORMAT(7X,*P HAT=#*,7X,E12.5)

38 FORMAT(7X,*LAMBDA TILDE=#*,E12.5)

Ce..o. INPUT VARIABLES NEEDED TO ESTABLISH ACCURACY OF THE EDGEWORTH AND
C.....PEARSON SYSTEM APPROXIMATIONS ARE MINSIG, MINDEC, AND MAXIT.
C.....MINSIG=NUMBER OF SIGNIFICANT DIGITS OF ACCURACY FROM ITERATIONS
C.....(RELATIVE ACCURACY).
C.....MINDEC=NUMBER OF DECIMAL PLACES CF ACCURACY FROM ITERATIONS
C.....(ABSOLUTE ACCURAZY).
Ceeoe oMAXIT=AZIMUM NUNMBER OF ITERATIONS (STOP EVEN IF NEITHER RELATIVE
C.....NOR ABSOLUTE ACCURACY IS ACHIEVED)
C.....NPTS=NUMBER OF POINTS USED TO DETERMINE THE CONFIDENCE REGION FOR
C.eco.LAMBDA AND P.

MINSIG=3
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MAXIT=20
MINGEC=4
NPTS=1000

C.....BASIC INPUT VARIABLES ARE N,S,R,T, AND ALPHA (LISTED IN
C.....COMNVON/MJM/)
C.....N=SANPLE SIZE
C.....S=NU/BER OF ERRORS (S=0,1,...,N)
C.....R=NUINEER OF PAIRS OF CONSECUTIVE ERRORS (R=0,1,...,5-1)
C.....T=NULEER OF ERRORS IN FIRST AND LAST TRIALS (T7=0,1,2)
C.....100#*(1=-2+«ALPHA)=PERCENTAGE CONFIDENCE INTERVAL.
C.....BECAUSE IT USES TABLES INSTEAD OF EQUATIONS, THE PEARSON SYSTEM
C.....(SUBROUTINE PSA) CAN HANDLE ONLY ALPHA=.025 AND .050.
C.....XLG=A VALUE OF LAMBDA THAT MUST BE SUPPLIED BY THE USER IF S=0 OR
Ceeve.S=1,

N=20000 $§ R=13. $ S=3B. $ T=0. $ ALPHA=.05

CALL DEPEND(MINSIG,MINDEC,MAXIT,NPTS)

C.....PRINT THE INPUT DATA AND ACCURACY VALUES
PRINT3
PRINT2
IF(S.LE.1.)PRINT9,N,S,R, T,ALPHA,XLG
IF(S.GT.1.)PRINT7,N,S,R,T,ALPHA
PRINT8,MINSIG,MINDEC,MAXIT
PRINT2 $ PRINT2

C.....PRINT THE RESULTS
IF(S.LE.1.)GO TO 30
IA=INT(ALPHA*1000.) $ II=100-2%IA/10
PRINT2S,1I
PRINT2
PRINT26
PRINT 28
PRINT2
PRINT27
PRINT31,SU,2U,RU,BU
PRINT32,S5L,Z2L,RL,BL

30 IF(S.LE.1.)PRINT36
PRINT2 $ PRINT2
IF(S.GT.1.)PRINTS,II,XL1,XL2
IF(S.GT.1.)GO TO 41
PRINT33
PRINT2
PRINT34
PRINT2
PRINT35,PL,PU
CALL EXIT

41 FRINT2
PRINT2
PRINT2
PRINT6,II
PRINT20, PL.PU
PRINT2
PRINT21, PLO,PUO
PRINT2

PRINT22,JT2,D1LI,D1UI
PRINT22,LT2,D2LI,D2UI
PRINT2
PRINT23,JT4,D1PLI,D1PUI
PRINT23,LT4,D2PLI,D2PUIL
PRINT2
PRINT24,JT,S1LI,S1UI
PRINT24,LT,S2L1,S2UI
PRINT2 $§ PRINT2
PRINT37,PH

PRINT38,XLH

END

b L S L I I I I I I I I
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SUBROUTINE DEPEND(MINSIG,MINDEC,MAXIT,NPTS)

COMMON/LIMITS/PL,PU,PLO,PUO,PLI,PUI,PPLI,PPUI,PLP,PUP,XL1,XL2

COMMON/MJM/PH,QH,RHOH ,XLH,N,S,R,T,ALPHA,UA, XLS
C.....SUBROUTINE PARAM DEFINES SOME BASIC PARAMETERS.

CALL PARAM

C.....LJBROUTINE REGION DEFINES THE CONFIDENCE REGION FOR (LAMBDA,P),
Cie...THE TWO VERTICAL TANGENTS, AND THE TWO HORIZONTAL TANGENTS.

CALL REGION(NPTS)

C.....SUBROUTINE PLOT PLOTS THE CONFIDENCE REGION ON MICROFILM.

CALL PLOT
IF(S.LE.1.)GO TO 10

C.....SUBROUTINE LIMLAM DEFINES THE CONFIDENCE LIMITS FOR LAMBDA.
CALL LIMLAM
C.....SUBROUTINE NORMAL DETERMINES THE NORMAL APPROXIMATION 1=2%ALPHA
C.....CONFIDENCE LIMITS PLO AND PUO. IT UTILIZES THE 100xALPHA PERCENTAG
C.....E POINT OF THE STANDARD NORMAL DISTRIBUTION (EQ. 2.13).
CALL NORMAL(PLO,PUO)
C.....SUBROUTINE EDGEW DETERMINES BOTH THE 2-TERM AND THE 4-TERM EDGEWOR
C.....TH APPROXIMATION. THE LIMITS, DETERMINED BY ITERATION, ARE PLI AND
C.....PUI FOR THE 2-TERM CASE AND PPLI AND PPUI FOR THE 4-TERM CASE.
CALL EDGEW(PLO,PUO,PLI,PUI,PPLI,PPUI,IT2,IT4,MINDEC,MAXIT,MINSIG)

C.....SUBROUTINE PSA DETERMINES THE PEARSON SYSTEM APPROXIMATION.
C.e...THE LIMITS, DETERMINED BY ITERATION, ARE PLP AND PUP.

CALL PSA(PLO,PUO,PLP,PUP,IT,MINDEC,MAXIT ,MINSIG)
C.....SUBROUTINE ANDBUR IMPROVES ON THE POISSON APPROXIMATION FOR
C.....BINOMIAL CONFIDENCE LIMITS.
C.....PLIND AND PUIND ARE THE ANDERSON-BURSTEIN IMPROVED LIMITS FOR IND-
C.....EPENDENT TRIALS. PL AND PU ARE THE MODIFIED ANDERSON=-BURSTEIN LIMI
Ceve..TS FOR DEPENDENT TRIALS.
10 CALL ANDBUR(PL,PU,PLIND,PUIND,MINSIG,MINDEC)

RETURN
END
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SUBROUTINE PARAM

COMIMCN/MJUM/PH,QH, RHOH, XLH,N,S,R,T,ALPHA,UA, XLS

DINMENSION D3(12),D8(12)
DATA(D3=.103,.088,.080, .069, .060,.052,.046,.041,.035,.032,.029,.02
16)
DATA(DB=.197,.174,.163,.152,.145,.136,.128,.122,.115,.109,.098, .08
18)

C.....DEFINE UA, THE UPPER 100*ALPHA PERCENTAGE PT. OF THE STANDARDIZED
C.....NORMAL DISTRIBUTION. (EQ. 2.9). SUBROUTINE MDNRIS(1.-ALPHA,UA,IER)
C.....IS A SUBROUTINE FROM IMSL. IT COMPUTES

C.....THE INVERSE GAUSSIAN INTEGRAL. FOR INSTANCE, IF 1-ALPHA=.95 IS THE
C..... INPUT VALUE, THEN UA=1.64485 IS THE OUTPUT VALUE. IER IS AN ERROR
C.....INDICATOR. (NOTE.. IMSL=INTERNATIONAL MATHEMATICAL AND STATISTICAL
C.....LIBRARIES).

CALL MCNRIS(1.-ALPHA,UA,IER)

C.....DEFINE P HAT (EQ. 2.1)
PH=S/N

C.....DEFINE LAMBDA HAT (EQ.2.2)
QH=1.-PH
AH=S-PH
BH=QH* (2.%S-T)
WA= (R=BH+AH) * (R~BH+AH) +4 . #R* (1.-2. *PH)*AH
IF(S.EQ.0.)XLH=0.
IF(S.NE.O.)XLH=(R-BH+AH+SQRT (WA))/(2.%AH)

C.....DEFINE LAMBDA TILDE
IERROR="NT(S+1.E-5)
IF(IERROR.LT.13)Q3=D3( IERRTR)
IF(IERRGR.LT.13)Q8=D8( IERRTR)
IF(IERROR.GE.13)Q3=1.043*5S%*(-1.442)
IF(IERROR.GE.13)(QB=8.65%S**(-1.824)
XLT=(XLH+1.6%Q3-0.6%Q8)/( 1.-2.*%(Q8-Q3))
IF((XLH.GE.O.).AND. (XLH.LE..3-Q3))XLT=.3*XLH/(.3-Q3)
IF((XLH.GE..8-Q8).AND. (XLH.LE.1.))XLT=(.2*XLH+Q8)/(.2+Q8B)
IF(XLT.LT.0.)XLT=0.
IF(XLT.GT.1.)XLT=1.
XLH=XLT

C.....DEFINE LAMBDA STAR (EQ.2.48)
IF(S.GT.0.)XLS=N*R/((N=1.)%S)
C.....DEFINE RHO HAT (EQ.2.8)
SHOH= (X LH-PH) /QH
RETURN
END

LE SRR EEEREEN AR E R RS R R R R EREREE RS FE L R E T R N E P EN L E NN PR Y L NE
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SUBROUTINE LIMLAM
CCMNMON/NMJM/PH,QH, RHOH, XLH,N,S,R,T,ALPHA,UA, XLS
CONMMON/LIMITS/PL,PU,PLO,PUD,PLI,PUI,PPLI,PPUI,PLP,PUP,XLT,XL2

C.....DEFINE NORMAL CONFIDENCE LIMITS FGR LAMBDA (SEE EQ. 2.17)
YI=UA*UA+2.*S*XLH $ YJ=4.*S*xXLH*XLH*(UA*UA+S)
XL1=(YI=-SQRT(YI*YI-YJ))/(2.*(UA*UA+S))
XL2=(YI+SQRT(YI*YI-YJ))/(2.*(UA*UA+S))

RETURN
END

LR R R RS R ER LA RN RS2 R L EREFEELANEEIEI R E S RER R ESR SR RN TN FESEESF T EEESPEEREE T ELE S ]
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SUBROUTINE REGION(KZ)

C.....THIS SUBROUTINE DEFINES THE BOUNDARY (EQ. 2.16) OF THE CONFIDENCE
C.....REGION FOR (LAMBDA, P). IT ALSO LOCATES THE TWO VERTICAL -TANGENTS
C.....AND THE TwO HORIZONTAL TANGENTS.
COMMON/NJUM/PH,QH, RHOH, XLH,N,S,R,T,ALPHA,UA, XLS
COWMON/PLT/ GL(500),GU(500),GP(500),KE
COMMON/TAN/SL,SU,ZL,2U,RL,RU,BL,BU,HL,HU

C.....DETERMINE XC, THE VALUE OF THE UPPER 200*ALPHA PERCENTAGE POINT NF
C.....THE Chi-SQUARED DISTRIBUTION WITH TwWO DEGREES OF FREEDOM.
C.....MDCHI IS OBTAINED FROM THE INTERNATIONAL MATHEMATICAL AND STATISTI
C.....CAL LIBRARIES,INC.

CALL MDCHI(1.-2.*ALPHA,2.,XC,IER)

C.oc..FIND THE INTERVAL FOR LAMBDA WITHIN .1 ON EACH END.

MU=0
I1Z=11
DO 100 I=1,1Z
XRT=0.
YL=(I-1.)/(1Z-1.)
CALL CURVES(YL,XLH,QH ,PH,XC,N,PL,PU,XRT)
IF((XRT.EQ.YL).AND.(YL.LT.XLH))HL=YL
IF((XRT.EQ.YL).AND.(YL.GT.XLH))HU=YL
IF((XRT.EQ.YL).AND.(YL.GT.XLH))GO TO 101

100 CONTINUE

101 CONTINUE

C.....DEFINE THE BOUNDARY OF THE CONFIDENCE REGION AND LOCATE THE POINTS
C.....0F TANGENCY

KD=0

KE=1

NL=NU=0

C.....KX=NUMBER OF POINTS TO BE PLOTTED
KX=100

C.....KZ=NUMBER OF POINTS USED TO DEFINE BOUNDARY AND TANGENTS
KT=KZ/KX
DO 333 I=1,KZ
YL=(KZ=I)*HL/(KZ-1.)+(I-1.)*HU/(KZ-1.)
TL=PL $ TU=PU
CALL CURVES(YL,XLH,QH ,PH,XC,N,PL,PU,XRT)
17 FORMAT(1X,I13,3X,3(E12.5,3X))

C.....FIND THE COORDINATES (BL,RL) AND (BU,RU) OF VERTICAL TANGENTS
IF((TU.EQ.-1.E6).AND.(PU.NE.-1.E6))BL=YL
IF((TU.EQ.-1.E6).AND.(PU.NE.-1.E8))RL=(PL+PU)/2.
IF((TL.NE.-1.E6 .AND.(PL.EQ.-1.E6))BU=WL
IF((TL.NE.-1.E6).AND.(PL.EQ.-1.E6))RU=(TL+TU)/2.

C.....FIND THz COORDINATES (ZL,SL) AND (ZU,SU) OF HORIZONTAL TANGENTS

IF((PL*TL.GT.0.).AND.(PL.GT.TL))NL=NL+1
IF(NL.EQ.1)SL=PL
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IF(NL.EQ.1)ZL=(YL+WL)/2.
IF((PL*TL.GT.0.).AND. (PU.LT.TU))NU=NU+1
IF(NU.EQ.1)SU=PU
IF(NU.EQ.1)ZU=(YL+WL)/2.

wL=YL
IF(PL.EQ.-1.E6)GO TO 333
KD=KD+1
IF(KD.EQ.(KD/KT)*KT)KE=KE+1
Covnn GL=LOWER BOUNDARY
C.....GU=UPPER BOUNDARY
C..... GP=VALUES OF LAMBDA (ABSCISSA)

GL(KE)=PL $ GU(KE)=PU $ GP(KE)=YL
333 CONTINUE

RETURN

END
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C....
C....

13

14
15

10

SUBROUTINE CURVES (A,B,C,D,E,N,PL,PU,XRT)

.THIS SUBROUTINE COMPUTES THE BOUNDARY OF THE CONFIDENCE REGION
.FOR LABDA AND P. (EQ. 2.16).

AQ(A,B,C,D)= A*(1.-A)*(1.-A)+2.*C*xA*(1,.=-A)*(B-A)+C*(1.-2.*D+A)*
1(B-A)*(B-A)
BQ(A,B,C,D,E,N)==A*(1.=A)*(2.*D*(1.-A)+2.%C*D*(B=A)+E*Cx*(1.-2.%D+A
1)/N)

CQ(A,D)=D*D*A*(1.-A)*(1.-A)
YQ1(AA,BB,CC)=(-3B+SQRT(BB*BB-4.*AA*CC))/(2.%AA)
YQ2(AA,BB8,CC)=(-BB-SQRT(BB*BB-4.*AA*CC))/(2.*AA)
FORWMAT(1X,6(E12.5,3X))

IF(B .EQ.0.)13,14
AA=(1.-A)*(1.-A)+2.*C*(1.-A)*(1.-A)+A*Cx*(1.-2.%D+A)
BB==(1.=-A)*(2.*%D*(1.-A)+2.*C*D*(B-A)+E*Cx(1,-2.*D+A)/N)
CC=D*D*(1.-A)*(1.-A)

GO 70 15

AA=AQ(A,B,C,D) $ BB=BQ(A,B,C,D,E,N) $ CC=CQ(A,D)
1F(BB*B3-4.*AA*CC.LT.0.)PL=PU==1.E6
IF(A.EQ.1.)PL=PU=-1.EB6
IF(A.EQ.1.)GO TO 10
IF(BB*BB-4.*AA*CC.LT.0.)XRT=A
IF(BB*BB-4.*AA*CC.LT.0.)GO TO 10
IF(AA.EQ.0.)GO TO 10
PL=YQ2(AA,BB,CC) $ PU=YQ1(AA,BB,CC)
CONTINUE
RETURN
~“ND
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SUBROUTINE PLOT

C.....THI5 SUBROUTINE PLOTS THE CONFIDENCE REGION FOR (LAMBDA, P)
CCMIACN/wdJM/PH,QH,RHCH, XLH,N,S,R,T,ALPHA,UA, XLS
COM'ON/DDSCALE/XMIN, XMAX, YIAIN, YMAX,MINX,MAXX,MINY ,MAXY,SCX,SCY,
1NSCX,NSCY,MSCX,MSCY,ISCX,ISCY
COMMON/DD/IN,IOR,IT,IS,IC,ICC,IX,IY
COMMON/TAN/SL,SU,ZL,2U,RL,RU,BL,BU,HL,HU
COMIION/PLT/ GL(500),GU(500),GP(500),KE
DIMENSION AB(2),AC(2),AD(2),AE(2)

CALL CLINIT(3,184M. J. MILES, XZ506)
MINX=MINY=0 $ MAXX=MAXY=1000
CALL DDBOX(MINX,MAXX,MINY RIAXY)

C.....SIZE THE ORDINATE FROM ZERQ TO THE LARGEST POWER OF .1 THAT INCLUD
C.....ES THE REGION. DRAW TEN EQUALLY SPACED TIC MARKS.
GG=.1
DO 27 1=1,10
GG=GG*10.
K1=INT(SU*GG)
IF(K1.GT.1.)GO TO 28
27 CONTINUE
28 SM=1.%(1-2.)
YMAX=1.%10.*%(-SM) $ YMIN=0.

C.....SIZE THE ABSCISSA FROM THE LARGEST TO THE SMALLEST INTEGER
C.....MULTIPLE OF .1 THAT INCLUDES THE REGION. DRAW TIC MARKS AT EVERY
Civeee 1.

JX1=INT(HL*10.+1.E=-6) $ JX2=INT(HU*10.+1.E~6)

XMIN=.1%JX1 § XMAX=.1%xJX2

CALL DDPT

KX=JX2=-JX1 $ KY=10

MX=MAXX /KX

MY=MAXY/KY

LX=KX=1 $ LY=KY=1

C.....DRAW THE TIC MARKS ON THE ABSCISSA FOR LAMBDA AT EVERY .1,
DO 10 I=1,LX
IX=I*MX
IY=0
CALL DDBP
IX=T*MX
Iy=20
CALL DDvC
IX=I*MX
IY=1000
CALL DDBP
Iy=980
IX=1*MX
CALL DDVC

10 CONTINUE

C.....DRAW 10 EQUALLY SPACED TIC MARKS ON THE ORDINATE FOR P,

DO 20 I=1,LY
IY=1*MY
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IX=0
CALL DDBP
IY=1*MY
IX=20
CALL DDVC
Iy=I*MY
I1X=980
CALL DDBP
IY=1*MY
IX=MAXX
CALL DDvVC
20 CONTINUE

C.....DRAW THE UPPER AND LOWER BOUNDARY OF THE REGION.
CALL DDGRAPH(KE,GP,GU,1,1,1)
CALL DDGRAPH(KE,GP,GL,1,1,1)

C.....CONNECT THE UPPER AND LOWER CURVES TO COMPLETE THE BOUNDARY
AB(1)=GL(1) $ AB(2)=GU(1)$AC(1)=GL(KE) $ AC(2)=GU(KE)
AD(1)=GP(1) $ AD(2)=GP(1) § AE(1)=GP(KE) $ AE(2)=GP(KE)
CALL DDGRAPH(2,AD,AB,1,1,1)

CALL DDGRAPH(2,AE,AC,1,1,1)
CALL DDFRAME

RETURN

END

*ttttt*sv’*i*#*!**tkw**l*t#***‘**!*t!h**k***!l‘tl***********‘****#t*#yt**-
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SUBROUTINE NORMAL(PLO,PUO)
CCMON/MJUM/PH,QH, RHOH, XLH,N,S,R,T,ALPHA,UA, XLS

C.....PLO AND PUO ARE THE NORMAL 1-2xALPHA CONFIDENCE LIMITS (SEE EQ.
Cevenee 2.13)
RHOA=ABS(RHOH) $ G=1. $ IF(N.EQ.(N/2)*2)G=RHOA/RHOH
V=N*QHx* (1.-RHOH*RHOH=2.*RHOH/N+2.*G* (RHOA**(N+1.))/N)/((1.-RHOH) *
1(1.-RHOH))
W= (2. * S+ 1.) = N
PUO = (V * UA * UA + W + SQRT ((V * UA » UA + W) * (V * UA * UA +
1W) = W * W)) / (2. *x N * N)
Z = (2. S =-1.) =N
PLO=(V*UA*UA+Z=SQRT ((V*UA®UA+Z) *(V*UA*UA+Z)=2Z*Z))/(2.*N=*N)
IF(PUO.GT.1.)PUO=1.
RETURN
END
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SUBROUTINE EDGEW(PLO,PUO,PLI,PUI,PPLI,PPUI, IT2,1T4,L,1Z,ISIG)

C..... THIS SUBROUTINE DETERMINES BOTH THE EDGEWORTH 2 AND 4 TERM
C.....APPROXIMATIONS
COMMON/OUT/UT2,UT4,JT,LT2,LT4,LT
CcOM¥MON/EI/D1LI,L,D2LI,D1UI,D2UI,D1PLI,D2PLI,D1PUI,D2PUI
CO%NMON/MJM/PH,QH ,RHOH ,XLH ,N,S,R,T,ALPHA,UA, XLS
PHI(X)=EXP(-X*X/2.)/SQRT(2.%3.141592654)
C3(X)=(EXP(-X*X/2.)/SQRT(2.%3.141592654) ) *(=X**34+3.%X)
PS(X)=(EXP(-X*X/2.)/SQRT(2.%3.141592654) ) *(=X**5+10.*X**3-15 ,%X)
J2=J4-=,
NALP=NALPP=0
JALP=JALPP=0
ML=MU=MPL=MPU=0
I=0
I7T2=IT4=0
UAL=UAU=UA
UPAL=UPAU=UA
HLI=HUI=ALPHA
PHL=PLO $ PHU=PUQ
PLI=PLO $ PUI=PUO
PPLI=PLO $ PPUI=PUO
QHL=1.-PLI $ QHU=1.-PUI

C..... L=NUMBER OF DECIMAL PLACES DESIRED FOR AGREEMENT ON CONSECUTIVE
C.....ITERATIONS.

FT=1.%10%*(~L)

IF((PLO.LE.O.).OR.(PUO.GE.1.))GO TO 30

C.....BEGIN ITERATION. ITERATION LOOPS BACK TO STATEMENT 35 IF LIMITS
C. ...FROM TwWO CONSECUTIVE ITERATIONS ARE NOT SUFFICIENTLY CLOSE.
35 IF(I1.EQ.IZ)GO TO 30
RHLH=(XLH-PLI)/QHL
RHUH= (XLH-PUI)/QHU

Ceeunn DEFINE PLI (EQ. 3.11)
CLI=PLI
RHLA=ABS(RHLH) $ G=1. $ IF(N.EQ.(N/2)*2)G=RHLA/RHLH
VHL=N*QHL* (1.-RHLH*RHLH=2.*%RHLH/N+2.%G* (RHLA** (N+1.))/N)/((1.
1-RHLH) * (1.-RHLH))
GL=1.-RHLH $ DL=GL*GL*GL $ HL=VHL*VHL
BHL=QHL*(1.-2.%PHL)*(N+(6.*RHLH/(DL))*(N-1.~(N+1.)*RHLH))/ (6.%
1(HL*%,75))
CHL=(1.-6.*PHL*QHL)*(1.+10.*RHLH+RHLH*RHLH) /(24 .*N*QHL*(1.-RHLH*
1RHLH))
IF(PLI.GT.0.)ALI=ALPHA-(BHL/SQRT(PLI))*(UAL¥UAL-1.)*PHI(UAL)
IF(((ALI.LE.O0.)).OR.((ALI.GT.0.5)))NALP=1

C.....ONCE ALI IS LESS THAN ZERO SET PLI=0 AND HOLD IT THERE REGARDLESS
C.....0F THE VALUE ALIJ ASSUMES DURING ITERATION. OBSERVE THE SAME RULE
C.....FOR ALPI.

IF(NALP.EQ.1)PLI=0.

IF((ALI.GT.0.).AND.(ALI.LT..5))CALL MONRIS(1.-ALI,UAL,IER)

CL=(2.%S5=1.)*N

BL=VHL=*=UAL*UAL+CL
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IF(PLI.NE.O.)PLI=(BL-SQRT(BL*BL-CL*CL))/(2.*N*N)
QHL=1.-PLI
PHL=PLI

C.....DEFINE PUI (EQ. 3.11)
CUl=PUI
RHUA=ABS(RHUH) $ G=1. $ IF(N.EQ.(N/2)*2)G=RHUA/RHUH
VHU=N+QHU* (1.-RHUH*RHUH=2.*RHUH/N+2.*G* (RHUA** (N+1.))/N)/((1.
1-RHUH)*(1.-RHUH))
GU=1.-RHUH $ DU=GU*GU=*GU $ HU=VHU*VHU
BHU=CHU*(1.-2.*%PHU)*(N+(6.*RHUH/(DU) ) *(N=1.=(N+1.)*RHUH))/(6.%
1(HU*%.75))
CHU=(1.-6.*PHU*QHU)*(1.4+10.*RHUH+RHUH*RHUH) /(24 .*N*QHU= (1 .-RHUH=*
1RHUH))
AUI=ALPHA+(BHU/SQRT(PUI))*(UAU*UAU=-1.)*PHI (UAU)
IF((AUI.LT.0.).0R.(AUI.GT.0.5))JALP=1
IF(JALP.EQ.1)PUI=1.
IF((AUI.GT.0.).AND. (AUI.LT..5))CALL MDNRIS(1.-AUI,UAU,IER)
CU=(2.%S+1.)*N
BU=VHU*UAU*UAU+CU
PUI=(BU+SQRT(BU*BU-CU*CU))/(2.%N*N)
QHU=1.-PUI
PHU=PUI

C.....DEFINE PPLI
CPLI=PPLI

C.....APLI IS DEFINED IN EQ. 4.4
IF(NALPP.NE.1)HLI=ALPHA-BHL* (UPAL*UPAL=-1.)*PHI(UPAL)/SQRT(PPLI)
IF(PPLI.GT.0.)APLI=HLI+(CHL*P3(UPAL)+0.5*BHL*BHL*PS(UPAL))/PPLI
IF((¢APLI.LE.O.)).OR.(APLI.GT.0.5))NALPP=1
IF((APLI.GT.0.).AND.(APLI.LT..5))CALL MDNRIS(1.-APLI,UPAL,IER)
BPL=VHL*UPAL*UPAL+CL
IF(PPLI.NE.O.)PPLI=(BPL-SQRT(BPL*BPL-CL*CL))/(2.%N*N)
IF(NALPP.EQ.1)PPLI=0.

Ceennn DEFINE PPUI
CPUI=PPUI

C.....APUI IS DEFINED IN EQ. 4.4
HUI=ALPHA+BHU*(UPAU*UPAU=1.)*PHI(UPAU)/SQRT(PPUI)
APUI=HUI-(CHU*P3{UPAU)+0.5*BHU*BHU*P5(UPAU) )/PPUI
IF((APUI.LT.0.).0R.(APUI.GT.0.5))JALPP=1
IF(JALPP.EQ.1)PPUI=1.

IF((APUI.GT.0.).AND.(APUI.LT..5))CALL MDNRIS(1.-APUI,UPAU,IER)
BPU=VHU*UPAU*UPAU+CU

PPUI=(BPU+SQRT(BPU*BPU-CU*CU))/(2.*NxN)

I=I+1

C.e...TEST THE ACCURACY OF THE LIMITS.
CALL €°GFIG(ISIG,JOK,PLI,PUI,CL1,CUI,KPL,KPU,KCL,KCU)
CALL SIGFIG(ISIG,JOK,PPLI,PPUI,CPLI,CPUI,KPPL,KPPU,KCPL,KCPU)
FL=ABS(PLI-CLI) $ FPL=ABS(PPLI-CPLI)
FU=ABS(PUI-CUI) $ FPU=ABS(PPUI-CPUI)

C.e.o.IF THE LIMITS AGREE SUFFICIENTLY FOR TWO CONSECUTIVE ITERATIONS,
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C.....SET ML=1, ETC.
IF((FL.LT.FT).OR.(KPL.EQ.KCL) )ML=1
IF((FU.LT.FT).0OR.(KPU.EQ.KCU))MU=1

C.....IF BOTH UPPER AND LOWER LIMITS AGREE SUFFICIENTLY WITH THEIR PREVI
C.....0US VALUES, NOTE THE NUMBER OF THE ITERATION.
IF((ML*NU.EQ.1) .AND.(J2.EQ.0))IT2=1
IF(ML*MU.EQ.1)U2=1
IF((FPL.LT.FT).OR.(KPPL.EQ.KCPL))MPL=1
IF((FPU.LT.FT).OR.(KPPU.EQ.KCPU))MPU=1
IF( (MPL*MPU.EQ.1).AND.(U4.EQ.0))IT4=I
IF(MPL*MPU.EQ.1)J4=1
IF((ML*%'U.NE.1).AND.(1.EQ.IZ))IT2=1
IF((MPL*MPU.NE.1).AND.(I.EQ.12))IT4=1

C.....TEST THE NEED FOR ACDITIONAL ITERATIONS.

IF(ML¥*NU*MPL*MPU.EQ.1)30,35

30 CONTINUE
DILI=CLI $ D2LI=PLI
D1UI=CUI $ D2UI=PUI
D1PLI=CPLI $ D2PLI=PPLI
D1PUI=CPUI $ D2PUI=PPUI
IF(({PLI.LE.O.))PLI=0O.
IF(PUI.GE.1.)PUI=1.
IF((PPLI.LE.O.))PPLI=O.
IF(PPUI.GE.1.)PPUI=1.

73 CONTINUE
JT2=1T2~1 $ UT4=1T4-1
172=1T2 $ LT4=1T4
RETURN
END
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SUBROUTINE SIGFIG(JSIG,JOK,PLI,PUI,CLI,CUI,KPL,KPU,KCL,KCU)

C.....THIS SUBROUTINE TESTS TO SEE THAT TwWO CONSECUTIVE ITERATIVE
C.....VALUES DIFFER BY LESS THAN JSIG SIGNIFICANT DIGITS.
C.....ANY VALUES OF PLI OR CLI CLOSE TO ZERO ARE SET EQUAL TO ZERO.
C.....THIS LOOP IS SATISFIED WHEN THE VALUES ARE MULTIPLIED BY THE
C.....POWER OF TEN THAT RENDERS THE VALUE EQUAL TO AN INTEGER THAT HAS
C.....dSIG DIGITS.

uyOK=0

KPL=KPU=KCL=KCU=0

JJ=10*= (JSIG-1)

JA=15

IF(PLI.LT.1.*10*x*(JSIG-JA))PLI=0.

IF(CLI.LT.1.%10*x(JSIG-JUA))CLI=0.

DO 20 J=1,JA

IF(PLI.NE.O.)JPL=INT(PLI*(10%*x*J))

IF(PLI.EQ.O.)JPL=UJJ

IF(CLI.NE.O.)JCL=INT(CLI*(10*x*J))

IF(CLI.EQ.O0.)JCL=uJ

JPU=INT(PUI*(10%xxJ))

JCU=INT(CUI*(10xxJ))

IF((JPL.GE.JJ).AND. (JUPL.LT.10%xJJ))KPL=JPL

IF((JPU.GE.JJ).AND. (JPU.LT.10*JJ))KPU=JPU

IF((JCL.GE.JJ).AND. (JCL.LT.10*JJ))KCL=JCL

IF((JCU.GE.JJ).AND. (JCU.LT.10*JJ))KCU=JCU

IF(KPL*KPU*xKCL*KCU.NE.O)GO TO 25

IF(KPU*KCU.NE.O)GO TO 25

20 CONTINUE
25 IF(J.LE.15)J0OK=1
RETURN
END
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SUBROUTINE PSA(PLO,PUO,PLI,PUI,IT,LL,I1Z,ISIG)
COMMON/PQ/B2L(21,68),B2U(21,68),B5L(21,68),B5U(21,68)
COMNON/MJM/PH,QH, RHOH, XLH,N,S,R, T, ALPHA ,UA, XLS
CON:ON/PI/S1LI,S2L1,S1UI,S2U1
CO#MON/OUT/JT2,JT4,JT,LT2,LT4,LT
DIMENSION BETA1(21),BETA2(65)

11 FORMAT(1X,*ALPHA .NE. .025%)

C.....SUBROUTINE PEART ENTERS THE PEARSON AND HARTLEY TABLE 32 FOR
C.....ALPHA=.025,.050.

CALL PEART

C..... LL=NUMBER OF DECIMAL PLACES DESIRED FOR AGREEMENT ON CONSECUTIVE
C.....ITERATIONS.
FT=1.%10%*(-LL)

C.....DEFINE BETA1
DO 77 I=1,21
BETA1(I)= (.1%(I-1.))%%*2
77 CONTINUE

C.....DEFINE BETA2
DO 75 I=1,65
BETA2(I)=1.6+40.2*(I=1.)

75 CONTINUE

IT=0
ML=MU=0
M=0
PLI=PLO $ PUI=PLO
PHL=PLO $ PHU=PUO
IF(PLO.FQ.0.)GOTO 33
IF(PUO.EQ.1.)GO TO 33

Cevrn. ITERATION WILL CAUSE RETURN TO STATEMENT 35
35 CONTINUE
IF(M.EQ.IZ)GO TO 33
M=M+1
QHL=1.-PLI $ QHU=1.-PUI
RHLH= (XLH-PLI)/QHL
RHUH= ( XLH-PUI ) /QHU
IF((RHLH.GE. 1.).0R.(RHU4.GE. 1.))33,72
72 IF((RHLH.LE.-1.).0R.(RHUH.LE.-1.))33,74
74 VHL=N+QHL*(1.-RHLH*RHLH-2.%RHLH/N)/((1.-RHLH)*(1.-RHLH))
GL=1.-RHLH $ DL=GL*GL*GL $ HL=VHL*VHL
VHU=N*QHU* ( 1.-RHUH*RHUH=-2.*RHUH/N) /( (1.-RHUH)* (1.-RHUH))
GU=1.=-RHUH $ DU=GU*GU*GU $ HU=VHU*VHU
JHL=QHL#*(1.-2.%PHL)*(N+(6.*RHLH/(DL))*(N=1.=(N+1.)*RHLH))/(6.*
1(HL**.75))
BHU=QF 1% (1.-2.%PHU) *(N+ (6.%RHUH/ (DU) ) *(N=1.=(N+1.)*RHUH))/ (6. *
1(HU**.75))
CHL=(1.-6.*%PHL*QHL)*(1.+10.*RHLH+RHLH*RHLH) /(24.*N*QHL* (1.~RHLH*
1RHLH))
CHU=(1.=6.%*PHU*QHU) * (1 .+10.*RHUH+RHUH*RHUH) /(24 . *N*QHU* (1. -RHUH*
1RHUH) )
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IF(PLI.EQ.0.)GO TO

c.....B1,B2,C1,
B1=36.*BHL*BHL/PLI
B2=3.424.%CHL/PLI
C1=36.*BHU*BHU/PUI
C2=3.+4+24.xCHU/PUI
K=J=0

C.....LOCATE B1
DO 30 I=1,20

33

AND C2 ARE EQUATIONS 5.1

IN THE TABLE

IF((B1.GE.BETA1(I)).AND.(B1.LE.BETA1(I+41)))uJ=I

IF(J.GT 0)GO TO 40
30 CONTINUE
40 CONTINUE

C.c...
DO 88 1=1,64

LOCATE B2 IN THE TABLE.

IF((B2.GE.BETA2(1)).AND.(B2.LE.BETA2(I+1)))K=I

IF(K.GT.0)GO TO 92
88 CONTINUE
92 CONTINUE

C.....LOCATE C1
I=L=0
DO 50 J1=1,20

IN THE TABLE

IF((C1.GE.BETA1(J1)).AND.(C1.LE.BETA1(J1+1)))I=U1

IF(I.GT.0)GO TO 60
50 “ONTINUE
60 CONTINUE

C.....LOCATE C2 IN THE TABLE.

DO 89 u1=1,64

IF((C2.GE.BETA2(J1)).AND.(C2.LE.BETA2(J1+1)))L=J1

IF(L.GT.0)GO TO 84
89 CONTINUE
84 CONTINUE

C.....WHENEVER B1,B2,C1,
C.....TABULAR VALUE

OR C2 IS OFF A TABLE,

ASSIGN IT THE NEAREST

IF((K.EQ.0).AND.(B2.LT.BETA2(1)))K=1
IF((K.EQ.0).AND.(B2.LT.BETA2(1)))B2=BETA2(1)
IF((XK.EQ.0).AND. (B2.GT.BETA2(65)))K=64
IF((K.EQ.0).AND.(B2.GT.BETA2(65)))B82=BETA2(65)
IF((J.EQ.0).AND.(B1.LT.BETA1(1)))u=1
IF((J.EQ.0).AND.(B1.LT.BETA1(1)))B1=BETA1(1)
IF((J.EQ.0).AND.(B1.GT.BETA1(21)))J=20
IF((J.EQ.0).AND. (B1.GT.BETA1(21)))B1=EBETA1(21)
IF((L.EQ.O0).AND. (C2.LT.BETA2(1)))L=1
IF((L.EQ.O0).AND.(C2.LT.BETA2(1)))C2=BETA2(1)
IF((L.EQ.O).AND. (C2.GT.BETA2(65)))L=64
IF((L.EQ.O0).AND.(C2.GT.BETA2(65)))C2=BETA2(65)
IF((I.EQ.0).AND.(C1.LT.BETA1(1)))I=1
IF((I.EQ.0).AND.(C1.LT.BETA1(1)))C1=BETA1(1)
IF((I.EQ.0).AND.(C1.GT.BETA1(21)))1=20
IF((I.EQ.O0).AND.(C1.GT.BETA1(21)))C1=BETA1(21)
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C.....USE DOUBLE INTERPOLATION ON TABLE FOR LOWER LIMIT
IF(ALPHA.EQ..05)78,79
78 UL1=((B2-BETA2(K))*BSU(J,K+1)+(BETA2(K+1)-B2)*BSU(J,K))/(BETA2(K+1
1)-BETA2(K))
UL2=((B2-BETA2(K))*BSU(J+1,K+1)+(BETA2(K+1)-B2)*B5U(J+1,K))/(BETA2
1(K+1)-BETA2(K))
GO TO 80
79 IF(ALPHA.NE..025)PRINT11
LF(ALPHA.NE..025)CALL EXIT
UL1=((B2-BETA2(K))*B2U(J,K+1)+(FETA2(K+1)-B2)*B2U(J,K))/(BETA2(K+1
1)-BETAZ(K))
UL2=((B2-BETA2(K))*B2U(J+1,K+1)+(BETA2(K+1)=B2)*B2U(J+1,K))/(BETA2
1(K+1)-BETA2(K))
80 IF(J.LT.19)UL=((B1-BETA1(J))*UL2+(BETA1(J+1)~-B1)*UL1)/(BETA1(J+1)
1-BETA1(J))
IF(J.GE.19)UL=UL2

C.....DETERMINE PLI (EQS.3.11)
CLI=PLI
CL=(2.%S-1.)*N
BL=VHL#*UL*UL+CL
PLI=(BL-SQRT(BL*BL- CL%CL))/(2.%N=*N)

C.....USE DUUBLE INTERPOLATION ON TABLE FOR UPPER LIMIT

IF(ALPHA.EQ..05)81,82

81 UU1=((C2-BETA2(L))*BSL(I,L+1)+(BETA2(L+1)-C2)*B5L(I ,L))/(BETA2(L
1+1)-BETA2(L))
UU2=((C2-BETA2(L))*BSL(I+1,L+1)+(BETA2(L+1)-C2)*BSL(I+1,L))/(BETA2
1(L+1)-BETA2(L))
GO TO 83

82 IF(ALPHA.NE..O025)PRINT11
UU1=((C2~-BETA2(L))*B2L(I,L+1)+(BETA2(L+1)-C2)*B2L(I ,L))/(BETA2(L
1+1)-BETA2(L))
UU2=((C2-BETA2(L))*B2L(I+1,L+1)+(BETA2(L+1)-C2)*B2L(I+1,L))/(BETA2
1(L+1)-BETA2(L))

83 IF(I.LT.19)UU=((C1-BETA1(I))*UU2+(BETA1(I+1)=C1)*UU1)/(BETA1(I+1)
1-BETA1(I))
IF(I.GE.19)UU=UU2

C.....DETERMINE PUI (EQS.3.11)
CUl=PUI
CU=(2.%S+1.)*N
BU=VHU*UU*UU+CU
IF(PUI.GE..5)BU=VHU*UL*UL+CU
PUI=(BU+SQRT(BU*BU- CU*CU) )/ (2.%NxN)

C.....TEST TO SEE IF ITERATION MUST CONTINUE
CALL SIGFIG(ISIG,JOK,PLI,PUI,CLI,CUI,KPL,KPU,KCL,KCU)
FL=ABS(PLI-CLI) $ FU=ABS(PUI-CUI)

C.....IF THE LIMITS AGREE SUFFICIENTLY FOR TWO CONSECUTIVE ITERATIONS,
C.....SET ML=1, ETC.
IF((FL.LT.FT).OR.(KPL.EQ.KCL))ML=1
IF((FU.LT.FT).0OR.(KPU.EQ.KCU))MU=1

139



C.o... IF BOTH UPPER AND LOWER LIMITS ARE SUFFICIENTLY CLOSE, DEFINE THE
C.....NUVBER OF THE ITERATION
I1T=M
IF(ML*MU.NE.1)GO TO 35
33 IF(PUI.GE.1.)PUI=1.
73 CONTINUE
S1LI =CLI $ S2LI=PLI
S1UI=CUI $ S2ul=PUI
JT7=1T7-1
LT=1T
RETURN
END

(I EER A EE TN E SRR L LR R AR R R L AR R R I LT E LIRSS AN AL
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C.c..
C....
C....
C....

SUBROUTINE PEART

.THIS SUBROUTINE READS THE PEARSON AND HARTLEY TABLE 42 (vOL.1,
.1966) FOR ALPHA=.025 AND .050 AND EXTENDS IT AT EQUAL INCREMENTS
.IN BETA1 BY VALUES INTERPOLATED FROM PEARSON AND HARTLEY TABLE 32
.(vOL. 2,1972)

DIMENSION A(100,14),B(400),C( 40,68),D(21,68)
DIMENSICN W5(21),V5(21)
CC.iVON/FQ/B2L(21,68),B2U(21,68),B5L
DATA(W5=1.6,1.6,1.8,1.8,2.0,2.0,2.2
14.4,4.8,5.2,5.8,5.4,7.0,7.6)
DATA(vS5=9.,9.,9.,9.,9..9.,9.,9.,9.,9.,9.,9.,9.,9.4,9.8,10.4,11.4,
111.8,12 6,13.4,14.4)

1,63),B5U
2

7 FORMAT(14(F4.2,1X),2X,F3.1,2(11))
10 FORMAT(1X,*IY TOO BIGx*)

11

FORMAT(14(F4.2,1X),1X,F3.1,2(I1))

C.....THIS LOOP READS THE FOUR TABLES

DO 40 LF=1,4
Iy=0
IX=0
Q=-1.

C.....THIS LOOP READS THE CARDS FOR EACH TABLE

DO 20 I=1,100
IF(LF.LE.2)READT1, ((A(I,J)
IF(LF.GT.2)READ7 , ((A(I,J)
IF(B(I).NE.Q)IY=0
TF(B(I).NE.Q)IX=IX+1
IF(B(I).EQ.Q)IY=1Y+1

IF(IY. T.4)PRINT10
IF(IY.GT.4)CALL EXIT

Q=B(I)

DO 15 J=1,14

K=14*1Y+J

C(IX,K)=A(I,J)

1

=1

14),B(1),LEVEL,L)
14),B(1),LEVEL,L)

- .

15 CONTINUE

IF(A(1,1).EQ.9.)G0O TO 22

20 CONTINUE
22 CONTINUE

C.....THIS LOOP ARRANGES THE DATA FROM CARDS ACCORDING TO THE BETA2
C.....VALUES

DO 50 I=1,21
J3=INT(5*(V5(I)-1.6+.001))+1
J1=INT(5*(W5(I)-1.6+.001))
DO 45 J=1,38
D(I,d+d1)=C(1,J)

45 CONTINUE

C.....THIS LOOP ASSIGNS THE UPPERMOST TABULAR VALUE TO THE NON-
C.....CALCULATED SPACE ABOVE

DO 43 J=1,J1
D(I,d)=D(I,d1+1)

43 CONTINUE
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C.....THIS LOOP ASSIGNS THE LOWERMOST TABULAR VALUE TO THE NON-
C.....CALCULATED SPACE BELOW
DO 44 J=J3,65
D(I,J)=D(I,u3)
44 CONTINUE
50 CONTINUE

C.....THIS LOOP ASSIGNS THE 4 TABLES TO IDENTIFIABLE ARRAYS FOR SUB-
C.....ROUTINE PSA,
L0 62 I=1,21
DO 61 J=1,65
IF(LF.-Q.1)B2L(I,J)=D(I,4)
IF(LF.EQ.2)B2U(I,J)=D(1,J)
IF(LF.EQ.3)B5L(I,U)=D(I,u)
IF(LF.EQ.4)BSU(I,J)=D(I,4)
61 CONTINUE
62 CONTINUE
40 CONTINUE
RETURN
END
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SUBROUTINE ANDBUR(PL,PU,PLI,PUI,ISIG,LL)
COMIMON/MJUM/PH,QH ,RHOH , XLH,N,S,R, T,ALPHA,UA, XLS
COMNON/SMALL/XLG
F(A,B,C.N)=(1.=(A/B)**(1./(N=1.)))/(2.-C=(A/B)**(1./(N=1.)))
G(A,B,C,D,N)=(A*B/(1.4D*((N-2.)*(1.=C)*(1.=C)=2.)=D*D*((N=1.)=
1(1.=C)*(1.=C)=1.)))**(1./(N-3.))

C.....SLOWER AND SUPPER ARE THE LOWER AND UPPER CONFIDENCE LIMITS FROM
C.....THE PEARSON AND HARTLEY TABLE FOR THE EXPECTATION OF A POISSON
C.....VARIABLE (1966, TABLE 40)

CALL PH40(SLOWER,SUPPER)

C.....PLI AND PUI ARE THE ANDERSON-BURSTEIN LIMITS FOR INDEPENDENT
C.....TRIALS.

PLI=SLOWER/(N=(S-1.-SLOWER)/2.)

PUI =SUPPER/(N+(SUPPER=S)/2.)

SS=SQRT((1.+RHOH)/(1.-RHOH))

C.....PL AND PU ARE THE MODIFIED ANDERSON-BURSTEIN LIMITS FOR DEPENDENT
C.....TRIALS
C.....SEE EQS. 6.1 AND 6.2

PU=PH+(PUI-PH)*SS

PL=PH=(PH~-PLI)*SS

IF((PL.LE.O.))PU=(PUI-PLI)=*SS

IF(PL.LT.0.)PL=0.

IF(PU.GT.1.)PU=1.

30 CONTINUE

Cee...IF S=0,1, THE EGUATIONS (7.3, 7.4) FOR THE EXACT SOLUTION WwILL BE
C.....IMPLEMENTED BY THE FOLLOWING STATEMENTS. OTHERWISE THE VALUES
C.....0F PL AND PU, JUST DETERMINED, WILL BE RETAINED.
Ceev..LL=NUMBER OF DECIMAL PLACES FOR AGREEMENT ON CONSECUTIVE
C.....ITERATIONS WHEN S=0,1
FT=1.%10**x(=LL)
ML=MU=0
15 IF(S.EQ.0.)20,21
20 PL=CL=0.
Cu=PU
QU=1.-PU
PU=F(ALPHA,QU,XLG,N)
GO TO 27
21 IF(S.EQ.1.)22,23
22 PL=CL=0.
Cu=PU
QU=1.-PU
XU=PU
oU=(1.-G(ALPHA,QU,XLG,XU,N))/(2.-XLH-G(ALPHA,QU,XLG,XU,N))
27 CONTINUE
CALL SIGFIG(ISIG,JOK,PL,PU,CL,CUL,KPL,KPU,KCL,KCU)
FL=ABS(PL-CL) $ FU=ABS(PU-CU)

C.....IF THE LIMITS AGREE SUFFICIENTLY FOR TWO CONSECUTIVE IT-
C.....ERATIONS, SET ML=1, ETC
IF((FLJ.LT.FT).OR. (KPL.EQ.KCL))ML=1

IF((FU,LT.FT).0OR.(KPU.EQ.KCU))MU=1
IF(ML*MU.NE.1)GO TO 15
23 CONTINUE
RETURN
END

#:*tttg*tatnottmﬂ*ttt-i**:t:u-nwv******t***t*tttt#t#t#tmatt*ttﬂmttmt!‘t**t
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C....

C....

Cevvn

C....

SUBROUTINE PH40(SLOWER,SUPPER)

.THIS SUBROUTINE DETERMINES THE 80, 90, 95, AND 99 PERCENT
.CONFIDZNCE LIMITS FOR ERRORS USING THE PEARSON AND HARTLEY TABLES
.OF CONFIDENCE LIMITS FOR THE EXPECTATION OF A POISSON VARIABLE
.(1966, TABLE 40). THE TABLE IS APPLICABLE TG ERRORS BETWEEN O AND
.100 FOR 80 AND 90 PERCENT LIMITS, O AND 50 F£OR 95 AND 99 PERCENT
.LIMITS. THE TABULAR VALUES ARE ALOWER AND AUPPER.

.THE CONFIDENCE LIMITS ARE SLOWER AND SUPPER. INTERPOLATION IS REQ-
.UIRED FOR MORE T {1AN 30 ERRCRS SINCE ONLY EVERY FIFTH ERROR IS
.LISTED AFTER 30 ERRORS.

DI/ENSION ALCWER(45), AUPPER (45),BLOWER(45),BUPPER(45),FLOWER(45)
1,FUPPER(45),GLOWER{45),GUPPER(45)
CO/4MON/MJM/PH,QH, RHOH , XLH,N,S,R, T, ALPHA, UA, XLS

.99 PERCENT LIMITS

DATA(FLCWER=0.,.005, .103,.338,.672,1.08,1.54,2.04,2.57,3.13,
13.72,4.32,4.94,5.58,6.23,6.89,7.57,8.25,8.94,9.64,10.35,11.07,
111.79,12.52,13.25,14.00,14.74,15.49,16.24,17.00,17.77,21.64,
125.59,29.60,33.66)
DATA(FUPPER=5.30,7.43,9.27,10.98,12.59,14.15,15.66,17.13,18.58,
120.00,21.40,22.78,24.14,25.50,26.84,28.16,29.48,30.79,32.09,
133.38,34.67,35.95,37.22,38.48,39.74,41.00,42.25,43.50,44.74,
145.98,47.21,53.32,59.36,65.34,71.27)

.95 PERCENMT LIMITS
DATA(BLOWER=0.,.0253,.242,.619,1.09,1.62,2.20,2.81,3.45,4.12,4.80
1,5.49,6.20,6.92,7.65,8.40,9.15,9.90,10.67,11.44,12.22,13.00,13.79,
114.58,15.38,16.18,16.98,17.79,18.61,19.42,20.24,24.38,28.58,
132.82.,37.11)
DATA(BUPPER=3.69,5.57,7.22,8.77,10.24,11.67,13.06,14.42,15.76,
117.08,18.39,19.68,20.96,22.23,23.49,24.74,25.98,27.22, 28.45,29.67
1,30.89,32.10,33.31,34.51,35.71,35.90,38.10,39.28,40.47,41.65, 42.
183,48.68,54.47,60.21,65.92)

.90 PERCENT LIMITS

DATA (ALOWER = 0., .0513, .355, .818, 1.37, 1.97, 2.61, 3.29, 3.98
1, 4.70, 5.43, 6.17, 6.92, 7.69, 8.46, 9.25, 10.04, 10.83, 11.63, 1
22.44, 13.25, 14.07, 14.89, 15.72, 16.55, 17.38, 18.22, 19.06, 19.9
30, 20.75, 21.59, 25.87, 30.20, 34.56, 38.96, 43.40, 47.85, 52.33,
456.83, 61.35, 65.88, 70.42, 74.98, 79.56, 84.14)

DATA (AUPPER = 3.00, 4.74, 6.30, 7.75, 9.15, 10.51, 11.84, 13.15,
114.43, 15.71, 16.96, 18.21, 19.44, 20.67, 21.89, 23.10, 24.30, 25.
250, 26.69, 27.88, 29.06, 30.24, 31.42, 32.59, 33.75, 34.92, 36.08,
3 37.23, 38.39, 39.54, 40.69, 46.40, 52.07, 57.69, 63.29, 68.85, 74
4.39, 79.91, 85.40, 90.89, 96.35, 101.80, 107.24, 112.67, 118.00)

.80 PERCENT LIMITS
DATA(GLCWER=0.,.105,.53,1.10,1.74,2.43,3.15,3.9,4.7,5.4,6.2,7.0,
17.8,8.6,9.5,10.3,11.1,12.0,12.8,13.7,14.5,15.4,16.2,17.1,18.0,
118.8,19.7,20.6,21.5,22.3,23.2,27.7,32.1,36.6,41.2,46.,50.,55.,60.,
164.,69.,73.,78.,83.,87.)

DATA (CUPPER=2.30,3.9,5.3,6.7,8.0,9.3,10.5,11.8,13.0,14.2,15.4,
116.6,17.8,19.0,20.1,21.3,22.5,23.6,24.8,25.9,27.0,28.2,29.3,30.5,
131.6,33.,34.,35.,36.,37.,38.,44.,49.,55.,60.,66.,71.,77.,82.,87.,
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193.,98.,103.,109.,114.)
IERROR=INT(S+1.E-8)
XE=S

JERROR = IERRGR + 1

C.....IF INTERPOLATION IS REQUIRED, GO TO 105.

IF (IERROR .LE. 30)100, 105

100 IF(ALPHA.EQ..005)SLOWER=FLOWER(JERROR)
IF(ALPHA.EQ..CO5)SUPPER=FUPPER(JERRGR)
1F(ALPHA.EQ..025)SLOWER=ELCWER(JERROR)
IF(ALPHA.EQ..025)SUPPER=BUPPER(JZRROR)
IF(ALF/{A.EQ..05) SLOWER=ALCWER(JERROR)
IF(ALPHA.EQ..05) SUPPER=AUFPER(JERROR)
IF(ALPHA.EQ..10)SLOWER=GLOWER(JERROR)
IF(ALPHA.EQ..10)SUPPER=GUPPELR(JERROR)
GO TO 110

105 I1 = (IERROR / 5) = 5
I2 = ((IERROR + 5) / 5) = 5
J1 = I1 = ((I1 - 30) * 8) / 10 + 1

gi(:L;;ATEé..005)5LOWER=FLONER(J2)*(XE—I1)/5.+FLOWER(d1)*(I2—XE)/
1?;(ALPHA.EO..005)SUPPER:FUPPER(d2)*(XE—I1)/5.+FUPPER(d1)*(I2—XE)/
1?%(ALPHA.EQ..025)5L0wsR=BLOWER(u2)*(xs—x1)/s.+aLowsR(u1)*(12—x5)/
1?'F(ALPHA.EQ..025)suppER=BuppER(u2)*(xE-I1)/5.+BuPpER(u1)*(Iz—xE)/
1?'F(ALPHA.Eo..oso)SLOWER=ALcwER(.J2)*(xE-n)/5.+AL0WER(.J1)*(12—xE)/
1?%(ALPHA.EO..050)suPPER=AuppER(u2)*(xE—I1)/5.+AUPPER(\J1)~(12—XE)/
1?%(ALPHA.EQ..100)5L0WER=GLowER(u2)~(xs—11)/5.+GLowER(u1)v(12-x5)/
1?%(ALPHA.EQ..100)SUPPER=GUPPER(J2)*(xF_-—n)/5.+GUPPER(J1)~(12-xE)/
110 126NT1NUE
RETURN
END
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9¥%1

PARAMETER VALUES..,..., N= 20000 S= 38

ACCURACY VALUES...v+s++.MINSIG=3 MINDEC=4

TANGENTS OF 90 PERCENT CONFIDENCE REGION

HORIZONTAL TANGENT
(LIMITS FOR P)

P LAMBDA
UPPER 3.67381E-03 4.54605E-01
LOWER 1.13989E-03 2.94945E-01

90 PERCENT CONFIDENCE INTERVAL FOR LAMBDA = ( 2.35021E-01,

90 PERCENT CONFTDENCE INTERVAL FOR P

ANDERSON-BURSTEIN = ( 1.21599E~03,

t

NORMAL = ( 1.27837E-03,

EDGEWORTH 2-TERM ITERATION NO. 1= ( 1.24223€-03,
EDGEWORTH 2-TERM ITERATION NO. 2= ( 1.24123€E-03,

EDGEWORTH 4-TERM ITERATION NO. 1= ( 1.23939E-03,
EDGEWORTH 4-TERM ITERATION NO. 2= (1

1
PEARSON SYSTEM ITERATION NO. 2 =  ( 1.24787E-03,
PEARSON SYSTEM ITERATION NO. 3 =

P HAT= 1.90000E-03
LAMBDA TILDE= 3,48160E-01

.24800E-03,

Ta 0

ALPHA=.050

VERTICAL TANGENT
(LIMITS FOR LAMBDA)

p
2.34393E-03
1.47628E-03

4.81484E-01)

2.74639E-03)

2.80949E-03)

2.76358E-03)
2.76451E-03)

2.76386E=03)
2.76992E-03)

2.75997€E-03)

( 1.24786E-03, 2.75997E-03)

LAMBDA
5.29429E-01
1.84585E-01
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Figure B-1. Microfilm plot of 90% confidence region for

(A,p) from first 20,000 Cox-Lewis telephone
data and pormal approximation (38 errors,
P=.0019, A=.3482).
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