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ABSTRACT 
 
We investigate the use of an adaptive processor (a quantizer 
pseudoinverse) and the statistics of the associated pseudoerror signal 
to reduce quantization error in scalar quantizers when a small amount 
of prior knowledge about the signal x is available.  This approach 
uses both the quantizer representation points and the thresholds at the 
receiver.  No increase in the transmitted data rate is required.  We 
discuss examples that use low-pass, high-pass, and band-pass signals 
along with an adaptive processor that consists of a set of filters and 
clippers.  Matching a single pseudoerror statistic to a target value is 
sufficient to attain modest reductions in quantization error in 
situations with one degree of freedom.  Adaptive processing based on 
a pair of pseudoerror statistics allows for quantization noise reduction 
in problems with two degrees of freedom. 
 
Index Terms—quantizer, quantization noise reduction 
 
 

1. INTRODUCTION 
 

Quantization is fundamental to digital communications and digital 
signal processing.  Audio, video, and other waveforms may be 
quantized at various resolutions (e.g., 8 to 24 bits/sample).  Lower 
quantization resolutions may be used for extracted signal coding 
parameters inside of audio and video coders or in situations where 
channel capacity is severely limited (e.g., 2 to 8 bits/sample).  A 
quantizer may be a uniform rounding quantizer (URQ) or it may be a 
Lloyd-Max quantizer (LMQ) [1] that is optimized to match the 
probability density function of a specific signal.  Quantizers can be 
designed to operate on scalar or vector signals and a comprehensive 
overview of the topic is available in [2]. 

Figure 1 describes the basic case of memoryless scalar 
quantization using b bits/sample, or N=2b levels/sample.  On the 
transmitting side QTX compares the signal with N+1 thresholds {ti} 
and sends one of N codes {ci}.  On the receiving side QRX uses the 
code ci to look up one of N representation points {ri}.  When x falls 
into the jth quantization cell, the quantizer operation is described by 

 1 ˆ .j j jt x t x r+≤ < ⇒ =  (1) 
In a URQ the thresholds are uniformly spaced and the 

representation points are centered between the corresponding 
thresholds.  In an LMQ the thresholds and representation points are 
jointly optimized to minimize the mean-squared quantization error 

( )22 ˆE x xε = − .  The result is that each representation point is at the 

conditional mean of its quantization cell, and each threshold is 
midway between two representation points.  Note, however, that 
when either type of quantizer is used, the thresholds are used only in 
QTX and the representation points are used only in QRX . 
 

 

 
Fig 1. Conventional memoryless scalar quantization. 

 
In this paper we investigate the use of a quantizer pseudoinverse 

and the statistics of the associated pseudoerror signal to reduce 
quantization error in scalar quantizers when a small amount of prior 
knowledge about the signal x is available.  This approach can make 
use of both the representation points and the thresholds at the 
receiving side.  The prior signal knowledge, the thresholds, and the 
representation points are all embedded at design time and thus do not 
add to the transmitted data rate during operations. 

The only related prior work we are aware of is given in [3].  
That work addresses two-dimensional quantization of line spectral 
frequencies (LSFs) for speech coding.  The quantized LSF trajectory 
is smoothed to improve speech quality and that smoothing occurs 
under a soft constant that pulls the trajectory towards the Voronoi 
regions of the unsmoothed trajectory.  Thus [3] uses the two-
dimensional equivalent of the thresholds (Voronoi regions) at the 
receiving side.  Note also that dither and noise shaping can reduce the 
perceptibility of quantization noise, but neither technique reduces the 
mean-squared quantization error. 

 
2. QUANTIZER PSEUDOINVERSE AND PSEUDOERROR 

STATISTICS 
 
The Lloyd-Max quantizer minimizes the mean-squared quantization 
error 2ε  for any given resolution or rate b, and in the most general 

case this error cannot be further reduced.  However, in some slightly 
constrained cases 2ε  can be reduced through additional processing at 

the receiving side. This is possible when the receiving side has access 
to a small amount of prior knowledge about the signal x (e.g., sign of 
the spectral tilt of x).  This additional processing can advantageously 
use the values of the quantizer thresholds {ti} to reduce 2ε . 

Figure 2 summarizes our approach.  Here Q† is a processing 
element that can be viewed as an approximate inverse (a 
“pseudoinverse”) of the quantizer Q, where Q is the composition of 
QTX  and QRX.  In the most general case, Q destroys information and 
no amount of further processing can retrieve that information.  
However in some slightly constrained cases (e.g., sign of spectral tilt 
known), some of that information can be retrieved. 
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Fig 2. Conventional quantizer followed by a pseudoinverse. 
 

We define the quantizer error signal to be ˆe x x= −  and the 
quantizer pseudoinverse pseudoerror signal as ˆp x x= − % .  Now 
consider the case of the theoretical continuum where Q† evolves from 
the null processor, to a pseudoinverse for Q, and then on to an exact 
inverse for Q.  This would have to cause the pseudoerror signal p to 
evolve from zero to an exact copy of the error signal e.  Likewise at 
the end of this evolution, the total error x x−%  would be reduced to 
zero.  The key observation here is that if Q† is to invert Q to the 
maximum extent possible, then the pseudoerror signal ˆp x x= − %  
must emulate the error signal ˆe x x= −  to the maximum extent 
possible.  While the error signal e is unknown at the receiving side, 
the statistical properties of that error signal can be known and the 
pseudoerror signal can be tuned so that its statistics emulate those 
known error signal statistics to the maximum extent possible. 

Here are four observations on quantization error.  Quantizers are 
designed so that quantization error has zero mean.  Quantization error 
is always bounded according to the size of the applicable 
quantization cell.  For example, when x falls into the jth quantization 
cell, the error e is bounded according to 

 1 .j j j jr t e r t+− < ≤ −  (2) 
In addition, if the signal pdf is relatively flat within a given 

quantization cell of width 
1 2j jt t+ − = ∆ , the quantization error pdf 

associated with that cell will be nearly uniform on the interval 
]( ,−∆ +∆  and the associated variance and kurtosis are 
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The goal of matching quantization error statistics leads to the 
adaptive processing structure shown in Figure 3.  Here the statistics 
of the pseudoerror are calculated and compared with the a priori 
known statistics of the error signal.  The difference between these 
two can then steer the adaptive processor to match these statistics to 
the maximum extent possible, and thus it may invert Q to the 
maximum extent possible.  In general, these processes can 
advantageously use the values of the quantizer thresholds.  Since 
these can be known and embedded at design time, they do not appear 
as inputs in Figures 3 or 4. 

Note that matching pseudoerror statistics to quantization error 
statistics is necessary, but not sufficient for reducing the overall 
quantization error ( )2E x x−% .  For example, a processor could simply  

 
 

Fig 3. General structure of a quantizer pseudoinverse, Q†. 
 

inject a suitable noise signal to achieve the desired match of 
statistics, but this cannot reduce the overall quantization error.  
Rather, if the processor is to reduce the overall quantization error, 
then some prior knowledge of the signal is required. 

 
3. EXAMPLES 

 
We have conducted several demonstrations of the quantizer 
pseudoinverse technique and have observed modest reductions in 
quantization noise under certain conditions.  In each demonstration, 
the adaptive processor is in essence an adaptive filter followed by a 
clipper.  For simplicity, our implementations actually use a set of 
fixed filters followed by clippers and an output selector switch, as 
depicted in Figure 4. 

After filtering, the processor constrains each filtered sample to 
the proper quantization cell by clipping.  This is easily done by 
comparing the filter output sample 

ix% with the appropriate quantizer 
thresholds, based on the filter input sample ˆix .  For example if ˆix  is 
located in the jth quantization cell, then the clipping process is given 
by 
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By this process, 
ix%  is guaranteed to be in the same quantization cell 

as ˆix  and hence the same cell as 
ix .  This cannot increase 

quantization error, and in practice it often decreases quantization 
error.  This clipping process makes use of the quantizer thresholds at 
the receive side, something that is not done in conventional 
quantization. 

Note that if the filtering could somehow be perfectly matched to 
the original signal x, then the filter would move each input value x̂ to 
an output value x%  that exactly matches the  original  signal  x .   This  
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Fig 4. Adaptive processor used in examples. 
 
would mean that every filter output value x%  would be  in  the  proper 
quantization cell, and no clipping would be necessary (i.e., the 
middle branch of (5) is always used).  From this observation we 
arrive at the heuristic rule that desirable filters minimize the amount 
of clipping that is necessary. 

We also use the quantizer thresholds {ti} at the receive side to 
normalize the pseudoerror and hence the pseudoerror statistics.  This 
normalization is based on the quantization cell associated with the 
quantized sample ˆix .  For example if ˆix  is located in the jth 
quantization cell then ˆi jx r=  and the corresponding normalized 

pseudoerror pi is 
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That is, when the adaptive processor moves a sample to above the 
representation point for that cell, this pseudoerror is normalized by 
the upper “half width” of the cell.  When the adaptive processor 
moves a sample to below the representation point for that cell, this 
pseudoerror is normalized by the lower “half width” of the cell.  In 
general, these two “half widths” are not equal, in the special case of 
the URQ they are equal.  In light of the clipping step (5) and the 
normalization (6), the normalized pseudoerror signal is constrained 
to the interval [-1,1] for every quantization cell and every possible 
quantizer. 
 
3.1. Matching One Pseudoerror Statistic 
 
For one class of examples, quantization noise can be reduced by 
adaptive filtering that seeks to match a single normalized pseudoerror 
statistic.  In this class of examples, a single filtering parameter is to 
be optimized, and a single statistic suffices to guide this optimization.  
The mean of the normalized pseudoerror signal in our examples is 
inherently zero, and thus this statistic is not useful.  Instead we use 
the sample variance of the normalized pseudoerror signal 2

pσ . 

In our first experiment, we consider Gaussian signals x with 
constantly changing spectral tilt, and that spectral tilt is constrained 
to be negative (power generally decreases with frequency) or zero 
(spectrum generally flat).  For some negative spectral tilts and 

quantization noise floors, the signal will fall below the quantization 
noise floor for all frequencies above some critical frequency.  A 
lowpass filter with a cutoff frequency positioned at this critical 
frequency will eliminate more quantization noise (error) than signal 
and will thus reduce quantization error.  An example of this situation 
is given in Figure 5. 

We have passed a set of 13 signals with negative spectral tilts 
through a set of 20 symmetric FIR low-pass filters (order 32) to 
produce Figure 6.  This figure shows the resulting total error 
( )2E x x−%  relative to the original quantization error ( )2ˆE x x−  in dB 

as a function of 2
pσ .  This relative quantization error 
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is a measure of how much the pseudoinverse has reduced the original 
quantization error.  

At the left edge of Figure 6, no filtering is done, 2 0pσ = , and 

there is no change in the quantization error.  At the right edge, 
filtering is such that significant portions of the signal x are lost,  2

pσ  

is large, and the pseudoinverse has actually increased the error.  
Between these two extremes, we see that there is a range of 2

pσ  

values (about 0 to 0.5) that is consistent with a reduction in the 
quantization error.  Further, for this set of signals and filters, the 
value 2 0.2pσ ≈  is related to the maximal reduction of quantization 

error and this is largely independent of signal spectral tilt or filter 
cutoff frequency. 

Thus in this first experiment we use a target value of 2 0.2pσ ≈  

to continuously select filters that best reduce the quantization error as 
the spectral tilt of the signal continues to change.  Figure 7 shows an 
example of the relative quantization error reduction attained vs. 
bits/sample for an LMQ using 1 to 7 bits/sample.  Note that the 
greatest reduction in quantization error is about 2.7 dB at b=3 
bits/sample.  As b increases above 3 the quantization noise floor falls, 
the signal level drops below that noise floor less frequently, and there 
is less to be gained by this technique.  Also, as b decreases below 3, 
the quantization noise becomes more correlated with the signal, the 
model of a flat quantization noise floor becomes less valid, and there 
is less to be gained by this technique. 

  It is important to realize that the only prior knowledge about 
the signal that is available to the processor is the single fact that the 
spectral tilt is negative or zero.  In operation, the spectral tilt of the 
signal x varies and the pseudoinverse continuously selects the filter 
that will best eliminate signal components that fall below the 
quantization noise floor.  The selection or adaptation process is based 
solely on the constraint that the sample variance of the normalized 
pseudoerror aligns with a single fixed target value, i.e. 2 0.2pσ ≈ .  

Unlike in conventional quantization, the thresholds {ti} are used at 
the receive side both in the clipping process, and in the pseudoerror 
normalization that is prerequisite to the calculation of 2

pσ . 

In another, largely equivalent experiment, we attained similar 
results for the case of Gaussian signals with spectral tilt that is zero 
or positive.  This experiment parallels the first, but a set of high-pass 
filters was used.  Here again filter output selection was based solely 
on matching the sample variance of the normalized pseudoerror to a 
fixed target. 
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Fig 5. Example of signal with negative spectral tilt (solid), 

quantization noise (dotted), and response of a lowpass filter that can 
reduce quantization noise (dashed). 

 
In additional work we considered the case of a bandpass signal 

with a fixed center frequency but an unknown bandwidth.  Again 
based only on the matching of 2

pσ to a target value, we were able to 

reliably select the bandpass filter that best reduced quantization error 
(because it best matched the signal).  We also considered the case of 
a bandpass signal with a fixed bandwidth but an unknown center 
frequency and similar results were obtained. 

Finally we have performed an additional cursory demonstration 
of this technique using a single image.  Treating each row of pixels 
as a signal, some rows exhibit varying degrees of low pass nature and 
quantization noise can be reduced by low-pass filtering.  But other 
rows may contain fine details that would be damaged by low-pass 
filtering, so a single fixed filter is not practical.  For an image 
coarsely quantized to 3 bits/pixel, low-pass filtering to satisfy 

2 0.3pσ ≈  resulted in an average reduction in quantization noise of 

about 0.7 dB.  When 4 or more bits/pixel were used, no reduction in 
quantization noise was possible. 

Throughout these examples, we have found that a single target 
value of normalized pseudoerror variance 2

pσ  in the range 0.15 to 

0.50 serves to guide us to the proper filter.  If an exact inverse were 
possible, it would have to produce a normalized pseudoerror that is 
uniformly distributed on [-1,1] (this range is due to the normalization 
in (6)) with variance 2 1

3 0.33pσ = =  and kurtosis 1.8pβ = .  But the 

pseudoinverses we have constructed use linear filters followed by a 
clipper.  These linear filters produce approximate Gaussian outputs 
(since the output is a linear combination of quantized Gaussian input 
samples).  The pseudoerror is the difference between this 
approximate Gaussian signal and a partially correlated, quantized 
Gaussian signal.  As a consequence, the pseudoerror and normalized 
pseudoerror are approximately Gaussian.  Thus one way to describe 
the task of the pseudoinverse is that it must produce a pseudoerror 
signal that (when normalized) approximates a uniform distribution on 
[-1,1] and it must do this by means of an approximate Gaussian 
distribution that is clipped at ±1. 

 
 

Fig 6. Relative quantization error as a function of normalized 
pseudoerror variance. 

 
Fig 7. Relative quantization error for Gaussian signals with negative 

spectral tilt for LMQ using 1 to 7 bits/sample. 
 

On the other hand, the discussion immediately following (5) 
shows that desirable filters minimize the amount of clipping that is 
necessary.  This minimal clipping will lead to a pseudoerror signal 
that is far closer to Gaussian than to uniform.  Thus the 
pseudoinverse is caught between these two competing goals:  
approximate a uniform pseudoerror distribution via a clipped 
approximate Gaussian distribution, yet minimize the number of 
samples that must be clipped. 

The compromise solutions fall into a range, depending on the 
exact problem.  As noted above, the target variance for the 
normalized pseudoerror tends to fall in the range 0.15 to 0.50, which 
includes the variance of uniformly distributed error (0.33).  
Approximately 1 to 5% of the samples tend to be clipped in practice.  
The normalized pseudoerror kurtosis tends to range from 2.0 to 3.5.  
This nearly covers the range from the uniform kurtosis (1.8) to the 
Gaussian kurtosis (3.0) and extends beyond.  In all of our examples, 
we have seen that one can use a clipping target (in the range of 1 to 
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5%) in place of a variance target and obtain nearly identical results.  
Another option that yields similar results is to set a target for the 90th 
or 95th percentile of the normalized pseudoerror values. 

Reductions in quantization noise always depend on how signal 
power and quantization noise power are distributed across frequency.  
If there are large portions of the spectrum where the quantization 
noise power is well above the signal power, then greater reductions 
are possible.  If this is not the case, then smaller reductions, if any, 
will be possible. 

In all of this work we have used a target value of 2
pσ to select the 

best filter from a bank of fixed filters.  We argue that 2
pσ  could also 

be used to adapt a single filter to an optimal state in many cases.  
Figure 8 shows examples of the empirical relationships between 2

pσ  

and cutoff frequency for low-pass filters operating on 3 different 
signals with negative spectral tilt.  The relationships are 
monotonically decreasing.  Independent of the signal, when 2

pσ  is 

below target the filter cutoff frequency (
cf ) should be decreased, and 

when  2
pσ   is above  target  the  filter  cutoff  frequency  should  be 

increased.  A local estimate of the slope 2
p cfσ∂ ∂  could be used to 

quickly converge on the cutoff frequency that gives the desired value 
of 2

pσ .  Analogous situations exist for the cases of high-pass filtering 

and bandpass filtering with a known center frequency and an 
unknown bandwidth. 

The case of bandpass filtering with a known bandwidth and an 
unknown center frequency is more complex because ambiguities can 
arise between the cases where the filter passband is positioned too 
high and too low.  Here additional steps exploring both the higher 
and lower frequencies may be required to arrive at the proper center 
frequency. 
 
3.2. Matching Two Pseudoerror Statistics 
 
Next we consider a more general problem that involves two degrees 
of freedom.  As an example, we generated a variety of bandpass 
signals with center frequencies and bandwidths that were unknown at 
the receiving side.  Because there are now two degrees of freedom 
(center frequency and bandwidth) we lose the opportunity to 
optimize a filter using a single simple monotonic relationship like 
that shown in Figure 8.  However, intuition suggests that the use of a 
second pseudoerror statistic might help to address this problem, and 
this turns out to be true in this example.  Like the normalized 
pseudoerror mean, the normalized pseudoerror skewness is not 
useful.  But the sample kurtosis serves as a useful second normalized 
pseudoerror statistic. 

We sent the received quantized signals through a set of bandpass 
filters of various center frequencies and bandwidths.  For each 
combination of signal and filter, we have calculated the normalized 
pseudoerror variance and kurtosis, as well as the change in 
quantization error associated with this combination of signal and 
filter.  Figure 9 shows the resulting values of variance and kurtosis.  
In that figure, when a filter decreases quantization error, that data 
point is represented with a triangle.  When a filter increases 
quantization error, a circle is used.  From this figure it is clear that in 
this example, a single target or threshold on variance will not lead us 
to consistent decreases in quantization error.  The same is true  for 
kurtosis.   But  together,  the pair of normalized pseudoerror statistics 
can  be  used  to  select  filters  that  will reduce quantization error  in 

 
Fig 8. Monotonic relationships between filter cutoff frequency and 

normalized pseudoerror variance for three signals with negative 
spectral tilt. 

 
the vast majority of the cases.  For example, one might select filters 
where the normalized pseudoerror variance and kurtosis conform 
with the linear discriminant function 

 21.8 1.7 .p pβ σ> + ⋅  (8) 
This function is shown as a broken line in the figure.  This is an 
example result and other selection rules will likely be more 
appropriate in other situations. 

Adapting a single filter to obtain pseudoerrors with these 
properties remains as a development project.  In this present 
example, variance decreases and kurtosis increases as the filter center 
frequency moves towards the signal center frequency.  Further, this 
rate of change is greater when the filter width is matched to the signal 
width and smaller when these widths are not well matched.  These 
observations may facilitate the development of a single adaptive 
filter that produces the desired pseudoerror. 
 

4. SUMMARY AND INTERPRETATIONS 
 

We have proposed a technique for reducing the quantization error 
associated with scalar quantization.  The technique is implemented at 
the receive side only, and it uses the quantization thresholds and a 
small amount of prior knowledge of the signal.  No increase in the 
transmitted data rate is required.  The key ideas are a quantizer 
pseudoinverse and the associated pseudoerror signal.  To remove the 
quantization error it is necessary, but not sufficient, to subtract a 
pseudoerror signal bearing statistics that match (to the maximum 
extent possible) the statistics of the original error signal. 

We have demonstrated that matching one or more statistics of 
the normalized pseudoerror (variance, fraction of samples clipped, 
value of 90th or 95th percentile, kurtosis) to a fixed target can indeed 
guide an adaptive processor to reduce quantization error in a range of 
cases including low-pass, high-pass and band-pass Gaussian signals, 
as well as a coarsely quantized image.  We have noted that while the 
quantization error is typically a uniformly distributed signal, the 
pseudoerror is much closer to a clipped Gaussian signal.  The amount 
that quantization error can  be  reduced  depends  on  the  relationship  
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Fig 9. Together, variance and kurtosis can separate filters that reduce 
quantization error (triangles) from filters that increase quantization 

error (circles) across a wide range of signals. 
 

between the signal spectrum and the quantization noise floor.  Our 
examples have used a set of fixed filters and clippers followed by a 
selector switch, but we have also addressed the key issues associated 
with the extension to processing structures that are more innately 
adaptive. 

A time-domain or per-sample interpretation centers on 
refinement of quantizer output sample values.  The conventional 
quantizer produces a single value rj for all input samples with values 
in the jth quantization cell.  The pseudoinverse uses some prior 
knowledge of the input signal to attempt to refine the value rj to a 
value that is closer to the true input value.  We can judge the merit of 
these attempted  refinements  (and  hence  judge  the  appropriateness 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and effectiveness of the pseudoinverse) without access to the input 
signal by considering some aggregate properties (statistics) of the 
refinements (the pseudoerror signal) themselves.  For example, are 
the refinements sufficiently spread across the widths of the 
quantization cells (is 2

pσ  big enough)?  Do the refinements result in 

refined sample values that are mostly within the proper quantization 
cell (is 2

pσ  small enough, is the percentage of samples clipped small 

enough)? 
A frequency-domain or spectral interpretation focuses on 

matching filters to the original input signal, but without access to that 
input signal.  When the match is a good one, minimal signal is 
removed but maximal quantization noise is removed.  We can judge 
the match (and hence judge the appropriateness and effectiveness of 
the pseudoinverse) without any access to the input signal by 
considering properties of the signal removed by the filtering (the 
pseudoerror signal).  Is that signal variance approximately consistent 
with the variance of the quantization noise that we wish to remove (is 

2
pσ  close to the target value)?  To further enhance this process, one 

might invoke one or more band-limited spectral flatness measure(s) 
covering the filter stopband(s).  If the signal removed (pseudoerror 
signal) is flatter, that will often indicate that more quantization noise 
and less signal is being removed (an indication of a better match).  If 
the signal removed is less flat, that will often indicate that more 
signal and less quantization noise is being removed (an indication of 
a worse match). 

 
5. REFERENCES 

 
[1] J. Max, “Quantizing for Minimum Distortion,” IEEE Trans. 

Information Theory, vol. 6, no. 1, pp. 7-12, Mar. 1960. 
[2] R. Gray & D. Neuhoff, “Quantization,” IEEE Trans. 

Information Theory, vol. 44, no. 6, pp. 2325-2383, Oct. 1998. 
[3] H. Knagenhjelm & B. Kleijn, “Spectral Dynamics is More 

Important than Spectral Distortion,” in Proc. IEEE ICASSP ‘95, 
Detroit, 1995. 

192


