NTIA-CR-78-1

Statistical-Physical Models

of Man-Made and
Natural Radio Noise

PART Illl. FIRST-ORDER
PROBABILITY MODELS OF

THE INSTANTANEOUS AMPLITUDE
OF CLASS B INTERFERENCE

contractor reports

U.S. DEPARTMENT OF COMMERCE e National Telecommunications and Information Administration



NTIA-CR-78-1

Statistical-Physical Models
of Man-Made and
Natural Radio Noise

PART Ill. FIRST-ORDER
PROBABILITY MODELS OF

THE INSTANTANEOUS AMPLITUDE
OF CLASS B INTERFERENCE

D. Middleton

U.S. DEPARTMENT OF COMMERCE
Juanita M. Kreps, Secretary

Henry Geller, Assistant Secretary -Designate
for Communications and Information

June 1978






PREFACE

This Report is the third (i.e. Part III) in a series of ongoing studies
[Middleton, 1974, 1976] of the general electromagnetic (EM) interference
environment arising from man-made and natural EM noise sources, and is also
part of the continuing analytical and experimental effort whose general aims
are [Spaulding and Middleton, 1975, 1978]:

(1). to provide quantitative, statistical descriptions of man-made
and natural electromagnetic interference (as in this series);

(2). to indicate and to guide experiment, not only to obtain per-
tinent data for urban and other EM environments, but also to
generate standard procedures and techniques for assessing such
environments;

(3). to determine and predict system performance in these general
electromagntic milieux, and to obtain and evaluate optimal
system structures therein, for

(a). the general purposes of spectrum management;

(b). the establishment of appropriate data bases thereto; and

(c). the analysis and evaluation of large-scale telecommnica-
tion systems.

With the aid of (1) and (2) one can predict the interference characteristics
in selected regions of the electromagnetic spectrum, and with the results of
(3), rational criteria of performance can be developed to predict the suc-
cessful or unsuccessful operation of telecommunication links and systems in
various classes of interference. Thus, the combination of the results of
(1)-(3) provide specific, quantitative procedures for spectral management,
and a reliable technical base for the choice and implementation of policy
decisions thereto.

The man-made EM environment, and most natural EM noise sources as well,
are basically "impulsive", in the sense that the emitted waveforms have a
highly structured character, with significant probabilities of large
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interference levels. This is noticeably different from the usual normal
(gaussian) noise processes inherent in transmitting and receiving elements.
This highly structured character of the interference can drastically de-
grade performance of conventional systems, which are optimized, i.e.
designed to operate most effectively, against the customarily assumed

normal background noise processes. The present Report is devoted to the
problems of (1), (2) above, namely, to provide adequate statistical physical
models, verified by experiment, of these general "impulsive", highly non-
gaussian interference processes, which constitute a principal corpus of the
interference environment, and which are required in the successful pursuit of
(3), as well. The principal new results here are:

(i). Canonical analytical models for the first-order statistics
of the instantaneous amplitude and its magnitude for Class B
noise*;

(ii). Procedures for obtaining the (canonical) model parameters,
from the APD's (= exceedance probabilities, P](t>65), etc.),
the calculation of moments, and probability density functions
(pdf's), and a variety of other related statistics; [see the
Table of Contents].

Finally, we emphasize, again, that it is the quantitative interplay
between the experimentally established,**analytical model-building for the
electromagnetic environment, and the evaluation of system performance
therein, which provides essential tools for prediction and performance, for
the development of adequate, appropriate data bases, procedures for effective
standardizations, and spectrum assessment, required for the effective
management of the spectral-use environment.

* (Class A and Class B noise are distinguished, qualitatively, by having
input bandwidths which are respectively narrower and broader than that
of the (linear) front-end stages of the typical (narrow-band) receiver
in use. More precise definitions are developed in the text following.

** Experimental corroboration has been achieved on the basis of envelope
data for both the Class A and B interference processes [cf. Middleton,
1976, Section 2.4]. An equivalent corroboration for the corresponding
amplitude data is accordingly inferred.
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STATISTICAL-PHYSICAL MODELS OF MAN-MADE AND NATURAL RADIO NOISE
Part III. First-Order Probability Models of the Instantaneous
Amplitude of Class B Interference*

by

David Middleton**

ABSTRACT

This Report is the third ("Part III") in a continuing series devoted
to the development of analytically tractable, statistical-physical models
of man-made and natural electromagnetic interference. Here, the first-order
statistical probability densities (pdf's) and the associated exceedance pro-
babilities (PD's, or APD's) are obtained for the instantaneous amplitudes
(X), and instantaneous magnitudes, |X|, of Class B noise. These are needed
not only for experimental studies but, also, particularly for the analysis
and evaluation of the performance of optimum and suboptimum receivers in
Class B interference environments.

As in the earlier studies of the envelope statistics of Class B noise
[Middleton, 1976], a two-function approximation is needed for the character-
istic function and hence for the corresponding pdf's and PD's. Two methods
of determining the six (basic) parameters which describe these first-order
statistics and thus joining the approximate forms (pdf's and PD's) are
outlined. Method 1 is approximate, was used earlier [Middleton, 1976, 19771,
and has the advantage of somewhat greater computational simplicity, with the
disadvantage, however, of yielding too lTow values of the PD at low values
of the argument (X), when the gaussian component is small. Method 2 is
"exact", and somewhat more complex computationally. The joining process
involved in both methods has been essentially described earlier [Middleton,

* This is the third in a continuing series of Reports developing the first-
order (and later, various higher-order) statistics of natural and man-
made radio noise. Earlier studies in this series are: Part I-0T Report
74-36, April, 1974; Part II-OT Report 76-86, April, 1976.

**  The author is under contract with the U.S. Department of Commerce,
National Telecommunications and Information Administration, Institute for
Telecommunication Sciences, Boulder, Colorado 80303.



1976, 1977] but is developed further here. The basic parameters are, in
any case, the same as those derived for the envelope statistics. The
excellent agreement with experiment observed for the envelope data accor-

dingly applies here, as well.



STATISTICAL-PHYSICAL MODELS OF MAN-MADE AND NATURAL RADIO NOISE

Part III. First-Order Probability Models of the Instantaneous
Amplitude of Class B Interference*

by

David Middleton**

PART I: INTRODUCTION, RESULTS AND CONCLUSIONS

1. Introduction:

Again, as in earlier studies (for example, [Middleton, 1972a, 1972b,
1973, 1974, 1976, 1977]), our central problem here is to construct analy-
tically tractable models of man-made and natural radio noise, based on the
pertinent statistical-physics and possessing a canonical structure, invariant
of any particular source mechanisms. This is done for three principal
reasons:

(). To provide realistic, quantitative descriptions of man-made
and natural electromagnetic (EM) interference environments;

(ii). To specify and guide experiments for measuring such interference
environments; and,

(ii1). To determine the structure of optimal communication systems and
to evaluate and compare their performance with that of specified
suboptimum systems, when cperating in these general classes
of EM interference.

These three tasks, in turn, are central features of any adequate program of
spectrum management (for example, [Middleton, 1975a]).

* This is the third in a continuing series of Reports developing the first-
order (and later, various higher-order) statistics of natural and man-made
radio noise. Earlier studies in this series are: Part I - OT Report 74-36,
April, 1974; Part II-OT Report 76-86, April, 1976.

** The author is under contract with the U.S. Department of Commerce,
Hational Telecommunications and Information Administration, Institute for
Telecommunication Sciences, Bou1q§r, Colorado 80303.



Accordingly, our aim, as in previous studies in this series [cf.
Middleton, Part I, 1974; Part II, 1976] is to provide analytical models, which:

(1). combine the appropriate physical and statistical descriptions
of general EM interference environments;

(2). are analytically manageable;

(3). possess canonical properties, i.e., are not specialized to indi-
vidual noise mechanisms, source distributions, and emission
waveforms, propagation laws, etc.; and, most important,

(4). are experimentally verifyable and predictive.

In addition, the basic parameters of such statistical-physical models must
be measurable quantities with a specified physical structure and inter-
pretation.

To achieve the above is clearly a non-trivial-problem, as we have
noted before [Middleton, 1972a, 1974, 1976], chiefly because of the inherent
highly nongaussian nature of these random processes, a characteristic which
at once insures complex descriptions and ensuing difficulties for the
analysis of system performance. That these difficulties can be effectively
overcome for model-building and experimental verification has been demon-
strated by recent efforts [Middleton, 1976, 1977]. For receiver design and
performance, using these models, we cite the recent work of Spaulding and
Middleton [1975, 1977], which establishes the applicability of the canonical
models to receiver evaluation in these EM environments.

Specifically, earlier work here has focused on amplitude and envelope
statistics: we note

(i). Middleton, [1974]: First-order statistics of the instantaneous
amplitude (X), Class A noise;

(ii). Middleton, [1976]: First-order statistics of the envelope (E)
and phase (¢), Class A and Class B noise;

The present effort (Part III, 1977) is devoted to the corresponding statistics
of the instantaneous amplitude (X), for Class B interference, while Part IV
(in preparation) extends the above to the general Class C (= Class A + Class B)



environments.* Still earlier, important related studies have been carried
out (essentially for what is now called Class B noise) by Furutsu and

Ishida [1960], and Giordano [1970, 1972] and Haber [1972], which, however,
are not canonical and which focus primarily on atmospheric noise. The
principal new results obtained here are the probability distributions (PD's)
and probability densities (pdf's), moments, and characteristic functions
(c.f.'s) for the Class B instantaneous amplitudes (cf. analytical details

in Part II ff.). The analysis and approach here is structured directly

upon that of Part II [Middleton, 1976], with appropriate modifications.
Thus, the present Report is organized as follows: Section 2 contains a
concise account of the principal results; Sections 3-7 comprise the body

of Part II here, viz., the analytical details. These are: Section 3, an
introduction to the analysis; Section 4, integral forms for the PD,

P1(X2Xo) and pdf, w](X), for Class A, B, and C interference; Section 5,

the PD's, P1(X3Xo) for Class B noise, with particular attention to an
(earlier) approximate method (Method 1) of obtaining the distribution
parameters, and an exact method (Method 2), which is pertinent for all Class
B models, while Section 6 gives the pdf's, w](X)B. Section 7 completes

the Report with remarks on moments and model parameters.

2. Results and Conclusions:

Let us now summarize the principal results of this study in a concise
fashion. The analytic details and representative calculations (and Figures)
for the PD's and pdf's are developed and presented in Part II following.

The main analytic results are:

Characteristic functions (c.f.'s):
. -b1aAB$“|x|“-Aoé$2A2/2 L
F.|(1a>\)B_I = e (=F1(1a>\)B_I)9 |Zo” |Zl_<_.’ZOB|’
(Eq. (5.4a) ’

(2.1a)

* See Section 1.1 (Part I), Middleton [1976], or Middleton [1977] for
detailed definitions of Class A, B, and C noise (as seen by the receiver).
Essentially, Class A sources are characterized by having emission spectra
narrower than the receiver bandpass, while Class B sources are spectrally
broader than the receiver bandpass.
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F1(iak)

where a = {QZB(]+Fé)

"2 2
22 2 ~bpgaA/2

B-11 = © exp[-oGa A"/ 2+hze 1 (= F](iax)B_II),

(2.16)

|zol’ ’Z|Z.IzoB|’ Eq' (5'4b):

']/2, cf. (5.2). Here z, 2, z,p are normalized

amplitudes, e.q.

z =X/ /92321+ré5 5 2y " Xo,B/ /92821+ré5 s Eq« (5.7).

The corresponding PD's are

P](zzg
oB "0 0B

o) = P1(23-20)8-1: {-z-ez-<@ =} ) (2.2a)
B-II: {20<-zoB,zo>zoB}

Pr(lzl2lz,1) = Py(lz]2] 2, )g_ ;. 0<|2y| 25(>0) | (2.20)
B-IT: [z,]>2p )

With ]F]

and o respectively the usual confluent hypergeometric function and

error integral, we have from (5.11) for the Py B-1:

o na 1. % % (-])n notlyan
P1(Zz;o)B_I = P](ZZZO)I 2T i nZO n! il 2 )Aa
.]F](ﬂgglg 3/2;—25) s (2.3a)

P](|Z|ZJZO|)B_I . P](|z|>lzo|)1

2|2 | n n -
0 -1 natlysn not+l 3 2
v - CH- @ty esldie iz )2,

" n=0
(2.3b)
with 0 5_]201, |z] <|zOB] for both.

(2.1¢)




For the P, _p_;;» we have from (5.19):

R L -
P1(Z>Zo)B-II v pll-e mZO e G[zo//§ ChB]}’ (2.4a)
Ay Ag :
Pi(lz]2]zy g ~ (1-€ mZOW o[|z,|/v2 c g1} »

(2.4b)

Here, specifically, we have

ripd-a

- A oA0 ~ = . 2 - B 2-a .
Aa = Aa/Z GB 5 208 ZO’BNI/Z/E'GB 8 GB = zKT:fE7-’ Eq. (5.20b); Y

(IzoB[>0 » cf. p.37.)

(2 m beqy

B? ef. (B.76);

[Aa, cf. Eq. (5.11c)
a , cf. Eq. (4.24b)].

The associated pdf's, W1(Z)B’ are from (6.7) and (6.8):

na. A
<-1’ Agr(n%'l']) F (n0L+-l_-l_ 22)

_ A 1
wi(z)gp =w(z)p oo o n! 1P ST

n

IHe~1 8

~ A A

(-zoB<z<zoB), 7 = zNI/2/§ Gg

N >

oB - ZoBNI/ZJE GB

(2.6a)




|
2 ,,~2
L Ay e AN 7 /2cg
W1(Z)B-II = e mZO ﬁﬂ—_—_'f;;—"_ : [z = 2> Z > Zgp )
‘IZTrCmB
(2.5b)
wi(12D)gq, 11 = 2wy (2)g_y 11> 220 (2.5¢)

Figures 5.1, 5.2; 5.3, 5.4 are respectively analogous to Figs. 3.3,
3.4, and 3.1, 3.2 [Middleton, 1976] and are calculated : Figs. 5.1,
5.2 from Eq. (2.3) above [or Eq. (5.11)]; Figs. 5.3, 5.4 from Eq. (2.4)
above [or Egs. (5.17), (5.19)]. The composite PD and pdf, e.g.

Py(zl2lzgl) = Pyz2zglg = B (121212, y » (Oxlzhilzgl<lzgg)) 5 )

p
1Uzlzlzg gy | 24 1212,51(>0)
(2.7a)

W](Z)B = W'I(Z)I 5 O_<_ lzl . IZOBI

(2.7b)
= wy(2)g g1 » Izl > |zl

are illustrated, respectively, in Figs. 5.6, 5.7 [analogous to Figs. 3.6,
3.7, Middleton [1976]], and in Figs. 6.3, 6.2, which are Tikewise analogous
to Figs. 4.3, 4.4 [Middleton,1976]. The composite PD's exhibit the charac-
teristic "bend-over" at the smaller probabilities (and larger arguments,
]zo!, etc.). Fig. (5.5) illustrates the composite, approximating procedure
schematically, cf. Sec. (5.2)ff. For small |zo| the gaussian character of
the PD's is exhibited, while for the larger values (and correspondingly
small values of P]) the strong departures from gauss appear. Similar ob-
servations are noted for the pdf's, Figs. 6.1, 6.2.



The global and generic parameters for these amplitude distributions
are precisely the same as for the envelope distributions studied earlier
[Middleton, 1976, Secs. 2.2, 2.3, 2.5], in these Class B cases. We review
them concisely, for convenience, here:

(1). AB = the Impulsive Index, for the "Class A-form" of approximation

(|z]>zoB), used in the overall Class B model. The Impulsive
Index is a measure of the nongaussian nature of the noise: the
smaller AB’ the more "impulsive" the interference;

(2). Fé = 02/928 = ratio of intensity of the independent gaussian component,
of> of the input interference (including "front-end" receiver
noise) to the intensity, Qo> of the impulsive component, in
the large-amplitude approximation pdf;

(3D, Qg = the intensity of the above-mentioned impulsive ("Class A-form")
component;

~

. b, e g Fe
o g/ P(1+u/2)Gg i /292821+ré5

(5.11¢), an "effective" Impulsive Index, proportional to the
Impulsive Index AB’ which depends on the generic parameter a;

_ (2= . (3=
(6). o = (_§Bosurf’(_§£0v01

(4.24h); relating the exponents u, y of the range power-law

= spatial density-propagation parameter, cf.

dependencies of source density and propagation law, respectively,
cf. (4.24f,q);

(6). N; = scaling factor which insures that Py_p_;, wy_g_; are properly
joined to P]-B-II’ Wi_g-11°

(). " Zng = ZoB/VﬁgngIngE the (normalized) "bend-over" point, at which
the two approximating forms of pdf (and PD, for |z| > 0) are
joined, according to the procedures discussed in Sec. (5.2)ff.
This 1is an empirically determined point, cf. Fig. 5.5.



As before, in the case of Class B envelope distributions, we have the fol-
Towing (same) sets of global and generic model parameters:

Class B: Global: Aa(or Aa),a,AB,I‘B,QZB,NI 5

| AN (2.8)
Generic: AB,a,OGs<BOB/’<BoB>’NI

It is important to stress the fact that (except for ZoB) all model parameters
are physically structured and hence are canonical in form: they are not ad
hoc quantities. [We remark, also, that NI is not fully dependent on the other
generic parameters and is independent of Zop: This NI may be regarded as
generic.] We include two methods, one approximate and one exact [cf. Secs.
5.2-1,2] for obtaining the model parameters.

Finally, although we have no readily obtainable direct experimental
comparisons vis-a-vis theory for the instantaneous amplitude, z, or its mag-
nitude, |z|, we have inferentially, demonstrated excellent agreement between
theory and experiment on the basis of the much more easily obtainable
envelope data [cf. Figs. (2.1)-(2.8), Middleton, [1976]]. Since the models
are basically the same, we can accordingly regard the experimental agreements,
canonically achieved over a variety of disparate (Class B) sources, as
confirming the adequacy of our model, also canonically. Because Class B
models contain the o-parameter they are also capable of providing more
structural information regarding these interference mechanisms, viz., average
source densities (in space) for given power laws of propagation. [This point
is discussed more fully, p.82, Middleton [1976].] Again, Hall-type models
are deriveable from the B-I class of approximations [[z |<[z g|), when the
additive gaussian component is negligible, cf. Section (5.3) below. Ac-
cordingly, with this Report we have accomplished Item 1 of "Next Steps"

(cf. Sec. 2.7-1, Middleton, [(197€), and with current efforts (FY'78) we

are underway on Item 2: first-order statistics of Class C interference, for
various combinations of the Class A and Class B components which can comprise
a typical EM interference environment. These results, in turn, are to

be employed in the evaluation of the performance of optimum and suboptimum
receivers in such environments, along the lines already developed by Spaulding
and Middleton [1975, 1977].
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PART II. ANALYSIS

3. Introduction to the Analysis:

Part II of this Report, as in Ref. 11 earlier, is devoted to the deriva-
tion of the first-order instantaneous amplitude statistics w](X), P1(X3Xo)’
and associated moments <[X|B), primarily for our statistical-physical model
of Class B interference. The analysis parallells much of Sections 2-7
(Part II) of Ref. 11, starting with the basic poisson model which describes
these broad classes of interference. We are able here to take advantage of
our previous results for the envelope statistics for Class A, B,
and C noise generally,* and Class B in particular, using the methods developed
in Sec. 2 (Part II), Ref. 11, to obtain first the needed characteristic func-
tions and their approximating forms. Our principal attention is then directed
to the Class B case. [For a full account of the physical reasoning underlying
the approximations, see Sec. 2 (II), Ref. 11.]

The material of Part II here is organized as follows: in Section 4
below we obtain the general (integral) expressions for the desired PD's and
pdf's of the instantaneous amplitudes, X, for Class A, B, and C interference.*
Then, in Section 5 we specialize these results to Class B noise and evaluate
the various integral forms involved, for P](szo)B. Corresponding results
for the pdf, W1(X)B’ are derived in Section 6. Section 7 presents an evalua-
tion of the general first-order moments-<|X|B>,(33_0; and offers remarks on
tne global and generic parameters of the model, along the lines of Sec.

6 (II), Ref. 11. Appendix A concludes the analysis with the derivation of
the "joining" conditions on the PD's.

4. Integral Forms: P](szo), w1jx), Class A, B, C Interference:

Our starting point for the present analysis is the basic poisson model
[Eq. (2.1), Ref. 11] for the first-order characteristic function of the in-
stantaneous amplitude, X, of the received interference process (at the input
to the IF stage of the typical narrow-band receiver), viz:

* Class C models are to be treated in detail in a subsequent Report in this
series (e.g., Part IV, 1978).

12



3 .gU(t;AsA:el) »
Fy(ig)y = exp {/j\j ep(v)\“,'é) <(e1 e '1)>9)|9}d€ ¢ (4.1)

k |

Here € is an epoch indicating, vis-a-vis the receiver's time t, when a typical
source may emit. [The basic model here, as before, consists of an infinite
number of potentially interfering sources in a source domain, A, and while
the basic waveforms emitted all have the same form, U, their scale, duration,
frequency, etc. may be randomly distributed. The fundamental postulate of
this basic interference model is that: the locations in space, and emission
epochs, in time, are independent, and hence poisson distributed, cf. (4.1)]
The A = (x,6,6) are coordinates, or a vector magnitude, appropriate to the
geometry of the source field, in A, and of the receiver, with d (= daxde) for
a surface distribution, and g} (= drdedg) for a volume element. The quantity
p(&,é) is the "process density" of this point space-time poisson interference
process, e.g., p > 0 (v probability density). The average (‘>e denotes a
statistical average over various random parameters which may be pertinent to
the particular model, e.g., doppler, signal duration, amplitude, etc. Finally,
U(tsA,...) is the typical waveform, in the receiver, following the (linear)
aperture x RF x IF stages (i.e., ARI stages) of our narrow-band receiver,

and X(t) is the resultant receiver process, given by

x(t)=fz_ U(t[Z)aN(Z) (4.2)

A8

w

where the {dN} forma (usually zero-mean) poisson process (in Ax6), i.e., in
(&xg), such that (4.1) is the first-order characteristic function.

The desired PD's and pdf's (probability distributions and probability
density functions) are formally

® @ —igX
PD: Py (X2X,) =fx w(X)dX 5 pdf: w(X) ='/:°°e Flie), 95 . (4.3)
0

We can rewrite the expression for P] in the following form, more convenient
for evaluation:

* A further generalization is possible when the waveform itself (U) is re-
garded as random: the averages ¢( >e" become ( )e. Us cf. (4.1), etc.

13



. N
M p (xpXaky) = 000 f wy (X)X (4.3a)

P, (X2X,) = 1 Xy

X
Using w](X), (4.3), in this gives
g
-igX
P x1>x>x f F] 1€X21r ; e dX
0

_ : e -e dg
‘f_wﬁ(‘g)x [ TE J& (8-}

and since X(t) is an instantaneous amplitude of a narrow-band process,
X is a zero mean ({X) = 0), symmetrical process about X = 0, e.g., w](X)

= w](-X) and F](iE)X = F1(-i€)x, j.e., the c.f. is likewise even in &.
Equation (4.4) accordingly can be rewritten as

1 sin EX]-sin ZXO .
Py (1) = o | . |7y Gie e, (4.42)
' sin g|X1]—sin g]Xo| .
Pyl Iz D= £ ] [ ] Fitiengae (4.46)
so that
7 2 sin gXO _

since (heuristically)

Tim  STn EX
Xpo TE

T

= 76(2-0) Fi(0)y = 1 (always) , (4.5a)

and fE_G(y-O)F(y)dy F(0). [Note, as expected, that if Xo = 0, P](sz)

= 1/2, while X0 > -, P](Xzfm) = 1/2-(-1/2) = 1, from (4.5), also as required.]
Similarly, for the more special case P1(]X|3JX0|), we have directly

here [w](X) = w1(—X)]:
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® o [T STHELXOI
Pz 120) = 2f w0 =1 - 2 [T 0 ).
1,1 (0) 0
(4.5b)

Finally, for these symmetrical distributions, we obtain from (4.3)

dP
%o

—_—

_1 . ;
w](X) = Wf_ cos £X F](1g)xdg = -

o

X 0—>X

Both (4.5), (4.5b), and (4.6) will be employed here in the subsequent analysis.
Our principal task, accordingly, is to apply (4.1) to these relations, to ob-
tain analytically tractable expressions for the various PD's and pdf's of X,
as in our earlier studies [Middleton, 1974, 1976].

Our next step is to use (2.10), Ref. 11 for the basic waveform, U, in the

receiver viz:

Uu=1u B (tiﬁlé,e)cos udw(t,&]é,g) 5oy T 1+ed . (4.7)

narrow-band =~ "o

where B, (> 0) is an envelope (cf. (4.10a)) and ¥ is a phase, with the form

= ug (t-2-8)-u3 [0 (t-1-8,0)+o7 (4 J+op (2 T,)T - (4.7a)

-
1

Here o> 1> ¢p are respectively the typical source phase, and the phase
angles of the (complex) beam patterns of the source (T) and receiver (R),
[cf. Sec. 2.5, (II), Ref. 11]. The quantity €4 (=ud—1) is the sum of the
relative dopplers between a source and the receiver, and is always small
0(10'5 or less) in our applications, viz. €q = 2v/c = 0(10'6) for v=105 mph,
so that B is independent of e . Inserting (4.7) into (4.1) and applying the
narrow-band conditions,e.gd., following the procedure on pp. 44, 45, Ref. 11
(or pp. 24, 25, Ref. 9 ), we obtain for the c.f.

Fi(ig)y = exp {{’ép(&,é) <JO(£Bo[t;Alé,g])-1>gc,lgdé1 , (4.8)

15



which is still essentially exact. (Here Jo is a Bessel function of the

first-kind, order zero, as before.)
Our next step is to follow the analysis [pp. 46-50, Ref. 11], making
the following not very restrictive assumptions:

(i). average no. of emissions per unit domain (dA) and per interval
de in (0,T) are independent [(2.25)II, Ref. 111];
(ii).  "local stationarity": no changes in average source numbers

and emission properties during the observation period (0,T),
and the emission epoch probability (density) w](é) is uniform
in all intervals;

(iii). 1idealized "steady-state" condition (T+e) holds.

The result is that (4.8) is now reduced to the basic form

Z =T /T
0 S 's N
Fi(ig)y = exp %A“<JE [Jo(gBo)']]d%>&,Ts,g'% ' (4.9)

where specifically,

B0 - Bo(ZT’&3Q') s ](2R(&,f0)C2T(&,fO)IAOeOYuO(z)g(&) (4.10a)

A, = (peak) amplitude of the received envelope (at output of the IF stage)
(4.10b)

€y 2 Timiting voltage setting (in suitable dimensions), at which the

receiver will respond to a test signal, above receiver noise, at

the output of the IF [cf. (2.34), II, Ref. 11];
(4.10c)

uo(z) = normalized envelope wave-form at IF output; (z=t/?s);
20, 22 TS/TS, z < 0; (4.10d)

16



—
]

duration of typical signal from an interfering source

(4.10e)
T = mean duration of typical signal from an interfering
S source
(4.10f)
g' = other random parameters of interference waveform (other
than 2, TS); (4.10g)
g(&) = a geometrical factor, which describes the propagation law,

from source to receiver (in their mutual-far fields); (4.10h)

CZT,CZR=(comp1ex) beam patterns of typical source and the receiver.
(4.101)

[Note that (4.9) is formally identical to exp [Eq. (2.38), Middleton, 1976],
with ¢ replacing r therin.]

The quantity A_ is the Impulsive Index (as defined in (2.37), (2.38)I1
(Middleton, 1976)). As noted in our earlier studies [Middleton, 1972b, 1973,
1974, 1976], the Impulsive Index is a measure of the temporal overlap or

density, at any instant, of the superposed interference waveforms at the re-
ceiver's IF output. It is a key parameter of the interference model because
it critically influences the form of the pdf's and PD's of the interference,

as observed at the output of the initial (linear) stages of our typical
narrow-band receiver . Then, for small values of A_ the statistics of the
resultant ouput wave are dominated by the overlapping of comparatively few,
deterministic waveforms, of different amplitudes and durations. The resulting
interference has then an "impulsive", structured character. For increasingly
large values of A this resultant approaches a normal (or gaussian) process
as one would expect from the Central Limit Theorem (CLT) [Middleton, 1960, Sec.
7.7], cf. Eq. 4.19 following.

We are now ready to use the procedures and results of Sections 2.3,
2.4 (II), [Middleton, 1976] to obtain expressions for F](ig)X when the
interference belongs to Class A, B, or C types. Since r (therein) -+ ¢ (here),
we have at once, for the general Class C case:
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BY 5 's .
e
Fo(ig), = exp sA <f [J (B )-1]dz> :
1 C l A 0 0'” 0A 559,
| +AB](-) ([Jo(gBoB)-1]>>\’e.dz§ (4.11)
wow
\ = Fig)y - Fiig)g (4.11a)
where the impulsive Indexes AA, AB are specifically
AA = v, Tep AB = VTgp and
() [ Omtz)az, [ @ 22 O (4.12)
B w(z_)dz wo(e') —— ( )dadg! 5
ZosXs8 0 o’ "o A,g' 1 A

jn whish AA = pr(&)QA = av. no. of emitting sources in A. Note that
BOA # BoB’ cf. (4.10a), through the waveform uo(z), e.g. uo(z)B#O (0 <z < =),
whereas uo(z)A = 0 outside (0, 20 <w), cf. Fig. 2.1(I1), Middleton, 1976]
P, 58.

In general, there is always an accompanying gaussian background, which
arises from a number of mechanisms:

(i). as system noise in the receiver;

(ii). as external interference, which is the resultant of many
independent sources, none of which is dominating vis-a-vis
the others (so that the CLT applies);

(i11). as a mixture of (i) and (ii). (4.13)

This component of the interference is also independent of the "impulsive"
component. Accordingly, we may write for the c.f. of the (sum of) these
components:

18



F](ig)P+G = F](TE)P.F](iE)G s (4-14)

for P (= poisson) and G (= gauss), where specifically

. -Uégz/z 2
F](Tg)e =€ 5 GG T OE + OR s (4.15)

where oE, os are respectively the variances of the external and the receiver
(gauss) components.
Applying (4.14), (4.15) to (4.11), and noting that for Class A inter-

ference (AA >> A_); for Class B interference (AB >> AA), while for the

B
general Class C "mixture", (AA " AB), we have specifically

2 2
-£ GG/Z
F1(1E)X:C+G = F1(1£)C-e s Lef. Eg. (4.11)]3 (4.16)

Class A (Amplitude) Interference+Gauss:

. |22 <ifzo(<m) . > l.
F](hz)x:A+G = expl-g ch/Z-AA+AA A Jo(gBoA)dz e's’ (4.17)

Class B (Amplitude) Interference+Gauss:

F1(15)X:B+G = exp{—gzcé/Z + ABJEw<[Jo(géoB)']] dz{ . (4.18)

1
M8

It is Eq. (4.18) with which we shall be primarily considered here.

Parallelling the analysis of Sec. 2.4(II), [Middleton, 1976] we readily
find that for large Impulsive Indexes the c.f.'s are asymptotically gaussian,
e.qg.

ISk g ‘0052/2 4
Fr(ig)e,g = @ [1+0()] , (4.19)

19



A %9 ) A o
2_ 2., A s B e
0y = 9 + 5 < BoAdZ> '+ —2—<f Bode> . (4.19)
zo 9» 0 ?/\U’vev
The specific structure of the "correction" (or Edgeworth series) terms in
(4.19) follows at once from (2.53), (2.54), [Middleton, 1976]. The associa-
ted pdf and P.D. for (4.19) are obtained directly from (4.3)-(4.6) and are

the familiar forms

ks

-Xe/202 Py(XeX,) v 1/2[1-6(X /o /2)] ;

2n0- Pr(XI21%, )% 1-0(]X | /o, 2)

2
where 0(z) = (Z/JF)fée't dt is the familiar (tabulated) error integral. For
Class A, Class B noise these relations simplify at once on setting

Class A:
A ZO(<°°)

9 9 g “g </‘ ~9 >

o- >0, > 0n + = B~ .dz 2

0 oA G 2 0A .

0 239058,

Class B:

02—>02 =02+ﬁ3- °°|§2 dz (4.21)

0 oB G 2 0 oB Wi )

There remains the final reduction of the c.f.'s to give us the desired
tractable analytic forms, suitable for inversion, to obtain the pdf's and
P.D.'s involved. At this point we take advantage of the formal identity
of our results (4.11), (4.16)-(4.18), with the expressions in Secs. (2.3)
-(2.5)II, [Middleton, 1976], where now r ~ £. The same physical and analy-
tical arguments for the reduction [Sec. 2.5(II) therein] apply here, so that
we can write down at once the various desired (approximate) forms for the

20



c.f.'s. These are:

202
) -£2(B= ) /4
P8 g = exP%‘“éiz/z'AA+AAe Col

m i 24,2
oo Ay In(Bop/zraglet/2

=T > (4.22)

m=0

with correction terms given specifically by (2.78)II, [Middleton, 1976],
r - &. The various pdf's, PD's, moments, etc. for the instantaneous amplitude
X have been determined and discussed in detail in "Part I" [Middleton,
1974] for this Class A interference, and so will not be considered further
here.

On the other hand, for the (first-order) statistics of the Class B
noise process, X, we must consider the dual characteristic functions*

. . -b1uAB|g|a—AoégZ/2
F](1g)B+G_I = e (4.23&)
(0<a<?2)

9
-A -b,, £2/2
. . e 2 2
Frlit)geg 2@ © explAge 2 ' ~ole?/2 1 , (4.23b)

where the subscript -I indicates the c.f. appropriate to the range (Q5|X|,|XO|
<IXg|) of amplitude values, while the subscript -II denotes the c.f. associated
with the amplitude range ([Xg|<[X |<[X[), cf. (3.10a,b), [Middleton, 1976].

The precise definition of the boundary point, |XB|, will be given presently,

in Sec. 5. The parameters of (4.23a,b) are

A

o

B
__r(1-0/2)  sa\,.ay _ r(1-a/2) oB > ,
b, = GF BT E (203
lo 2a—1P(]+a/2) \ oB>- max 2a/2—1r(1+a/2) <(/§ )

(4.24a)

* Note that we have &~+|&| here, since Jo(géoB) = Jo(lglﬁog), and since the
c.f. must be an even function of £, in view of the symmetry of the pdf
about X = 0.
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_ Aoy /2 \, 2 _ b0y /52 _
B = (Z-a)<FoB>/Amax - (2—0t)<BoB>/2 (>0) 5 (4.24b)
Gy = e(B)aAO‘|d %2 | (4nc)” “fwu (z)%dz (9<0<2) ; (4.24c)
0B = oy o gsv o 0t#/BE et § :
2 _ 2 _ 2.2
hog = GG+b2aAB 0R+0E+b2 AB (>0). (4.24d)

The key analytic differences between (4.23a) and (2.90)II, [Middleton, 1976]
is the term |£|%: the absolute value of || is required in this approximation,
to conform to the symmetry condition imposed on F1(1'£;)X , cf. (4.4) et seq.,
which is in turn demanded by the narrow-band nature of the instantaneous
amplitude X, which is symmetrical about{X) = X = 0. [From the purely analy-
tic viewpoint, the exact expressions (4.11), (4.17), (4.18) are even in €:
hence the above approximate forms (4.22), (4.23) must be Tikewise.]

Finally, we must specify the remaining parameters: x___,y, a. These are:

max
— limiting range (:c), depending on eOY [cf. (4.10c)], of the
receiver; (4.24e)
Y = exponent of the propagation Taw: g(A) = [gs(¢,gv(e,¢)]/(4ncA)Y,
cf. (4.10n) above, and [(2.61), Middleton, 1976], e.g.
g~ /27, 0 < vy; (4.24f)
u = exponent of the density law with range (nci), e.g.
og V(>\) = 1/2", 0 <u; cf. [2.63), Middleton, 1976]; (4.24q)
2-y . 3-u
[0 =) = Py I
Y lsurface Y lvolume Ghedh)
spatial density-propagation parameter; [In general, see Sec. 2.7,
and Eq. (2.82), Middleton, 1976]. (For our present applications,
the range of values of a is: 0 < a < 2.) (4.247)
9.y = angular geometrical factors in the propagation Taw, usually taken

to be unity; cf. discussion, Sec. 2.5.1 [Middleton, 1976].
(4.243)
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As we have noted earlier [p. 82, Middleton, 1976], it is important to
distinguish the qualitative differences between Class A and Class B inter-
ference, in their amplitude statistics (as well as earlier, in their en-

velope properties):

(i)

(i1).

(iii).

Unlike Class A interference, the (first-order) statistics of
Class B noise are clearly sensitive to the combined effects

of source-distribution law (u) and propagation law (y), through
the generic parameter o, cf. (4.24h).

Consequently, the sensitivity to o is a receiver bandwidth
phenomenon, which can be (in principle) removed by suitably
broadening receiver bandwidth AfR vis-a-vis AfN, or heightened

by suitably narrowing AfR vis-a-vis AfN. In fact, Class B opera-
tion is often more desireable from a measurement viewpoint, as

it increases the number of descriptive parameters of the inter-
ference source from 3 [Class A, cf. (4.22)] to 6 [Class B,

cf. (4.23) ], and thus provides the potential for a more detailed
description of source structure and characteristics, via (4.24).
The Class A and B noise parameters are the same (as we would
expect on reflection) for both the amplitude (here) and envelope
statistics [Middleton, 1976]: (4.17), (4.22) and (4.18), (4.23)
here.

5. Probability Distributions P1(X3XO)B+G;0 <a < 2:

We proceed here to use the desired approximations (4.23a,b) to the charac-
teristic function F](ig)B+G in (4.5,5b), to obtain the corresponding (approxi-
mate) forms for P](szo)B+G.

First, we remark that just as in the earlier analysis for the envelope
statistics of Class B noise the approximating c.f.'s here [cf. (4.23a,b)]
yield pdf's (and PD's) which are not properly scaled. In fact, as
we shall note below, the c.f. Fi1 (4.23a), yields a pdf W, (X)B_I >
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which requires a change of scale for the argument X (or z = X/(X2>]/2 =
X/Vap(T+15 ) and = X (or z,) in the associated PD. Moreover, if wy(X)p_;
is used over the whole range of X: (-» < X < =), then <X2>I + o, [On the
other hand, the c.f. F]-II’ (4.23b), yields a pdf, WI(X)B-II’ which gives a
finite second moment over (-»,»), e.g., <22>II= 4G§(#1), cf. Eq. (7.4).below,
but a moment which is not suitably normalized until we divide by 4G§.]

With this in mind Tet us next introduce the following normalizations:

7 = x//QZB(]+ré) 5z = XO/VQZBZ1+Pé5 3 Zyg = XoB//QZB(1+Pé$ (>0)

(5.1)
with
_p (R2 . =R
Ryp = AgBogd/2 5 Th = o/ (5.1a)
Qo (14T) = @optol = (X2 (5.1b)
28\ *Tp! = UapTog total ° :

(as before, cf. (3.2a), [Middleton, 1976]). Letting a be a normalizing
factor

-1/2

a = [ap(1+14)] (5.2)

analogous to a = {2928(1+Pé)}']/2 (= 271723y, cf. (3.3), [Middleton, 1976],
we can write

cooE=an 3 z=ak yozp=akg;zpo=aXy , cf. (4.23), (5.3)

where A, z, z, are now dimensionless quantities. Then the approximating

c.f.'s (4.23) become

0%

= Fy(ar)p s I:(|z]5]z,]<[z,g]) >
(5.4a)

_ ) -b]aABéa|A|“-Ao
Flieg = e
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. . Ay 2+2 2 bpaAi2 .
F](1£)B_II = e exp[-o gd A /2+A e 1 F1(1aA)B_II. (5.4b)

I

I1: |z]s]z,]>]zyg] -

The associated PD's are accordingly from (4.5) and (4.5b), cf. Appendix A:

;P](23;0)=P](23;0)B_I IZoB|<Zo<|ZoBl
B-II: zo<-|zoB|

Zo>|ZoBl
© sin zZ_\
vl 2] 70" ¢
_2[] Wf_ X F-|(1a)\BI IZ Bl<z OB }
B-II z <~ |z B],z >zoB(>0)
(5.5a)

~
|v
N
]

= P >
) 'I(IZI___IZOHB_I O—<—lzo|<ZoBX
B-11 le|>zOB

© sin|z_|Ar.
v. 2 0 .
=1 ﬂf_ v Frliar)g g oi|z0|5zoB}dx
B-11I ]zoB|>zOB
(5.5b)

for these symmetrical distributions, subject to the "joining" condition

P](|z|3_|zo|=|zoB|)B_I = Py(lzl2lzpgl=lzyg1 )g_qp> f. (5.22a), (5.26a).

5.1 Evaluations of Py p ¢ ¢
To facilitate the integration we replace sin Az, by its equivalent

Bessel-function form [Watson, 1944] viz:

) nzol
sinzA = 55— J]/Z(zox), (5.6)

so that (5.5a,b), with the help of 5.4a,b), become explicitly

22 2/2

S, o
i 2y, (™ 212 -by Agd” [A["-a0ca
Priz2z,)g 1 v 5 - ??j;_x Iip2lzgple &

(5.7a)
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A {20 o AN e “2 2/2
1 M B (°.-1/2 g
P (222,)5 11 v % ¢ Y L5 f;_x 01 (7 e d, (5.7b)

A " mb
with: C;B = (mb2a+oé)a2 ( 92: + B)/(1+F )
(5.7¢)
Ag = AgE2)s = &+ rg)/ ()
Ag
Also, we have (from (5.5b))
2|z, ® 172 -b] Ay a %] -AoZaZAZ/Z
P (lzl2) 2, )pp v 1 — Jg_x 01217 )e dr,
(5.8a)
2 .2
-Ay ‘r_T A [ g 2l
Py(lzl2]z, Vg 1y » 1-e ‘/ . Ox1/2J]/2(|zo|A)e mE™ " Tdn,

(5.8b)

with (5.7c), and where we have used (4.24b), (5.1)-(5.3) in defining the
parameters 658’ AB'

Our principal task now is to evaluate (5.6)-(5.8). For this, we need
the Hankel integral result [cf. (A.1-19), Middleton, 1960, for example]

- ut
dz = JFy (v 3-a%/ab7) (5.9)

® 22 (%) (a/2p)
fJ (zitz)z”—1e_b .
0o "V 2bMT (V1)

Re(vt+u)>0; |arg b| < n/4 .

Our first step in dealing with the B-I form (for 0 < [X| < |Xg|) parallels
the earlier analysis to obtain the analogous envelope statistics:

PUE>E gy = Py(E>E,), Egs. (3.17a,b), [Middleton, 1976]. We first
replace Z, by z, N in. {5. 78}, (5 8a), where NI(>0) is a scaling factor,
which he]ps to 1nsure that (X )B . Next, we define a parameter GB by

e S 2 _ 1
a“hoy 4GB » or Gg = Z—(———————— (5.10)



(which is the same as the Gg > (3.12b), [Middleton, 1976]). The simplest
useful form of result is obtained by expanding the exponent containing
|x|* and then using (5.9). We obtain after a little manipulation

Plzze,lp 1 = Pylzzz )y |
(5.11a)
- n.,  no+i
q,l_ 0 020 (_1) F( Z ) An F (nOH'] 3 _22)
-~ % & n! g 171V 2 ° 7 7%l e
(Izl2z,Dg_g = Py(lzl2]2 )y (5.11b)
n. notl
. ]_2|20| of (']) F( 2 ) 2\” . (HOH'] 3 -Il\ |2)
T 20 n! a 11 g i :
where
. ke
sk On0 o o On0 o
A, = A /2% = (2% a%Ag)/2%g = SCIREET R
2B B B
K . LS 0 2r(1-a/2)
(A = 2%, a%A,); (a = 2 a) 5 = ( )>
* ™ R 30‘/26 r(1+a/2) B< R (TFT2)
(5.11c)
and where
z, = (ZONI/Z/E GB) : (5.11d)

~

Here Aa is again the Effective Class B Impulsive Index, which is unchanged
from that quantity defined in (3.12a,b), [Middleton, 1976], and is proportional
to the Impulsive Index, AB’ here. Like AB’ Aa also depends on the spatially
sensitive parameter o, and on the relative gauss component Fé, cf. (5.1a).
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With the help of Kummer's transformation [cf. Middleton, 1960, Eq.

A.1-17] we see that when 20 > +w,
not1 o 22 r(3/2 ~ =no 2-1 -1
0 a2« TR e T DY (602)
2

so that the leading term in the series in (5.11a,b) become respectively

L2 /1211 > 1/25-1/2 as 2, » +w. (5.12b)
n:

O o

Accordingly, we see, as expected, that P] takes the proper limits as z, > +,0:

P](z 2, = —m)B_I =1/2 - (-1/2) =1 3
Pz > =)py = 1/2-1/2 =0 ) (5.13)
Py(z > 0)5 | = 1/2

Similarly, we have at once P](|£|3_O)B_I =1, P1(|2|>m) = 0, also, as expected.
This shows that these expressions for the PD give the correct limiting forms,
and are now scaled (NI) to permit proper "joining" to PB-II’ so as to give
{i2>=1 (or <X2> = QZB+oé = 928(1+Fé), as noted at the beginning of this
section.

For large values of 20 we use, as before, [cf. (3.14), [Middleton, 1976])
the asymptotic expansion

r(8) _ ,-oryy ofo=ptl) | ofo#l)(a-ptl) (a-g+2) | 7
T'(B~-o ]!X 2')(2
: (5.14)

1Fq(@383-x) »

to get for (5.11a), (5.11b)*:

* For (5.11b), in (5.15) we replace 20 by |£0| and multply by 2.
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(-1)" 1Ay agtly )
2 E e llne ooy, (5.5)

1 /7 n!r(zéno‘) 423

Pi(z22,)
n

ne~18

~

(0<<)z, < z,p (= zoBNI/2/§ GB) .

0
We note again that this asymptotic series (5.15)* applies here only for
“1arg§” 20,_sma11er_than some (large) value of 208' For Targer values of
z, (>zoB) we must use the second form of the PD, (5.7b), (5.8b), as
explained earlier. This is done immediately below. Figures 5.1, 5.2,
based on (3.11b), (5.15), shows typical PD's for 5], provided |f0]<|268|.

For P]-B-II’ cf. (5.7b), (5.8b), we use (5.9) directly, to obtain

A, o AN .

P1(Z>Zo)B-II g_%-{1-e B ) ﬁ% e[zo//§ cmB]} » (region II, cf. (5.5a))
=0
(5.16)
IE,ﬁB(=2<§rﬁB) - () eng) (5.16a)
B

X 22

Lo(x) = g_f e tdt , (5.16b)
Vi J0

cf. (5.7c) and Eq. 3.16a), [Middleton, 1976]. Similarly, for (5.8b) we
have at once

m

_AB oo AB )
Loar OLlzo1/ 72 eyl - 2] > 25 - (5.17)

P](IZ|_>_|ZOI)B_II 4 =g o

Note that (5.16), (5.17) have the proper behaviour as z, » *=, 0, viz:
M b5z ) = 1/2-(1/2 or =1/2) = 0, 1

z e 1 E2%0/B-11 ’

© (5.18)
Pi(z20)g_;1 = 1/2 J

as was the case above for Pi_p-1» cf (5.13).

* See footnote on preceeding page.
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Class B Interference

a=10

60r
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(dB)

1Z,|
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0% 10*10% 000 0102 04 06 08 09 095 098 099
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Figure 5.1 The amplitude distribution, Prob(lzlilzol)I, cal-
culated for Class B interference for o = 1.0, for

various values of the Index Aa’ from Eqs. (5.11b),
(8.15).
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Figure 5.2 The amplitude distribution, Prob(|z|z]zo|)l, cal-
culated for Class B interference for Aa = . @0 Eol
various values of o, from Eqs. (5.11b), (5.15).
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Finally, when z, is large, we use the asymptotic relation [Middleton,
1960, Eq. (7.5)]

2
-y
o(y) ~ 1- %:— [1- El§-+ O(y'4)] , (5.1%a)
Ty y

to write (5.16) as

e e BB~ _
Pi(z22)p 11 = ] mte "-0(z;%)1,  (5.1%)

<‘|_‘
N
=)
N
o
3
o
=

when zg >> 1. [For (5.17) we simply replace z, by |Zo| (and z by |z]|) and

multiply the right member of (5.19b) by 2.] Figures 5.3, 5.4 illustrate
P1=B-1I+ Eq+ «(8+17).

5.2 The Composite Approximation:

As we have already remarked, the problem with the approximating results
for P, _p in the present Class B model, cf., (5.11), (5.15) for Py 5 1, (5.16)
for Py_g_y1s s that these forms, stemming as they do from approximate
characteristic functions (4.23a,b), are not necessarily properly scaled in
that each approximating form P]-I’P]-II does not yield the correct mean-square
values of <Z€>B =1, or <X2>B = QZB(]+Pé), cf. (7.5). The approximations
P]-i’ (5.11), in fact, and the associated pdf's, W1(Z)B-I’ Eq. (6.7), although
suitably scaled [e.g. z+z, etc., cf. remarks (5.9)ff], in accordance with
the "joining" procedures outlined below, cf. (5.22)-(5.26), do not possess
fnnite mean squares on (-»,»), or (0,»), cf. (7.3) ff. The approximations
Pig-11> (5.16), (5.17), for Type-A forms, and their pdf's, wy_p_ ;1> Eq. (6.8),
although also proper PD's (and pdf's) of (5.18), likewise do not yield the
exact mean-square <22>B = 1, but rather a finite <22>B-II # 1, cf. (5.20a)
below.

Accordingly, we must devise suitable methods of combining, or "joining",
the B-I,II approximations, so as preserve the proper characteristics
[(5.13),(5.18)] of the PD's, (and associated pdf's); provide the correct
second moment, (7.7b); determine the various (six) B-model parameters, and
thus effectvvely specify an acceptable approximation to P]-B’ and Wy_g» over
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Ag, from Eq. (5.17).
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the entire range of the arguments (z,zo). Two principal methods for accom-
plishing this are outlined below: Method No. 1 is a somewhat more simple,
but approximate one, described earlier in Middleton [1976, Sec. 3.2-A;
1977, Sec. 3.2.1); Method No. 2 is precise, but involves more elaborate
calculations. The former employs a suitably "normalized" pdf, (Wl-B-II)norm
for the B-II region, to determine <%2)B=1, over the entire range (-=,~), or
(0,=), of the random variables in question, and can thus yield errors of
somewhat too small values of PD for large (z,zo), when Pé is small. The latter
method however, yields the correct values. The greater complexity of the
latter lies in the explicit evaluation of (%%)B properly using the approxi-

mating pdf's for the appropriate regions B-I,II, cf. (5.23) below.

5.2.1 Method No. 1:
Let us outline Method No. 1 first, following the author's earlier

analysis [Middleton, 1976, 1977]. Therefore, since the precise mean square
is <22>B =1, cf. (7.5), and since in this approach we now use Wi_b-11
over all z to establish <22>B = 1, this means a "renormalization" of Wi _B-II°
which is accomplished as follows:

(A). Calculate <22>II on (-«,=) according to (7.4), using Wy_pg_11°
Eq. (6.8), e.qg.

A, = AN A, ~ AD
2 _ B B 22 B ‘B . =1
rr=e " Loarcme=e  Loar (WAgtTg) (147g) (8.20)
(_'ﬁ)+1"' B v
= 20 B2 ugZ (1), of. (5.10), with A = (52 )A,. (5.20a)
B
. . . . 2 _ 2\-1
The required normalization factor is thus NI = (4GB) 5 @Gk s
(w WY SO = N2 w, (2) (5.20b)
1-B-II'norm 4G2 > "1-B-1I IT"1Y/B-11" )
B

Using (6.8), applying N%I directly to (5.16), (5.17) gives us now
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P.(z>z ) » 1 4 -ABozoﬁrBi [z./VZ ¢ .1} (5.21a)
1V22%4/B-11-norm ¥ L€ L qT © L%, Cmd 7> ik
8GB m=0
A o AD
v o1 B B S
P1(lzlz-lzo|)B-II—norm - 162 t-e mzo mr o Llzgl/v2 Cnpd 1>
B (5.21b)

where the domains of applicability (for z, Vs ZoB) are as indicated in (5.5a,b)
above. [fhese amplitude relations, (5.21a,b), are the analogues of (3.17),
[Middleton, 1976], for the envelope. ]

(B). The case of Wq_p.° Eq. (6.7), requires a different approach, since
{22>I on (-»,=), or (0,o) is infinite (0<a<2), cf. Sec. 7.3. Instead of
normalizing with respect to the second moment, [as is done in (i) above, which
is, of course, not possible here], we must scale Z, (and z) according to

AI_ [} 4 N = =
(5.11d}s e-«g.s z,+z) = NpzJ, with z; = XO/ZJ? GB/QZBZ1+ré5 » SO that z_

0
= zoNI/Z/?'GB. The rationale for this is

1). The observation that the approximating Pi_p.1 (and W]—B—I) must
have the same values in the gauss region (zo<<]), where P]>(0.9),
or more, as does the precise PD, P]-B (and pdf W1-B)’ derived from
the exact (but intractable) c.f. [(2.89), r-£, in Middleton [1976]].
Hence we have (5.11) above.

.. 2). The scaling factor NI is to be determined by fitting the two
approximate PD's, P]-I’ P]-II’ together by the procedure outlined
below, which is based on the canonical properties of the Class B
model generally.

The "joining procedure" for P]-I 11 (and therefore for Wi 1 II) now
directly parallels that stated in [Middleton, Sec. 3.2B, 1976; Sec. 3.2.1, 1977],
and uses (5.11), (5.20) specifically: we set

(). P = Pooog in _the gauss region (e.g. |zO|mO or small). (5.22a)
Equality of the two approximations in this re-

gion is required, since both represent the same
(small-) amplitude behaviour, characteristic of
all PD's here, and, of course, since both are ap-
proximations to the same, single, exact PD;
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(i1).

(iii).

(iv).

in the gauss region: for the same reasons, (5.22b)

s 2 O i
dz0 dzO
Pror = Prorr

(P11 _dP1-11>
+z

\ dz, dz,,

both approximating PD's must have the same
(constant) slopes, (P]>0.9);
at +z p, i.e. at the "bendover" point (cf. (5.22c)
Fig. 5.5),zoB(>0),where the two approxi-
mations are joined together. This condi-
tion is required for (5.5) to hold, as shown
in Appendix A, cf. Eq. (A.1-6), et seq. It
also insures that the PD here remains con-
tinuous. The point z o is empirically deter-
mined from the data, i.e. from the experi-
mental APD, or exceedance probability curve
P](ZZ-Zo)exp'
: the (finite) slopes of the PD's must (5.22d)
oB also be equal at the bend-over point(s)
i;oB)' This insures that the associated
pdf's are continuous at (j;oB), and that
the PD's are smooth here.

h 2
0

2 2
d"Pp 4Py
7
0

dz dz

) (o (5.22¢)
i-ZoB

this is required by the condition that the pdf's

be not only continuous but "smooth", i.e. have

a common tangent, at *+z p. This, in turn, is
required by the fact that the exact pdf is not

only continuous but smooth, as well.

this is the point of inflection (dZP]/dz§B=O) (5.22f)
of the exact P1, and is determined as such

(usually by inspection of the P]—data), with
P1+P1—expt’ cf. Fig. 5.5. This value of z

(=j;08) cannot be determined analytically from
either approximating form, P]-I,II‘

The five relations, (i)-(v), with the sixth,<22>11=1, e.g., <X2>II =
20,5 (1474) = {X%)o 0y cf. (1), Eas. (5.20) -(5.21b), are sufficient to
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Figure 5.5 Schema of pl—B’ Eq. (5.27b), obtained by joining

the two approximating forms (5.11b), (5.17), ac-
cording to the procedures (5.22), Method 1, or
(5.26), Method 2.
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determine the six global parameters (AB,QZB,FB,a A NI)’ as long as Zop is
empirically available.

5.2-2: Method 2:

As noted above, this is a precise version of (i)-(v) above, Eq. (5.22),
with the sixth, (approximate condition in Method 1) replaced by the "exact"
relation <22>B = <Z%>B-region I+<Fg>8-region 1-1s €.9.5 (7.7b) in (7.2a).
Now we use the proper, approximating PD's (and pdf's), (5.11), (5.16), (and
(6.7), (6.8)) in (i)-(vi) above, cf. (5.22). These relations here are
then explicitly:

2. _ 9 - ARl 2
(R). (2% =1 = (z)p. region I+<,Z 8- region II

oB "ZoB
= " z w] B Idz+ f 22w (z)B IIdz (5.23a)

oB

= g
J(; Idz+2L z Wl(Z)B—IIdZ . (5.23b)

oB

this last because of the symmetry of the pdf's, which also, cf. (6.8a)',
allows us to express (5.23b) as

z
oB o
<22>B =](; 22w1(|2|)B_Id|z|+f ZZW](IZI)B-IIdlzl’ (5.23c)
z

oB

in terms of the pdf for |z|. Then, since w]( )B_Idz = ]( )dz where
w](z) is the "scaled" pdf for reg1on B-I, cf. (6.7a), and z = zoNI/ZVF'GB,
cf. (5.11d), we get, using w]( ), (6.7a),

~

2 fzoBz 0B 8G5 .. . .
<ZA)B-region =2 . Z W1(Z)B-Idz =2 L (—N?Q Z w](z)dz . (5.23d)
I

The desired condition using the correct mean square then reduces to
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2 2 (>0)

Gg oB A s & © 5

1=— 2w (|z|)d]z|+] 2% (z])p_qpdl2]- (5.23e)
p Y %0B

=2 | ©

We can evaluate the second integral partially in closed form, using
(6.8), (6.8a)', to get directly

2 (" .2
(Z)8-region 11 ‘.}: 2% (I2])g_1qdl 2|
oB

m 2 ~2
. ~Ag 7l Asf 12 el a ~Zop/ 2%yp
e m\V 7 “oB*mB

+6§B(1- e[zoB/vr'émB]i} (5.24a)

-A . /2c
2 B 2 oB mB
=T E ZO m! {J #0B“mB*®
A2 A
~C.p © [zoB/J?'cmB]} " (5.24b)

[We remark that these results necessarily reduce to that of (i), Method 1,
above, when we set z ;>0 in the calculation of <22)II’ cf. (5.20)~(5.21).]
The first integral in (5.23e) can be obtained formally on a term-wise basis.

We get

86 (-1)"A"

2
= B
B, 2 +1, [ ° 2 +] 2
<22>B-reg1’on 15205 1o )f X Fr ((5—31/23-x)dx
NI n=0 0 (5.25)

where

> notly ~29+3
(570708 i (5.25b)

fZOB 2 _ not] 2
AT e L I S\ VEAN 2oy

~1 8

Accordingly, (5.24) and (5.25) in (5.23e) yield one relationship among the
six global parameters of this Class B model.
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The other five relations are obtained as above (5.22a-f). We have
explicitly here, for Method 2:

. _ L %p, B n.,notlysn
G PP o fzo7 LU r("5A; /n!
cf. ) galss region in
5.22a A, o Ay z
=%ﬁ-e B ) E$TQ-J%},
m=0 CmB
which becomes
n.,not+lysn m
Npo o (TGRSR 2 Ap
‘/_ L nl = e Z ﬁ—"‘ = (526&1)
v GB n=0 m=0 CiB

for both z_ and Izo|, cf. (5.11b), (5.17).

0
m
(_i_i) [dp]"I = dP]-II " NI oi ("])n F(n()L+3) -AB o}o: AB
dz dz foe P 2y n! Ly - B0
0 0 - [z ]<< Gvm n=0 n=0 mic o
cf. (5.22b) gauss region
also for both z_ and |z |
(i11). [Py 1] il gl B [1+0(z;5,0)]
W) s : a
1-1 " 1-11 ’ oB’
vy 2.5 V2 T(1-0/2)
{5.22¢) A A .
» . 2
Le b5 mhs Fon/%me 2 )
Zog m=0 ™ 0B
where (5.75) and (5.19b) are used.
1
N A ar (%) .
0 o "tz p  V2r(1-o/2)
e (52
2 ol
A e Ayag u pénddd | AB “Zo8/ 2B
rpe o L (ot o) ar
2 m=0 25
oB mB
[1- 0(z72)] (5,26d)
gB*-,* 3y

again where (5.15) and (5.19b) are used
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4%y d2P1-11
[ : = 5 : cf. (5.22e), which insures that the pdf's

2
dzo dZo i-ZoB at tz p are "smooth", etc. [The explicit

analytic form is obtained from (5.15) and
(5.19b) by differentiation as before.]

(vi). izoB: the "bend-over" points again are empirically determined and
used in the above, cf. (5.22f).

We remark, also, that when the relations (iii)-(v) are used, we may
need the next set of "correction terms" in these various asymptotic develop-
ments. Since Class B models involve six (ultimately) independent parameters,
fixing any three in the above enables us to determine the other three, from
any three of the (i)-(v), and (5.23) etc. Finally, we note that the "Class
A" form (II) is coupled to the "Class B" form (I) through the Class B
parameter,a, and vice versa through the "Class A" parameter, ré, appearing in
GB’ common to both approximations I,II. In any case, we have, for either
Method:

[ Pig 7 P Zop<%e<%ep 3 Py = Proprs
ﬁ m®<Z<=Z ps Zop<Z<. (5.27
L = P]"I’O < |Zl < ZOB; = P]_II, IZO|<|Z’ < 0, (5.27b)

Typical distributions are shown in Figs. 5.6, 5.7.

5.3 Hall-Type Models:
As in the envelope cases treated earlier [cf., Sec. 3.2B, [Middleton,

1976]], we can also obtain a Hall model form [Hall, 1966] from the P]—I
approximation used in the gauss and intermediate region 0 < |z,| < |z5].
This is achieved provided (1), we omit the gaussian contribution in the
c.f. (5.7a), or (5.8a), e.g., set Aoé + 0 therein, and (2) set Z,p>"-
The resulting expression for the PD is accordingly [cf. (5.7a)]
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Figure 5.6 The (complete) amplitude distribution P1(|z|i

|ZO|)B, Eq. (5.27b), calculated for Class B in-
terference for various Aa’ given o, from Egs.
(5.11b), (5.17), according to the procedures

of (5.26).
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z o -b, An(ar)®
1. _Z_o_f 172 1o B
P1(z220)p 1 |Ha11 27 - Jzn N hyelzehle x

We may proceed to evaluate (5.28), following the approach used on pp.
100-103 [Middleton, 1976]. Let us start with the form convenient for small
values of |zo| (jZOB) and use the following transformations:

(5.28)

B, = by Aga” (<A 2 "o/Z g (5.11¢)) ; z = B\ (5.29a)

A= (2,81 dn = 5] % feB! (5.29b)
and

z = zo/Bl/o‘ (5.29¢)

We obtain for (5.28)

P(22,)p 1 v - 3 V/Z:f ]/2a1/2(2* % e azoc (5.30)

Next, we use the Barnes-integral representation for J]/Z:

*
1/@ _ r(-s _9_25+]/2 (2s+1/2)/oa ds
Iy72(2852,77) "_[F T(sr372) (7 z o (5.31)
cf. Eq. (13.106), [Middleton, 1960], when I is the contour (-w=t+c, iw=tc),
with c(<0) so chosen that the integral overz in (5.30) 1is convergent at

za=0, e.g.

25+1/2_] -
J. Za ¢ e %z = P(2§i10, Re s > =1/2 3 "=1/2 < ¢c < 0.

o o

(5.32)

Applying (5.32) to (5.30), (5.31) then gives
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* + * +
; ( ) 1 1 ZO f P('S)I‘(zz ])(20)25 1/2 - (5 . )
z>2 N - — Y = .324a
1 0'B-I1 —2 « ‘Z'rr r I,(SJI_3/2)223+'|/2 2mi

which is evaluated (at the (simple) poles s=0,1,2,...) to yield directly

(1) (2L (22)2*T

1 1 = 0
& P (z>z N - — . (5.33b)
] B I|Ha]] 2 ToL n=0 n!(3/2)n22n
+ 2n+1 ?
Loz e (EE) 2
v - e y . 5T - (5.88¢)
™ n=0 n1(372) 2 S y
n A o
(04

[Note that in the gauss region |z | << 1), Egs. (5.33a,b) exhibit the
characteristic gauss form (in the PD) vz, cf. (5.11), as 2,52, > 0~.]

For large values of zo(<zOB ) (or sma]] values of Aa), we return to
(5.28) and use a Barnes integral representation for exp(-éuxa), viz:

e © f (- )BOLAO‘SEI-S— , (5.34)

A 2mi

to reexpress (5.28) as

12 1 -aS ds as-1/2
Pr(z220)p 1 jHant 2 2 m/;”'s)lzo 2ni f Yyl )dy(’ )
5.35

-1 < Reas <0,

where we have employed the transformation zZoh =y and (I) = zoe-f: here.

Again, we use [Watson, (1944), p. 391] to evaluate the y-integral:
f Jv(t)t“'\"]dt = r(u/z)/r(v~u/2+1)2‘)'“” , Re u < Re(v+3/2) (5.36)
0

with v = 1/2, u =as+1 here, and ., 0 < Re(ast1)<1(<2), as required. Equation
(5.35) now becomes
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as+] * -as
Py (222 ) mlxifr('s)r(_f_)lzo| ds
1 — 0 B-I|Ha]]‘— 2 /F T F(]_as/z)a1-as Zﬂi

I n. (hat+] an/2;n
(1T~ 27 TR,

o/r nZg N T(T-on/2)

L)

on
2,

(_])n+1r(na+1)2an/2An

] = 1¢: o 2 a
s Pyl ) v F o)t ) (5.37)
1 0 B-IlHa]] 2 2 n=1 n! F(]‘dn/2)|20|un
which shows, as expected, that
Tim . lim
2,5 Py~ 03 2 > Py =1,  ([zgl>=s |zy5[>2, here), (5.37a)

formally. Thus, we can use the relations (5.37) for large values of [zol.
Equations (5.33b,c), (5.37) constitute the Hall-type PD's for Class B inter-
ference. [As before, [Middleton, 1976], there are no Hall-type models for
Class A noise. [These results are generalizations of the Hall approach, based
now on detailed physical considerations, i.e., those leading to the results
of Sec. 4 above for the c.f.'s.]

Finally, in the special case a=1 (as in the envelope case, cf. pp. 102-
103, [Middleton, 1976]) we can sum the series (5.33c), or (5.37). Thus, we
have (from (5.33c)), all z_,

0

o 550

L
£ n ,2n+l
n=0 n!(3/2)n2 A=

S

1y i
osl: Polz22g)p 1pam 27

z, (-1)”(]/2)n 2z 2n (1)
Aa=] nZO Arg/z)n (Aa=] ) n! (5.38a)

| —
=[S
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1 B, 272
S Polzsz ) =5 - —( ), F1(1/2,133/23-—— )

1 o’| _ A l
a=1 o A:
a=1

Ve z !

] - i

= 5 {1 %—tan LY T 0y, J (5.38b)

Here the corrdsponding pdf is at once

z A'l]
] 1 (e ) =1 . (5.39)

Wi (2)1jat1 = - a7 = 7 1+2zZ/A§_4

It is at once evident that only the <|z|6}-moment, -1<g<1, exists for this
Hall model, and consequently <z%>+w, as expected from our general analysis
[cf. Sec. 7]. The PD, (5.38b), and pdf, (5.39), correspond to the Hall case
Oall” 2 , for amplitudes [cf. Spaulding, Middleton, 1976, Eq. 2.33 et seq.l]
_ Note that P], (0<a<2), is monotonically decreasing as Z, 7+, and that
l;T+m P]-(O 1), with P](z>0) = 1/2, as required of a proper PD. It is, how-
ever, an inappropriate approximate form when AoG is at all comparable to
(by Ag) e
(i.e., physical) pdf's must fall off fast enough to gquarantee the existence
of a finite second moment [cf. comments in Sec. (2.7A), Middleton, 1976].
In any case, Hall-type PD's and pdf's are not possible for Class A inter-
ference, as noted earlier. Moreover, because of the improper scaling of

Also, it is not applicable for very large Z,» since the true,

these PD's, e.qg., P] B-1° generally, we must replace z, z, » by NIZ’ N

where the scaling factor NI along with the four other parameters (A 58 FB,
ZB)’ are determined by the procedure outlined in Section 2 (and in Sect1on
6C, [Middleton, 1976]. [In the case of the Hall model here where a-], cf.
(5.38), (5.39), there are only the four parameters (NI,A ,FB, 28) to be

established. ]

6. Probability Densities: W1(Z)Bi
The associated probability densities (pdf's) for the approximations
w](z)I I for these Class B interference models are now readily obtained,
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either from

w,(z) = - — (6.1)
1 dzOZ—>Z
0
or by using (the normalized) form of (4.6), viz:
_1(° P
W](Z)B = ﬂ./;_ COS AZ F](1ax)xdx (6.2)

for these symmetric pdf's [derived from (4.6) with the help of (5.3) and the
relation Wl(Z)B = w](X(z))ldX/dzl]. Here we have, in the approximate form:

w](z)B ] W1(Z)B-I i ~Zp < Z <Zgs s

v (6.3)
=wi(2)g g > [2] > 2gp >

corresponding to the associated PD's, (5.27). For example, (6.2) becomes

N .

W1(Z)B—I,II = ﬂ./._ COS AZ F](1ax)b_I,IIdA (6.4a)
o. g0, 2022
£ e_b1aABa [A] ~AogaA /2
v1 220 202
= ﬂ./~_ COS AZ \e-AB+ABexp(—b2aa % 12) 0ga A /Zl)dx, (6.4)
explicitly.

Let us use
cos Az = VnzA/2 J_]/Z(zx) A (6.5)

as with (5.6) in (5.5) ( (5.7), (5.8)), to facilitate the integration. The
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result for (6.4) is explicitly

N 2222
o i -1)MaaNpN ~AeSA A2

#4 +1/2 ( B™la . na G

w1(Z)B-I 2-|’2n nZO O-A J_]/z(zx) =y A e dx
(6.6a)
52 .2

A, — e AT e g 3517

W1(Z)B-II noe B ‘/Ziw Oﬁ% ) k]/ZJ_]/Z(zA)e mB dx. (6.6b)
n= -

Using (5.9) we find directly that,* in replacing z by ZN; in Wy_g1> e obtain

explicitly
| . |
i o I (-1 )nAg no+1 natl 52 :
| W (@ (x g [ 1) R (g 1/220) L (6.7a)
(-2 g<z<z,p) { z= zNI/2/§GB; i (6.7a)
Zog = ZogN1/2/2 Ggs |
I and R !
| e AN T |
| wilzlg gy ve ) at S 222,22, - (6.8)
1 m=0 ,2ﬂC2 |
| mB ;
' |
"2 _ A 1 1 } 1
(z<-23,2>2p) cop = (W/AGHTR)/ (14T8)  (6.20)
i
cf. (5.7 )3Ag=(2-a) (4-0)Ag 3
w](|zl) = 2w1(Z)B—II’ z>0 . t (6.8b)"
f

With large values of |2| (< ZoB)’ (6.7a) may be developed in the asymptotic

* Here we go from z to z'=zNI; then from z' to 2=z'/2/§GB, with a jacobian
=2/2 Gy this removes the factor (2/2 GB)'1 in the evaluation of (6.6a).
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series:

A ) : o ( ])nAg - (nd+])(%g+])+
Mg (@ = L aimeey 20 02 b

0 << |2/ < Iz1.

These forms, Wi_BI,II° are, like their corresponding PD's, continuous at
the "bend-over" point, *Zp> cf. (5.22). Unlike the purely Class A inter-
ference, when ré -+ 0 here there are no "gaps-in-time" [GB+(4-a)/4(2-a)]:
this is a consequence of the fact that even if the system and external gauss
noise component vanishes effectively (oé»O), there still remains an inherent
gaussian contribution b2aA8(>O)’ cf. (4.24d), stemming from the interaction
between the relatively broad band incoming interference and the receiver's
initial (linear) stages, e.qg. AfN > AfARI (cf. comments pp. 74, 82
[Middleton, 1976]). Figures 6.1, 6.2 show w](z)B, Eq. (6.3), based on the
composite approximation (6.7), (6.8).

_ [We note, finally, that W (2), (6.7), is a proper pdf: Wy (2)>0% and
ffww](z)dz = 1. We show here that this latter condition is satisfied. Let

® b
_ Tim , 2 (-1)" 2n ]+ncxf 14001 /0. 22y 40
I = boseo I(b); I(b) = > nZO 3 Aar( 5 ) Y 1F](——Z——-,1/2,-z )dz,
(6.10a)
® ()" i dsnay (P12 Jona ]
41 -1 . 1+na -1/2 tno |, _
7w b TRl AP )f y IR Gy
n=0 0
(6.10b)
and then express ]F1 in series form and integrate:
2 na+l ) 2
b o (=) (-1)" b
2 :f S1/2 oot o } 2_ /s, %-1/2
Kn{b ) = " y ]F](““‘—“Z 31/23-y)dy QZO (1/2)221 /;) 4 dy

+ +
n% ])2('])22b22 ]

) zzo (T72) 2T (22+T) ;

(6.10c)

* This follows from Iﬁ(iax)llfj, EI+0, |g |+, for the c.f.
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Figure 6.1 The (complete) pdf wl(z)B, (6.3), 0O<z<e of the in-

stantaneous amplitude for Class B interference,
calculated from Eqs. (6.7a), (6.8a), for various
Aa, given a, [See Fig. 5.6 for the associated PD

and parameter values. ]
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Since (2+1)(1/2), = (3/2),, we have

na+1 %, 2%
K(b2)=2b°f( )9(])b = 2b ,F, ("
n (37277 11

s-b2) (6.10d)

( 1" 1+na notl 2
L) ALy p (2L 3725-0%)

v D" Anr(ngﬂ) B _1"(_3L2_)_[1+0(b )]
nsg Moo m P(]—'——)

ne
~1

¥

r(1/2) %r(3/2)+0(b‘"°‘,n11) +1, a5 b - w. (6.10e)

(o0

g1 = T, o8 f A(A)dz = 1, as required-.

Clearly, Wi B-II is also a proper pdf, with W13D, (by inspection) as direct
integration of (6.8a), (6.8a)' shows at once.

7. Remarks on Moments and Parameters:

Our discussion here closely parallells the treatment of Sections 5-7
[Middleton, 1976], and so we will content ourselves with a series of summary
remarks; detailed evaluations may be found in the reference above.

For the Class B interference under discussion in this Report we may write
for the general moments <IZ|S>, >0, <zl), % =0,1,2,..., using (6.3):

8 0B 8 _—
{12]%3 = Zfo : W1(Z)B-1d2+2fz 2wy (2)pqpde s €20, (7.1)
oB

where specifically we employ (6.7), (6.8) above for Wi_B-1.1I" Similarly,
we have for the integral moments

oB ./° ZoB
f zw](z dz+ [ zw(zBII

—Z

<z?‘)

oB 20,
=2f z w] dz+2f 22 w] BIId . (7.2a)
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(Y =0, 2 =od. (7.2b)

As expected the odd moments vanish, since w](z) is symmetrical about z=0.
Furthermore, it is clear from the nature of W1(Z)B-II’ (6.8), that all
(finite) (amplitude) moments of Class B interference exist, as required

physically. [This was found to be the case for the envelope, as well
[Middleton, 1976, p. 113].]

Specific moments may be determined by direct aplication of (6.7), (6.8)
to (7.1), (7.2). In fact, exact expressions for (221), (7.2a), may be simply
found from the characteristic function, as we note below, Eqs. (7.6),
so that we do not have to employ the approximate forms (6.7), (6.8) in (7.2).
[A similar set of exact relations applies for the envelope moments (62%)8,
also.] Of course, if we want <|z|8), then generally we must use (6.7), (6.8),
in (7.1). Let us examine a few special cases of interest:

(1). ﬁglﬁ}_lt Here we have

Zog (<) ) )
<|Z|B>I 2.?j; ZB(W1(Z)B_Idz = ?%éé}%y ./. B-a-1 2 ’

(7.3)

from (6.9) in (7.1). The second integral is O(AB_G): accordingly, only
moments of order g-a<0 or (0<)B<a can exist, based on w]( )B-I‘ Since
(0<)a<2, this means that (z >I ; w]( )B-I does not support a finite
moment. (As noted earlier [Middleton, 1976, pp. 113-114] this is also
the case for (g?>I, for Class B envelopes.)

(i1). <22>II: Here we calculate the second moment of z, based on W1(Z)B-II’

(6.8). Thus, we have
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-z2/262

o AM e 2
2. _ "B Ag
CONELIER |t
‘/21TCmB
m 2 o
T R B W ) e
m=0 .m0 Ag mI{T+Tg)
fg, ;
—2 4T
2"0L B il 2 1
(—T;En———) = 4G5, cf. (5.10), (6.8)' , (7.4)

which demonstrates the proper normalization factor (=1/4G§), et
(5.20) for Method 1. Accordingly, we have

.2
<—Z—>ﬂ— (X2 (1+ (x op(1+7g) (7.5)
‘4G§ = 1 =(X g/ (1415) 5% (X%)p = ‘ :

Exact even moments for the instantaneous amplitudes of Class B inter-
ference are found at once from the results of Sec. 5.2A,B, and 5.3 [Middleton,
1976], when we note that

< 22> Tim (-1)% g

Z' s 29

Fy (iax]z')
0 dx

Dy peg s 5= 8k s (B3 (7.6)

where F](iéxlzé) is given by (4.18) when the upper 1imit on the integral
is replaced by zé: see the comments of Sec. 5.2B [Middleton, 1976]. The
results are directly

1 (as expected) (7.7a)

Pl
N
o
N
(o]
1]

= 1 (as expected) (7.7b)

N\,
N
N~
loo]
|
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b _ 743 2 21 _ 3 _ S4B
(20 = @ [oag5*3055(141p) ] = 5 A (7.7¢)

2 |
255(14Tg

6, _ 26¢5 45 : 3 13

Q Q
- _g_, 3___@.__3_ + 42_5—_————2 48 5 + 15, etc., (7.7d)
QZB(1+FB) 928(1+FB)
where, as before,
(g, g, 2 AB<é§§>/22 , cf. (5.1a); and (7.8a)
Y f ( )dz
() A >A0,eoY,62RT,A , of. (4.19) (7.8b)

cf. (5.14a), [Middleton, 1976].

The odd moments, <222+1>

w1(z)B, or equivalently, the even (in&-) character of the (exact, and approxi-
mate) c.f.'s (4.18), (4.23). [We call the reader's attention, again, to the
important conditions in the procedures for evaluating these (exact) Class B

B® of course, vanish, by virtue of the symmetry of

moments, and to the general canonical nature of the present analysis vis-a-vis
the earlier work of Giordano and Haber [1970, 1972], and Furutsu and Ishida
[1960], discussed on pp. 117-119 of [Middleton, 1976].

Finally, we have, as before [Middleton, 1976; Sec. 6], the global and
generic parameters of the Class B, which are, as expected, the same as in
the envelope cases, since we are dealing with the same interference at the
receiver input. These parameters may be obtained, as indicated earlier,
from envelope statistics [Sec. 6B, Middleton, 1976], or by analogous forms
using the PD's and moments derived above [Sections 5,6]. These parameters
are briefly described again in Section 2, preceeding. The practical con-
ditions for Class B vs. Class A inteference models (vis-a-vis the receiver,
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of course) are just those already cited in Section 7 [Middleton, 1976] and
will not be repeated here.

APPENDIX A: The Approximating PD's:

In order to use (4.5), (4.5b) with the appropriate approximating c.f.'s,

~

F1(iaA)B_I’II, we must take care to employ the corresponding pdf's, Wy g-1,11

in the correct fashion.* This is done as follows, assisted by Figure A-1,
and remembering that Wi, qp are symmetrical pdf's (about z=0):

We first distinguish the following cases for the instantaneous
amplitude:

A.-1. z, < ~Zp

A.-2. “Zoh < Z5 < Zah ] (A.1-1)

A.-3.  zpp <z, y

For the first, A-1., we have at once, by definition of P]

“Z0B ZoB =
P](z>zO]) = WIIdZ + ) wIdz +‘/: wIIdz : (A.1-2)

Zo1 ZoB oB
which can be rewritten directly as

“%oB %oB w “oB
izt =), - WpEr) gt f/: Brgr . (p¥yplda.

ol oB oB “ZoB (A.1.3)

The final term in (A.1-3) is, with the aid of the symmetry properties of
the pdf's,

* It is assumed here that wy_; [ Wy_g_y. 1 are proper pdf's, i.e., w; ;120
and fc_’_omwI 1192=1. This is established in the text, cf. Sections 5.1,6(end).
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z

oB
-/iz (wI-wII)dz

oB

z
oB
%}E (wI-wII)dz = {1—P](!z|>|zol=zoB)I}

‘{]‘P'I(IZ|Z_IZOI="ZOB)II}.

while the first three terms reduce at once to

[ w](z)IIdz = P1(Zizo1)II' (A.1-5)
201

We next require that P, ;,P,_;; be equal at |z |=z_p: the respective PD's

are continuous at the "turning point", zoB(>0). [Additional conditions for
the composite approximation using the c.f.'s (or pdf's) for regions B-I,II are
developed in Sec. (5.2).] Accordingly, we see from (A.1-3)-(A.1-5) that now

P](Z>Zol) - P1(Z>Zo1)II 5 Zo1 < "%eB ° (A.1-6)
subject to the "joining" condition
P](IZIZZOB)I = P](lzlilzogl)u > (A.1-7)

cf. (A.1-5) et seq.
We proceed in similar fashion for the cases A.1-2,3, to get

P1(2>245 3) = P(22205 3)p 5 =255<255 3<Z4p: (A.1-8)
P1(z>24) = Py(Z>24) 1y > 254 > Zgp (A.1-9)

A similar procedure for the modu]us,lzl, (shaded regions in Fig. A.1)
may be used to give us directly
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Pr(lz]>]z,]) = Pyllzl2]z 1) » 0 < [z)] < zgps (A.1-10)

Py(lzl > Iz 1)1y 5 lz51>2,5 (>0) (A.1-11)

Specifically, we can write

2, |
0
Pr(1zl> 12511 11 = Py(zl> Iz gy 11 = 1-2f0 W (2)p1, 1197 »

(A.1-12)
with the appropriate domains Oi]zo|<zoB, |zol>zoB, respectively. Hence
follow Equations (5.5a,b) in the main text. (Similarly, if we replace z

by &, Zp bych, etc., Egs. (A.1-10-12) verify our earlier results, Egs.
(2.7), [Middleton, 1976,1977].)
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Figure A-1

Schema of the pdf's, wl(z)

B=T, T

Z—>+O°

, appropriate to the regions B-I,II.



Glossary of Principal Symbols

A0 = peak amplitude of typical input signal
AA’AB=AW’Am,AAw,B = Impulsive Indexes, (Class A,B interference)
ea = effective Impulsive Index

= normalizing factor
APD = a posteriori probability; here 1-Distribution=P]
ARI = combined aperture-IF-IF receiver input stages
EZT,CZR = source, receiver beam patterns
o = spatial density propagation parameter
Bo’éoA’éoB = generic or typical envelope of waveform from ARI

receiver stage
b]u’bZG’b2a+2'u = weighted moments of the generic envelope BOB
= expbonent of moment

c.f. = characteristic function

D] = probability distribution

S = delta (singular) function

e = impulse epoch

€5°€( = normalized doppler

I:'1,F1 = characteristic function

]F] = confluent hypergeometric function

AfN’AfARI = noise, receiver bandwidths

f = frequency

Go = a basic waveform

g(a) = geometrical factor of received waveform

Pé = ratio of (intensity of) gaussian component to that
of the "impulsive", or nongaussian component

#{(x) = gamma function

Y = exponent of propagation law, with range
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I,I = exponent of characteristic function
IC = incomplete T'-function
i = unit vector

JO,J] = Bessel function, 1st-kind, (0,1 order).
JA = jacobian
£ = c.f. variable
A = domain of integration
A = argument of the c.f.
A = (1,8,0), coordinates
v
u = exponent of source density law with range
g = normalized doppler
n.b. = narrow-band
QZB = mean intensity of the nongaussian component
w5 W, = angular frequencies (wo= carrier angular fr.)
P] = APD or Exceedance Probability
pdf = probability density function
Yyd = phase of narrow band wave
¢T’¢R = aperture phase
r = c.f. variable
0 = poisson 'density"
ey 2 2

O’OG’G’AOG’OA’OR’OE = variances

o5,V = source density

Ts’Ts:B = emission duration

t,t],t2 = times

Lg,q: = sets of waveform parameters
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U’Unb

Up>Up

w],w]

ZoB

error function

basic waveforms out of ARI receiver stage

normalized envelope waveform at output of ARI
stages

probability density function

instantaneous amplitude
a c.f. variable

(normalized) instantaneous amplitude

a normalized time, also, a normalized amplitude
threshold

(normalized) "bend-over" point
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