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ABSTRACT

The short-time Fourier transform (STFT) represents a window of
audio samples as a set of complex coefficients. These are advan-
tageously viewed as magnitudes and phases and the overall distri-
bution of phases is very often assumed to be uniform. We show
that when audio signal STFT phase distributions are analyzed per-
frequency or per-magnitude range, they can be far from uniform.
That is, the uniform phase distribution assumption obscures signif-
icant important details. We explain the significance of the nonuni-
form phase distributions and how they might be exploited, derive
their source, and explain why the choice of the STFT window shape
influences the nonuniformity of the resulting phase distributions.

Index Terms— DFT, noise reduction, phase distribution, phase
recovery, source separation, speech enhancement, STFT

1. INTRODUCTION
The discrete-time short-time Fourier transform (STFT) is a ubiqui-
tous tool for analysis and processing of audio signals. It represents a
windowed sequence of N real time-domain audio samples, xi, as a
length N sequence of complex numbers Xk. These coefficients are
often decomposed into magnitude |Xk|, and phase ϕk = ∠(Xk),
because the squared-magnitude can be related to the power of the
audio signal at a given time and frequency.

Magnitudes provide a very good baseline description of an audio
signal and significant work on enhancement, separation, and classifi-
cation has been accomplished using magnitudes alone. Phase values
describe how power is distributed between sinusoidal and cosinu-
soidal components and can be viewed as refinement information that
completes the signal description and is required for exact signal re-
construction. Research incorporating phases or complex coefficients
continues to emerge and example results can be found in [1–16].

It is commonly assumed that STFT coefficient phases ϕk are
uniformly distributed. For example, this assumption is found in
[2, 6, 8, 10, 11, 15, 16], [17], p.101 and [18], p. 447. In [19] phases
were measured and the global distribution was found to be approxi-
mately uniform. It is not hard to argue for the uniform phase distribu-
tion assumption. Natural audio signals evolve in time and even rela-
tively stable tonal components typically align differently with subse-
quent STFT windows as time passes, thus appearing more sinusoidal
in some windows, more cosinusoidal in others, and in-between for
yet other windows. Across any diverse collection of natural audio
signals this distribution of alignments will be uniform. But it turns
out that this does not mean that all STFT coefficients will have uni-
form phase distributions.

Instead, our analysis of individual STFT coefficients and our
analysis by coefficient magnitude both reveal highly nonuniform
phase distributions. In the next section we demonstrate these nonuni-
form phase distributions across a broad range of audio signals and we
note trends with respect to window shape. In Section 3 we demon-
strate the significance of the nonuniform distributions and in Section

4 we derive their source. Then in Section 5 we connect all these
results back to the original audio demonstrations of Section 2.

Significant work has been done to develop and analyze condi-
tional distributions for STFT phase [1, 5, 6, 10]. These distributions
model phases at a given time and frequency relative to an adjacent
time or frequency or both, thus modeling the evolution of phase
across time or frequency. The distributions in this paper are much
more fundamental — they are the absolute (not conditional) phase
distributions for each STFT coefficient. Note also that the nonuni-
form distributions shown, analyzed, and explained in this paper are
not STFT artifacts that would be removed or explained by the appli-
cation of the baseboard transform as described in [5]. Instead, the
distributions are fundamental STFT properties that are not directly
connected to the STFT stride.

2. AUDIO SIGNALS CAN PRODUCE NONUNIFORM STFT
COEFFICIENT PHASE DISTRIBUTIONS

In this section we present STFT coefficient phase histograms for au-
dio signals and note where these histograms are far from uniform.
We use audio from five classes: speech recorded in our lab, field
recordings of live music, a compilation of sound effects (31 sounds
in uncompressed files from 31 different freesound.org contributors),
music from professionally-produced CDs, and MP3 encoded ver-
sions of professionally-produced CDs. This collection represents at
least 60 different recording environments and equipment chains. We
use over five minutes of audio from each class. We calculated the
length N = 512 sample STFT using the periodic Hamming window
with 50% overlap. Window duration was 10.7 ms for speech and
live music where fs = 48k, and 11.6 ms duration for the other three
classes where fs = 44.1k.

Figure 1 shows six phase histograms as images. The left pan-
els show histograms by frequency. A vertical slice at any frequency
gives the phase histogram at that frequency, with white indicating
the most common values. Bright white regions on dark backgrounds
are prominent at many of the higher frequencies, showing that phase
distributions at these frequencies are far from uniform. The right
panels show histograms for discrete magnitude ranges — each phase
histogram is an annulus. At the lowest magnitudes (near the origin)
rotating from 0 to 2π takes us from black to white, then to black
and to white again, clearly showing nonuniform phase distributions.
These histograms cover just three of the five audio classes, but we
observed the same general trends in all five classes. In addition,
switching from Hamming to Hann windows increases uniformity
while switching from Hamming to rectangular windows decreases
uniformity. We are able to explain the reason for these trends in 4.5.

We have shown that for many higher frequencies and all lower
magnitudes, STFT coefficient phases are not uniformly distributed.
This result is consistent across 5 audio signal classes and over 60
different audio capture and recording chains. While these chains can
alter phases of signal components and thus alter STFT phases, they
cannot cause the phase distributions shown in Fig. 1.
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Fig. 1. Audio STFT phase histogram images. Left: per-frequency
histograms where each vertical stripe shows a phase histogram for a
given frequency. Right: per-magnitude histograms where each annu-
lar region shows a phase histogram for a magnitude range (smallest
magnitudes at origin). White indicates highest probability.

3. THESE NONUNIFORM PHASE DISTRIBUTIONS HAVE
PRACTICAL SIGNIFICANCE

The nonuniform phase distributions observed in 2 are perceptually
significant even though they are often associated with lower mag-
nitude coefficients. One demonstration of this fact follows. We se-
lected a single STFT coefficient with nonuniform phase and added
uniformly distributed phase noise from [−π/4, π/4] to it and then
reconstructed the original signal. The difference (noise vs. no-noise)
was clearly audible and it was easy to reliably identify the two con-
ditions in informal blind listening. This means that it is necessary to
preserve the phase values from these nonuniform distributions.

The nonuniform phase distributions observed in 2 are also math-
ematically significant. The distribution of a signal parameter informs
the optimal strategy for quantizing that parameter. Where a phase
distribution is uniform, the uniform rounding quantizer (URQ) is
optimal. Where phase is not uniform, probability density function
(PDF) optimized quantization will give lower RMS quantization er-

ror than the URQ [20]. We experimented with quantizing the STFT
coefficient phase values of the sound effects signals presented in 2.
We applied a single URQ across the upper half of the band (11.025
to 22.05 kHz) and also applied a set of four PDF-optimized quan-
tizers, each optimized for one-fourth of that band. We did this for
quantizers with 2, 3, . . . , 8 quantization cells and found that the set
of four PDF-optimized quantizers reduced RMS quantization error
by an average of 12% compared to the single URQ. This means that
the phase values from these nonuniform distributions can be more ef-
ficiently preserved if we recognize that the distributions are nonuni-
form, rather than assuming them to be uniform. More broadly, us-
ing the correct prior phase distributions could benefit algorithms that
separate signals and restore proper phase values.

4. THE CAUSE OF THESE NONUNIFORM PHASE
DISTRIBUTIONS

We have shown that audio signal STFT coefficient phase distribu-
tions are often nonuniform. This contrasts with and significantly re-
fines the widely-held global uniform phase assumption, so we seek
to explain why these distributions are nonuniform. Audio signals
generally have strong tonal components so we now turn to tones.

4.1. How tone phase determines STFT phase

We first derive the relationship between the phase of a tone at an
arbitrary frequency ωt and the resulting phase of an arbitrary STFT
coefficient at frequency ωk. We show that this relationship is linear
when the tone is near the coefficient (ωt ≈ ωk) but it can become
increasingly nonlinear as the tone frequency and the coefficient fre-
quency become increasingly distant. These nonlinear relationships
map uniform distributions of tone phases to nonuniform distribu-
tions of coefficient phases. Thus audio signals that are composed
of tones with uniformly distributed phases can produce STFT coef-
ficients with nonuniformly distributed phases.

Using the STFT frequency sample index k=0 to N−1, window
(or frame) index t = 0, 1, ..., and stride Ns, the STFT can be written

Xk,t =

N−1∑
i=0

wix(t·Ns+i)e
−j2πki/N , (1)

where wi, i = 0 to N − 1 are the window values. The STFT ker-
nel (or bin) frequencies are located at ωk = 2πk/N radians (or
fk = kfs/N Hz for sample rate fs smp/s). We use a common choice
for stride, Ns = N/2 throughout this work. For clarity, we omit the
window index t going forward. Consistent with common practice,
we assume N is even. The audio signal xi is real, so X0 (DC) and
XN/2 (Nyquist) are real and coefficients show complex conjugate
symmetry about Nyquist. This means that only X1 through XN/2−1

carry unique phase information. So throughout this paper we con-
sider only k = 1 to N/2− 1 without loss of generality.

We consider windows of the form

wi(α,Nw) = (1− α)− α cos (2πi/Nw), i = 0 to N − 1. (2)

Selecting window parameter α = 0 gives the rectangular window
with a narrow main lobe but minimal sidelobe suppression. Increas-
ing α generally broadens the main lobe but improves sidelobe sup-
pression and α = 0.46 and 0.50 correspond to the Hamming and
Hann windows respectively; both of these are used in the seminal
phase reconstruction work [21]. Nw = N − 1 produces symmetric
windows while Nw = N gives periodic windows which can have the
desirable constant-amplitude overlap-and-add (OLA) property [22],
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and their square roots have the constant-power OLA property. Thus
periodic Hamming and Hann windows and their square roots are
common choices for audio signals. The sensitivities of STFT phase,
phase reconstruction, and intelligibility to window parameters have
been studied in [23] and [24].

A tone with arbitrary phase θ ∈ [−π, π) and frequency
ωt ∈ [0, π] between DC and Nyquist is given by

xi(ωt, θ) = cos (ωti+ θ), i = 0 to N − 1. (3)

We consider the windowed STFT of this tone. We wish to find the
phase ϕk of each STFT coefficient Xk. We insert the tone definition
(3) into the STFT definition (1), and apply trigonometric product-to-
sum identities to get

Xk =

N−1∑
i=0

wi cos (ωti+ θ)e−jωki

=
1

2

N−1∑
i=0

wi

[
ej((ωt−ωk)i+θ) + e−j((ωt+ωk)i+θ)

]
. (4)

Inserting the window definition (2) into (4) and applying trigonomet-
ric product-to-sum identities yields twelve trigonometric sums. The
sums and their solutions take the form

f(γ, θ,N) =

N−1∑
i=0

sin(γi+ θ) = s(γ,N) sin((N−1)
γ

2
+ θ),

g(γ, θ,N) =

N−1∑
i=0

cos(γi+ θ) = s(γ,N) cos((N−1)
γ

2
+ θ),

where s(γ,N) =

{
sin(N γ

2
)

sin( γ
2
)
,−π≤γ<0 or 0<γ<2π,

N, γ = 0.
(5)

With these definitions in place, the real and imaginary parts of the
STFT coefficient Xk in (4) are given by

ℜ(Xk) =
(1− α)

2

[
g(∆+

k , θ,N) + g(∆−
k , θ,N)

]
−α

4

[
g(∆+

k − β, θ,N) + g(∆+
k + β, θ,N)

+g(∆−
k − β, θ,N) + g(∆−

k + β, θ,N)
]
,

ℑ(Xk) =
(1− α)

2

[
− f(∆+

k , θ,N) + f(∆−
k , θ,N)

]
−α

4

[
− f(∆+

k − β, θ,N)− f(∆+
k + β, θ,N)

+f(∆−
k − β, θ,N) + f(∆−

k + β, θ,N)
]
,

where ∆±
k (ωt) = ωt ± ωk and β = 2π/Nw. (6)

Finally, the phase of the coefficient is found via the four-quadrant
arctangent function:

ϕk = ∠(Xk) = arctan(ℜ(Xk),ℑ(Xk)), (7)

(where arctan(0, 0) := 0). Equations (6) and (7) provide closed-
form expressions for the STFT phase ϕk produced by a windowed
tone with arbitrary frequency and phase. Noting that s(2ωk, N) = 0
and s(0, N) = N , it is not difficult to show that when the tone fre-
quency matches an STFT coefficient frequency, the coefficient phase
and the tone phase will match (rectangular window or periodic win-
dows) or nearly match (symmetric windows):

ωt = ωk =⇒


ϕk = θ, when α=0,

ϕk = θ, when α ̸=0 and Nw=N,

ϕk ≈ θ, when α ̸=0 and Nw= N−1.

(8)

4.2. Rectangular window case

To gain initial insight we now consider the case of the rectangular
window (α = 0). We can best understand the general relationship
between θ and ϕk by rewriting (6) to isolate the dependence on θ:

ℜ(Xk) = aℜ(ωt, ωk, N) cos(θ) + bℜ(ωt, ωk, N) sin(θ),

ℑ(Xk) = aℑ(ωt, ωk, N) cos(θ) + bℑ(ωt, ωk, N) sin(θ),

aℜ(ωt, ωk, N) = 1
2

(
+g(∆+

k , 0, N) + g(∆−
k , 0, N)

)
,

bℜ(ωt, ωk, N) = 1
2

(
−f(∆+

k , 0, N)− f(∆−
k , 0, N)

)
,

aℑ(ωt, ωk, N) = 1
2

(
−f(∆+

k , 0, N) + f(∆−
k , 0, N)

)
,

bℑ(ωt, ωk, N) = 1
2

(
−g(∆+

k , 0, N) + g(∆−
k , 0, N)

)
. (9)

Using the relation for linear combinations of cosines and sines, we
can rewrite (9) as

ℜ(Xk) = cℜ(ωt, ωk, N) cos(θ + ζℜ(ωt, ωk, N)),

ℑ(Xk) = cℑ(ωt, ωk, N) cos(θ + ζℑ(ωt, ωk, N)),

where cℜ =
√

a2
ℜ + b2ℜ, ζℜ = arctan(aℜ,−bℜ),

cℑ =
√

a2
ℑ + b2ℑ, ζℑ = arctan(aℑ,−bℑ). (10)

Finally, using (10) in (7) shows that when ωt ̸= ωk, STFT phase is

ϕk = arctan( (cℜ/cℑ) cos(θ + ζℜ) , cos(θ + ζℑ) ). (11)

4.3. Linear and nonlinear phase relationships

Equations (8) and (11) give the relationship between the phase θ of
a tone with arbitrary frequency ωt and the resulting phase ϕk of an
arbitrary STFT coefficient at frequency ωk in the case of the rectan-
gular window. These results make it clear that STFT phase is peri-
odic in tone phase, as expected. And they show that a wide variety
of relationships between tone phase and STFT phase are possible.
These relationships are driven by the angles ζℜ and ζℑ as well as the
ratio cℜ/cℑ. These are in turn are driven by ωt, ωk, and N .

Figure 2 shows these relationships for the case N = 16. The
left panel of Fig. 2 uses seven colors (as annotated) to show cℜ/cℑ
for all seven STFT bins of interest (Xk, k = 1 to 7) as the tone
frequency ωt moves from 0 to π. The right panel is organized in the
same manner and shows P2π(ζℜ−ζℑ), where P2π(·) maps angles
into a principal angle in [0, 2π). This is an efficient way to visually
appreciate a key influence of ζℜ and ζℑ in (11).

In both panels each of the seven frequencies ωk are marked with
a dotted vertical line. This makes it easy to see that when wt = wk,
the curves for Xk give cℜ/cℑ = 1 and P2π(ζℜ−ζℑ) = π/2, so
(11) produces ϕk = θ. More generally, the smooth nature of Fig.
2 dictates that the relationship between θ and ϕk is approximately
linear when wt ≈ wk. But if wt moves away from wk, then cℜ/cℑ
moves away from 1, P2π(ζℜ−ζℑ) moves away from π/2 and given
the roles these variables play in (11), it is clear that the relationship
between θ and ϕk can become highly nonlinear. Fig. 2 illuminates
the case N=16, but the trends shown hold for general values of N .

Table 1 and Fig. 3 show five example relationships between tone
phase θ and the phase of an STFT coefficient ϕk. In Example 1 the
tone frequency ωt is very close to the coefficient frequency ωk and
the resulting phase relationship is nearly linear. In examples 2, 3,
and 4 the tone frequency moves away from the coefficient frequency
and the phase relationship becomes increasingly nonlinear. Example
5 shows that changing N from 512 to 2048 shifts the phase relation-
ship but does not alter its nonlinear nature.
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Fig. 2. Example shows how tone frequency ωt drives cℜ/cℑ and
P2π(ζℜ−ζℑ) per (11) for each of the seven STFT coefficients of in-
terest when N = 16. STFT coefficient frequencies shown by dotted
vertical lines. Right panel uses same color coding as left panel.

Table 1. Conditions for five examples shown in Fig. 3. Tone
frequency ωt, STFT coefficient frequency ωk, and their difference
∆−

k = ωt − ωk all in radians, STFT length N in samples, cℜ, cℑ,
ζℜ, and ζℑ given in (10) and discussed in 4.3.

Ex. ωk ωt ∆−
k N cℜ/cℑ P2π(ζℜ−ζℑ)

1 0.90π 0.88π −0.02π 512 1.18 0.52π
2 0.90π 0.80π −0.10π 512 1.93 0.57π
3 0.90π 0.75π −0.25π 512 3.25 0.66π
4 0.90π 0.45π −0.45π 512 4.73 0.79π
5 0.90π 0.45π −0.45π 2048 4.82 0.77π

The nonlinear mappings of tone phase θ to STFT coefficient
phase ϕk developed here and exemplified in Fig. 3 allow a uniform
distribution of tone phases to produce a nonuniform distribution of
STFT coefficient phases, as seen in 2.

4.4. Each STFT coefficient has intrinsic phase values

Figure 1 is based on significant quantity and diversity of audio. Yet
the left panels show very clear specific trends of higher phase den-
sity locations (white) that increase with STFT coefficient frequency.
These trends suggest that these locations of higher phase density are
intrinsic to each STFT coefficient. We now show that in the case
of tonal signal components and the rectangular window, each STFT
coefficient does indeed have four intrinsic locations for phase peaks.
This explains why tonal components of many different frequencies
all contribute to a single set of phase peaks.

When the uniformly distributed random variable tone phase θ is
transformed to produce the STFT coefficient phase ϕk (see 4.3), we
can find the probability density function (pdf) of this new random
variable as follows [25]. We use ϕk = F (θ) to represent (5), (6),
and (7) for α = 0 and fixed values of N , k, and ωt. We use G
as shorthand for the inverse function θ = G(ϕk) = F−1(ϕk). Then
the pdf for ϕk is given by

fϕk (ϕk) = fθ(G(ϕk))
∣∣F ′(G(ϕk))

∣∣−1
= (12)∣∣∣∣∣s2(∆+

k )+s(∆+
k )s(∆

−
k )2 cos ((N−1)ωt+2G(ϕk))+s2(∆−

k )

2π
(
−s2(∆+

k )+s2(∆−
k )

) ∣∣∣∣∣ ,
where s(γ) is abbreviated notation for the function s(γ,N) defined
in (5). To find the peaks in this pdf we first note that the only ϕk

dependence is in the center term of the numerator. Next we consider
the signs of the first two factors of this center term. It is not difficult

Fig. 3. Five example relationships between tone phase θ and STFT
coefficient phase ϕk. Conditions for each example given in Table 1.

to show that

s(∆+
k, N)s(∆−

k , N) ≤ 0, when ωt < ωk,

s(∆+
k, N)s(∆−

k , N) ≥ 0, when ωt > ωk. (13)

It follows that the pdf given in (12) is maximized w.r.t ϕk by mini-
mizing cos ((N−1)ωt+2G(ϕk)) when ωt < ωk, and by maximiz-
ing cos ((N−1)ωt+2G(ϕk)) when ωt > ωk. In other words, (12)
is maximized when ϕk = ϕ∗

k such that

G(ϕ∗
k) = Pπ

(
π − (N − 1)

ωt

2
± π

2

)
, when ωt < ωk,

G(ϕ∗
k) = Pπ

(π
2
− (N − 1)

ωt

2
± π

2

)
, when ωt > ωk, (14)

where Pπ(·) maps angles into a principal angle in [−π, π). We apply
F to both sides of (14) to convert tone phase to STFT phase:

ϕ∗
k = Pπ

(ωk ± π

2

)
, when ωt < ωk, (15)

ϕ∗
k = Pπ

(ωk + π ± π

2

)
, when ωt > ωk. (16)

These are the locations of the peaks in the pdf of the STFT phase
fϕk (ϕk). These locations do not depend on the exact value of ωt,
they only depend on whether ωt is above or below ωk. This means
that tones of all frequencies below ωk contribute to the same two
peaks in the phase distribution and all tones above ωk contribute to
the other two peaks.

Figure 4 provides empirical confirmation. We created 104 tones
by drawing a uniformly distributed random frequency ωt ∈ [0, π]
and a uniformly distributed random phase θ ∈ [−π, π) for each tone.
We then applied a length N= 512 rectangular-windowed STFT to
each tone. The left side of Fig. 4 shows the resulting phase his-
togram calculated across all 104 results. The right side shows the
same experiment done with the periodic Hamming window and is
visually identical (and numerically very close) to the left side. The
phase peaks given by (16) show most prominently in Fig. 4 (as white
lines) near the left edges of the images since the majority of the tones
have frequencies above these STFT bins. And the phase peaks given
by (15) are most prominent near the right edges since the majority
of the tones have frequencies below these STFT bins. Both the rect-
angular and periodic Hamming window experiments shown in Fig.
4 agree with the rectangular window derivation results in 4.4. In ad-
dition, we have empirically found that the phase peaks follow (15)
and (16) for 0 ≤ α ≤ 0.49 but not for α = 0.5 (the periodic Hann
window). We repeated the experiment with noise in place of tones
and obtained uniform phase distributions, as expected.
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Fig. 4. STFT phase histogram image shows that tones with uni-
formly distributed frequencies and phases produce nonuniformly
distributed STFT phases. White is highest probability.

4.5. Influence of window shape

Window shapes influence STFT phase phase values through their
sidelobe suppression properties. Consider a signal that has some
tonal spectral components near ωk and some that are far from ωk and
all of these spectral components have uniformly distributed phases.
From 4.3 and 4.4 we know that any spectral components close to ωk

would cause Xk to have a uniform phase distribution, while spectral
components away from ωk would lead to peaks at a pair of phase val-
ues. So the resulting phase distribution for Xk will be determined
by the relative powers of the near and far spectral components and
by the sidelobe suppression of the window. A window with more
suppression will better block the far components and will result in
a more uniform phase distribution. A window with less suppression
will allow the far components to more strongly influence Xk, result-
ing in a less uniform phase distribution.

Figure 5 gives an empirical example for the live music audio
class used in 2. It shows a measure of phase distribution nonunifor-
mity u for three different STFT coefficients and an average measure
of sidelobe suppression at π/2 radians frequency offset. As α in-
creases from 0 (rectangular window) through 0.46 (periodic Ham-
ming) and on to 0.5 (periodic Hann), sidelobe suppression increases
and nonuniformity decreases, as expected, and consistent with our
observations on rectangular, Hamming, and Hann windows in 2.

The quantitative measure of nonuniformity u used in Fig. 5 is
the normalized earth mover’s distance (EMD) [26] between the mea-
sured phase distribution {pm}M−1

m=0 and the uniform distribution,

u
(
{pm}M−1

m=0

)
=

1

u0

M−1∑
k=0

∣∣∣∣∣
k∑

m=0

(
pm − 1

M

)∣∣∣∣∣ . (17)

The normalization factor u0 is the EMD between the uniform distri-
bution and the deterministic case where all probability mass is in the
central bin. Thus the range of u is from 0.0 (when pm is uniform) to
1.0 (when pm is deterministic).

Another perspective on how window shapes influence STFT
phase values is seen by considering the convolution theorem that
equates time-domain multiplication of signal and window with
frequency-domain circular convolution of signal STFT and window
STFT: STFT(x · w) = X ∗ W . This formulation emphasizes that
the change imparted by switching from a rectangular window (where
W is the convolutional identity) to a more general window is circular
convolution with the STFT of that new window (W ). The STFT of
a periodic window is real and the STFT of a symmetric window has
only a small imaginary part which scales down with 1/N as window
length grows. So X ∗ W ≈ X ∗ ℜ(W ). That is, these windows
modify the real and imaginary parts of X in similar fashion.

Fig. 5. Increasing window shape parameter (see (2) and 4.1) in-
creases sidelobe suppression and thus decreases nonuniformity u of
phase distributions.

5. TONE RESULTS EXPLAIN GENERAL AUDIO RESULTS

In 4.3 and 4.4 we derived the mechanism by which tones with uni-
formly distributed phases can produce nonuniform STFT phase dis-
tributions with peaks at specific phases. In 4.5 we showed how the
sidelobe suppression of windows influence phase distributions. To-
gether, these results explain how more general audio signals pro-
duce nonuniform phase distributions for some STFT coefficients, as
clearly shown in Fig. 1.

Audio signals can be modeled as mixtures of tonal and noise-
like components, with tonal components typically having far greater
power than the noise-like components. So audio signals produce
results similar to the tone results, but with variations due to the au-
dio signals’ specific distributions of tonal and noise-like components
across frequency and time. Spectra of audio signals typically show
large dynamic range with spectral peaks many tens of decibels above
spectral valleys. Signals often have much less power at higher fre-
quencies than at lower frequencies and if proper anti-aliasing filters
are used, then the power near Nyquist frequency will be very low.
This large dynamic range means that tonal components at lower fre-
quencies can dominate the response of higher frequency STFT co-
efficients, even when windows with good sidelobe suppression are
used.

This explains the common trend across the signals described in 2
and shown in Fig. 1— nonuniformity (manifested as white bands) is
more common at the higher STFT frequencies (ωk) where the power
of the lower frequency tonal components (ωt < ωk) may dominate
tonal components near ωk in spite of significant attenuation provided
by the window sidelobe suppression. As shown in 4.3, there are non-
linear mappings between the phases of the lower-frequency tonal
components and resulting phases of the distant higher-frequency
STFT coefficients. Further, these nonlinear mappings cause many
different frequencies to all contribute to a single pair of phase peaks
(see 4.4) located at Pπ(πk/N ±π/2). These derived peak locations
agree with the empirically found areas of highest probability shown
in white in Fig. 1 (audio with periodic Hamming window) and in
Fig. 4 (tones with rectangular and periodic Hamming windows).

Since the peak locations are different for each STFT coefficient,
it is possible for the distribution over all coefficients to be roughly
uniform. But even in cases where the uniform global phase assump-
tion is approximately correct, that assumption is far from ideal be-
cause taking such a high-level view obscures the explainable and
exploitable highly nonuniform distributions that are easily seen in a
per-coefficient (or per magnitude level) analysis.
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6. SUMMARY

We have demonstrated that audio signals can produce STFT coef-
ficients with nonuniform phase distributions. This is a significant
refinement over the common assumption of a global uniform distri-
bution. We described the perceptual and mathematical significance
of the nonuniform phase distributions. We derived the mechanism by
which the phases of tonal audio components are nonlinearly mapped
to STFT phases and explained how this produces nonuniform STFT
phase distributions when the audio signal spectra and the STFT win-
dow characteristics combine to allow distant tonal components to
dominate a given STFT coefficient. In summary, an audio signal
will produce nonuniformly distributed STFT phases ϕk when

• There is a nonlinear relationship between tone phases and
STFT coefficient phase ϕk for tonal components that are lo-
cated in some frequency neighborhood T and

• Window sidelobe suppression and audio spectral content
combine to allow tonal components in that same neighbor-
hood T to dominate the response of Xk and hence ϕk.

Finally, we suggest that when audio signal processing requires a
prior phase distribution, it could be worthwhile to experiment with
using a per-frequency, per-band, or per-magnitude level nonuniform
prior to see if that additional specificity leads to improved perfor-
mance or efficiency compared to simply adopting the uniform prior.
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