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Disclaimer

Identification of commercial products or services in this report does not imply
recommendation or endorsement by the National Telecommunications and Information
Administration, Department of Commerce, or the U.S. Government.
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A Comparative Analysis of Multiple Knife-Edge Diffraction
Methods

Nicholas DeMinco,' Paul M. McKenna," and Robert T. Johnk?

Abstract: The results of a thorough comparative analysis of alternative
graphical prediction methods for multiple knife-edge diffraction are presented
and compared to the method developed by Vogler. The Vogler multiple knife-
edge diffraction loss is rigorous and verified with measured data, but too
computationally intensive for use in a propagation model that predicts area
coverage over irregular terrain. Mathematical algorithms were developed for
alternative graphical prediction methods for diffraction paths with up to six
knife edges, resulting in methods that are many orders of magnitude faster.
This is important for use in propagation models that predict area coverage
over irregular terrain for many radial directions from the transmitter. A
technique for selecting the best alternative method is proposed. Graphical
techniques and mathematical algorithms are also described. Comparisons of
the Vogler method to the alternative methods are included. Some
comparisons to measured data are also presented.

Keywords: diffraction, electromagnetic diffraction, electromagnetic wave propagation,
multiple knife-edge diffraction, non-line-of-sight, radio frequency propagation,
radio-wave propagation, Vogler method

1. Introduction

A comparative analysis of different multiple knife-edge diffraction methods was performed to
support various radio wave propagation models under development at the Institute for
Telecommunication Sciences (ITS). The goal was to investigate faster methods for computing
multiple knife-edge diffractions for the non-line-of-sight (NLOS) environment. The results of
ongoing analysis and measurement efforts will be used to develop diffraction loss
computation techniques for radio-wave propagation predictions in a variety of NLOS
environments.

L.E. Vogler developed a rigorous multiple knife-edge diffraction method in the 1980s [1], [2].
That method has been verified by comparison to measured data to be accurate, but it

" The author is with the Institute for Telecommunication Sciences, National Telecommunications and Information
Administration, U.S. Department of Commerce, Boulder, CO 80305.

2The author was formerly with the Institute for Telecommunication Sciences, National Telecommunications and
Information Administration, U.S. Department of Commerce, Boulder, CO 80305.
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requires excessive run times for many knife edges. Faster methods are currently needed for
propagation models that compute basic transmission loss predictions in situations where
many computations are required in different radial directions over many knife edges. Faster
alternative methods for computing multiple knife-edge diffractions are approximations to the
rigorous method. They obtain solutions by compositions of single knife-edge diffraction
results. This report compares the accuracy of four faster methods to Vogler's more rigorous
method.

All of the alternative diffraction computation methods are approximations and are based on
the Fresnel-Kirchhoff scalar theory of diffraction. The Kirchhoff boundary conditions are also
approximate and only apply to scalars. This diffraction analysis is based on the classical
approach of the Fresnel-Kirchhoff scalar theory of optics for a single knife edge. The
assumption is made that the knife edge is a perfectly absorbing screen place normal to the
direction of propagation extending to infinity in both directions and vertically downwards. In
a multiple knife-edge scenario, the losses for each edge will be combined using the
alternative multiple knife-edge methods. There are a number of alternative methods for
computing diffraction loss over multiple knife edges. Each method has its own unique
procedure for computing diffraction loss.

The original motivation for this analysis effort was to determine which alternative diffraction
computation method to use to compute diffraction loss over multiple knife edges based on
criteria to be discussed in this report. A selection technique to determine the optimum
alternative diffraction computation method is based on the relative geometric location of the
incident shadow boundary and the ray path from one knife edge to the next.

This report describes the alternative multiple knife-edge diffraction computation methods
graphically. Mathematical algorithms for diffraction paths with up to six knife edges were
developed for each method so that they can be implemented in a computer program.
Comparisons of each of the alternative multiple knife-edge diffraction computation methods
to Vogler's analytically rigorous multiple knife-edge diffraction solution were performed.
Techniques for determining the best alternative method to use for multiple knife-edge
diffraction computations were proposed for various scenario configurations. Some limited
comparisons with existing measured data for each of the methods are also presented.

Four alternative diffraction methods were investigated: Bullington [3], Epstein-Peterson [4],
Deygout [5], and Giovaneli [6]. All four are graphical techniques, where the analyst must
identify the most important knife edges through educated guesswork. Graphical procedures
for each of the methods can be obtained from the cited references and are described in
Section 3 of this report.

Mathematical algorithms had to be developed for these graphical methods to implement
them in a computer program. This enabled comparison of each alternative diffraction
method to Vogler's rigorous diffraction method to determine a suitable method for the NLOS
propagation scenarios. Descriptions of the graphical techniques and the mathematical
algorithms are presented for each of the methods.

The Bullington method is the simplest to implement, but the least accurate and therefore
unsuitable even with only two knife edges. The other three methods claim to have improved
accuracy when compared to Bullington’s method, with only a slight increase in complexity
[4]-{6]. Of those, the Epstein-Peterson method is the simplest and most straightforward to
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implement. It maintains reasonable diffraction loss prediction accuracy for some scenarios.
The Deygout method is an improvement over the Epstein-Peterson method. The Giovaneli
method corrects the error in diffraction angle in Deygout’s method by using a diffraction
angle that more closely coincides with that used for the geometrical theory of diffraction
(GTD)[6].

Various modifications were made to each of these alternative methods, including deleting
the sub-path knife edges (defined in Section 2) and using only the major three knife edges.
This led to three additional methods to include as candidate methods for consideration for
each of the four original methods. A special correction based on the GTD was also used with
the Epstein-Peterson method [7] for some cases. The major three knife edges for Epstein-
Petersen and Deygout methods are determined by selecting the three knife edges whose
Fresnel-Kirchhoff parameter v is the largest. The major three edges for the Giovaneli method
are determined by constructing a line from the main (tallest) edge through the peaks of the
other edges and selecting the smallest absolute value of slope on each side of the main
edge. All these methods need to be compared to the rigorous L.E. Vogler method to
determine the superior alternative for a wide variety of scenarios. Comparisons to measured
data will also aid in the determination of the best alternative methods to use for diffraction
computations.

Section 2 describes the multiple knife-edge diffraction problem and the geometry of the
knife-edge locations in a diffraction scenario for zero and nonzero antenna heights. The sub-
path knife edges were also defined. The first Fresnel zone radius will also be defined.

Section 4 describes the Vogler method for multiple knife edges and the Fresnel diffraction
integral method for a single knife edge. The alternative diffraction methods will also be
described with graphical examples of how each of these alternative diffraction methods
compute the diffraction loss. Summary comments on the alternative diffraction methods are
included.

Section 3.3 Provides a technique for selecting the best alternative diffraction loss
computation method to obtain the best estimate of diffraction loss. Section 3.4 includes
examples of alternative computation methods with six knife edges to provide more detail on
the computation complexity when up to six knife edges are included.

Section 4 introduces 50 multiple knife-edge diffraction scenarios that include many variations
of varying distances between knife edges, different knife-edge heights, and different height-
to-distance ratios for the knife-edge geometries. The scenarios are listed in tabular form.
Section 5 includes the figures to graphically illustrate each scenario.

Section 5 compares losses of the alternative computation methods with the Vogler method
for the 50 scenarios of Section 4. The results are illustrated in multiple figures. Discussions of
the results are also included. Section 5 also includes the execution time comparisons of the
Vogler method and the alternative methods for the 50 cases listed in Section 4.

Section 6 contains the results of comparisons of the alternative computation methods with
measured data. The results of Deygout's classic original paper are presented here with
comparisons to the loss predictions of the alternative computation methods. Comparisons of
the losses of alternative prediction methods to data measured by ITS for two separate
measurement programs are also presented.
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Section 7 contains conclusions for the study and summarizes the results.
Section 8 is a list of references.

Appendices Appendix A through Appendix D provide the mathematical details of all
alternative computation method algorithms for up to six multiple knife edges. These
algorithms were coded in a computer program.
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2. Description of the Multiple Knife-Edge Diffraction Problem

A common procedure used to compute propagation loss over irregular terrain is to
determine the locations and heights of the significant terrain features and represent each
feature as a knife edge. A sequence of knife edges is then cast as a multiple knife-edge
problem.

First, it is necessary to be able to define the geometrical representation of the scenarios. All
method development will assume that the database contains up to n knife edges wheren = 6
is the maximum number of knife edges. Figure 1 shows that the knife edges have index
numbers assigned consecutively from left to right as M; through M,, with their respective
heights hy through h,,. Distances d; through d,,,; represent the distance between the first
knife edge and the transmitter, the distances between adjacent knife edges, and the distance
between the last knife edge and the receiver. Knife edge 1 is the first knife edge to the right
of the transmitter antenna. Subsequent knife edges are numbered consecutively up to the
receiver antenna. For n = 6, knife edge 6 is adjacent to the receiver antenna. The knife-edge
location for the it" knife edge represents the distance from the transmitter antenna and is

given by:
i
di= ) d "
k=1

The receiver is located at:

d, = z d, )

Knife edge 1 is located at a distance d; from the transmitter, knife edge 2 is located at a
distance d; + d, from the transmitter, knife edge 3 is located at a distance d; + d;, + d3 from
the transmitter, etc.

For nonzero transmitter and receiver antenna heights, all knife-edge heights are referenced
to a baseline drawn between the transmitter and receiver antennas, and are a linear function
of the distance of the knife edge from the transmitter and the difference between the
transmitter and receiver heights. This determines the slope of the baseline.

The equation for adjusting this height as a function of distance for the i*" knife edge is
Ah; = (h, — ht)d—r + hy (3)

where h, is the transmitter antenna height and h; is the receiver antenna height.

Figure 1 shows a sub-path knife edge, a knife edge between two knife edges whose peak is
below a line drawn between the previous knife edge and the next knife edge. Knife edges M,
and Mg are sub-path knife edges. A sub-path knife edge can also occur between the
transmitter antenna and the second knife edge or the next-to-last knife edge and the receiver
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antenna. If the first knife edge or last knife-edge peak is below a ray represented by a line
drawn between the transmitter antenna to the second knife-edge peak, or a line drawn from
the next-to-last knife-edge peak and the receiver antenna respectively, then the first or last
knife-edge peak is a sub-path knife edge. In Figure 1 Mg is an example of this type of knife
edge, since it is between the next-to-last knife-edge peak and the receiver antenna.

If a sub-path knife edge occurs between two knife edges, and causes the first Fresnel zone to
be obstructed, then the sub-path knife edge should be included in the analysis. If the sub-
path knife edge does not interfere with the first Fresnel zone, then this knife edge can be
neglected in the computation of diffraction loss.

The first Fresnel zone radius, r, is given by [8]

| Adrdg
"= |+ dg (4)

where dr is the distance from the first knife edge to the sub-path knife edge, and dj is the
distance from the sub-path knife edge to the other knife edge, and A is the wavelength
defined as 2 = ¢/f. All dimensions are in either meters or kilometers.
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| M,
- p
300— "
| M.
p— q
E 4 "
£ 200—
5 9 M Ms
I — 3
100—:
— h1 hz h3 h4 hS h6
I RCVR
0 -1 d d, d; da ds |ds| dy _/
IINunmnnm
XTMR © o o o o o o o
8 S 8 8 3 s 8
~ N ™ < Yo} © N~
Distance (m)

Figure 1. Six knife-edge diffraction scenario illustrating knife-edge heights and distance locations with
two sub-path knife edges M2 and M.
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3. Diffraction Computation Methods

The Vogler method is a mathematically rigorous analytical computation technique that uses
higher order mathematical techniques but is computationally burdensome. All of the
alternative diffraction methods were originally graphical techniques, and they are usually
computed manually. Mathematical algorithms were developed to enable the four alternative
methods to be run on a computer. This section will first briefly describe the Vogler method,
the Fresnel integral method, and then the graphical procedures for each of the alternative
methods with an example. Finally, six knife-edge diffraction computation examples for the
use of the algorithms in Appendices A through D are presented and each of the four
alternative computation methods discussed for these examples.

3.1 The Vogler Method

ITS developed and validated computer code to reproduce multiple knife-edge attenuation
results quoted for the First Analysis Multiple Knife Edge (FAMKE) computer program by
Vogler and Partitioned Analysis Multiple Knife Edge (PAMKE) computer program by Vogler.
FAMKE and PAMKE Vogler methods in [1] and [2]. The practical basis for both methods is the
numerical evaluation of the repeated integrals of the complementary error function with a
complex argument. The new implementation uses a more robust method of numerical
evaluation for these functions developed by Gautschi [9].

The original Vogler work [2] takes work by Furutsu [10] as its starting point and approximates
irregular terrain as a series of rounded diffracting obstacles. Furutsu’s solution used a
generalized residue series, which, unfortunately, is slowly convergent as the obstacles’ radii
tend to zero. Using transformations of the residue series solution to integrals, Vogler derived
a multiple knife-edge diffraction solution involving multiple integrals over successive knife
edges and introduced a series representation for these integral functions that is amenable to
numerical solution [1], [11]. Whitteker [12] later independently validated Vogler’'s results by
computing numerical values and comparing them to certain analytical results in [1] and [2]. In
a later paper[11], Vogler derives a multiple knife-edge diffraction method using Fresnel-

Kirchhoff theory and shows that this is equivalent to that method and the results developed in
[2].

Equation 18 in [2] is the result of Vogler's derivation using the Fresnel-Kirchhoff theory. This
equation is an expression for the diffraction attenuation for multiple knife edges. Figure 2
illustrates Vogler's geometry and notation for the multiple knife-edge diffraction problems for
N knife edges.
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Figure 2: Vogler's geometry and notation for multiple knife-edge diffraction for N diffraction knife
edges.

There are N + 1 separation distances between knife edges indicated by d;,d, -+ d,41. The
heights of the N knife edges are designated as hq, h, -+ h,, 41 where the heights of the
transmitter and receiver antennas are hy and h,,4, respectively. The diffraction angles

04, 6,, ..., 0y can be calculated from the knife edge heights and separation distances. Equation
18in[2]is

N o (o]
E 1\2 (24 a2
E—O = (E) f e f e (V1+ +vN)dV1 ...dVN (5)

V1 VN

where E; is the free-space electric field strength in the absence of both the ground and the
knife edges, v; is the Fresnel-Kirchhoff diffraction parameter for knife edge 1 and vy is the
Fresnel-Kirchhoff diffraction parameter for knife edge N. The Fresnel-Kirchhoff diffraction
parameter is defined in [2].

The lower limits of the multiple integrals are given by explicit expressions in terms of the
geometry of the knife-edge heights and separation distances of Figure 2. An explanation of
the rigorous mathematical derivations for the Vogler method is very complex and beyond the
scope of this paper, but a brief description will be presented to communicate its complexity.
The complex derivations are described in [1] and [2].

For (5) with N knife edges, it is necessary to evaluate N integrals where each of these integrals
must be transformed into an expression suitable for numerical evaluation [2]. This is
accomplished by expanding the expression in each of the integrals into its power series [11].
The computation for attenuation is a series of terms involving functions that are repeated
integrals of the error function defined in [13]. Reference [13] also contains a number of
computation algorithms for computing these functions. Closed form solutions exist for certain
special cases for only two or three knife edges where the tops of the knife edges graze the
straight line between the source and receiver, so that the diffraction angles 8; defined in
Figure 2 are all equal to zero. For N greater than or equal to three knife edges and nonzero
diffraction angles 6;, no closed form solution exists.

Reference [1] discusses how many repeated integrals of the error function are required to
achieve reasonable accuracy in computing the attenuation function. Vogler determined that
for 10 diffraction knife edges, 160 repeated integrals were required for three-decimal place
accuracy in the numeric ratio representing the diffraction attenuation [1]. This numeric ratio is
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a number that is always less than or equal to one. For six diffraction knife edges, one hundred
repeated integrals were required to get four-decimal place accuracy [1]. This is extremely
costly in terms of computation time even with modern computers.

Vogler's multiple knife-edge computation for N greater than or equal to 2 knife edges results
in terms involving the product of complex multiple complementary error functions that have
complex arguments (dimensionless diffraction parameters). These results are difficult to
separate into real and imaginary parts for computing the magnitude of the diffraction loss.
The principal restriction in this approach is that the source, knife edges, and receiver be
sufficiently separated from one another.

Equation (5) reduces to the case of the Fresnel diffraction integral for a single knife edge
when N = 1 and is given by:

1 o

E£0: (%)i f e™Vidv, (6)

V1

Vogler's rigorous diffraction loss computation method [1], [2] is very accurate when
compared to measured data, but computationally intensive when compared to any of the
four alternative multiple knife-edge diffraction methods investigated. A faster radio wave
propagation model is needed that computes diffraction loss for many diffraction knife edges.
This is important for multiple knife-edge computation of diffraction loss over many knife
edges when the methods are used in a propagation model that predicts area coverage.
Comparisons of run times with up to 6 diffraction knife edges between the Vogler method
and the alternative methods of Epstein-Peterson, Deygout, and Giovaneli resulted in run
times more than three orders of magnitude (up to 1000:1) greater than the alternative
methods. Section 5.2 contains comparisons of execution times between the Vogler method
and the alternative methods.

3.2 Diffraction Computation Method for a Single Knife Edge

This diffraction analysis is based on the classical approach of the Fresnel-Kirchhoff scalar
theory of optics for a single knife edge. The assumption is made that the knife edge is a
perfectly absorbing screen placed normal to the direction of propagation extending to
infinity in both directions and vertically downwards. In a multiple knife-edge scenario, the
losses for each knife edge will be combined using the alternative multiple knife-edge
methods. The single knife-edge diffraction computation can be represented in terms of a real
diffraction parameter v and computed using the widely tabulated Fresnel Cosine and Sine
integrals with real arguments [13]. F(v) is the complex Fresnel integral defined previously
and v is the dimensionless Fresnel-Kirchhoff diffraction parameter. This differs from Vogler's
derivation and subsequent reduction to a single knife edge, because of a change of variables

mt? . . 0 _,2 v jﬁ . . .
from v; to - and integrations from fvl e Vidvy, to fo e’ 2 dt for a simpler representation in
terms of F(v).
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v

F(v)=fcos< )dt+]fsm< )dt—C(v)+]S(v) (7)
0

0

where
C(—2z) =—C(z) and S(—z) = —5(2).

The exact expression for the single knife-edge diffraction loss, L} (dB), is [8], [14]:

LL(dB) = —201og<‘¥F(v)|)

J(1 —C) =SM)* + (€ —sW)° (8)

= —20log 5 =J(v)

This expression is easy to evaluate since there are very reasonable computation time
methods for evaluating the Fresnel Cosine and Sine integrals.

An even simpler approximate equation also exists for the diffraction integral and is given by
J() in terms of v for v = —0.78[8]. The Fresnel diffraction integral can be approximated by
the following expression [8]:

E_ - 2
E—O_](v) = 6.9+201og(J(v—0.1) n 1.o+v—o.1) )
where E is the electric field strength of the diffracted wave and E, is the free-space field
strength in the absence of both the ground and the knife edge. J(v) is the diffraction loss in
dB forv = —0.78. For v < —0.78, J(v) oscillates about 0 dB and the magnitude is always less
than or equal to 1.3 dB [8]. As shown in Figure 3, the parameter v is computed from the
height of the knife edge h above a reference line drawn between the reference height of the
transmitter and receiver antennas, the distance from the transmitter antenna to the base of
the knife edge dy, and the distance from the base of the knife edge to the receiver antenna,
dg, and 2, the wavelength in meters. The parameter v is given by [8]:

—n 2(dr +dg)
Ve T Adrdg (10)

Figure 3 defines the knife-edge height parameter h in (10) and shows how it can be positive,
negative, or zero depending on the height of the knife edge relative to the height of a line
between the two terminals or between the source or receiver. Figure 3 also defines the
variables in the above equation for the Fresnel diffraction parameter v.

Figure 4 is a plot of the knife-edge diffraction gain in dB as a function of the Fresnel-Kirchhoff
diffraction parameter v. For values of v > —0.78, (9) is used to compute the knife-edge
diffraction gain in dB. For values of v < —0.78, (8) is used to compute the knife-edge
diffraction gain.
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Figure 3: Definition of height h for the Fresnel-Kirchhoff diffraction parameter v.
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Figure 4. Knife-edge diffraction gain (dB) as a function of the dimensionless Fresnel-Kirchhoff diffraction
parameter v.

3.3 Alternative Diffraction Loss Computation Methods for Multiple Knife Edges

There are a number of alternative methods for computing diffraction loss over multiple knife
edges. Each method has its own unique procedure for computing diffraction loss. However,
they all 1) determine the field of each knife edge from the field of the preceding knife edge,
and 2) use the algebraic approximation to the Fresnel diffraction integral and the Fresnel-
Kirchhoff diffraction parameter, defined in (?) and (10), to compute the diffraction loss over
each knife edge. They differ in how they compute the Fresnel-Kirchhoff diffraction parameter
v for each knife edge, since the effective height computation of each of the diffraction knife
edges is also different for each of the methods. They all add the diffraction losses of the
multiple knife edges to obtain the total diffraction loss. The field at any particular knife edge
arises solely from the total field from the preceding knife edge.

The alternative methods described in this paper cascade terrain obstructions using multiple
knife edges and use Fresnel-Kirchhoff theory for computing knife-edge diffraction loss. The
diffraction analysis in this paper is based on the classical approach of the Fresnel-Kirchhoff
scalar theory of optics. While computationally efficient, these methods are inherently error
prone.

Ray-based diffraction methods such as the geometrical theory of diffraction (GTD) or uniform
theory of diffraction (UTD) take into account polarization of the electromagnetic wave,
whereas Fresnel-Kirchhoff diffraction methods do not [15]. Ray-based methods such as UTD
and GTD will give the same results as Fresnel knife-edge diffraction when the interior wedge
angle of the perfectly absorbing knife edge is zero and becomes a knife edge [15]. Imagine
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two sides of a triangle forming a wedge. As the interior angle between the two sides of a
wedge is reduced to zero, the sides of the triangle will be flat against each other, and the
result will appear as a knife edge.

Fresnel-Kirchhoff multiple knife-edge diffraction assumes that each knife edge is uniformly
illuminated by the previous knife edge. In reality, the field in the shadow of each knife edge
that illuminates successive knife edges is not generally uniform, and as a result, cascading
knife edges in the alternative methods are not rigorously correct [15].

While these alternative methods are not correct in a rigorous sense, they do result in
reasonably accurate computations for many terrain scenarios simulated as perfectly
absorbing knife edges. They also show reasonable agreement (Epstein-Peterson 6 dB,
Deygout *3 dB, and Giovaneli =2 dB) compared with measured data [4]-[6], [14]-[16]. A
perfectly absorbing knife edge absorbs all of incident field energy, and there are no
scattered, transmitted, or reflected fields [15]. The assumption of a perfectly absorbing knife
edge eliminates the dependence on polarization and makes the computation much simpler
[15]. The computation results are very close (within =6 dB for the three alternative methods)
to those of the rigorous computation methods such as Vogler[2] and [17]. A rigorous analysis
for an absorbing knife edge results in a diffraction coefficient that is the same for both
polarizations (horizontal and vertical) of the electric field [18]. As a result, the scalar Fresnel-

Kirchhoff approximations can be used to determine the complex amplitude of the diffracted
field [18].

Vogler compared his results to the GTD, the Epstein-Peterson method, and the Deygout
method for five equally spaced knife edges having the same value of the diffraction angle at
each knife edge [2]. Good agreement (within £6 dB maximum or +2 dB minimum) was
obtained for the alternative methods except for small diffraction angles. The larger deviation
of diffraction loss for small diffraction angles computed with the Epstein-Peterson and
Deygout method is due to the proximity of the incident shadow boundary to the incident ray
path as shown in Figure 6, where the error in diffraction loss should increase. The large
deviation is due to the proximity of the ray path from one knife edge to the next being in the
transition zone, the small angular area near the incident shadow boundary. Figure 6
illustrates the incident shadow boundary for the first two knife edges as ¢ = ¢’ + m. The
angle 8 = ¢4, — ¢ is the difference between angle of the incident ray path for the next knife
edge ¢,qy and the angle of the incident shadow boundary ¢. The angles are in radians.

Figure 6 uses the same angle designations as Figure 5 but is the case for a single edge. The
angle 6 = ¢,4y, — ¢ is now the difference between angle of the incident ray path to the
receiver ¢,y and the angle of the incident shadow boundary ¢. The angles are in radians.
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Figure 5. Incident shadow boundary and ray-path geometry for a typical diffraction scenario, with
angles in radians.
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Figure 6. The incident shadow boundary and ray path for a single knife edge, with angles in radians.

These alternative methods use values of the Fresnel integral to establish the diffraction loss
when the field points are in the transition region or on the incident shadow boundaries. The
GTD method has a singularity at the incident shadow boundary, but the UTD method uses a
Fresnel transition function to compensate for this singularity at the incident shadow boundary
[15]. When the incident ray from one knife edge to the next lies along or near the incident
shadow boundary and hence is not a so-called ray path, the GTD method has a problem
predicting the diffraction loss, but the UTD method can accurately predict the diffraction loss
because it includes the Fresnel transition function [16]. The alternative methods use the
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Fresnel integral and incur an error inversely proportional to the angular difference of the ray
path from the incident shadow boundary.

When grazing incidence occurs (i.e., directly on a shadow boundary), a 6 dB diffraction loss
results [16]. This is appropriate only for plane waves when the incident field is the so-called
ray field [16], [19]. It is no longer correct to add the diffraction losses of the individual knife
edges for the grazing incidence case to determine the total loss over multiple knife edges as
is done using the alternative methods. For grazing loss over two successive knife edges, the
alternative methods would result in a total loss of 12 dB [16], [19]. The spectral theory of
diffraction (a more rigorous method) shows the correct loss to be some value between 6 and
12 dB, where the exact value depends on the spacing of the knife edges [16], [19].

One reason for the differences between the Vogler method and the four alternative methods
is that the ray path from one knife edge to the next consecutive knife edge is in the transition
region, and near the incident or reflection shadow boundary. Computations of these ray path
angles and shadow boundaries confirm this for the examples presented in Sections 5 and 6.
Figure 6 shows the incident shadow boundary and ray path from one diffraction knife edge
to the next knife edge.

The ray path is just the line drawn between one diffraction knife edge and the next
consecutive diffraction knife edge. The incident shadow boundary is obtained by adding 180
degrees to the incident ray angle from the previous knife edge or transmitter with reference
to the vertical line representing the knife edge or transmitter. The reflection shadow
boundary is obtained by subtracting the same incident ray angle from 180 degrees. The
reflection shadow boundary is usually far removed from the ray paths and hence does not
align with the ray paths and causes a problem. However, the incident shadow boundary can
occur close to or align with the ray path to the next knife edge. When the ray path
approaches the incident shadow boundary, the value of diffraction loss from the computation
of diffraction loss using the GTD approaches infinity, since the denominator approaches zero.
The UTD corrects this problem by multiplying the mathematical equation for the GTD
prediction by the Fresnel transition function [20].

Preliminary results of this analysis show where each of the alternative multiple knife-edge
methods investigated can be used in place of the rigorous Vogler diffraction method to
reduce computation time while maintaining suitable accuracy. It was shown that no one
alternative method can cover all scenario variations. Which alternative diffraction method
works best in a given scenario depends on how a method treats sub-path obstacles and the
alignment of the ray path from one knife edge to the next knife edge with the shadow
boundaries at the knife edges.

Electromagnetic fields are smooth and continuous everywhere, and as a result,
discontinuities across incident shadow boundaries do not occur in nature but do occur in the
mathematics of the GTD [21]. The denominator of the mathematical equation for the GTD
approaches zero in the transition region as it nears the incident shadow boundary. The
Fresnel transition function approaches zero at the same rate that the denominator in the
mathematical expression for the GTD approaches zero, resulting in a finite diffraction loss
prediction at the incident shadow boundary and in the transition region located near the
incident shadow boundary [21]. The Fresnel transition function has a maximum value of one.
The mathematical details of the computation of the incident and reflection shadow
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boundaries and the respective transition regions about these boundaries are given in [17]
and [21].

When applying any of the alternative methods with the Fresnel-Kirchhoff multiple knife-edge
diffraction, one should avoid the transition regions and incident shadow boundaries. It would
be appropriate to use a different alternative method that avoids the shadow boundaries and
transition regions when the ray path from one knife edge to the next knife edge is in the
transition region for one particular alternative method but not for a different one. The
alternative methods are different enough in their geometric constructions and the procedure
and order of computing individual knife-edge diffraction loss that one method would avoid
having this ray along the shadow boundary even though another method would cause it to
occur along the incident shadow boundary.

If the transition region were unavoidable, then it would help in the diffraction loss prediction
to have this ray as far as possible from the incident shadow boundary to reduce the
magnitude of the error. A technique will be proposed to determine which alternative method
avoids the shadow boundaries or has the maximum deviation of the ray path from the
incident shadow boundary. Selection of the method with the largest angular deviation from
the incident shadow boundary will improve the accuracy of the diffraction loss prediction.

The first approach investigated for selecting a more accurate diffraction method was to use
the method or methods that have the largest angular deviation between the ray path and the
incident shadow boundary. This angular deviation did not account for the separation
distance between adjacent knife edges or the wavelength for the radio frequency. The
argument of the Fresnel transition function was also investigated as a means to judge what
magnitude of angular separation would produce a minimal diffraction error. It is a function of
the wavelength and the distance, L, from the diffraction knife edge to the observation point
(separation between adjacent knife edges).

The second approach used the magnitude of the Fresnel transition function (FTF), which is
proportional to the magnitude of the correction needed to keep the mathematical
expression for the GTD finite and is therefore a good indicator of the accuracy of a diffraction
loss prediction. This second approach used the Fresnel transition function to judge what
magnitude of angular separation would produce a minimal diffraction loss error. It is a
function of the wavelength and the distance, L, from the knife edge to the observation point
(separation between adjacent knife edges). This second approach will be described using a
step-by-step procedure.

It was finally determined that the best approach was to compute the Fresnel transition
function argument and the Fresnel transition function magnitude ((11) and (12)) for each knife
edge and then form the Fresnel transition function product (FTFP) for all the knife edges in a
subject scenario. The magnitude of the FTFP is proportional to the magnitude of the
correction needed to keep the mathematical expression for the GTD finite, and is therefore
an indication of the accuracy of a diffraction loss prediction. The FTFP is obtained by
computing FTF using (11) and (12) for each knife edge and multiplying the magnitudes of
each individual FTF together to form the FTFP. The FTFP is a relative prediction of the
accuracy of an alternative loss prediction when comparing two alternative loss prediction
methods, but it is not an absolute value of loss prediction. It is an indication of determining
which alternative method would result in a better loss prediction.
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The method having the highest value for the FTFP is the one with the least diffraction loss
prediction error. The Fresnel transition function for one knife edge is given by [21]:

o)

FTF(x) = 2j/xe* f e v du (1)
Vx
The argument x of FTF(x) is given by [21]:
2 Gray — ¢ (12)
= 2 Y
x = p L cos [ > ]

where ¢4, — ¢ in Figure 4 represents the deviation between the ray path and the incident
shadow boundary, ¢ = ¢’ + m, and L is the distance from the diffraction knife edge to the
observation point, which is actually the distance from the diffracting knife edge to the next
knife edge. The wavelength is obtained from the operating frequency. A plot of the FTF(x) is
shown in Figure 7.
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Figure 7: The Fresnel transition function FTF (x) magnitude.

As the argument of the Fresnel transition function varies from very small values (~1.0 E*®) to
10.0, the Fresnel transition function varies from approximately .05 to 1.0 (Figure 7). Examples
of this computation of FTFP(x) with comparisons to attenuation ratio will be discussed in
Section 5 for 50 cases. The evaluation of FTF(x) can be performed using (11), but it is easier
to use Figure 7 with sufficient accuracy after using (12) to calculate x, and log x. A procedure
for computing x, FTF(x), and FTFP(x) is listed below.
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e Referring to Figure 4, compute x from (12) the argument of FTF(x) using parameters
defined in (12) ,the parameters ¢ = ¢’ + mand L, where ¢ is the incident shadow
boundary, and L is the distance from the diffraction knife edge to the observation point,
which is the distance from the diffracting knife edge to the next knife edge,

e The angle 6 = ¢,y — ¢ is the difference between the angle of the incident ray path for the
next knife edge, ¢4y, and the angle of the incident shadow boundary ¢.

e The wavelength 1 is obtained from the operating frequency.

e Compute x from (12),compute logx from x, and then compute FTF(x) from Figure 7 using
logx.

¢ Repeat the four steps above for each diffraction edge.

e Compute the product of all diffraction edges, FTFP(x), by multiplying all the individual
FTF(x) computations together.

The FTF(x) value of 1.0 indicates that for a single diffraction edge the ray path to the next
edge is far away from the incident shadow boundary and that the computation of the
diffraction loss will be better than an edge with an FTF(x) value less than 1.0. The FTFP(x) of
1.0 indicates that the total computation of using the product of the FTF(x) for all edges using
a particular alternative method will be better than an alternative method that has an FTFP(x)
less than 1.0 or less than the other alternative method.

3.3.1 The Bullington Method

For the Bullington method [3], multiple knife edges are replaced by an equivalent single knife
edge with an effective height represented by the height of a triangle constructed by drawing
a line from each of the antennas through the top of the knife-edge peak that blocks the line-
of-sight (LOS) path from each of the antennas. This is equivalent to the horizon from each of
the antennas.

Figure 8 is an example of graphical construction using the Bullington method for four knife
edges. A line is drawn from the transmitter antenna through the first knife-edge peak that
blocks the LOS path from the transmitter antenna. This is the knife edge with the maximum
slope with respect to the transmitter antenna. A line is then drawn from the receiver antenna
through the last knife-edge peak that blocks the LOS from the receiver antenna. This is the
knife-edge peak with the maximum slope with respect to the receiver antenna. The
intersection of the two lines locates the height and distances to use for computing the
Fresnel-Kirchhoff diffraction parameter v.
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Figure 8: A four-knife-edge example of the graphical approach for the Bullington method.

The height and distances are determined graphically or by solving simultaneous equations in
Appendix A that represent the two sloping lines. The distance from the transmitter antenna to
this equivalent knife edge dr and the distance from the equivalent knife edge to the receiver
antenna dpg are used with this effective height h’ to determine the diffraction parameter and
the diffraction loss using the equations in Appendix A. In this example, the effective height h’
is 550 meters. The frequency is 1500 MHz with a wavelength of 0.2 meters. The distance dy is
4600 meters, and the distance dg is 6600 — 4600 = 2000 meters. The Fresnel-Kirchhoff
diffraction parameter v is computed as 46.6 from (10) for this equivalent knife edge and the
diffraction loss is computed using (9) for J(v) and is equal to 46.3 dB. This is the total
diffraction loss for the Bullington method.

The Bullington method construction oversimplifies the computation of the diffraction loss
because it only uses two edges. This results in a low estimation of the diffraction loss and an
optimistic value for signal level. A comparison of the diffraction loss for this example to the
results of the other three computation methods in the next three sections demonstrates how
poorly the Bullington method computes the loss as 46.6 dB. The Epstein-Peterson, Deygout,
and Giovaneli methods compute the loss for the same edge scenario as: 95.9, 99.87, and
94.6 dB, respectively. The Vogler prediction method results in a loss prediction of 97.21 dB
for this scenario. The reader is cautioned here that the Bullington method typically predicts a
much lower loss than the other alternative methods and as a result a much stronger signal
level.
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3.3.2 The Epstein-Peterson Method

For the Epstein-Peterson method [4], it is assumed that each knife edge is illuminated by the
transmitter or the diffracted energy from the top of the preceding knife edge. The
attenuation due to diffraction is computed sequentially for each knife edge in turn, and the
attenuations for all knife edges are summed together in decibels. The diffraction loss
computation for n knife edges using this method requires the determination of the effective
height of each knife edge, and the distances dr and dy of the knife edge from the transmitter
(or previous knife edge) and from the receiver (or next knife edge), respectively.

Figure 9 shows how the effective height of a knife edge is determined graphically by drawing
a reference line from the preceding knife-edge peak or transmitter to the next knife-edge
peak or receiver. The distances between knife edges and knife-edge heights with respect to
a transmitter to receiver baseline are an essential part of the input data and can be used to
determine the effective heights of each knife edge. The effective height is the vertical
distance between this reference line and the knife-edge peak. The original Epstein-Peterson
method does not address sub-path knife edges explicitly [4], [5], [16], but the modified
Epstein-Peterson All Knife-Edges Method discussed in this paper (Epstein-Peterson method
with all knife edges corrected and uncorrected) does address sub-path knife edges to assess
the effects of their inclusion on diffraction loss.
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Figure 9: A four-knife-edge example for the graphical approach for the Epstein-Peterson method.

Figure 9 is an example of the graphical approach to the Epstein-Peterson method for four
knife edges. The frequency is 1500 MHz. The effective height of the first knife edge is the
vertical distance from the first knife-edge peak to the point where this baseline intersects the
line representing the first knife edge. This can be determined by drawing a baseline from the
transmitter, or it can be determined algebraically using (B-1) and (B-2) in Appendix B. The
effective height of the second knife edge is the vertical distance from the second knife-edge
peak to the point where this baseline intersects the line representing the second knife edge.
The effective height of the third knife edge is the vertical distance from this knife-edge peak
up to this baseline, and it is negative since it is a sub-path knife edge. The effective height of
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the fourth knife edge is the vertical distance from this baseline to the knife-edge peak of the
fourth knife edge.

The effective heights k' and distances dr and dg were used to calculate the Fresnel-Kirchhoff
diffraction parameter v from (10) and the diffraction loss in decibels for each knife edge using
the J(v) approximation (9). The knife-edge heights h; and distances d and dy used to
compute the effective knife-edge heights and diffraction parameter v are shown in Table 1
for each knife edge. The total diffraction loss is the sum of the individual losses for each knife
edge and is (24.0 + 32.9 + 0.0 + 39.0) = 95.9 dB.

Table 1: Parameters and computation results for Epstein-Peterson example of Figure 9.

Knife-Edge Effective

Knife-Edge Knife-Edge

Number/ Knife-Edge Computation Computation g::;?:::g: Diffraction
Distance from Height h’ Interval Interval Loss L (dB)
XMTR (m) (m) Distance d; (m) | Distance dg (m) v
1/1200 140 30 1200 1600 3.6 24.0
2/2800 260 90 1600 1600 10.1 32.9
3/4400 200 -40 1600 1400 -4.6 0.0
4/5800 220 145 1400 800 20.3 39.0

In addition to the Epstein-Peterson All Knife-Edges Method, other variations of the Epstein-
Peterson method were also compared to the Vogler method. One variation used only the
major three knife edges (the Epstein-Peterson Major Three Knife-Edges Method) and one
deleted the sub-path knife edges (the Epstein-Peterson No Sub-Path Knife-Edges Method).
Each of these three Epstein-Peterson Methods were also modified with the correction based
on the GTD described in Beyer [7]. These three additional variations of the Epstein-Peterson
method were designated as the Epstein-Peterson All Knife-Edges Method corrected, the
Epstein-Peterson Major Three Knife-Edges Method corrected, and the Epstein-Peterson No
Sub-Path Knife-Edges Method corrected.

3.3.3 The Deygout Method

For the Deygout method [5], it is assumed that each knife edge is illuminated by either the
transmitter or diffracted energy from the top of the preceding knife edge. This is similar to
the Epstein-Peterson method, but Deygout uses a different method of computing effective
height for each knife edge. The knife edges are classified in terms of the magnitude of their
Fresnel-Kirchhoff diffraction parameter v. Figure 10 is an example of the Deygout method for
four knife edges.

The procedure starts with computing the Fresnel-Kirchhoff diffraction parameters for all of
the knife edges using the effective knife-edge heights above the transmitter-to-receiver
baseline as if the other knife edges were absent using equations from Appendix C. The
distances for each knife edge in the computation of v are the distances from the transmitter
to subject knife edge d; and from the subject knife edge to the receiver, dg. The knife edge
with the largest Fresnel-Kirchhoff diffraction parameter is the primary knife edge for the
Deygout method. This is also the knife edge with the largest loss. The solid lines extending to
the top of knife edge 4 in Figure 10 illustrate the geometry of the computation to determine
the Fresnel-Kirchhoff diffraction parameter for knife edge 4. After computation of the Fresnel-
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Kirchhoff diffraction parameters for the other remaining knife edges, knife edge 4 has the
maximum value for this parameter and is the primary knife edge.
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Figure 10: A four-knife-edge example for the graphical approach to the Deygout method.

The diffraction parameter v is used as an indicator instead of the loss, so that the diffraction
loss does not need to be computed for all knife edges in this interim procedure. The primary
loss is computed using the effective height and diffraction parameter for only the primary
knife edge. Subsequent losses, for the remaining knife edges, are computed in a sequence of
steps with different effective knife-edge heights. In this example, the frequency is 1500 MHz.
The Fresnel-Kirchhoff diffraction parameters in Table 2 for knife edges 1, 2, 3, and 4 are
14.13, 20.48, 16.51, and 26.24, respectively, so the fourth knife edge is the primary knife
edge, and the diffraction loss is 41.27 dB for the primary knife edge.

As illustrated in Figure 10, the primary knife edge, 4, divides the path into two separate
regions and the computation of the diffraction parameter is repeated over each region
separately to determine a secondary knife edge using an effective knife-edge height with
respect to baselines drawn between the transmitter antenna and the primary knife edge 4 for
one region and the primary knife edge 4 and the receiver antenna for the other region, using
graphical methods or the algorithms in Appendix C. Notice only the region to the left of
primary knife edge 4 has knife edges, and the region to the right of knife edge 4 has no knife
edges. Since the main (primary) knife edge is knife edge 4, all of the remaining knife edges
are in a region to the left of knife edge 4.
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Table 2: Parameters and computation results for Deygout example of Figure 10.

Knife-Edge Effective Knife-Edge Knife-Edge Diffractio
Number/ Knife-Edge Computation Computation n Diffraction
Distance from Height h’ Interval Interval Parameter | Loss L (dB)
XMTR (m) (m) Distance d; (m) | Distance dg (m) v
Parameters and computations for determining the primary knife edges
1600 + 1600 + Secenck
1/1200 140 140 1200 1400 + 800 = 14.13 e eeige
5400
1200 +1600 1600 +1400 + Secondary
2/2800 260 260 — 2800 800 = 3800 2048 | | Life edge
1200 +1600 1400 +1800 Secondary
S 200 200 | 1400 = 4400 — 2200 1631 | \nife edge
1200 +1600 Primary
4/5800 220 220 +1600 +1400 800 26.24 knife edge
= 5800 41.27
Parameters and computations for determining the secondary knife edges
1600 + 1600 Third-level
1/1200 140 94.48 1200 +1400 = 4600 9.69 knife edge
Secondar
2/2800 60 | qsege | (2N IS0D - TERD - 10D 1278 | knife edge
= 2800 = 3000
34.99
1200 + 1600 + Third-level
3/4400 200 33.10 1600 = 4400 1400 3.21 knife edge
Parameters and computations for determining the third-level knife edges
3/4400 200 —-38.67 1600 1400 -4.48 0.0
1/1200 140 28.57 1200 1600 3.45 23.6

The second part of Table 2 shows the process of determining the secondary knife edge for
the region to the left of primary knife edge 4. The effective knife-edge height for determining
the secondary knife edge is the distance from this new baseline to the respective knife-edge
peaks in the region, determined using graphical methods or the algebraic algorithms in
Appendix C. The secondary knife edge is the knife edge with the maximum value of
diffraction parameter over the secondary region to the left of the primary knife edge. Using
the new baseline, the diffraction parameter is computed only for three potential secondary
knife edges 1, 2, and 3 using new effective heights. Since knife edge 2 has the maximum
value for the diffraction parameter v, it is the secondary knife edge for this example; the loss
for this knife edge is shown in the second part of Table 2 as 34.99.

This is a recursive algorithm where the method repeatedly divides the edge scenario into
different regions that are subsets of the original region and subregions until the diffraction
losses have been computed for all edges. This is demonstrated by the equations given in
Appendix C. The diffraction parameter v for all remaining knife edges is computed using the
equations in Appendix C and the distances and knife-edge heights shown in Table 2. The
diffraction parameters for knife edges 1 and 3 are less than that of knife edge 2, so knife
edges 1 and 3 are the third level knife edges for this region.

A new baseline for calculating the effective height of third-level knife edge 1 is established by
drawing a line from the transmitter to secondary knife edge 2. A new baseline for
determining the effective height of the third-level knife edge 3 is established by a line
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extending from the peak of secondary knife edge 2 to the peak of primary knife edge 4.
Since this knife edge 3 is below this new baseline established by knife edges 2 and 4, it has a
negative effective height. The diffraction parameter v is negative and less than a value of
—0.78, so the equation for J(v) cannot be used to calculate the diffraction loss.

From a curve in ITU-R P.526 [8], the value of diffraction loss is less than 1.0 dB for values of v
less than —0.78. The value of v computed for knife edge 3 is —4.48 and from the P.526 curve
the loss is 0.0 dB.

The results of the computation for third-level knife edges 1 and 3 are shown in the third part
of Table 2. The total diffraction loss using the Deygout method is the sum of these individual
diffraction losses in dB for knife edges 1, 2, 3, and 4 as 23.61 + 34.99 + 0.0 + 41.27
respectively, which is equal to 99.87 dB.

Several variations of the Deygout method were also used in the comparison: using only the
major three diffraction knife edges (the Deygout Major Three Knife-Edges Method) and
ignoring the sub-path knife edges (the Deygout No Sub-Path Knife-Edges Method).

3.3.4 The Giovaneli Method

Giovaneli's method [6] agrees with Vogler's more rigorous multiple knife-edge diffraction
methods [1], [2] for more than two knife edges. The Giovaneli method uses a different
approach for computing the diffraction losses with a geometry that uses the diffraction angles
that better represent the ray paths across the knife edges. This method is an improvement
over the Deygout method and the Epstein-Peterson method when the number of knife edges
is greater than three.

The history of the development of the four alternative diffraction computation methods spans
many years. The Bullington, Epstein-Peterson, Deygout, and Giovaneli methods were
published in 1947, 1953, 1966, and 1984, respectively. Each was an improvement over the
previous method, but in many cases each method has an advantage in how it avoids the
incident shadow boundary, because the ray angles are treated differently in the three later
methods. In Section 5, it will be shown that for the many different scenarios that can exist, one
method may be more suitable than another due to the different ray paths and their
relationship with the incident shadow boundaries.

Figure 11 is an example of the graphical approach to the Giovaneli method for four
diffraction knife edges. The frequency is 1500 MHz. For the Giovaneli method [6], the primary
knife edge over the entire transmitter-to-receiver interval is the tallest knife edge with respect
to the transmitter-to-receiver baseline, which is unlike the other methods. Its effective height
can be determined by a graphical construction as shown in Figure 11, or the mathematics of
Appendix D.
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Figure 11: A four-knife-edge example for the graphical approach to the Giovaneli method.

If there are two tallest knife edges with equal heights, then the Fresnel-Kirchhoff parameter v
is computed for both knife edges. The primary or tallest knife edge is the knife edge with the
largest value of v. The graphical construction starts with extending two vertical lines in an
upward direction, one from the transmitter and one from the receiver. Separate lines are then
drawn from the main knife edge (knife edge 2 peak) through the preceding (knife edge 1
peak) and the next knife edge (knife edge 4 peak) that are not sub-path knife edges and have
the minimum absolute value of slope with respect to the primary knife edge.

These lines are then extended beyond these knife-edge peaks to intersect the vertical lines
that have been drawn vertically from the transmitter and receiver at points T1 and R1,
respectively. This creates observation points for the diffraction over the primary knife edge
(knife edge 2) from the preceding knife edge 1 and to the next knife edge 4 that are not sub-
path knife edges. A line connecting the points of intersection of these separate lines with the
vertical lines serves as the baseline for determining the knife-edge effective height of primary
knife edge 2. The effective height is the distance between this baseline and the knife edge 2
peak. This height can be determined graphically or algebraically from the equations in
Appendix D.

Table 3 contains the knife-edge separation distances, knife-edge heights, effective antenna
height, diffraction parameter, and diffraction loss. The sub-path knife-edge peaks are
skipped at this point in the procedure. They are included after the completion of the
computation loss for the knife edges that are not sub-path knife edges.
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Table 3: Parameters and computation results for Giovaneli example of Figure 11.

Knife-Edge Effective Knife-Edge Knife-Edge Diffracti Diffraction
Number/ Knife-Edge Computation Computation iraction
. . 7 Parameter Loss L
Distance from Height h Interval Interval (dB)
XMTR (m) (m) Distance d; (m) | Distance dg (m) v
1/1200 140 28.57 1200 1600 3.0 22.5
1200 + 1600 = 1600 + 1400 +
2/2800 260 142.8 2800 800 = 3800 11.4 34.0
3/4400 200 -38.67 1600 1400 -3.5 0.0
1600 +1400 =
4/5800 220 165.26 3000 800 18.2 38.1

This process is repeated as follows for the next largest knife edge, establishing new
observation points for the diffraction over the knife edges 1, 3, and 4. For knife edge 1 a line
is drawn through the primary knife edge 2 peak from the peak of knife edge 1, since the
energy diffracted from knife edge 1 must diffract over knife edge 2. Another line is drawn
from the transmitter antenna to knife edge 1 since this is the source for the diffraction at knife
edge 1. The new baseline for the effective height of knife edge 1 is a line connecting the
transmitter antenna and the peak of knife edge 2. The effective height of knife edge 1 is the
difference between the knife edge 1 peak and this baseline, which can be determined
graphically or algebraically from the equations in Appendix D. The knife-edge separation
distances, knife-edge heights, effective knife-edge heights, diffraction parameter, and
diffraction loss are contained in Table 3 for knife edge 1.

Knife edge 4 is the next knife edge that is not a sub-path knife edge on the right side of the
primary knife edge. For knife edge 4 a line is drawn through the primary knife edge 2 peak
from the peak of knife edge 4 since the energy diffracted from knife edge 2 must diffract over
knife edge 4. Another line is drawn from the receiver antenna to knife edge 4, since this is the
receptor for the energy diffracted from the fourth knife edge 4. The new baseline for the
effective height of knife edge 4 is a line connecting the receiver antenna and the peak of
knife edge 2. The effective height of knife edge 4 is the difference between the knife edge 4
peak and this new baseline. The knife-edge separation distances, knife-edge heights,
effective knife-edge heights, diffraction parameter and loss are contained in Table 3 for knife
edge 4.

The last knife edge (knife edge 3) in Figure 11 is a sub-path knife edge and the baseline for
computing its effective height is a line extending from the peak of knife edge 2 to the peak of
knife edge 4. The effective height of knife edge 3 is the distance between this baseline and
the peak of knife edge 3. This height can be determined graphically or with the equations
from Appendix D. The total diffraction loss is equal to (34.0 + 22.5 + 38.1 + 0.0) = 94.6 dB.
The total diffraction loss for the Giovaneli method is obtained by summing the losses of all
knife edges in decibels.

Two variations of the Giovaneli method were used in the comparison: using only the major
three knife edges (the Giovaneli Major Three Knife-Edges Method) and deleting the sub-path
knife-edges (the No Sub-Path Knife-Edges Method).
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3.3.5 Summary Comments on the Alternative Methods

Computations made with all of the alternative methods except Bullington [3] tend to agree
with measured data. The Bullington method does have its place for use when the actual
terrain is so complicated that it is difficult to decide which terrain features are significant and
allow the two major knife edges to be selected as the most prominent diffraction edges.
Computations made with Bullington for the long path on 63rd Street, mentioned later in
Section 6.2, were on average within 12 dB of measured data, whereas the other three
alternative methods were on average within 4 dB of measured data. The 12 dB loss predicted
with the Bullington method is less than that predicted with the more precise alternative
methods. This results in a 12 dB increase in predicted signal level. The 12 dB lower loss is
better than the results shown in Section 3.3.1 where Bullington predicts 46.3 dB and the
Three alternative methods of Epstein-Peterson, Deygout, and Giovaneli predict 95.9, 99.87,
and 94.6 dB, respectively.

When comparing the Epstein-Peterson method to the Deygout method, [22] and [19]
demonstrated that the Deygout method was more theoretically correct, because of its
relationship to the rigorous spectral theory of diffraction as described in [19]. The accuracy of
the Deygout approach is highest when there is one dominant diffraction knife edge. When
there are two comparable obstacles, a correction can be applied using a spacing parameter
for the Deygout method [22]. The Deygout method is more difficult to implement than the
others described.

Giovaneli[6] claims that his method agrees well with GTD outside of the transition regions,
and for two or more knife edges the method agrees with the Vogler method [22], [19].
Giovaneli also mentions that as the number of knife edges increases, the Deygout method
incurs a larger error; it is usually terminated after computing the loss for the major three knife
edges [22],[16]. In general, the Deygout method shows very good agreement (3 dB) with
the rigorous multiple knife-edge approach of Vogler [1], but it becomes pessimistic
(predicting larger diffraction losses than the actual loss or the loss computed with the
rigorous multi knife-edge approach) when there are multiple obstacles and/or the knife
edges are close together [22]. In this case, the difference between the diffraction loss
computed by Deygout and that by Giovaneli increases [17]. The difference can vary with
different scenarios.

Results presented later in Section 5.1 (Figures Figure 29 and Figure 30) demonstrate that the
50 scenarios introduced in Section 4 get better results than the original Epstein-Peterson
method when compared to the Epstein-Peterson method that contains the GTD-based
correction cited in [7].

The Bullington and Epstein-Peterson methods tend to underestimate the diffraction loss and
the Deygout method tends to overestimate the diffraction loss when compared to the Vogler
method. This is demonstrated later in Tables 17 and 18 in Section 5.2. The diffraction angle
of the knife edge used by the Deygout method for computation of the primary (main) knife-
edge diffraction tends to be larger than the diffraction angle actually required for the ray
from the previous knife edge to pass over the knife edge in question to the next knife edge.
Thus, a larger value is used for the Fresnel-Kirchhoff parameter v and the diffraction loss for
the primary knife edge is overstated. The Deygout-computed loss diverges more from the
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actual loss when the diffraction knife edges have similar losses and when they are spaced
close together [17].

The Giovaneli method is not reciprocal in general, and it is most important to define the
primary knife edge for the diffraction analysis before the other minor knife edges are
selected. If the primary knife edge is not correctly defined, then only a small error occurs in
the prediction of diffraction loss with this method [6]. This method corrects the Deygout
method's error in diffraction angle because it uses a diffraction angle that more closely
coincides with that used for the GTD method [6].

Since the Epstein-Peterson method predicts a lower loss than the GTD method, and the
Deygout method predicts a greater loss than the GTD method, it is expected that the
Giovaneli method will predict a loss that will more closely agree with the GTD method and be
bounded from below by the Epstein-Peterson method and above by the Deygout method
[6]. When a grazing incidence for an intermediate knife edge occurs between two knife
edges, the intermediate knife-edge height equals zero with respect to the line between the
transmitter antenna or previous knife edge and the receiver antenna or next knife edge); or a
sub-path obstacle (negative knife-edge height) occurs, then the Deygout and Giovaneli
methods for treating sub-path obstacles are equivalent [22].

Preliminary results of this analysis show where each of the alternative multiple knife-edge
methods investigated can be used in place of the rigorous Vogler diffraction method to
reduce computation time while maintaining suitable accuracy. It was shown that no single
alternative method can cover all scenario variations. Which alternative diffraction method
works best in a given scenario depends on how a method treats sub-path obstacles and the
alignment of the ray path from one knife edge to the next knife edge with the shadow
boundaries at the knife edges.

3.3.6 The Vogler Method

The four knife-edge scenario used in Figures 8 through 11 (Case 13 of Table 12) was also
computed with the Vogler method. The Vogler method uses the diffraction angles for each
knife edge that are defined in Figure 2 in addition to the effective heights and distances
between knife edges to compute a diffraction parameter as described in Section 3.1. The
result for the total diffraction loss was 97.21 dB for the four-knife-edge scenario. (See Case 13
in Table 17.)

3.4 Examples of Alternative Computation Methods with Six Knife Edges

This section demonstrates how complex the computations get when up to six knife edges
are present in a diffraction scenario. The discussion of each of the methods in this section
shows the different computation procedure and graphical construction. All edges are
included in the computations. These examples with six edges are different than the 50 cases
of Section 4. For comparison purposes the total diffraction loss computed in this section for
the Bullington, Epstein-Peterson, Deygout, and Giovaneli methods are 9.767 dB, 38.038 dB,
39.421 dB, and 38.161 dB, respectively. The Vogler prediction for this scenario is 38.91 dB.
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3.4.1 Six Knife-Edge Example for the Bullington Method

The Bullington method finds the point of two intersecting horizon rays and ascribes the total
loss to that of a single equivalent knife edge. The procedure first determines the diffraction
knife edges that represent the horizons using (A-1) and (A-2). Table 4 contains the results of
applying these equations. Figure 12 illustrates the knife-edge configuration and graphical
construction for this method. Knife edge M; is the horizon from the transmitter antenna and
Ms is the horizon from the receiver antenna. The knife-edge computation intervals from
Figure 10 are dy = 3.438 km and di = 2.962 km.

Table 4: Horizon parameter determination for the six diffraction knife edges.

_

Tangent of angle in mrad from Transmitter Antenna 1.133 1 0.714 | 0.520 | 0.283
Tangent of angle in mrad from Receiver Antenna 0.296 0.524 1.0 | 1.364 | 1.857 | 1.700
Distance of edge from XMTR (km) 1.0 2.2 3.0 4.2 5.0 5.4
6 —
] Me
| 5
VAR
] 71y
/1
5— /o
A
] / A
— ! R
// I !
— / : \\
/ | \
| J ! X
4 — / : Y
— // | hE‘\
/ : \
] /// M3 | \\
o ® | \
/ | \
1 // : M, \\
3— / L.\
7 / | M
3 / ! \°
¢ : |
S A B \
W, | b
] 1 |
] q‘ : 0\\
/ | \
—] / | \
/ | \
— / | \
/ | \
11— / | \
/ | \
— / | \
/ | \
— / \
/ ! \
— ! \
/ | \
— 1 | \
/ l \\
0
REANRRRRRRRRRRARAR R
XMTR ] S g S ] =] RCVR
e =) S S S S S
- N ™ < Ie} ©

Distance (meters)

Figure 12: Six knife-edge diffraction example for Bullington method with sub-path knife edges
M, and M.
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The heights and distances for knife edge M; in (A-3) and knife edge M5 in (A-4) are used to
represent the equations of the two lines along the horizon from the transmitter and receiver
antennas, respectively. These equations are solved simultaneously to determine the distance,
dr, of 3.438 km from the transmitter of the single knife edge that represents the effective
height for the Bullington method. Equation (A-5) is used to calculate the distance dy of this
knife edge from the receiver as 2.962 km and (A-6) is used to calculate the effective height of

the knife edge as 5.501 meters. The diffraction parameter v = 0.4361 and the total diffraction
loss is 9.767 dB.

3.4.2 Six Knife-Edge Example for the Epstein-Peterson Method

The example for the Epstein-Peterson method is best illustrated by referring to Figure 13 and
the results of Table 5. The single knife-edge diffraction losses are computed over the knife
edges in order from transmitter to receiver antenna terminals over the convex hull of the ray
between terminals (similar to a stretched string that passes over all of the intervening knife
edges). The total diffraction loss is the sum of the six diffraction losses (38.04 dB) in Table 5.

hs

o
XMTR o S
<

1000
2000—
3000

Distance (meters)

Figure 13: Six knife-edge diffraction example for Epstein-Peterson method with sub-path knife edges
M, and M.

Table 5: Results for six knife-edge examples for the Epstein-Peterson method.

Parameter M, M, M, M, Ms Mg
dr (km) 1.0 1.2 0.8 1.2 0.8 0.4
dg (km) 1.2 0.8 1.2 0.8 0.4 1.0

hi (m) 1.6 2.2 3.4 3.0 2.6 1.7
hi (m) 0.600 -0.480 0.880 0.080 0.467 -0.157
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Parameter M, M, My M, Mg Mg

Edge Distance from XMTR (km) 1.0 2.2 3.0 4.2 5.0 54
v 0.0812 | —0.0693 0.127 0.012 0.090 -0.029
L (dB) 6.737 5.437 7.135 6.133 6.817 5.779

3.4.3 Six Knife-Edge Example for the Deygout Method

Figure 14 is a graphical illustration of the Deygout method. The method begins with using
(C-1) through (C-5) to compute the Fresnel-Kirchhoff diffraction parameter v and the
diffraction loss for all knife edges separately as if the other knife edges were absent. The
actual heights with respect to the transmitter to receiver baseline are used for the effective
heights in this initial calculation for determining the primary knife edge. Table 6 shows the
results of this calculation. Knife edge M, is the primary knife edge, since it has the largest
value of v and the largest diffraction loss. This is the final loss for knife edge M;. The final
losses for the other knife edges are determined using other reference baselines.
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Figure 14: Six-knife-edge diffraction example for Deygout method with sub-path knife edges
M, and M.
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Table 6: Computation of Fresnel-Kirchhoff diffraction parameter v and diffraction loss to determine the
primary knife edge.

Parameter I

dy (km) 1.0 2.2 3.0 4.2 5.0 5.4

dg (km) 5.4 4.2 3.4 2.2 1.4 1.0

h; (m) 1.6 2.2 3.4 3.0 2.6 1.7

hj (m) 1.6 2.2 3.4 3.0 2.6 1.7

Edge Distance from XMTR (km) 1.0 2.2 3.0 4.2 5.0 5.4
v 0.174 0.183 0.269 0.250 0.249 0.185
L (dB) 7.544 7.621 8.364 8.195 8.186 7.638

Knife edge M3 divides the path into two regions. Equations (C-1) and (C-5) through (C-9) are
used to compute the effective heights, diffraction parameter, and diffraction loss for all knife
edges located to the left of the primary knife edge using a new baseline to determine the
secondary knife edge in this region. Table 7 shows the results of these calculations. Knife
edge M, is the secondary knife edge to the left of the primary knife edge, since it has the next
largest diffraction parameter and diffraction loss. This is the final loss for knife edge M; but
not for knife edge M,.

Table 7: Computation of Fresnel-Kirchhoff diffraction parameter v and diffraction loss to determine the
secondary knife edge on the left side of the primary knife edge.

Parameter M, M,
dr (km) 1.0 2.2
dg (km) 2.0 0.8

h; (m) 1.6 2.2

hi (m) 0.467 -0.293
v 0.057 -0.038

L (dB) 6.528 5.703

Knife edge M, is the only third-level knife edge remaining on the left side of the primary knife
edge, and it is located on the right side of the secondary knife edge M;, so (C-1) and (C-17)
through (C-19) are used to compute the effective heights, distances, and diffraction
parameter. Equation (C-5) is used to compute the diffraction loss. The results are presented
in Table 8. This is the final loss for knife edge M,.

Table 8. Computation of Fresnel-Kirchhoff diffraction parameter v and diffraction loss for the third-level
knife edge on the left side of the primary knife edge and the right side of the secondary knife edge Mj.

dy (km) 1.2
dg (km) 0.8
h; (m) 2.2
R, (m) -0.480
v -0.069
L (dB) 5.437

Equations (C-1) and (C-10) through (C-13) are used to compute the effective heights and
diffraction parameter, and (C-5) is used to compute the diffraction loss for all knife edges
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located to the right of the primary knife edge using a new baseline to determine the
secondary knife edge for this region. Table 9 shows the results of these calculations. Knife
edge Ms is the secondary knife edge to the right of the primary knife edge, since it has the
largest diffraction parameter and diffraction loss. This is the final loss for the knife edge Ms.

Table 9. Computation of Fresnel-Kirchhoff diffraction parameter v and diffraction loss for three edges to
determine the secondary knife edge on the right side of the primary knife edge.

Parameter M,
dy (km) 1.2 2.0 2.4
dy (km) 2.2 1.4 1.0

hy (m) 3.0 2.6 1.7

hi (m) 0.80 1.20 0.70
v 0.091 0.132 0.083

L (dB) 6.820 7.180 6.755

Knife edges M, and Mg are the two remaining third-level knife edges of the right side of the
primary knife edge. Knife edge M, is on the left side of secondary knife edge Mg, so (C-20)

through (C-22) are used to compute the effective heights and distances, (C-1) is used to
compute the diffraction parameter, and (C-5) is used to compute the diffraction loss. Knife
edge Mg is on the right side of secondary knife edge Mg, so (C-23) through (C-25) are used to
compute the effective heights and distances, (C-1) is used to compute the diffraction
parameter, and (C-5) is used to compute the diffraction loss. The results are shown in

Table 10. These are the final losses for knife edges M, and M.

Table 10. Computation of the Fresnel-Kirchhoff diffraction parameter v and diffraction loss for the third-
level knife edges M, and Mg on the right side of the primary knife edge and each side of the secondary
knife edge M.

Parameter M
dy (km) 1.2 0.4
dy (km) 0.8 1.0
h; (m) 3.0 1.7
h! (m) 0.080 ~0.157

v 0.012 ~0.029
L (dB) 6.133 5.779

The total diffraction loss is 40.12 dB, which is the sum of the decibel losses for knife edges M;
through Mg from Tables 6 through 10.

3.4.4 Six Knife-Edge Example for the Giovaneli Method

Figure 15 is a graphical illustration of the Giovaneli method. The primary knife edge is the
tallest knife edge M5. The procedure starts with determining the effective height of the
primary knife edge using the secondary knife edges. The slopes of lines drawn from the
primary knife edge to each of the other knife edges are calculated to determine which knife
edges have the minimum slope on each side of the primary knife edge. The minimum slope
is associated with the secondary knife edge M; on the left side of the primary knife edge. To
determine the equation of the line that passes through the knife-edge peaks of knife edges
M3 and M, (D-4) is solved for the y intercept, b;, at the vertical line from the transmitter using

PAGE 33



INSTITUTE FOR TELECOMMUNICATION SCIENCES NTIA TR-26-580

the fact that it is equal to the height h,, at the distance location of the primary knife edge M;.
The minimum slope is associated with the secondary knife edge M, on the right side of the
primary knife edge. The equation of a line that passes through the peaks of knife edges M;
and M, is determined using (D-5).
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Figure 15. Six knife-edge diffraction examples for Giovaneli method with sub-path knife edges
M, and M.

The reference baseline given by (D-6) is then used to connect the points where (D-4) and
(D-5) intersect the vertical lines at the transmitter and receiver, respectively. Equation (D-6) is
used to determine the baseline for the effective height of the primary knife edge and (D-7)
and (D-8) are used for calculating the distances. Equation (D-9) is used for calculating the
diffraction parameter v and (D-10) is used to calculate the diffraction loss.

For determination of the effective heights of the secondary knife edges, the secondary knife
edges are used as the main knife edges and their effective heights calculated with a similar
computation to that used for the primary knife edge. For the left side of the primary knife
edge, since knife edge M; has a minimum slope and is not a sub-path knife edge, use (D-15)
through (D-17) and (D-23) to determine effective heights and distances, and (D-9) and (D-10)
for the diffraction parameter and diffraction loss. Since knife edge M, has a maximum slope
and is a sub-path knife edge, use (D-19) through (D-23) to determine the effective heights
and distances, and (D-9) and (D-10) for the diffraction parameter and diffraction loss. The
results are presented in Table 11.
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For the right side of the primary knife edge, since knife edges M, and Msare not sub-path
knife edges, use (D-11) through (D-14) to determine the effective heights and distances, (D-
23) for the diffraction parameter v, and (D-10) for the diffraction loss. Since knife edge My is a
sub-path knife edge, use (D-19) through (D-23) to determine the effective heights, distances,
and diffraction parameter v, and calculate the diffraction loss with (D-10). The results are
presented in Table 11. The total diffraction loss is 38.161 dB, which is the sum of the decibel
losses for all knife edges in Table 11.

Table 11. Computation of the Fresnel-Kirchhoff diffraction parameter v and diffraction loss for the
Giovaneli method.

Parameter M
1.2 3.0 1.2 0.8

dy (km) 1.0 ) . ) . 0.4

dg (km) 2.0 0.8 3.4 2.2 1.4 1.0

h; (m) 1.6 2.2 3.4 3.0 2.6 1.7
hi (m) 0.467 -0.480 1.966 0.130 0.691 -0.157

Edge distance from XMTR (km) 1.0 2.2 3.0 4.2 5.0 5.4
v 0.057 -0.069 0.156 0.015 0.097 -0.029
L (dB) 6.528 5.437 7.384 6.160 6.873 5.779
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4. Description of the 50 Multiple Knife-Edge Diffraction Scenarios
Considered for the Analysis

Fifty different diffraction scenarios were tested against the alternative methods for an initial
attempt at simulation of many possible actual diffraction configurations, including some with
sub-path and grazing incidence knife edges. The test scenarios listed in Tables 12 and 13
included many variations of distances between knife edges, heights, and height-to-distance
ratios between knife edges chosen to explore the accuracies and computation limits of the
alternative methods. The frequency for all scenarios is 1500 MHz. All heights and distances
are in meters or kilometers. The diffraction knife-edge heights for all figures in this discussion
are graphically exaggerated for clarity. Due to the actual ratios of the heights to the distances
in many of the scenarios, the magnitudes of the slant distances are approximately equal to
the horizontal distances.

Figures 16 through 25 show the diffraction scenarios described in Tables 12 and 13; the last
column in Tables 12 and 13 indicates the corresponding figure. Figures 16 through 25 are for
Cases 3, 8, 13, 18, 23, 28, 33, 38, 43, and 48, respectively. For example, Figure 16
corresponds to Case 3, Figure 17 corresponds to Case 8, Figure 18 corresponds to Case 13,
etc. These figure numbers are listed in the last column of the Tables 12 and 13. If there is no
corresponding figure for a row, then it is indicated by a (-) entry in that row. Td; = Tdy, Td,,
Tds, ..., Td; are the distances of the edges from the transmitter shown in Tables 12 and 13.
The last edge entry of the row in the Tables is the receiver location.
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Figure 16: Six knife-edge diffraction scenario (Case 3) with two sub-path knife edges, M, and M.
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Figure 17: Five-knife-edge diffraction scenario (Case 8) with one sub-path knife edge, M,.
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Figure 18: Four-knife-edge diffraction scenario (Case 13) with one sub-path knife edge, M.

The 50 scenarios in Tables 12 and 13 all have transmitter and receiver antenna heights of
zero for simplification of the computation and graphical presentation. There is no loss of
validity for the analysis if these antenna heights are set to zero for these scenarios. Nonzero
antenna heights for the transmitter or receiver translate each of the knife-edge heights in the
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scenario. Equation (3) can be used to perform the translation for situations where the antenna
heights are not zero by subtracting the appropriate Ah; from each knife-edge height h;.

Table 12 contains parameters for scenario Cases 1 through 25 with 6, 5, 4, 3, and 2 diffraction
knife edges. Table 13 contains parameters for scenario Cases 26 through 50 for a variety of
scenarios, all with six diffraction knife edges. The first 20 scenario cases (26 through 45) of
Table 13 demonstrate reciprocity of the methods. Here, the term reciprocity means that the
predicted path loss is invariant when the transmitter and receiver terminals are interchanged.
Cases 26 through 30 are reciprocal to Cases 31 through 35, respectively, and Cases 36
through 40 are reciprocal to Cases 41 through 45, respectively.

Table 13 shows cases that agree with each other for the diffraction computations, because
their height-to-distance ratios for each knife edge are the same and hence yield the same
diffraction parameter and diffraction loss, even though the heights and distances are
different. Cases that have the same height-to-distance ratios in Table 13 are Cases 28 and 29,
Cases 33 and 34, Cases 38 and 39, Cases 43 and 44, and Cases 48 and 49. All of these cases
do not contain the additional propagation loss in free space. The total losses for these cases
will be different when free space loss is added to the diffraction loss because the distances
between knife edges are different even though the height-to-distance ratios are the same.
Longer distances will have larger free space losses for the cases in Tables 12 and 13.

Table 12: Height and distance parameters for Cases 1 through 25.

Cased h m) | ha(m) | hy(m) | ha(m) | hsm) | he(m) | hym) | Eured

1 500 1100 | 1500 | 2100 | 2500 | 2700 | 3200
16 2.2 3.4 3.0 2.6 1.7 0

, 100 220 300 420 500 540 640
16 2.2 3.4 3.0 2.6 1.7 0

; 1000 | 2200 | 3000 | 4200 | 5000 | 5400 | €400 |
160 220 340 300 260 170 0

, 10 22 30 42 50 54 64
1.6 2.2 3.4 3.0 2.6 1.7 0

: 20 44 60 84 100 108 128
0.8 1.1 1.7 1.5 1.3 0.85 0

. 500 1100 | 1500 | 2100 | 2700 | 3200
16 2.2 3.4 3.0 1.7 0

, 100 220 300 420 540 640
1.6 2.2 3.4 3.0 1.7 0

. 1000 | 2200 | 3000 | 4200 | 5400 | 6400 iqure 17
160 220 340 300 170 0

9 10 22 30 42 54 64
16 2.2 3.4 3.0 1.7 0

10 20 44 60 84 108 128
0.8 1.1 1.7 1.5 0.85 0

» 500 1400 | 2200 | 2900 | 3300
1.4 2.6 2.0 2.2 0

> 120 280 440 580 660
1.4 2.6 2.0 2.2 0

- 1200 | 2800 | 4400 | 5800 | 6600 iqure 18
140 260 200 220 0
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| Tdi(m) | Tda(m) | Tds(m) | Tda(m) | Tds(m) | Tde(m) | Tdr(m) |

Figure #
. 24 56 88 116 132
0.7 13 1.0 11 0
16 600 1400 2300 2900
18 2.4 22 0
u 120 280 460 580
18 2.4 2.2 0
1200 2800 4600 5800 .
- 180 240 220 0 Figure 19
1 12 28 46 58
18 2.4 22 0
24 56 92 116
20 0.9 12 1.1 0
o 800 2000 2800
2.4 2.0 0
160 400 560
22 2.4 2.0 0
1600 4000 5600 .
23 240 200 0 Figure 20
16 40 56
24 2.4 2.0 0
32 80 112
25 12 1.0 0

Table 13: Height and distance parameters for Cases 26 through 50
| Tdi(m) | Tdo(m) [ Tdo(m) | Tde(m) [ Tds(m) | Tde(m) | Tdy(m) |

Figure #
2 500 1000 1500 2000 2500 3000 3500
1.4 2.8 3.4 3.75 3.9 4.3 0
27 100 200 300 400 500 600 700
1.4 2.8 3.4 3.75 3.9 4.3 0
o8 1000 2000 3000 4000 5000 6000 7000 Figure 21
14.0 28.0 34.0 37.5 39.0 43.0 0
29 10 20 30 40 50 60 70
1.4 2.8 3.4 3.75 3.9 4.3 0
30 20 40 60 80 100 120 140
0.7 1.4 1.7 1.875 1.95 2.15 0
31 500 1000 1500 2000 2500 3000 3500
4.3 3.9 3.75 3.4 2.8 1.4 0
32 100 200 300 400 500 600 700
4.3 3.9 3.75 3.4 2.8 1.4 0
33 1000 2000 3000 4000 5000 6000 7000 Figure 22
43.0 39.0 37.5 34.0 28.0 14.0 0
34 10 20 30 40 50 60 70
4.3 3.9 3.75 3.4 2.8 1.4 0
35 20 40 60 80 100 120 140
2.15 1.95 1.875 1.7 1.4 0.7 0
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Figure #
36 500 1000 1500 2000 2500 3000 3500
1.7 1.8 2.5 3.7 4.1 4.3 0
37 100 200 300 400 500 600 700
1.7 1.8 2.5 3.7 4.1 4.3 0
38 1000 2000 3000 4000 5000 6000 7000 Figure 23
17.0 18.0 25.0 37.0 41.0 43.0 0
39 10 20 30 40 50 60 70
1.7 1.8 2.5 3.7 4.1 4.3 0
40 20 40 60 80 100 120 140
0.85 0.9 1.25 1.85 2.05 2.15 0
41 500 1000 1500 2000 2500 3000 3500
4.3 4.1 3.7 2.5 1.8 1.7 0
42 100 200 300 400 500 600 700
4.3 4.1 3.7 2.5 1.8 1.7 0
43 1000 2000 3000 4000 5000 6000 7000 Figure 24
43.0 41.0 37.0 25.0 18.0 17.0 0
44 10 20 30 40 50 60 70
4.3 4.1 3.7 2.5 1.8 1.7 0
45 20 40 60 80 100 120 140
2.15 2.05 1.85 1.25 0.9 0.85 0
16 500 1000 1500 2000 2500 3000 3500
2.0 3.3 4.0 3.7 2.7 1.5 0
47 100 200 300 400 500 600 700
2.0 3.3 4.0 3.7 2.7 1.5 0
48 1000 2000 3000 4000 5000 6000 7000 Figure 25
20.0 33.0 40.0 37.0 27.0 15.0 0
49 10 20 30 40 50 60 70 i
2.0 3.3 4.0 3.7 2.7 1.5 0
50 20 40 60 80 100 120 140
1.0 1.65 2.0 1.85 1.35 0.75 0
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Figure 19: Three-knife-edge diffraction scenario (Case 18) with no sub-path knife edges.
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Figure 20: Two-knife-edge diffraction scenario (Case 23) with no sub-path knife edges.
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Figure 21: Six-knife-edge ascending scenario (Case 28) with one sub-path knife edge, Ms, and one
grazing knife edge, M.
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Figure 22: Six-knife-edge descending scenario (Case 33) with one sub-path knife edge, M,, and one
grazing knife edge, M.
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Figure 23: Six-knife-edge ascending scenario (Case 38) with two sub-path knife edges: M, and Ms.
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Figure 24: Six-knife-edge descending scenario (Case 43) with two sub-path knife edges: M, and Ms.
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Figure 25: Six-knife-edge ascending and descending scenario (Case 48) with no sub-path knife edges.
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5. Comparison of Alternative Computation Methods with the
Vogler Method

5.1 Comparisons of Loss Predictions for the Vogler Method and the Alternative
Methods

The results of the loss computations for the knife-edge scenarios in Figures 16 through 25
discussed in Section 4 are presented in Figures 26 through 34. Figures 26 through 34
compare the losses predicted with each of the methods to those predicted with the Vogler
method. These results are based on the scenarios of Figures 16 through 25 and Tables 12
and 13. The attenuation ratios are plotted versus the case number from Tables 12 and 13.
The attenuation ratios are computed by subtracting the loss computed by the Vogler method
from the loss computed by the alternative computation method.

Figure 26 is a comparison of the four main methods for all 50 cases from Tables 12 and 13.
The diffraction computations were made with all of the diffraction knife edges included.
Because the Bullington method has a much larger error than the other methods, the scale on
the figure had to be expanded; this figure demonstrates the magnitude of error achieved
with the Bullington method and why the Bullington method was not considered to be a major
contender for an alternative diffraction computation method. Figure 27 is Figure 26 with the
Bullington method removed so that the vertical scale could be magnified to show better
resolution of the attenuation ratio versus case number for the three other alternative
methods.

Attenuation Ratio (dB)

v—-—y Deygout all edges

=---+1 Giovaneli all edges

&-——0 Epstein/Peterson all edges
Bullington all edges

0 2 46 810121416 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Case Number

Figure 26: Attenuation ratio comparison to Vogler method for four alternative methods with all knife
edges. Attenuation ratio (dB) = alternative method (dB) — Vogler method (dB).
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Figure 27: Attenuation ratio comparison to the Vogler method for three alternative methods with all
knife edges. Attenuation ratio (dB) = alternative method (dB) — Vogler method (dB).

Each method takes all the diffraction knife edges into consideration. The attenuation ratios
for Cases 11 through 15 (four knife edges), 16 through 20 (three knife edges), and 21
through 25 (two knife edges) are much lower than the rest of the cases. The attenuation ratio
is shown to increase with the number of knife edges. The prediction gets worse with respect
to Vogler as the number of edges increases.

Among the three methods the Epstein-Peterson method usually predicts the lowest
diffraction loss. The Deygout method predicts the highest diffraction loss, and the Giovaneli
method predicts a diffraction loss that is between the highest and lowest diffraction loss.
None of the three methods have acceptable attenuation ratios (less than 3 dB) for the cases
with five or six diffraction knife edges, so it is necessary to look at modifications of the three
methods to see if the attenuation ratio can be minimized below 3 dB.

More edges in a scenario will result in a larger attenuation ratio, where the attenuation ratio is
defined as the alternative method prediction minus the Vogler prediction. As the number of
edges increases the cumulative computation error increases. In his paper [5], Deygout states
that the major three knife edges are those with the largest Fresnel diffraction parameter v. He
then uses only those three edges to make his prediction. This approach will minimize the
cumulative error in the diffraction loss computation. Deygout recommends using not more
than three or four diffraction edges for a multiple edge diffraction computation. Deygout
used graphical methods for computation. If many edges are used in the graphical
computation procedure, cumulative error would occur for four or more edges. The
mathematical algorithms in the appendices of this report would be more accurate and may
allow more edges when implemented in a computer program.

Figure 28 shows the attenuation ratio for the three alternative methods when only the major
three knife edges of each case are used in the computation. In general, these are those with
the largest Fresnel-Kirchhoff diffraction parameter for the Epstein-Peterson and the Deygout
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methods. For the Giovaneli method the major edges are the tallest edge and the two edges
for which a line drawn between the peak of the tallest edge and the peak of that edge has a
minimum slope. The cases with 4, 3, or 2 diffraction knife edges (11-15, 16-20, and 21-25,
respectively) do have reasonably low attenuation ratios, but the rest of the cases with five and
six diffraction knife edges are not within a 3 dB limit.

30

201

Attenuation Ratio (dB)

w—-—v Deygout Major 3 Edges
30 =----£1 Giovaneli Major 3 Edges
| &-——o Epstein/Peterson Major 3 Edges | ]

-40

0 2 46 8 10121416 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Case Number

Figure 28: Attenuation ratio comparison to the Vogler method for three alternative methods with major
three knife edges. Attenuation ratio (dB) = alternative method (dB) — Vogler method (dB).
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Attenuation Ratio (dB)

w—-—y= Deygout no sub-path edges
#-=--+1 Giovaneli no sub-path edges
&-—-o Epstein/Peterson no sub-path edges

-40

0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
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Figure 29: Attenuation ratio comparison to the Vogler method for three alternative methods with no
sub-path knife edges. Attenuation ratio (dB) = alternative method (dB) — Vogler method (dB).
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Figure 29 shows the attenuation ratio for the three alternative methods when the sub-path
knife edges have been deleted from the diffraction loss computation. Deleting the sub-path
knife edges from the diffraction loss computation adds considerable improvement
(compared to the all knife edge and major three knife edge variations of Figures 27 and 28,
respectively) in reducing the attenuation ratio except for Cases 46 through 50, which have no
sub-path knife edges. Cases 46, 47, and 50 have a scenario geometry that aligns the ray path
from one knife edge to the next with the incident shadow boundary, causing the large
attenuation ratio. This phenomenon was discussed previously in Section 3.3, where methods
to reduce the error in diffraction loss prediction were described. Again, the Epstein-Peterson
method has the lowest overall attenuation ratio and the Giovaneli method has the second
lowest attenuation ratio.

Figure 30 shows the attenuation ratio for the previously described variations of the Deygout
method: the Deygout All-Knife-Edges Method, Deygout Major Three Knife-Edges Method,
and Deygout No Sub-Path Knife-Edges Method. The attenuation ratios are shown for Cases
26 through 50, each of which has six knife edges and uses the Deygout No Sub-Path Knife-
Edges Method.

The Deygout No Sub-Path Knife-Edges Method has the best performance (i.e., minimum
overall attenuation ratio) of the four Deygout method variations. The Deygout method is
more complicated than the other methods, and, as stated above, he recommends computing
diffraction loss and limiting the number of edges to four or fewer with his method. This is a
result of the logic Deygout uses, as described in the previous two paragraphs, which limits
the number of edges to reduce the cumulative mathematical error when performing the
computations graphically—the only way they could be performed in 1966.
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Diffraction Loss Difference wrt Vogler (dB)

-20
=----+1 Deygout no sub-path edges
&-—-o Deygout Major 3 Edges
0 Deygout All Edges

40
0 2 46 810121416 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Case Number

Figure 30: Attenuation ratio comparison to Vogler method for three variations of the Deygout method.
Attenuation ratio (dB) = Deygout method (dB) — Vogler method (dB).

Figure 31 shows the attenuation ratio versus case number for six variations of the Epstein-
Peterson method. Three of these variations apply the correction from [7] to the original
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variations of all knife edges, no sub-path knife edges, and major three knife edges. The
correction provides a significant improvement to all the knife-edge methods but causes an

increase in the attenuation ratio for the Major Three Knife Edges Method and the No Sub-
Path Knife-Edges Method.

30

Attenuation Ratio (dB)

A——-A Epstein Peterson no sub-path edges corrected
Epstein/Peterson no sub-path edges

30 Epstein/Peterson Major 3 Corrected

- w—-—v Epstein Peterson Major 3

=----1 Epstein Peterson all edges corrected

&-——o Epstein/Peterson all edges

0 2 46 810121416 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Case Number

Figure 31: Attenuation ratio comparison to Vogler method for six variations of the Epstein-Peterson
method. Attenuation ratio (dB) = Epstein-Peterson method (dB) — Vogler method (dB).

Figure 32 is Figure 31 with the deletion of the two worst methods involving the major three
knife edges.

Figure 32 shows that the Epstein-Peterson cases with all knife edges corrected using the
correction technique in [7] reduces the attenuation ratio significantly when compared to all
knife edges variation uncorrected. Also shown is the significant increase in attenuation ratio

for the Epstein-Peterson No Sub-Path Knife-Edges corrected method when compared to the
Epstein-Peterson No Sub-Path Knife-Edges uncorrected method.
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~——-A Epstein Peterson no sub-path edges corrected
Epstein/Peterson no sub-path edges

30 =~~~ Epstein Peterson all edges corrected
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Case Number

Figure 32: Attenuation ratio comparison to the Vogler method for four variations of the Epstein-
Peterson method (two curves with largest errors removed for clarity). Attenuation ratio (dB) = Epstein-
Peterson method (dB) — Vogler method (dB).

Figure 33 shows the comparison of attenuation ratio versus case number for three variations
of the Giovaneli method. The variation containing no sub-path knife edges appears to
provide the best performance except for cases 46, 47, and 50, which are situations where the
ray path aligns with the incident shadow boundary causing a large attenuation ratio.

30

Attenuation Ratio (dB)

= --~+1 Giovaneli no sub-path edges
& —=—o Giovaneli Major 3 edges
0 w—-—% Giovaneli all edges

40

0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Case Number

Figure 33: Attenuation ratio comparison to Vogler method for three variations of the Giovaneli method.
Attenuation ratio (dB) = Giovaneli method (dB) — Vogler method (dB).

Figure 34 shows the comparison of the four best methods based on the previous analysis of
attenuation ratio versus case number. This figure demonstrates that no one method can be
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used exclusively for the diffraction loss computations, but a combination of methods is
required to provide a suitable diffraction loss for all of the analyses. A technique for choosing
a particular method is described in Section 3.3, which requires computation of the FTFP to
select the method with the least attenuation ratio.
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Figure 34: Attenuation ratio comparison to Vogler method of the alternative methods that result in the
lowest attenuation ratio. Attenuation ratio (dB) = alternative method (dB) — Vogler method (dB).

For example, the Deygout No Sub-Path Knife-Edges Method has a small attenuation ratio for
cases 15 to 25 of less than +6 dB. The Epstein-Peterson method with all knife edges
corrected method also does well (=6 dB) for most cases. The Giovaneli method can provide
low attenuation ratios for cases 28, 29, 33, and 34, where other methods cannot. The cases
that demonstrate poor agreement in these figures are those where Vogler shows in [2] that
there should be a large deviation between his method and the four alternative methods that
were investigated.

Preliminary results of this analysis show where each of the alternative multiple knife-edge
methods investigated can be used in place of the rigorous Vogler diffraction method to
reduce computation time while maintaining suitable accuracy. It was shown that no one
alternative method can cover all scenario variations. Which alternative diffraction method
works best in a given scenario depends on how a method treats sub-path obstacles and the
alignment of the ray path from one knife edge to the next knife edge with the shadow
boundaries at the knife edges.

The best method implies a larger angle between the ray path and the incident shadow
boundary and as a result avoidance of the incident shadow boundary. A step-by-step
procedure for determining the best alternative diffraction loss computation was described in
Section 3.3. There the argument x in F(x) is described as being related to this angular
separation between the incident shadow boundary and the ray path and the function F(x) is
the multiplicative magnitude needed to keep the loss prediction mathematically finite. A
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large value of F(x) (close to 1.0) results in a small attenuation ratio. A small attenuation ratio
indicates agreement with the Vogler computation of diffraction loss.

Figures 35 through Figure 38 plot attenuation ratio on the same graph as the FTFP(x) to
demonstrate how the candidate methods can be used to provide an accurate diffraction loss
prediction. Figure 35 shows the attenuation ratio and FTFP(x) versus case number for the
Epstein-Peterson with all knife edges included. The attenuation ratio is minimized when the
FTFP(x) approaches unity. Figure 36 shows the FTFP(x) plotted with the attenuation ratio
versus case number for the Epstein-Peterson method with no sub-path knife edges. The
attenuation ratio is small when the FTFP(x) is significantly greater than zero. Examinations of
Figures Figure 33 through Figure 36 show that a maximum value of FTFP(x) = 1.0
corresponds to a minimum or zero value of attenuation ratio, which is indicative of agreement
with the Vogler computation of diffraction loss. Values of FTFP(x) that are less than 1.0
corresponds to larger attenuation ratios, which implies a lesser agreement with the Vogler
diffraction loss prediction. The disagreement with the Vogler method increases as the
FTFP(x) approaches zero.
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Figure 35: Attenuation ratio and Fresnel transition function product versus case number for Epstein-
Peterson method with all knife edges. Attenuation ratio (dB) = Epstein-Peterson method (dB) — Vogler
method (dB).
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Figure 36: Attenuation ratio and Fresnel transition-function product versus case number for Epstein-
Peterson method with no sub-path knife edges. Attenuation ratio (dB) = Epstein-Peterson method (dB)
- Vogler method (dB).

Figure 37 shows the FTFP plotted with the attenuation ratio versus case number for the
Giovaneli method with no sub-path knife edges. This figure also shows that the attenuation
ratio is small when the FTFP is significantly greater than zero. As the FTFP approaches 1.0,
the diffraction loss error is reduced even further.
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Figure 37: Attenuation ratio and Fresnel transition function product versus case number for Giovaneli
method with no sub-path knife edges. Attenuation ratio (dB) = Giovaneli method (dB) — Vogler method
(dB).
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Figure 38 shows the FTFP plotted with the attenuation ratio versus case number for the
Deygout method with no sub-path knife edges. This figure shows that the attenuation ratio is
small when the FTFP is significantly greater than zero. As the FTFP approaches 1.0, the
attenuation ratio decreases.

FTFP
10 30

0.8

T

L

JEiEEEE e
AR {( |
gl

EF

; figce BEcEEeane
g e = H } T / = X | B2 ptenuation Rallo -1
SRR
o R
1. TN ﬁ[ PN X i

0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Case Number

Figure 38: Attenuation ratio and Fresnel transition function product versus case number for the Deygout
method with no sub-path knife edges. Attenuation ratio (dB) = Deygout method (dB) — Vogler method
(dB).

Comparisons of the alternative multiple knife-edge diffraction methods show a =3 dB
agreement (Look at figures between the Vogler results and both the Epstein-Peterson and
Giovaneli results for a variety of cases. Some differences depend on whether the sub-path
knife edges (obstacles) are included in the diffraction loss computation for the different
methods. It was found by comparative computations that removing the sub-path obstacles
improves agreement between the Deygout method and the Vogler method. The Epstein-
Peterson method’s agreement with the Vogler method also improves when the sub-path
knife edges are removed, but if this method with no sub-path knife edges is corrected with
the ITU method in [8], then the agreement degrades. This agrees with Deygout when he
mentions in his paper [5] that accuracy improves when the number of edges are limited to
three or four edges. However, the Epstein-Peterson method with all knife-edges included
and corrected by the Beyer method [7] improves agreement with the Vogler method.

The Giovaneli method with no sub-path knife edges agrees well with the Vogler method. This
can be demonstrated in Tables 17 and 18 for many of the cases. This agreement varies from
as small as 2 dB up to about 6 dB. The diffraction scenarios of Tables 12 and 13 were created
to challenge the alternative models, but still represent realizable scenarios that could exist in
nature. But since they do not exist, they could not be measured. These terrain paths could
exist if a search were made for paths that contain measured data and were similar in peaks to
the examples.
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es and Path Loss Predictions for the Vogler

Method and the Alternative Methods.

Comparisons of execution times with up to six knife edges between the Vogler method and
the alternative methods of Bullington, Epstein-Peterson, Deygout, and Giovaneli resulted in
run times that were more than three orders of magnitude (up to 1000:1) greater than the
alternative methods. Figure 39 compares the run time results of the 50 different scenarios
(cases) from Tables 12 and 13 of this section. Table 14 lists the parameters of the personal
computer used to perform execution time comparisons for the 50 cases from Tables 12 and
13. Tables 15 and 16 list execution times in milliseconds for the cases in Tables 12 and 13,

respectively.
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Figure 39. Comparison of execution times of the four alternative methods to the Vogler method for 50

different cases.

Table 14. Parameters of the computer used to perform the comparisons of execution times of the four
alternative methods to the Vogler method for 50 different cases.

Parameter Item Name Parameter Value

Operating System

Microsoft Windows 10 Professional

Version

10.0.19042 Build 19042

System Manufacturer

Dell Inc.

System Model

Latitude 7490 Laptop

System Type

X64-based PC

Processor Intel(R)Core™ i7-8650UCPU@1.9 GHz 2112
Hard Disk 220 Gbytes
BIOS Version/Date, SM BIOS Version Dell Inc. 1.13.1, 11/8/2019 3.1
Embedded Controller 255.255
BIOS Mode UEFI

Hardware Abstraction

Version ="10.019041.1151"
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Table 15. Execution times in milliseconds for the Vogler method and the four alternative loss prediction
methods for Cases 1 through 25 of Table 12.

. . Epstein- .

1 5404.182 0.170 0.043 0.006 0.032
2 5413.140 0.134 0.014 0.006 0.014
3 5503.007 0.258 0.017 0.009 0.014
4 5383.887 0.099 0.014 0.007 0.011
5 5351.338 0.095 0.010 0.006 0.009
6 2034.857 0.094 0.009 0.007 0.010
7 1906.591 0.089 0.009 0.006 0.011
8 1885.911 0.094 0.016 0.006 0.010
9 2009.927 0.083 0.011 0.005 0.010
10 1885.705 0.086 0.008 0.007 0.013
11 650.246 0.077 0.011 0.006 0.010
12 619.995 0.078 0.015 0.011 0.014
13 665.417 0.079 0.009 0.005 0.008
14 628.114 0.082 0.099 0.004 0.010
15 629.208 0.076 0.008 0.006 0.009
16 14.752 0.059 0.008 0.004 0.009
17 14.497 0.060 0.007 0.006 0.020
18 15.810 0.068 0.008 0.005 0.009
19 18.666 0.097 0.007 0.005 0.014
20 15.360 0.099 0.007 0.005 0.016
21 0.485 0.040 0.008 0.002 0.006
22 0.384 0.039 0.006 0.001 0.006
23 1.008 0.037 0.005 0.001 0.006
24 3.332 0.041 0.007 0.002 0.007
25 0.617 0.044 0.011 0.002 0.006

Table 16. Execution times in milliseconds for the Vogler method and the four alternative loss prediction
methods for Cases 26 through 50 of Table 13.

. . Epstein- .

26 3503.589 0.415 0.013 0.013 0.051
27 3259.990 0.122 0.098 0.007 0.011
28 3250.047 0.112 0.014 0.006 0.010
29 3051.458 0.127 0.021 0.007 0.013
30 5025.433 0.106 0.012 0.010 0.010
31 3190.233 0.147 0.026 0.007 0.016
32 3296.204 0.095 0.011 0.006 0.010
33 3096.530 0.093 0.013 0.005 0.010
34 3292.862 0.090 0.011 0.005 0.010
35 3849.522 0.106 0.022 0.007 0.015
36 6188.151 0.155 0.017 0.007 0.013
37 5481.165 0.113 0.012 0.055 0.010
38 5507.022 0.100 0.010 0.006 0.008
39 5632.101 0.159 0.010 0.008 0.013
40 6554.998 0.103 0.013 0.015 0.012
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41 5569.170 0.148 0.013 0.006 0.014
42 5273.096 0.103 0.011 0.007 0.010
43 5464.709 0.107 0.024 0.007 0.010
44 5791.748 0.117 0.011 0.007 0.009
45 5708.579 0.198 0.010 0.009 0.022
46 2030.612 0.170 0.042 0.032 0.043
47 2032.883 0.100 0.011 0.007 0.011
48 1966.461 0.152 0.011 0.007 0.011
49 1982.297 0.106 0.011 0.012 0.014
50 1966.449 0.105 0.018 0.006 0.012

Tables 17 and 18 list the path loss predictions in decibels (dB) greater than free space for the
Vogler method and the four alternative loss prediction methods for Tables 12 and 13,
respectively. These loss predictions correspond to the execution times in Tables 15 and 16
for the cases in Tables 12 and 13, which were obtained from running computer code
developed by ITS. Although there are faster ways to evaluate the Fresnel Integral in the
Vogler method, there would still be a large computation time difference between Vogler and
the alternative diffraction methods. An example of a typical area coverage loss prediction
over multiple radials from a transmitter using the execution times from Tables Table 15 and
Table 16. If we choose 36000 radials for 0.01-degree increments in angle from the transmitter
for an adequate number of sample points for area coverage at a 7 km distance. For Case 28
in Table 16, with a 7 km path distance with six knife edges, the Vogler method would take
3250 milliseconds (3.25 seconds) to compute one radial, whereas the slowest alternative
method would require 0.112 milliseconds, which is a reduction in time ratio of 3.45E-5. The
Vogler method would then require 32.5 hours to compute the area coverage with 36000
radials, whereas the slowest alternative diffraction method would require 0.00112 hours.
Even if a way to evaluate the Fresnel integral were a thousand times faster, then a faster
integral method implemented in the Vogler method would require 0.0325 hours to compute.

The free space loss will be different for different cases, since the distances are different for
the cases. These total distances can be obtained by adding the distances from Tables 12 and
13 for each case. The free space losses are then computed from these total distances. The
total loss is computed by adding the corresponding free-space loss to the losses shown in
Tables 17 and 18.

Table 17. Path loss predictions in decibels (dB) greater than free space for the Vogler method and the
four alternative loss prediction methods for Cases 1 through 25 of Table 12.

. . Epstein- .

1 21.234 38.765 40.738 38.802 11.147
2 28.257 41.919 45.911 42.002 16.136
3 114.433 111.857 119.665 112.855 45.748
4 49.024 52.126 59.394 52.688 25.754
5 29.672 42.567 46.913 42.671 16.994
6 21.516 33.128 33.006 33.149 10.942
7 28.239 36.768 36.520 36.824 15.805
8 120.471 119.462 119.434 120.119 45.364
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Test Case Vogler Giovaneli Deygout IE:tSetreslgn Bullington
9 47.757 49128 49.048 49.662 25.371
10 29.587 37.523 37.263 37.597 16.651
11 20.446 28.211 28.772 27.769 11.406
12 26.631 33.030 34.086 32.069 16.546
13 97.205 99.327 99.884 95.706 46.215
14 43.636 46.993 48.253 44 .632 26.219
15 27.857 33.998 35.122 32.934 17.418
16 17.543 21.741 22.999 21.583 10.746
17 23.227 26.169 28.767 25.823 15.483
18 96.896 95.992 100.966 94.262 44,984
19 40.549 40.880 45.625 39.930 24.992
20 24.380 27.087 29.924 26.705 16.315
21 13.991 15.513 16.111 15.370 9.901
22 18.626 19.630 20.846 19.351 14.027
23 71.448 71.448 73.292 70.517 43.168
24 32.244 32.409 34.308 31.757 23.188
25 19.558 20.471 21.789 20.167 14.786

Table 18. Path loss predictions in decibels (dB) greater than free space for the Vogler method and the
four alternative loss prediction methods for Cases 26 through 50 of Table 13.

. . Epstein- .

26 25.412 40.370 43.312 41.078 13.321
27 34.207 44.904 50.412 46.359 19.310
28 54.283 55.362 66.642 59.490 29.204
29 54.283 55.362 66.642 59.489 29.204
30 35.797 45.744 51.681 47.346 20.244
31 25.412 41.883 31.387 41.078 13.321
32 34.207 47.736 38.661 46.359 19.310
33 54.283 60.869 66.642 59.489 29.204
34 54.283 60.869 66.642 59.489 29.204
35 35.797 48.787 51.680 47.346 20.244
36 24.410 39.984 42.358 41.354 13.942
37 32.937 44.114 48.315 47.047 20.122
38 51.770 53.717 60.724 61.357 30.047
39 51.770 53.717 60.724 61.357 30.047
40 34.466 44.879 49.346 48.125 21.065
41 25.580 40.939 42.149 41.354 13.942
42 33.774 45.677 47.846 47.047 20.122
43 51.717 55.050 59.275 61.357 30.047
44 51.717 55.050 59.275 61.357 30.047
45 35.232 46.497 48.822 48.125 21.065
46 23.810 40.764 40.586 39.231 11.385
47 31.856 46.354 45.991 42.986 16.514
48 56.239 65.316 65.419 57.196 26.183
49 56.239 65.316 65.419 57.196 26.183
50 33.476 47.515 47.133 43.785 17.385
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6. Comparisons of Alternative Computation Methods with
Measured Data

This section contains comparisons of analytical computations of diffraction loss to measured
diffraction loss for actual paths existing in nature. Measured data was available from four
sources and used for comparison with analytical predictions using the alternative methods
described previously and the Vogler method. One source of measured data was Deygout's
original paper [5], which gave data for 10 paths over both hilly and mountainous terrain at
multiple frequencies. The figures of actual terrain for those 10 paths are contained in
Deygout's original 1966 paper. The fidelity of the terrain figures in Deygout's report is poor.
The other three measurements were performed by ITS at multiple frequencies over three
separate paths containing multiple diffraction knife edges.

ITS measured data are presented for three propagation paths. Two of these are located
along 63rd Street in Boulder, CO. The first path is heading north along a straight section of
63rd Street located between the Ryssby Church and Nelson Road (“short path”). The second
path is heading south along 63rd Street from Ryssby Church to Highway 119 (“long path”).
The 63rd Street terrain paths are illustrated in Section 6.2. The third path is along Plateau
Road at the Table Mountain Field Site and Radio Quiet Zone, which is 15 km north of the
Department of Commerce Boulder Laboratories campus. The Plateau Road path is shown in
Section 6.3.

The 63rd Street paths are illustrated in Section 6.2 with the edges that were used in the
Tables of Section 6.2. The Plateau Road path is shown in Section 6.3. The computation
examples for the 63rd Street paths are limited to six knife edges, which is within the limit for
the alternative computation methods. The authors used the alternative computation methods
using only six edges to compare to the measurements made on the 63rd Street paths. As can
be seen from the results in Section 6.2, the alternative methods also demonstrated a +2.5 dB
agreement with the loss predictions for the 63rd Street paths when compared to the loss
predictions when using the Vogler method. In addition, the alternative methods agreed with
measured data within £1.5 dB for the short path and +2.5 dB for the long path.

6.1 Comparisons to Measured Data from Deygout’s Original Paper

Table 1 from Deygout's original paper [5] describes 10 paths over hilly and mountainous
terrain. In this table he compares the measured propagation loss data to loss predictions
made with his own method and the Epstein-Peterson method [4]. In Deygout’s classic paper,
the method takes all knife edges into consideration for the computation of diffraction loss.
The Epstein-Peterson method implemented by Deygout considered sub-path knife edges if
they interfered with the first Fresnel zone, except for his path 5 where he did not include
them even if they interfered with the first Fresnel zone. The original Epstein-Peterson method
does not address sub-path knife edges explicitly [4], [5], [19] but the Epstein-Peterson All
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Knife-Edges Method used for comparison to measured data in this section will take sub-path
knife edges into consideration.

Table 19 describes the 10 paths in Deygout's paper. The alternative methods of Epstein-
Peterson, Deygout, and Giovaneli described previously, which include all knife edges and
their variations of no sub-path edges, and the major three edges were compared to the
measured data of all 10 paths of Deygout's paper. In this table, he compares the measured
propagation loss data to loss predictions made with his own method and the Epstein-
Peterson method [4]. Path 5 appears to be the most challenging path to all three methods.
Figures 40 through 42 demonstrate the results of the prediction accuracy for the alternative
methods of Epstein-Peterson, Deygout, and Giovaneli.

Table 19. Descriptions of the 10 paths from Deygout’s original paper.

Path F (MH2) Total Path Knife-Edge Actual Knife-Edge Knife Edge Distance
Number gth (km) Number Height (m) from XMTR (km)
44 60

17
1
! 1850 M, 38 21.5
M, 77.7 12
2 1800 58 T 3% o]
M, 53 22
3 1800 41 " 20 p
M, 38.75 6
4 1850 44 M, 75 24
M, 64 28
M, 05 6.5
M, 29.07 23
5 1800 52 M, 46.43 26
M, 50 28
M 45 46
M, 560 40
é 160 89 M, 364.29 65
M, 435.74 43
7 2450 64.5 " 200 co5
M, 393.57 11
8 2450 22 o e0 14
M, 1120 40.5
? 2450 85 M, 1067.08 43
M, 650 115
10 2450 405 M, 662.76 14.5

Figure 40 plots the results of the comparisons of the Epstein-Peterson method for all the knife
edges, no sub-path knife edges, and major three knife edges to the measured data for each
of the 10 paths. The prediction in Figure 40 for the case where the sub-path knife edges were
included shows better agreement with measured data than the case where the sub-path knife
edges were not included. Figure 38 shows that the deviation from measured data for the
Epstein-Peterson method can be as much as —8.5 dB in Path 9, but as small as =2 dB for Path
3. Figure 40 does not include the correction by Beyer mentioned previously, because
Deygout did not correct his computations in his 1966 paper [5], since it predated the report
by Beyer [7]. Figure 41 plots the results of the comparisons of the Deygout method for all the
knife edges, no sub-path knife edges, and major three knife edges to the measured data for
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each of the 10 paths. This resulted in the most accurate loss prediction for his own method. In
his paper, Deygout only computed the cases with all knife edges [5].

20

18

16

14}

12}

10F ¥— - —v Epstein/Peterson with No Sub-Path Edges
8t 3 - - - €1 Epstein/Peterson with Major Three edges
6} &- — —o Epstein/Peterson with All Edges
4t

Attenuation Ratio (dB)

5 6 7 8 9 10
Path Number

Figure 40: Epstein-Peterson loss prediction compared to measured data for the 10 paths in Deygout'’s
original paper. Attenuation ratio (dB) = Epstein-Peterson method (dB) — measured data (dB).

Figure 41 shows that the deviation for the Deygout method can be as large as 6 dB for Path 5
but can be as small as 1 dB for some paths. Figure 42 plots the results of the comparisons of
the Giovaneli method for all of the knife edges, no sub-path knife edges, and major three
knife edges to the measured data for each of the 10 paths. Figure 42 shows that the deviation
for the Giovaneli method can be as much as 7 dB for Path 5, but for the other paths it can be
as small as 1 dB. The Giovaneli method provides a similar prediction error to the Deygout
method of diffraction loss for some methods but can have a prediction that is much less than

the Epstein-Peterson and Deygout methods. Comparison of the results of Figures 40 through
42 demonstrate this.
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14l v— - —v Deygout with No Sub-path Edges
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Figure 41: Deygout loss prediction compared to measured data for the 10 paths in Deygout’s original
paper. Attenuation ratio (dB) = Deygout method (dB) — measured data (dB).
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Figure 42: Giovaneli loss prediction compared to measured data for the 10 paths in Deygout’s original
paper. Attenuation ratio (dB) = Giovaneli method (dB) — measured data (dB).

PAGE 62



INSTITUTE FOR TELECOMMUNICATION SCIENCES NTIA TR-26-580

6.2 Comparisons of Predictions to Measured Data for the 63rd Street Paths

Table 20 lists terrain heights and distances of each diffraction edge from the transmitter
along the 63rd Street short path that were selected from the terrain data for the diffraction
edges for the diffraction analysis. The transmitter and receiver antenna heights and the
distance of the receiver from the transmitter at the end of the path are also given in Table 20.
The transmitter location is zero reference for these distances. Diffraction edge distance
locations used for the diffraction loss computations are at 60, 360, 690, 990, 1260, and 1290
meters from the transmitter, as shown in Table 20 below. The heights of the diffraction edges
that were used for the diffraction loss computations are also marked at their peaks with a dot
in Figure 43.

Table 20. Diffraction knife-edge height and diffraction-edge distance description of each diffraction
edge for the short path on 63rd Street.

Terrain Height (m) Short Path Terrain Distance from Transmitter (m)
Hi1=1578 60
H2=1575 360
Hs=1582 690
Hs=1572 990
Hs=1567 1260
He=1566 1290
XMTR Antenna Height =1579.2 XMTR Antenna Distance = 0
RCVR Antenna Height =1563.2 RCVR Antenna Distance =1380

Figure 43 is a profile plot of the terrain contour for the short path. The terrain data was
available at 30-meter intervals along the path with a 1-meter resolution in elevation with
respect to sea level.
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Figure 43: Terrain contour for the short (north) path along 63rd Street, 12 km northeast of city center,
Boulder, CO.

Table 21 lists terrain heights and distances of each diffraction edge from the transmitter
along the 63rd Street long path that were selected from the terrain data for the diffraction
analysis. The transmitter and receiver antenna heights and the distance of the receiver from
the transmitter at the end of the path are also given. The transmitter location is zero reference
for these distances. Diffraction edge distance locations used for the diffraction loss
computations are at 420, 2100, 4890, 5520, 6060, and 6930 meters from the transmitter and
are listed in Table 21 below. The heights of the diffraction edges that were used for the
diffraction loss computations are also marked at their peaks with a dot in Figure 44.

Table 21. Diffraction edge height and diffraction edge distance description of long path on 63rd Street.

Diffraction Edge Height (m) Long Path Edge Distance from Transmitter (m)

Hi=577 420
Hs= 585 2100
Hs= 583 4890
He= 583 5520
H;,=1582 6060
Hs=1582 6930

XMTR Antenna Height = 1579.2 XMTR Antenna Distance = 0

RCVR Antenna Height =1574.2 RCVR Antenna Distance = 7110

Figure 44 is a profile plot of the terrain contour for the long path. The terrain data were
available at 30-meter intervals along the path with a 1-meter elevation resolution with respect
to sea level. Figure 45 is a photo of part of the short path along 63rd Street that shows the
transmitter van on location at the Ryssby Church.
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Figure 44: Terrain contour for the long (south) path along 63rd Street, 12 km northeast of city center,
Boulder, CO.

Figure 45: Short propagation path and ITS transmitter van on 63rd Street.

The 63rd Street paths are considered rural environment: a two-lane road located at a
constant longitude running directly north-south about 12 km north of the city center flanked
by open fields and widely separated houses and farmland. Trees and some fences are sparse
along this section of the road. There are overhead power lines along the entire length of the
road. The transmitter was located at the Ryssby Church, and the receiver van was driven
along paths in a north (short path) and south (long path) direction from the church. Data was

recorded for both incoming and outgoing directions. There was minimal traffic along this
road during the measurements.
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The loss prediction of the alternative methods was first compared to the rigorous Vogler
method. Figure 46 presents these results for both the short and long paths as a function of
frequency at the maximum distances of 1.38 and 7.11 km for the short and long paths,
respectively. The seven frequencies at which the loss comparisons to Vogler were made in
Figure 46 were 183, 430, 915, 1350, 1602.5, 2260, and 5750 MHz. When the alternative
methods were compared to the Vogler method, the maximum deviation was 3.7 dB.

Figure 46 shows this agreement between the rigorous Vogler method and the alternative
approximate methods.

10

A—— A Giovaneli with no Sub-Path Edges for Short Path
Deygout with no Sub-Path Edges for Short Path N
Epstein Peterson with no Sub-Path Edges for Short Path | |
.| v -—v Giovaneli with no Sub-Path Edges for Long Path :
= - - - 1 Deygout with no Sub-Path Edges for Long Path
-1 - — —© Epstein/Peterson with no Sub-Path Edges for Long Path |-+

Attenuation Ratio (dB)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
Frequency (MHz)

Figure 46. Loss prediction of alternative methods compared to Vogler loss prediction for short and long
paths along 63rd Street. Attenuation ratio (dB) = alternative method (dB) — Vogler method (dB).

Figure 47 presents the results of comparisons of the three alternative methods to the
measured data for the short path with the receiver located at 1.38 km from the transmitter.
Figure 48 presents the results of comparisons of the three alternative methods to the
measured data for the long path with the receiver located at 7.11 km from the transmitter.
The measured data in Figures 47 and 48 was only available at five frequencies: 183, 430, 915,
1602.5, and 2260 MHz. The measured data is the average of the incoming and outgoing
recorded data at the receiver location. Figures 47 and 48 demonstrate the agreement with
measured data. The correction method for the Epstein-Peterson method described by Beyer
[7] was not used here. The maximum deviation from measured data for the short path in
Figure 47 is 4 dB, but most of the data for this path is within 2 dB. The maximum deviation
from measured data for the long path in Figure 48 is 5 dB, but most of the data is within 3 dB.

The plots of Figures Figure 48 and Figure 49 are the results of a limited amount of measured
data that can represent the capability of the alternative multiple-edge diffraction models to
predict basic transmission loss and compare the prediction data to measured data. The
measured data is from a limited number of distances and frequencies. An extensive
comparison to measured data is beyond the scope of the study of this report. The
computation and comparison of the Vogler model to measured data was also beyond the
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scope of the current report. A future study could address a more comprehensive area for
research using more extensive measured data.
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Figure 47. Prediction of basic transmission loss with Epstein-Peterson, Deygout, and Giovaneli loss
prediction methods compared to measured data loss for the 63rd Street short path with receiver
antenna at a distance of 1.38 km.
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Figure 48: Prediction of basic transmission loss with Epstein-Peterson, Deygout, and Giovaneli loss

prediction methods compared to measured data loss for the 63rd Street long path with receiver
antenna at a distance of 7.11 km.
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6.3 Comparisons of Predictions to Measured Data for the Table Mountain Field
Site and Radio Quiet Zone

The third path is along Plateau Road, which runs through the center of the Table Mountain
Field Site and Radio Quiet Zone and is itself located approximately 17 km north of the
Department of Commerce Boulder Laboratories campus. Table Mountain is a rural
environment and is a mesa elevated from the surrounding terrain. The diffraction path ran
east-west along a straight section of Plateau Road.

Figure 49 shows a photograph of the path used in the measurements. Tables 22 and 23
contain the frequency, antenna heights, and antenna types for the Field Site diffraction path
measurements for the first and second set of data taken along Plateau Road.

Figure 49: The Table Mountain Field Site Plateau Road diffraction path.

Table 22. Frequency, antenna type, and antenna height data for the Table Mountain Field Site Plateau
Road diffraction path measurements for first set of data for Figure 51.

F (MHz2) XMTR Antenna RCVR Antenna XMTR Antenna RCVR Antenna

Height (m) Height (m) Type Type on Van

183 1.81 2.2 Discone Monopole

430 1.81 2.2 Collinear Monopole

915 0.62 2.2 Collinear Monopole

1350 0.89 2.2 Collinear Monopole
1602.5 0.64 2.7 Collinear Discone
2260 0.79 2.7 Collinear Discone
5750 0.70 2.7 Collinear Discone
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Table 23. Frequency, antenna type, and antenna height data for the Table Mountain Field Site Plateau
Road diffraction path measurements for second set of data for Figure 52.

XMTR Antenna RCVR Antenna XMTR Antenna RCVR Antenna
Height (m) Height (m) Type Type on Van

183 1.0 2.2 Discone Monopole
430 1.0 2.2 Monopole/GP Monopole
915 1.0 2.2 Monopole/GP Monopole
1350 1.71 2.2 Collinear Monopole
1602.5 1.71 2.7 Collinear Discone
2260 1.61 2.7 Collinear Discone
5750 1.52 2.7 Collinear Discone

A different set of antenna heights was used in the first (Table 22) and second (Table 23) sets
of data. Figure 50 is a plot of the terrain contour for the Table Mountain Field Site Plateau
Road path. Table 24 contains the terrain elevations and distance locations for this path. The
elevations are with respect to sea level, and the distances are with respect to the transmitter.
The transmitter is located at reference distance of 0 m, and the receiver measurements were
taken at a distance of 400 meters from the transmitter. There are four major diffraction edges
in Figure 48 at distances of approximately 60, 210, 240, and 270 meters from the transmitter
indicated by dots at the edge peaks. These four edges were used in the diffraction loss
computation. The diffraction computation has been limited to the most significant knife
edges that contribute to the total diffraction loss. The sub-path knife edges that contribute a
negligible amount to the total diffraction loss were not included.

1710
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1700

Elevation (m)

1695

1690
0 0.1 0.2 0.3 0.4 0.5

Distance (km)

Figure 50. Terrain contour for the Table Mountain Field Site Plateau Road path.

PAGE 69



INSTITUTE FOR TELECOMMUNICATION SCIENCES NTIA TR-26-580

Table 24. Terrain data for the Table Mountain Field Site path.

0.0 (Transmitter Antenna Location) 1704.0
30.0 1704.0
60.0 1705.0
90.0 1705.0
120.0 1705.0
150.0 1705.0
180.0 1706.0
210.0 1707.0
240.0 1707.0
270.0 1705.0
300.0 1696.0
330.0 1693.0
360.0 1692.0
390.0 1691.0
400.0 (Receiver Antenna Location) 1690.7

Figures 51 and 52 show the results of the two test conditions. They are the comparisons of
predictions of basic transmission loss computed by the three alternative methods of Epstein-
Peterson, Deygout, and Giovaneli to the measured data for the Table Mountain Field Site.
Basic transmission loss includes the diffraction loss and the free space loss along the path.
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Figure 51: Comparisons of three prediction methods to data that was measured at the Table Mountain
Field Site Plateau Road path at a distance 400 meters from the transmitter using Table 22 scenario data.
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Figure 52: Comparisons of three prediction methods to data that was measured at the Table Mountain
Field Site Plateau Road path at a distance of 400 meters from the transmitter using Table 23 scenario
data.

The first and second sets of data show the diffraction effects of the different sets of antenna
heights of the basic transmission loss computations of Figures 51 and 52. Notice that the
propagation loss predicted with the Deygout and Giovaneli alternative methods agree with
respect to measured data within £2 dB, but the propagation loss predicted with the Epstein-
Peterson alternative method does not and deviates as much as 14 dB with respect to
measured data. In Figure 51 the agreement is within 4 dB at the low frequencies and most of
the frequencies, but the agreement is within 2 to 3 dB at some frequencies for the Deygout
and Giovaneli methods. In Figure 52 the agreement is within 6 dB at the lower frequencies,
but at frequencies between 900 MHz and 1700 MHz the agreement is within 2 to 3 dB for the
Deygout and Giovaneli methods. This is because the ray paths with the Epstein-Peterson
alternative method align with the incident shadow boundaries. As discussed previously in this
report, alignment of ray paths with the incident shadow boundaries can result in large
prediction errors with some of the alternative methods, but not in the other alternative
methods. This is due to the different procedures in establishing the ray paths for each of the
alternative methods. The alternative methods of Deygout and Giovaneli do not have ray
paths that align with the incident shadow boundaries for the above analysis.
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7. Conclusions

This paper has described the results of a comparative analysis of four alternative multiple
knife-edge diffraction methods and variations of these methods in place of a rigorous
multiple knife-edge diffraction method to support radio wave propagation model
development at ITS. The goal of this analysis was to investigate faster methods for computing
knife-edge diffractions and a technique to select the best method. Section 3.3 describes this
technique.

All of the alternative diffraction computation methods are approximations and are based on
the Fresnel-Kirchhoff scalar theory of diffraction. The Kirchhoff boundary conditions are also
approximate and only apply to scalars. This diffraction analysis is based on the classical
approach of the Fresnel-Kirchhoff scalar theory of optics for a single knife edge. The
assumption is made that the knife edge is a perfectly absorbing screen placed normal to the
direction of propagation extending to infinity in both directions and vertically downwards. In
a multiple knife-edge scenario, the losses for each edge will be combined using the
alternative multiple knife-edge methods. There are a number of alternative methods for
computing diffraction loss over multiple knife edges. Each method has its own unique
procedure for computing diffraction loss.

The original motivation for this analysis effort was to determine which alternative diffraction
computation method to use to compute diffraction loss over multiple knife edges based on
criteria discussed in this report. The authors sought a selection technique to determine the
optimum alternative diffraction computation method that is based on the relative geometric
location of the incident shadow boundary and the ray path from one knife edge to the next.

Preliminary results of this analysis show where each of the alternative multiple knife-edge
methods investigated can be used in place of the rigorous Vogler diffraction method to
reduce computation time while maintaining suitable accuracy. It was shown that no one
alternative method can cover all scenario variations. Which alternative diffraction method
works best for a given scenario depends on how a method treats sub-path obstacles and the
alignment of the ray path from one knife edge to the next knife edge with the incident
shadow boundaries at the knife edges.

A method of selecting the best model in a particular situation was investigated and shows
promise as a good indicator of which alternative method will predict the best estimate of
diffraction loss. The procedure and order of computing knife-edge diffraction loss is different
for each of the alternative methods investigated. As a result, for the same diffraction scenario,
one method may avoid alignment of the ray path with the incident shadow boundary, while
another may align the ray path with the incident shadow boundary. The method with the
largest magnitude of the angular separation of the ray path and the incident shadow
boundary that avoids this alignment will predict the diffraction loss with better accuracy.

The evaluation of the Fresnel transition function FTF(x) can be performed using (11), but it is
easier to use Figure 6 with sufficient accuracy after using (12) to calculate x. A procedure for
computing x, FTF(x), and the Fresnel transition function product FTFP(x) is listed below.
The equations and figures referenced in the procedure below are in Section 3.3.
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e Referring to Figure 4, compute the argument of FTF(x) using the parameters ¢ = ¢' + =
and L as defined in (12), where ¢ is the incident shadow boundary and L is the distance
from the diffraction knife edge to the observation point, which is the distance from the
diffracting knife edge to the next knife edge.

e The angle, 8 = ¢, — ¢ is the difference between the angle of the incident ray path for the
next knife edge, ¢4y, and the angle of the incident shadow boundary ¢.

e The wavelength 1 is obtained from the operating frequency.

e Compute x from (12), compute logx from x, and then compute FTF(x) from Figure 6 using
logx.

e Repeat the four steps above for each diffraction edge.

e Compute the product of all diffraction edges, FTFP(x), by multiplying all the individual
FTF(x) computations together.

The FTF(x) value of 1.0 indicates that for a single diffraction edge, the ray path to the next
edge is far away from the incident shadow boundary and the computation of the diffraction
loss will be better than an edge with an FTF(x) value of less than 1.0. It follows that the
FTFP(x) for multiple edges with a value of 1.0 will be better than an alternative method that
has an FTFP(x) less than 1.0 or less than the other alternative method.

The approach described above and in Section 3.3 can be used for selecting an alternative
diffraction method that achieves better accuracy (minimum error). Accuracy is improved by
using the method that has the largest angular deviation between the ray path from one knife
edge to the next knife edge and the incident shadow boundary. The best indicator for finding
what magnitude of angular separation would produce a minimal diffraction loss error was
determined to be the FTF magnitude. The FTFP is the product of the magnitude of the
individual FTFs for each of the edges. The FTFP magnitude for all edges is computed by
multiplying together the magnitudes of the FTFs of all knife edges in the scenario for each
alternative method. The alternative method with the maximum magnitude of the FTFP was
the most suitable alternative prediction method with minimum diffraction loss error.

The Bullington method was found unsuitable due to inaccurate results of the diffraction
computation even with only two knife edges. Tables Table 17 and 18 show more than 6 dB
difference between the Vogler method and the Bullington method. In many cases the
difference is decades of dB.

Comparisons in Tables 17 and 18 of Section 5.2 show the agreement between the Vogler
results and both the Epstein-Peterson, Deygout, and Giovaneli results for a variety of cases.
Some differences depend on whether the sub-path knife edges (obstacles) are included in
the diffraction loss computation for the different methods.

It was found by comparative computations that removing the sub-path obstacles improves
the agreement between the Deygout method and the Vogler method. The Epstein-Peterson
method’s agreement with the Vogler method also improves when the sub-path knife edges
are removed. This is in agreement with a comment made by Deygout in his paper [5], about
limiting the number of edges to 3 or 4 edges for a diffraction loss computation.
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However, the Epstein-Peterson method with all knife edges included and corrected by the
Beyer method [7] improves agreement with the Vogler method. This is because the Beyer
method is designed to improve the loss prediction agreement when increasing the number
of knife edges by including the sub-path knife edges.

The Vogler method is valid for many knife edges up to 10. By including the diffraction loss
effects of the sub-path knife edges, improved agreement with the Vogler method is
achieved, since both methods include all knife edges. This is valid for both the Epstein-
Peterson and Vogler methods, since the knife edges for the Epstein-Peterson method are
corrected with the Beyer method [7]. The Giovaneli method with no sub-path knife edges
agrees with the Vogler method, as shown in Section 5.1.

Comparisons of the measured data were also performed with four separate sets of available
data. One was measured data from the classic paper by Deygout [5]; the other three were
from measurements performed by ITS. Two of these datasets were taken along medium
length paths and the third along a much shorter diffraction path. Comparisons of measured
data show the agreement with the Epstein-Peterson, Deygout, and Giovaneli methods in
addition to the Vogler method, in Section 6. The clutter environment along the paths can
cause some large deviations, since both the rigorous Vogler method and the alternative
methods do not consider the reflections and multipath from trees, houses, power lines, and
fences, etc. along the paths. The alternative multiple knife-edge diffraction methods are
approximations, but, as shown in this report, they can provide the predictions of diffraction
loss when care is exercised to avoid the alignment of the incident shadow boundaries with
the ray paths between knife edges.

As stated above, the plots of Figures Figure 48 and Figure 49 are the results of a limited
amount of measured data that can represent the capability of the alternative multiple-edge
diffraction models to predict basic transmission loss and compare the prediction data to
measured data. The measured data is from a limited number of distances and frequencies.
An extensive comparison to measured data is beyond the scope of the study of this report.
The computation and comparison of the Vogler model to measured data is also beyond the
scope of the current report. A future study could address a more comprehensive area for
research using more extensive measured data.
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Appendix A. The Bullington Mathematical Algorithm

The mathematical algorithm for the Bullington method begins with finding the knife edge
with the maximum elevation angle from the transmitter antenna and another knife edge with
the maximum elevation angle from the receiver antenna. These are the horizons from each
antenna. This is equivalent to calculating the tangents of the angles for all n knife edges with
respect to the transmitter antenna 61; and the receiver antenna ; using:

tan 6 h
an 0, = —
n Yke=1k (A-1)
h; -
tan O; = : (A-2)

Yitidi = Xiemy di

The equation for a line from the transmitter antenna to the i knife edge of height h;
representing the horizon with respect to the transmitter antenna is:

_ hd (A-3)
D=1 dk
where the distances dj are defined in Figures 16 through 25, and d is the distance along the

path. The equation for a line from the receiver antenna to the j* knife edge of height h;,
representing the horizon with respect to the receiver antenna for n total knife edges is:

yr

_ —hid N hi Yrtidy (A-4)
Zzl—% dk - Z{(:l dk Zzz% dk - Z{c:l dk

Yr

The effective height h’ of the equivalent knife edge and the distance dr from the transmitter
are obtained by solving the above two equations for d = dy simultaneously where y; = yg
after entering all the numerical values for the knife edge heights and computing the
summations in each of the equations. The distance di from the receiver is:

n+1 (A-5)
dy = (Z dk> ~dy

k=1
The effective height is:

hidr (A-6)
Yi=1dk

The Fresnel-Kirchhoff diffraction parameter is then calculated as [8]:

_w 2<1+1>
V=R e, T,

h' =yr(dr) =
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where 1 = ]% is the wavelength in meters, f is the frequency in Hertz, and c is the speed of

light in meters per second. This diffraction coefficient is then used to calculate the diffraction

loss using the equation for J(v) [8]. For v > —0.78, the diffraction loss in dB is computed from
[8]:

J(v) = 6.9 + 201log (J(v “01)2+1.04+v— 0.1) (A-8)
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Appendix B. The Epstein-Peterson Mathematical Algorithm

The mathematical algorithm for the Epstein-Peterson method begins with assuming that each
knife edge is illuminated by the transmitter antenna or the diffracted energy from the top of
the preceding knife edge. The attenuation due to diffraction is computed sequentially for
each knife edge in dB, and the attenuations for all knife edges are summed together in dB.
The diffraction loss computation for n knife edges using the Epstein-Peterson algorithm
requires the determination of the effective height of each knife edge, and the distances dy
and dg of each knife edge from the transmitter and receiver antenna, respectively. The
effective height h} of the i*"* knife edge with height h; is given by:

r_ (hi+1 - hi—l)
h; —hi_mdi_hi—l (B-1)
The distances dy and dy are: dy = d; and dg = d;;. This equation is used for sub-path knife
edges and non-sub-path knife edges. The Fresnel-Kirchhoff diffraction parameter for the it"
knife edge is computed from [8]:

2/1 1 (8-2)
vi=h z(a * a)
The diffraction loss for each knife edge is computed using (B-3) for J(v) [8]. The total
diffraction loss is the sum of the individual diffraction losses for each knife edge.
J) = 6.9 + 201log (J(v —01)2+104v— 0.1) (B-3)
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Appendix C. The Deygout Mathematical Method

C.1 Equations for the Primary Knife Edge

The diffraction loss computation algorithm for n knife edges using the Deygout method
begins with computing the Fresnel-Kirchhoff diffraction parameter v; using (C-1) for all knife
edges as if the other knife edges were absent to determine the primary knife edge [8]. The
primary knife edge has the highest value for v;.

211
vi=h z(gﬂz—) (c-1)

The distances to the it knife edge for n knife edges are computed using the following
equations:

i
dr= ) d (c2)
k=1
n+1
dR = Z dk (C-3)
k=i+1

Note that equations (C-2) and(C-3) are equivalent to equations (1) and (2) with different
symbols on the left-hand sides, respectively. For the i*" knife edge, hj is the effective height
of the i*" knife edge with respect to the transmitter antenna to the receiver antenna baseline.
These effective heights of the diffraction knife edges are used for the determination of the
primary knife edge and are given by (C-4). The height h; is the original height before
normalization with respect to a baseline drawn between the transmitter antenna and the
receiver antenna located at heights h; and h,, respectively.

(hy = he) The=1 di
Yriide
If the mt" knife edge has the largest v;, then it is the primary knife edge and the diffraction

loss J(v) of the m*" knife edge is computed using h = h, for v; > —0.78 with (C-1) through
(C-5)8].

hi =h; — <ht + (C-4)

J) = 6.9+ 20log (Vv — 0.7 + L0 +v - 0.1) (C-5)

Only the loss for the m" knife-edge (primary knife edge) can be computed using the above
value of v,,,. The losses for the remaining knife edges are computed using different values of
v; obtained from other procedures of computing effective heights with different and specific
reference baselines for determination of the diffraction parameter v; for the knife edges of
secondary, third, fourth, and fifth levels. After the primary knife edge has been selected, new
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baselines must be established for computing effective knife-edge heights and losses of the
remaining knife edges. The effective heights h; computed above for the determination of the
primary knife edge for nonzero receiver and transmitter antenna heights, will be used as the
initial reference heights for the individual computation of the new effective heights h; with
respect to the new baselines for the second-, third-, fourth-, and fifth-level knife edges. The
diffraction losses for the primary knife edge and second-, third-, fourth-, and fifth-level knife
edges are added together to obtain the total diffraction loss.

C.2 Determination of Effective Knife-Edge Heights and Distances for Secondary
Knife Edges on Either Side of the Primary mt" Knife Edge

The m'" knife edge divides the transmitter to receiver distance region into two sub-path
regions given by the distances dy and dgr computed above for the primary knife edge. The
transmitter source for the sub-path region to the left of the primary knife edge is located at
the original transmitter antenna source, but the receiver antenna is located at the top of the
primary knife edge. The transmitter antenna source for the sub-path region to the right of the
primary knife edge is located at the top of the primary knife edge, and the receiver antenna is
at the location of the original receiver antenna.

The new baselines are formed for computing effective heights h; for the secondary knife
edges by drawing a line from the transmitter antenna to the primary knife edge, and from the
primary knife edge to the receiver antenna. If the total number of knife edges is n and the
primary knife edge height is h;,, with index m, then the equation for the new baseline for
knife edges located to the left of the primary knife edge is:

_ h;n Z;c:l di
yr = Y™ dy (C-6)

The effective heights h} with respect to the new baseline of the it"* secondary knife edge h;
for knife edges to the left of the m** primary knife edge are:

I hm Z;'c=1 dk
hi =h; — Y dp (C-7)
where h; is the reference height of the i knife edge with respect to the baseline between
the transmitter and receiver antennas computed previously for the primary knife edge. The
distances dy and dj for the it" knife edge on the left side of the m'" knife edge are:

i
dr= ) d (C-8)
k=1
m
d= ), di (C-9)
k=i+1

The equation for the new baseline for the secondary knife edges located to the right of the
primary knife edge is:
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S Z d | +h
T e k)T (C10)

k=m+1

The effective heights, h{, with respect to the new baseline of the i" secondary knife edge h;
for knife edges to the right of the m*" primary knife edge are:

h;n Z;.c:m+1 dk
h) = h + mokemil Tk )
o Zhade T (1)
where h} is the reference height of the i knife edge with respect to the line between the
transmitter and receiver antennas. The distances dy and dg for the i*" knife edge on the right
side of the m*" knife edge are:

i
dr=) d (C-12)
k=m+1
n+1
dg = z di (C-13)
k=i+1

When there is more than one knife edge in the sub-path regions on each side of the primary
knife edge, each knife edge must be evaluated to determine the secondary knife edge for
each region. The values of v; for all knife edges on each side of the primary (m‘") knife edge
are computed using the appropriate values of h;, dr and dy to determine the knife edge with
the largest value of v; on each side of the primary m‘*knife edge. These are the secondary
knife edges.

These values of v; can be used to compute the losses for only the two secondary knife edges
that have the maximum value of v; for that region on each side of the primary knife edge.
These secondary knife edges subdivide the first two regions into two subregions, one on
each side of the primary knife edge, for a total of four regions. To determine the losses for
the third-level knife edges occurring in these regions, it is necessary to establish additional
baselines that are lines from the previous primary knife edge, secondary knife edge, or
transmitter to the next primary knife edge, secondary knife edge, or receiver antenna in their
respective regions.

C.3 Equations for the Effective Height and Distances of the Third-Level i Knife
Edges on the Left Side of the Primary Knife Edge h,,

For the left side of the secondary knife edge h,:

hq Yie=1dk
W =h —dZk=17K )
STy g (C-14)
i
dr = Z d (C-15)
k=1
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dg = Z i (C-16)

k=i+1

For the right side of the secondary knife edge hy:

(hm B hq) Zf‘c=q+1 dy _

hi = by — ST o de hq (C-17)
i
dr = Z i (C-18)
k=q+1
m
dp = Z i (C-19)
k=i+1

All the values of v; for the knife edges on the left side of the primary knife edge and each side
of the secondary knife edge are then computed to determine the third-level knife edge for
each side of the secondary knife edge. The largest values of v; in these separate regions are
then used to calculate the diffraction loss only for the third-level knife edges to the left side of
the primary knife edge on each side of the secondary knife edge.

C.4 Equations for the Effective Height and Distances of the Third-Level i™ Knife
Edges on the Right Side of the Primary Knife Edge h,,

For the left side of the secondary knife edge hy:

(hm - hd) Zi=m+1 dk _

hi=h; + h ]
o K=ms1 i " (C-20)
i
dr = 2 e (C-21)
k=m+1
d
dg = Z di (C-22)
k=i+1

For the right side of the secondary knife edge hy:

haSheasadic

h) = h, +—Sok=dtl Tk g
i =h gl (C-23)
i
dr = Z di (C-24)
k=d+1
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n+1

dg = z di (C-25)
k=i+1

All the values of v; for the knife edges on the right side of the primary knife edge and each
side of the secondary knife edge are then computed to determine the third-level knife edge
on each side of the secondary knife edge. The largest values of v; for the right side of the
primary knife edge and each side of the secondary knife edge determine the third-level knife
edge on each side of the secondary knife edge. The largest values of v; are then used to
calculate the diffraction loss only for the third-level knife edges to the right side of the
primary knife edge on each side of the secondary knife edge.

The methods described previously for the primary, secondary, and third-level knife edges are
then applied to the sub-path regions formed by the remaining knife edges to determine the
effective heights, distances, Fresnel-Kirchhoff diffraction parameters, and diffraction loss for
the fourth- and fifth-level knife edges.

C.5 Determination of Effective Knife-Edge Heights for Higher Order Knife Edges
on Either Side of the Primary Knife Edge

After the third- and fourth-level knife edges have been determined and their losses
computed, the remaining knife edges, if any, are fifth-level knife edges. For the fifth-level it"
knife edge, which is the highest level possible for n = 6, the computation reduces to:

. (his1 — hi—1)d;
hi = h; — S g —yitg +hiq (C-26)

The distances for the fifth-level i*" knife edge are:
dr = d; (C-27)
dp = di1 (C-28)

The losses are computed for the higher order knife edges using the distances and effective
heights from the above equations in (C-1) for the diffraction parameter v;, and then using this
value of v; in (C-5) for the loss J(v) [8]. When single or multiple consecutive knife edges with
negative effective heights occur, then the computation of v; and the diffraction loss for these
knife edges are the last knife edge computations, and they are performed using the same
equations as for the fifth-level knife edge, (C-26) through (C-28). The diffraction losses for all
knife edges are added together for the total diffraction loss.
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Appendix D. The Giovaneli Mathematical Algorithm

For this algorithm, as for the Deygout algorithm, the primary knife edge must be determined
first. The primary knife edge for the Giovaneli algorithm is that with the maximum height. If
there are two knife edges with equal maximum heights, then compute the Fresnel-Kirchhoff
diffraction parameter v; for each knife edge. The primary knife edge will be the knife edge
with the largest value of v;. It is possible for the primary knife edge to be the knife edge
closest to the transmitter antenna, the knife edge closest to the receiver antenna, or a knife
edge in between the transmitter and receiver antenna locations. When the primary knife
edge is the knife edge closest to the transmitter antenna or receiver antenna, then the
remaining knife edges are all on either the receiver antenna side or the transmitter side,
respectively, of the primary knife edge. The total diffraction loss is the sum of the losses
computed for all of the knife edges. The diffraction losses for the primary and remaining knife
edges are computed using the procedure described in the next sections.

The Giovaneli method is an attempt to obtain more representative diffraction angles, so that
the loss predictions will be less pessimistic than those produced by the Deygout method. The
diffraction angles suggested by Giovaneli in his method are those that would be incurred by
ray paths incident on the subject knife edge from the previous knife edge and by ray paths
received at the next knife edge from the subject knife edge.

D.1 Effective Height and Distances for the Primary Knife Edge for the Giovaneli
Algorithm

Using the primary knife edge h,, as the reference for the slope determination, calculate the
absolute value of the slopes of lines drawn from the main knife edge to each of the secondary
knife edges. The knife edge with the minimum slope on each side of the main knife edge is
the secondary knife edge for that side of the primary knife edge and will be used to
determine the effective height of the primary knife edge. These secondary knife edges are
not sub-path knife edges. Procedures for sub-path knife edges are described in Section D.3.
The distance of the it" knife edge from the transmitter antenna is given by (D-1).

i

di= ) dy (1)
k=1

The distance of the m*" knife edge from the transmitter antenna is calculated using (D-2).

dn = ). d (D-2)

=>4 (0-3)
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The secondary knife edge on the left side of the primary knife edge is the reference source
knife edge for the energy incident on the primary knife edge and the secondary knife edge
on the right side of the primary knife edge is the receptor knife edge for energy diffracted
over the primary knife edge. Computing the effective height of the primary knife edge
requires the use of three equations of straight lines. This procedure begins when one vertical
line is drawn at the transmitter antenna location d = 0 and the other vertical line is drawn at
the receiver antenna location. The first of these lines passes through the primary knife-edge
peak and the secondary knife-edge peak on the left side of the primary knife edge continuing
through that peak to intersect the vertical line atd = 0. If L is the index of the secondary knife
edge of height h; on the left (transmitter) side of the main knife edge (index m) of height h,,,
the equation for the line with minimum slope that connects the secondary knife edge to the
primary knife edge and intersects the vertical line at the transmitter is given by (D-4).

_ (hyp—hy)d +h
= Z;cn:L+1 dy t (D-4)

Atd = Y-, d , yi. = hy, the equation can be solved for b;. If the primary knife edge is
adjacent to the transmitter antenna at d = 0, then the index of the secondary knife edge is
L =0, and the heights are given by: h; = hy, and b, = hy.

The second line passes through the primary knife edge and secondary knife edge on the
right side of the primary knife edge and the vertical line at the receiver location. If P is the
index of the secondary knife edge on the right (receiver) side of the primary knife edge, the
equation for the line with minimum slope that connects the secondary knife-edge peak to the
primary knife-edge peak and intersects the vertical line at the receiver is given by (D-5).

I R ICED Y ST

’zi=m+1 di " (D-5)

If the primary knife edge h,, is adjacent to the receiver, then hp = h,. (the receiver antenna
height),and P =n + 1.

The lines of the equations for y; and yp are extended to intersect the vertical lines atd = 0
and the receiver location distance. A third line is the baseline, which is drawn between the
intersection points of the two lines given by y; and yp with the vertical lines at d = 0 and the
receiver location distance, respectively. The equation for this baseline is (D-6).

[}’P (d = 225 dy —y,(d = 0))] d N

1
2211—1 dk

VB = bg (D-6)

Atd =0, (bp =ygp =y, =by).
The effective height for the primary knife edge is h;, = h,,, — yp(d = Y i=1 di)-

The distances for the computation of the diffraction parameter v, for the primary knife edge
are computed using (D-7) and (D-8).
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m
dr = 2 i (D-7)
k=1
n+1
dp = dk (D-8)
k=m+1

The diffraction loss for the primary knife edge is computed using this value of v, (D-9) and
(D-10) for J(v) [8].

Vim =

L2101
m z(d—ﬁa) (D-9)

J(v) = 6.9 + 201log (J(v —0.DZ+10+v-01) (D-10)

D.2 Effective Heights and Distances of the Secondary and Higher Order Knife
Edges for the Giovaneli Algorithm

To determine the effective heights of the secondary knife edges, the secondary knife edges
are used as the main knife edges and their effective heights calculated similarly to the
primary knife edge. The computation procedures of the effective heights of the secondary
and higher order knife edges depend on whether the knife edge is on the left (transmitter) or
right (receiver) side of the primary knife edge. The computation procedure of effective
heights and distances for third-level and higher-level knife edges is performed by extending
the procedure for secondary knife edges.

For the right side (receiver side) of the primary knife edge, the effective knife-edge height of
the it" knife edge that is a not a sub-path knife edge is computed by determining the next q*"
knife-edge peak (located to the right side of the i*" knife edge) that will serve as the receptor
knife edge for the it" knife edge. The primary (mt") knife edge is the reference source knife
edge for the i" secondary knife edge. The receptor knife edge will be the ¢** knife edge to
the right of the secondary i knife-edge peak that is not a sub-path knife edge that has a
minimum absolute value of slope of a line drawn from the primary m*" knife edge to the next
q'" knife-edge peak. If the g knife edge does not exist, because the i knife edge is
adjacent to the receiver antenna, then use the receiver antenna height h.. If the next location
is the receiver antenna, then ¢ =n + 1, h; = h,. The equation of the line used for the baseline
to calculate the effective height of the i*" knife edge is determined by finding the equation of
the line that connects the previous knife edge m*" knife-edge peak of knife edge h,,, to the
g™ knife-edge peak of knife edge h,. This is given by (D-11).

(B = hq)(d = B3 di)
YR = T + hm (D-11)

k=m+1

The effective height h} of the i" knife edge is evaluated using ypg at the it" knife edge (D-12).
The distances are calculated using (D-13) and (D-14).
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i
hi = hi — Ypr d=zdk (D-12)
k=1
i

dr = 2 di (D-13)

k=m+1

n+1

dp = z dk (D-14)

k=i+1

This procedure is repeated sequentially to determine the effective heights and distances for
all knife edges on the right side of the primary knife edge that are not sub-path knife edges
until there are no knife edges left except the sub-path knife edges, which are treated
separately in Section D.3.

For the left side (transmitter side) of the primary knife edge, the effective height of the it"
knife edge that is not a sub-path knife edge is computed by determining the previous x‘"
knife-edge peak (located to the left of the it" knife-edge peak) that will serve as a reference
source knife edge for the it" knife edge on the left side of the primary knife edge. The
reference source knife edge h, will be the xt"* knife edge that is not a sub-path knife edge
that is located to the left of the secondary it knife edge that has a minimum absolute value of
slope of a line drawn from the primary mt" knife-edge peak to the x*"* knife-edge peak. For
the it" knife edge on the left side of the primary knife edge, the primary mt" knife edge is the
receptor for the energy diffracted by the i knife edge. If the x" knife edge does not exist,
because the it" knife edge is adjacent to the transmitter, then use the transmitter antenna
height h; for the knife-edge height. If the next location is the transmitter, then x = 0 and h, =
h:. The transmitter antenna will then serve as the reference source for the it"* secondary knife
edge. The equation of a line for the baseline used to calculate the effective height of the i"
knife edge is the equation of a line that connects the m*" knife-edge peak to the xt" knife-
edge peak of knife edge, given as (D-15).

_ (i —hy)d (D-15)
yPL ZZL:l dk

The effective height k! of the it" knife edge is evaluated using yp, at the it" knife edge (D-16).
The distances are calculated using (D-17) and (D-18).

i

hi=hi=yeu| d =) d (D-16)
k=1
i (D-17)
dy = 2 dy
k=1
m (D-18)
dp = Z dy
k=i+1
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This procedure is repeated sequentially for all knife edges on the left side of the primary knife
edge that are not sub-path knife edges until there are no knife edges left except the sub-path
knife edges, which are treated in the next section.

D.3 Effective Heights and Distances of the Sub-Path Knife Edges for the Giovaneli
Algorithm

A sub-path knife edge is a knife edge between two knife edges whose peak is below a line
drawn between the previous knife edge and the next knife edge. A sub-path knife edge can
also occur between the transmitter antenna and the second knife edge, or the next-to-last
knife edge and the receiver antenna. If the first knife edge or last knife-edge peak is below a
ray represented by a line that is drawn between the transmitter antenna to the second knife-
edge peak, or a line that is drawn from the next-to-last knife-edge peak and the receiver
antenna, respectively, then the first or last knife-edge peak is a sub-path knife edge.

For knife edges on either side of the primary knife edge that are sub-path knife edges, the
procedure involves using a baseline from the previous ut" knife-edge peak of knife edge h,,
to the next zt" knife-edge peak of knife edge h, that are not sub-path knife edges. The
procedure shown here will also work for computing effective knife-edge heights of knife
edges with zero effective height. The equation for the baseline for the effective height of the
it" knife-edge peak for a sub-path knife edge is.

_(hy = h)(d — Xk=1di) +h
= ZIZc=u+1 dk “ (D-1 9)

where h, is the height of the zt" knife-edge peak, and h,, is the height of the ut" knife edge.
When the z" knife edge does not exist, because the it" knife edge is the last knife edge and
the next location is at the receiver, then the baseline is a line between the ut" knife-edge
peak and the receiver antenna at height h,., the index z = n + 1 and h, = h,. When the u*"
knife edge does not exist, because the it" knife edge is the first knife edge and the previous
location is at the transmitter, then the baseline is a line between the zt" knife edge and the
transmitter antenna height h;, and the index u = 0, and h,, = h;. The effective height is the
vertical distance from this baseline to the i knife-edge peak (D-20). The corresponding
distances dy and dy for each knife edge are also computed (D-21), (D-22).

i

Ri=hi—yy(d=) dy (D-20)
k=1
i
dr = z d (D-21)
k=u+1
de= ) (D-22)
k=i+1
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D.4 Final Summation of All Diffraction Losses

The losses for each knife edge are computed using the diffraction parameter v; from (D-23)
for each knife edge and (D-10) for J(v) [8]. The diffraction losses for all knife edges are added

together for the total diffraction loss.

271 1
vi=h —<_+_) (D-23)
A\d; " dp
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