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A Comparative Analysis of Multiple Knife-Edge Diffraction 
Methods 

Nicholas DeMinco,1 Paul M. McKenna,1 and Robert T. Johnk2 

Abstract: The results of a thorough comparative analysis of alternative 
graphical prediction methods for multiple knife-edge diffraction are presented 
and compared to the method developed by Vogler. The Vogler multiple knife-
edge diffraction loss is rigorous and verified with measured data, but too 
computationally intensive for use in a propagation model that predicts area 
coverage over irregular terrain. Mathematical algorithms were developed for 
alternative graphical prediction methods for diffraction paths with up to six 
knife edges, resulting in methods that are many orders of magnitude faster. 
This is important for use in propagation models that predict area coverage 
over irregular terrain for many radial directions from the transmitter. A 
technique for selecting the best alternative method is proposed. Graphical 
techniques and mathematical algorithms are also described. Comparisons of 
the Vogler method to the alternative methods are included. Some 
comparisons to measured data are also presented. 

Keywords:  diffraction, electromagnetic diffraction, electromagnetic wave propagation, 
multiple knife-edge diffraction, non-line-of-sight, radio frequency propagation, 
radio-wave propagation, Vogler method  

1. Introduction 

A comparative analysis of different multiple knife-edge diffraction methods was performed to 
support various radio wave propagation models under development at the Institute for 
Telecommunication Sciences (ITS). The goal was to investigate faster methods for computing 
multiple knife-edge diffractions for the non-line-of-sight (NLOS) environment. The results of 
ongoing analysis and measurement efforts will be used to develop diffraction loss 
computation techniques for radio-wave propagation predictions in a variety of NLOS 
environments. 

L.E. Vogler developed a rigorous multiple knife-edge diffraction method in the 1980s [1], [2]. 
That method has been verified by comparison to measured data to be accurate, but it 
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requires excessive run times for many knife edges. Faster methods are currently needed for 
propagation models that compute basic transmission loss predictions in situations where 
many computations are required in different radial directions over many knife edges. Faster 
alternative methods for computing multiple knife-edge diffractions are approximations to the 
rigorous method. They obtain solutions by compositions of single knife-edge diffraction 
results. This report compares the accuracy of four faster methods to Vogler’s more rigorous 
method. 

All of the alternative diffraction computation methods are approximations and are based on 
the Fresnel-Kirchhoff scalar theory of diffraction. The Kirchhoff boundary conditions are also 
approximate and only apply to scalars. This diffraction analysis is based on the classical 
approach of the Fresnel-Kirchhoff scalar theory of optics for a single knife edge. The 
assumption is made that the knife edge is a perfectly absorbing screen place normal to the 
direction of propagation extending to infinity in both directions and vertically downwards. In 
a multiple knife-edge scenario, the losses for each edge will be combined using the 
alternative multiple knife-edge methods. There are a number of alternative methods for 
computing diffraction loss over multiple knife edges. Each method has its own unique 
procedure for computing diffraction loss.  

The original motivation for this analysis effort was to determine which alternative diffraction 
computation method to use to compute diffraction loss over multiple knife edges based on 
criteria to be discussed in this report. A selection technique to determine the optimum 
alternative diffraction computation method is based on the relative geometric location of the 
incident shadow boundary and the ray path from one knife edge to the next. 

This report describes the alternative multiple knife-edge diffraction computation methods 
graphically. Mathematical algorithms for diffraction paths with up to six knife edges were 
developed for each method so that they can be implemented in a computer program. 
Comparisons of each of the alternative multiple knife-edge diffraction computation methods 
to Vogler’s analytically rigorous multiple knife-edge diffraction solution were performed. 
Techniques for determining the best alternative method to use for multiple knife-edge 
diffraction computations were proposed for various scenario configurations. Some limited 
comparisons with existing measured data for each of the methods are also presented. 

Four alternative diffraction methods were investigated: Bullington [3], Epstein-Peterson [4], 
Deygout [5], and Giovaneli [6]. All four are graphical techniques, where the analyst must 
identify the most important knife edges through educated guesswork. Graphical procedures 
for each of the methods can be obtained from the cited references and are described in 
Section 3 of this report. 

Mathematical algorithms had to be developed for these graphical methods to implement 
them in a computer program. This enabled comparison of each alternative diffraction 
method to Vogler’s rigorous diffraction method to determine a suitable method for the NLOS 
propagation scenarios. Descriptions of the graphical techniques and the mathematical 
algorithms are presented for each of the methods. 

The Bullington method is the simplest to implement, but the least accurate and therefore 
unsuitable even with only two knife edges. The other three methods claim to have improved 
accuracy when compared to Bullington’s method, with only a slight increase in complexity 
[4]–[6]. Of those, the Epstein-Peterson method is the simplest and most straightforward to 
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implement. It maintains reasonable diffraction loss prediction accuracy for some scenarios. 
The Deygout method is an improvement over the Epstein-Peterson method. The Giovaneli 
method corrects the error in diffraction angle in Deygout’s method by using a diffraction 
angle that more closely coincides with that used for the geometrical theory of diffraction 
(GTD) [6]. 

Various modifications were made to each of these alternative methods, including deleting 
the sub-path knife edges (defined in Section 2) and using only the major three knife edges. 
This led to three additional methods to include as candidate methods for consideration for 
each of the four original methods. A special correction based on the GTD was also used with 
the Epstein-Peterson method [7] for some cases. The major three knife edges for Epstein-
Petersen and Deygout methods are determined by selecting the three knife edges whose 
Fresnel-Kirchhoff parameter 𝜈𝜈 is the largest. The major three edges for the Giovaneli method 
are determined by constructing a line from the main (tallest) edge through the peaks of the 
other edges and selecting the smallest absolute value of slope on each side of the main 
edge. All these methods need to be compared to the rigorous L.E. Vogler method to 
determine the superior alternative for a wide variety of scenarios. Comparisons to measured 
data will also aid in the determination of the best alternative methods to use for diffraction 
computations.  

Section 2 describes the multiple knife-edge diffraction problem and the geometry of the 
knife-edge locations in a diffraction scenario for zero and nonzero antenna heights. The sub-
path knife edges were also defined. The first Fresnel zone radius will also be defined. 

Section 4 describes the Vogler method for multiple knife edges and the Fresnel diffraction 
integral method for a single knife edge. The alternative diffraction methods will also be 
described with graphical examples of how each of these alternative diffraction methods 
compute the diffraction loss. Summary comments on the alternative diffraction methods are 
included. 

Section 3.3 Provides a technique for selecting the best alternative diffraction loss 
computation method to obtain the best estimate of diffraction loss. Section 3.4 includes 
examples of alternative computation methods with six knife edges to provide more detail on 
the computation complexity when up to six knife edges are included. 

Section 4 introduces 50 multiple knife-edge diffraction scenarios that include many variations 
of varying distances between knife edges, different knife-edge heights, and different height-
to-distance ratios for the knife-edge geometries. The scenarios are listed in tabular form. 
Section 5 includes the figures to graphically illustrate each scenario. 

Section 5 compares losses of the alternative computation methods with the Vogler method 
for the 50 scenarios of Section 4. The results are illustrated in multiple figures. Discussions of 
the results are also included. Section 5 also includes the execution time comparisons of the 
Vogler method and the alternative methods for the 50 cases listed in Section 4.  

Section 6 contains the results of comparisons of the alternative computation methods with 
measured data. The results of Deygout’s classic original paper are presented here with 
comparisons to the loss predictions of the alternative computation methods. Comparisons of 
the losses of alternative prediction methods to data measured by ITS for two separate 
measurement programs are also presented. 
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Section 7 contains conclusions for the study and summarizes the results. 

Section 8 is a list of references. 

Appendices Appendix A through Appendix D provide the mathematical details of all 
alternative computation method algorithms for up to six multiple knife edges. These 
algorithms were coded in a computer program. 
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2. Description of the Multiple Knife-Edge Diffraction Problem 

A common procedure used to compute propagation loss over irregular terrain is to 
determine the locations and heights of the significant terrain features and represent each 
feature as a knife edge. A sequence of knife edges is then cast as a multiple knife-edge 
problem.  

First, it is necessary to be able to define the geometrical representation of the scenarios. All 
method development will assume that the database contains up to 𝑛𝑛 knife edges where 𝑛𝑛 = 6 
is the maximum number of knife edges. Figure 1 shows that the knife edges have index 
numbers assigned consecutively from left to right as 𝑀𝑀1 through 𝑀𝑀𝑛𝑛 with their respective 
heights ℎ1 through ℎ𝑛𝑛. Distances 𝑑𝑑1 through 𝑑𝑑𝑛𝑛+1 represent the distance between the first 
knife edge and the transmitter, the distances between adjacent knife edges, and the distance 
between the last knife edge and the receiver. Knife edge 1 is the first knife edge to the right 
of the transmitter antenna. Subsequent knife edges are numbered consecutively up to the 
receiver antenna. For 𝑛𝑛 = 6, knife edge 6 is adjacent to the receiver antenna. The knife-edge 
location for the 𝑖𝑖𝑡𝑡ℎ knife edge represents the distance from the transmitter antenna and is 
given by: 

 𝑑𝑑𝑖𝑖 =  �𝑑𝑑𝑘𝑘

𝑖𝑖

𝑘𝑘=1

 (1) 

The receiver is located at: 

 𝑑𝑑𝑟𝑟 = �𝑑𝑑𝑘𝑘

𝑛𝑛+1

𝑘𝑘=1

 (2) 

Knife edge 1 is located at a distance 𝑑𝑑1 from the transmitter, knife edge 2 is located at a 
distance 𝑑𝑑1 + 𝑑𝑑2 from the transmitter, knife edge 3 is located at a distance 𝑑𝑑1 + 𝑑𝑑2 + 𝑑𝑑3 from 
the transmitter, etc.  

For nonzero transmitter and receiver antenna heights, all knife-edge heights are referenced 
to a baseline drawn between the transmitter and receiver antennas, and are a linear function 
of the distance of the knife edge from the transmitter and the difference between the 
transmitter and receiver heights. This determines the slope of the baseline. 

The equation for adjusting this height as a function of distance for the 𝑖𝑖𝑡𝑡ℎ knife edge is 

 Δℎ𝑖𝑖 = (ℎ𝑟𝑟 − ℎ𝑡𝑡)
𝑑𝑑𝑖𝑖
𝑑𝑑𝑟𝑟

+ ℎ𝑡𝑡 (3) 

where ℎ𝑟𝑟 is the transmitter antenna height and ℎ𝑡𝑡 is the receiver antenna height.  

Figure 1 shows a sub-path knife edge, a knife edge between two knife edges whose peak is 
below a line drawn between the previous knife edge and the next knife edge. Knife edges 𝑀𝑀2 
and 𝑀𝑀6 are sub-path knife edges. A sub-path knife edge can also occur between the 
transmitter antenna and the second knife edge or the next-to-last knife edge and the receiver 



INSTITUTE FOR TELECOMMUNICATION SCIENCES  NTIA TR-26-580 

PAGE 6 

antenna. If the first knife edge or last knife-edge peak is below a ray represented by a line 
drawn between the transmitter antenna to the second knife-edge peak, or a line drawn from 
the next-to-last knife-edge peak and the receiver antenna respectively, then the first or last 
knife-edge peak is a sub-path knife edge. In Figure 1 𝑀𝑀6 is an example of this type of knife 
edge, since it is between the next-to-last knife-edge peak and the receiver antenna. 

If a sub-path knife edge occurs between two knife edges, and causes the first Fresnel zone to 
be obstructed, then the sub-path knife edge should be included in the analysis. If the sub-
path knife edge does not interfere with the first Fresnel zone, then this knife edge can be 
neglected in the computation of diffraction loss. 

The first Fresnel zone radius, r, is given by [8] 

 𝑟𝑟 = �
𝜆𝜆𝑑𝑑𝑇𝑇𝑑𝑑𝑅𝑅
𝑑𝑑𝑇𝑇 + 𝑑𝑑𝑅𝑅

 (4) 

where 𝑑𝑑𝑇𝑇 is the distance from the first knife edge to the sub-path knife edge, and 𝑑𝑑𝑅𝑅 is the 
distance from the sub-path knife edge to the other knife edge, and λ is the wavelength 
defined as 𝜆𝜆 = 𝑐𝑐 𝑓𝑓⁄ . All dimensions are in either meters or kilometers.  

 

Figure 1. Six knife-edge diffraction scenario illustrating knife-edge heights and distance locations with 
two sub-path knife edges M2 and M6. 
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3. Diffraction Computation Methods 

The Vogler method is a mathematically rigorous analytical computation technique that uses 
higher order mathematical techniques but is computationally burdensome. All of the 
alternative diffraction methods were originally graphical techniques, and they are usually 
computed manually. Mathematical algorithms were developed to enable the four alternative 
methods to be run on a computer. This section will first briefly describe the Vogler method, 
the Fresnel integral method, and then the graphical procedures for each of the alternative 
methods with an example. Finally, six knife-edge diffraction computation examples for the 
use of the algorithms in Appendices A through D are presented and each of the four 
alternative computation methods discussed for these examples. 

3.1 The Vogler Method 

ITS developed and validated computer code to reproduce multiple knife-edge attenuation 
results quoted for the First Analysis Multiple Knife Edge (FAMKE) computer program by 
Vogler and Partitioned Analysis Multiple Knife Edge (PAMKE) computer program by Vogler. 
FAMKE and PAMKE Vogler methods in [1] and [2]. The practical basis for both methods is the 
numerical evaluation of the repeated integrals of the complementary error function with a 
complex argument. The new implementation uses a more robust method of numerical 
evaluation for these functions developed by Gautschi [9].  

The original Vogler work [2] takes work by Furutsu [10] as its starting point and approximates 
irregular terrain as a series of rounded diffracting obstacles. Furutsu’s solution used a 
generalized residue series, which, unfortunately, is slowly convergent as the obstacles’ radii 
tend to zero. Using transformations of the residue series solution to integrals, Vogler derived 
a multiple knife-edge diffraction solution involving multiple integrals over successive knife 
edges and introduced a series representation for these integral functions that is amenable to 
numerical solution [1], [11]. Whitteker [12] later independently validated Vogler’s results by 
computing numerical values and comparing them to certain analytical results in [1] and [2]. In 
a later paper [11], Vogler derives a multiple knife-edge diffraction method using Fresnel-
Kirchhoff theory and shows that this is equivalent to that method and the results developed in 
[2].  

Equation 18 in [2] is the result of Vogler’s derivation using the Fresnel-Kirchhoff theory. This 
equation is an expression for the diffraction attenuation for multiple knife edges. Figure 2 
illustrates Vogler’s geometry and notation for the multiple knife-edge diffraction problems for 
𝑁𝑁 knife edges.  
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Figure 2: Vogler’s geometry and notation for multiple knife-edge diffraction for 𝑁𝑁 diffraction knife 
edges. 

There are 𝑁𝑁 + 1 separation distances between knife edges indicated by 𝑑𝑑1,𝑑𝑑2 ⋯𝑑𝑑𝑛𝑛+1. The 
heights of the 𝑁𝑁 knife edges are designated as ℎ1,ℎ2 ⋯ℎ𝑛𝑛+1 where the heights of the 
transmitter and receiver antennas are ℎ0 and ℎ𝑛𝑛+1, respectively. The diffraction angles 
𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑁𝑁 can be calculated from the knife edge heights and separation distances. Equation 
18 in [2] is 

 
𝐸𝐸
𝐸𝐸0

= �
1
𝜋𝜋
�
𝑁𝑁
2
� …
∞

𝜈𝜈1

� 𝑒𝑒−�𝜈𝜈12+⋯+𝜈𝜈𝑁𝑁
2 �𝑑𝑑𝜈𝜈1 …𝑑𝑑𝜈𝜈𝑁𝑁

∞

𝜈𝜈𝑁𝑁

 (5) 

where 𝐸𝐸0 is the free-space electric field strength in the absence of both the ground and the 
knife edges, 𝜈𝜈1 is the Fresnel-Kirchhoff diffraction parameter for knife edge 1 and 𝜈𝜈𝑁𝑁 is the 
Fresnel-Kirchhoff diffraction parameter for knife edge 𝑁𝑁. The Fresnel-Kirchhoff diffraction 
parameter is defined in [2]. 

The lower limits of the multiple integrals are given by explicit expressions in terms of the 
geometry of the knife-edge heights and separation distances of Figure 2. An explanation of 
the rigorous mathematical derivations for the Vogler method is very complex and beyond the 
scope of this paper, but a brief description will be presented to communicate its complexity. 
The complex derivations are described in [1] and [2]. 

For (5) with 𝑁𝑁 knife edges, it is necessary to evaluate 𝑁𝑁 integrals where each of these integrals 
must be transformed into an expression suitable for numerical evaluation [2]. This is 
accomplished by expanding the expression in each of the integrals into its power series [11]. 
The computation for attenuation is a series of terms involving functions that are repeated 
integrals of the error function defined in [13]. Reference [13] also contains a number of 
computation algorithms for computing these functions. Closed form solutions exist for certain 
special cases for only two or three knife edges where the tops of the knife edges graze the 
straight line between the source and receiver, so that the diffraction angles 𝜃𝜃𝑖𝑖 defined in 
Figure 2 are all equal to zero. For 𝑁𝑁 greater than or equal to three knife edges and nonzero 
diffraction angles 𝜃𝜃𝑖𝑖, no closed form solution exists. 

Reference [1] discusses how many repeated integrals of the error function are required to 
achieve reasonable accuracy in computing the attenuation function. Vogler determined that 
for 10 diffraction knife edges, 160 repeated integrals were required for three–decimal place 
accuracy in the numeric ratio representing the diffraction attenuation [1]. This numeric ratio is 
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a number that is always less than or equal to one. For six diffraction knife edges, one hundred 
repeated integrals were required to get four–decimal place accuracy [1]. This is extremely 
costly in terms of computation time even with modern computers.  

Vogler’s multiple knife-edge computation for 𝑁𝑁 greater than or equal to 2 knife edges results 
in terms involving the product of complex multiple complementary error functions that have 
complex arguments (dimensionless diffraction parameters). These results are difficult to 
separate into real and imaginary parts for computing the magnitude of the diffraction loss. 
The principal restriction in this approach is that the source, knife edges, and receiver be 
sufficiently separated from one another. 

Equation (5) reduces to the case of the Fresnel diffraction integral for a single knife edge 
when 𝑁𝑁 = 1 and is given by: 

 
𝐸𝐸
𝐸𝐸0

= �
1
𝜋𝜋
�
1
2
� 𝑒𝑒−𝜈𝜈12𝑑𝑑𝜈𝜈1

∞

𝜈𝜈1

 (6) 

Vogler’s rigorous diffraction loss computation method [1], [2] is very accurate when 
compared to measured data, but computationally intensive when compared to any of the 
four alternative multiple knife-edge diffraction methods investigated. A faster radio wave 
propagation model is needed that computes diffraction loss for many diffraction knife edges. 
This is important for multiple knife-edge computation of diffraction loss over many knife 
edges when the methods are used in a propagation model that predicts area coverage. 
Comparisons of run times with up to 6 diffraction knife edges between the Vogler method 
and the alternative methods of Epstein-Peterson, Deygout, and Giovaneli resulted in run 
times more than three orders of magnitude (up to 1000:1) greater than the alternative 
methods. Section 5.2 contains comparisons of execution times between the Vogler method 
and the alternative methods. 

3.2 Diffraction Computation Method for a Single Knife Edge 

This diffraction analysis is based on the classical approach of the Fresnel-Kirchhoff scalar 
theory of optics for a single knife edge. The assumption is made that the knife edge is a 
perfectly absorbing screen placed normal to the direction of propagation extending to 
infinity in both directions and vertically downwards. In a multiple knife-edge scenario, the 
losses for each knife edge will be combined using the alternative multiple knife-edge 
methods. The single knife-edge diffraction computation can be represented in terms of a real 
diffraction parameter 𝜈𝜈 and computed using the widely tabulated Fresnel Cosine and Sine 
integrals with real arguments [13]. 𝐹𝐹(𝜈𝜈) is the complex Fresnel integral defined previously 
and 𝜈𝜈 is the dimensionless Fresnel-Kirchhoff diffraction parameter. This differs from Vogler’s 
derivation and subsequent reduction to a single knife edge, because of a change of variables 

from 𝜈𝜈1 to 𝜋𝜋𝑡𝑡
2

2
 and integrations from ∫ 𝑒𝑒−𝜈𝜈 12𝑑𝑑𝜈𝜈1
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0  for a simpler representation in 

terms of 𝐹𝐹(𝜈𝜈). 
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 𝐹𝐹(𝜈𝜈) = � cos�
𝜋𝜋𝑡𝑡2

2 �𝑑𝑑𝑑𝑑
𝑣𝑣

0

+ 𝑗𝑗 � sin�
𝜋𝜋𝑡𝑡2

2 �𝑑𝑑𝑑𝑑
𝑣𝑣

0

= 𝐶𝐶(𝜈𝜈) + 𝑗𝑗𝑗𝑗(𝜈𝜈) (7) 

where 

𝐶𝐶(−𝑧𝑧) = −𝐶𝐶(𝑧𝑧) and 𝑆𝑆(−𝑧𝑧) =  −𝑆𝑆(𝑧𝑧). 

The exact expression for the single knife-edge diffraction loss, 𝐿𝐿𝑑𝑑1  (dB), is [8], [14]: 

 

𝐿𝐿𝑑𝑑1 (𝑑𝑑𝑑𝑑) = −20 log ��
1 + 𝑗𝑗

2
𝐹𝐹(𝜈𝜈)��

= −20 log

⎝

⎛
��1− 𝐶𝐶(𝜈𝜈) − 𝑆𝑆(𝜈𝜈)�2 + �𝐶𝐶(𝜈𝜈) − 𝑆𝑆(𝜈𝜈)�2

2
⎠

⎞ = 𝐽𝐽(𝜈𝜈) 
(8) 

This expression is easy to evaluate since there are very reasonable computation time 
methods for evaluating the Fresnel Cosine and Sine integrals. 

An even simpler approximate equation also exists for the diffraction integral and is given by 
𝐽𝐽(𝜈𝜈) in terms of 𝜈𝜈 for 𝜈𝜈 ≥ −0.78 [8]. The Fresnel diffraction integral can be approximated by 
the following expression [8]: 

 
𝐸𝐸
𝐸𝐸0

= 𝐽𝐽(𝜈𝜈) = 6.9 + 20 log ��(𝜈𝜈 − 0.1)2 + 1.0 + 𝜈𝜈 − 0.1� (9) 

where 𝐸𝐸 is the electric field strength of the diffracted wave and 𝐸𝐸0 is the free-space field 
strength in the absence of both the ground and the knife edge. 𝐽𝐽(𝜈𝜈) is the diffraction loss in 
dB for 𝜈𝜈 ≥ −0.78. For 𝜈𝜈 < −0.78, 𝐽𝐽(𝜈𝜈) oscillates about 0 dB and the magnitude is always less 
than or equal to 1.3 dB [8]. As shown in Figure 3, the parameter 𝜈𝜈 is computed from the 
height of the knife edge ℎ above a reference line drawn between the reference height of the 
transmitter and receiver antennas, the distance from the transmitter antenna to the base of 
the knife edge 𝑑𝑑𝑇𝑇, and the distance from the base of the knife edge to the receiver antenna, 
𝑑𝑑𝑅𝑅, and 𝜆𝜆, the wavelength in meters. The parameter 𝜈𝜈 is given by [8]: 

 𝑣𝑣 = ℎ�
2(𝑑𝑑𝑇𝑇 + 𝑑𝑑𝑅𝑅)
𝜆𝜆𝑑𝑑𝑇𝑇𝑑𝑑𝑅𝑅

 (10) 

Figure 3 defines the knife-edge height parameter ℎ in (10) and shows how it can be positive, 
negative, or zero depending on the height of the knife edge relative to the height of a line 
between the two terminals or between the source or receiver. Figure 3 also defines the 
variables in the above equation for the Fresnel diffraction parameter 𝜈𝜈.  

Figure 4 is a plot of the knife-edge diffraction gain in dB as a function of the Fresnel-Kirchhoff 
diffraction parameter 𝜈𝜈. For values of 𝜈𝜈 ≥ −0.78, (9) is used to compute the knife-edge 
diffraction gain in dB. For values of 𝜈𝜈 < −0.78, (8) is used to compute the knife-edge 
diffraction gain. 
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Figure 3: Definition of height ℎ for the Fresnel-Kirchhoff diffraction parameter 𝜈𝜈. 
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Figure 4. Knife-edge diffraction gain (dB) as a function of the dimensionless Fresnel-Kirchhoff diffraction 
parameter 𝜈𝜈. 

3.3 Alternative Diffraction Loss Computation Methods for Multiple Knife Edges 

There are a number of alternative methods for computing diffraction loss over multiple knife 
edges. Each method has its own unique procedure for computing diffraction loss. However, 
they all 1) determine the field of each knife edge from the field of the preceding knife edge, 
and 2) use the algebraic approximation to the Fresnel diffraction integral and the Fresnel-
Kirchhoff diffraction parameter, defined in (9) and (10), to compute the diffraction loss over 
each knife edge. They differ in how they compute the Fresnel-Kirchhoff diffraction parameter 
𝜈𝜈 for each knife edge, since the effective height computation of each of the diffraction knife 
edges is also different for each of the methods. They all add the diffraction losses of the 
multiple knife edges to obtain the total diffraction loss. The field at any particular knife edge 
arises solely from the total field from the preceding knife edge. 

The alternative methods described in this paper cascade terrain obstructions using multiple 
knife edges and use Fresnel-Kirchhoff theory for computing knife-edge diffraction loss. The 
diffraction analysis in this paper is based on the classical approach of the Fresnel-Kirchhoff 
scalar theory of optics. While computationally efficient, these methods are inherently error 
prone.  

Ray-based diffraction methods such as the geometrical theory of diffraction (GTD) or uniform 
theory of diffraction (UTD) take into account polarization of the electromagnetic wave, 
whereas Fresnel-Kirchhoff diffraction methods do not [15]. Ray-based methods such as UTD 
and GTD will give the same results as Fresnel knife-edge diffraction when the interior wedge 
angle of the perfectly absorbing knife edge is zero and becomes a knife edge [15]. Imagine 
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two sides of a triangle forming a wedge. As the interior angle between the two sides of a 
wedge is reduced to zero, the sides of the triangle will be flat against each other, and the 
result will appear as a knife edge. 

Fresnel-Kirchhoff multiple knife-edge diffraction assumes that each knife edge is uniformly 
illuminated by the previous knife edge. In reality, the field in the shadow of each knife edge 
that illuminates successive knife edges is not generally uniform, and as a result, cascading 
knife edges in the alternative methods are not rigorously correct [15]. 

While these alternative methods are not correct in a rigorous sense, they do result in 
reasonably accurate computations for many terrain scenarios simulated as perfectly 
absorbing knife edges. They also show reasonable agreement (Epstein-Peterson ±6 dB, 
Deygout ±3 dB, and Giovaneli ±2 dB) compared with measured data [4]–[6], [14]–[16]. A 
perfectly absorbing knife edge absorbs all of incident field energy, and there are no 
scattered, transmitted, or reflected fields [15]. The assumption of a perfectly absorbing knife 
edge eliminates the dependence on polarization and makes the computation much simpler 
[15]. The computation results are very close (within ±6 dB for the three alternative methods) 
to those of the rigorous computation methods such as Vogler [2] and [17]. A rigorous analysis 
for an absorbing knife edge results in a diffraction coefficient that is the same for both 
polarizations (horizontal and vertical) of the electric field [18]. As a result, the scalar Fresnel-
Kirchhoff approximations can be used to determine the complex amplitude of the diffracted 
field [18].  

Vogler compared his results to the GTD, the Epstein-Peterson method, and the Deygout 
method for five equally spaced knife edges having the same value of the diffraction angle at 
each knife edge [2]. Good agreement (within ±6 dB maximum or ±2 dB minimum) was 
obtained for the alternative methods except for small diffraction angles. The larger deviation 
of diffraction loss for small diffraction angles computed with the Epstein-Peterson and 
Deygout method is due to the proximity of the incident shadow boundary to the incident ray 
path as shown in Figure 6, where the error in diffraction loss should increase. The large 
deviation is due to the proximity of the ray path from one knife edge to the next being in the 
transition zone, the small angular area near the incident shadow boundary. Figure 6 
illustrates the incident shadow boundary for the first two knife edges as 𝜙𝜙 = 𝜙𝜙′ +  𝜋𝜋. The 
angle 𝜃𝜃 =  𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜙𝜙 is the difference between angle of the incident ray path for the next knife 
edge 𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟 and the angle of the incident shadow boundary 𝜙𝜙. The angles are in radians. 

Figure 6 uses the same angle designations as Figure 5 but is the case for a single edge. The 
angle 𝜃𝜃 = 𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜙𝜙 is now the difference between angle of the incident ray path to the 
receiver 𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟 and the angle of the incident shadow boundary 𝜙𝜙. The angles are in radians. 



INSTITUTE FOR TELECOMMUNICATION SCIENCES  NTIA TR-26-580 

PAGE 14 

 

Figure 5. Incident shadow boundary and ray-path geometry for a typical diffraction scenario, with 
angles in radians. 

 

Figure 6. The incident shadow boundary and ray path for a single knife edge, with angles in radians. 

These alternative methods use values of the Fresnel integral to establish the diffraction loss 
when the field points are in the transition region or on the incident shadow boundaries. The 
GTD method has a singularity at the incident shadow boundary, but the UTD method uses a 
Fresnel transition function to compensate for this singularity at the incident shadow boundary 
[15]. When the incident ray from one knife edge to the next lies along or near the incident 
shadow boundary and hence is not a so-called ray path, the GTD method has a problem 
predicting the diffraction loss, but the UTD method can accurately predict the diffraction loss 
because it includes the Fresnel transition function [16]. The alternative methods use the 
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Fresnel integral and incur an error inversely proportional to the angular difference of the ray 
path from the incident shadow boundary.  

When grazing incidence occurs (i.e., directly on a shadow boundary), a 6 dB diffraction loss 
results [16]. This is appropriate only for plane waves when the incident field is the so-called 
ray field [16], [19]. It is no longer correct to add the diffraction losses of the individual knife 
edges for the grazing incidence case to determine the total loss over multiple knife edges as 
is done using the alternative methods. For grazing loss over two successive knife edges, the 
alternative methods would result in a total loss of 12 dB [16], [19]. The spectral theory of 
diffraction (a more rigorous method) shows the correct loss to be some value between 6 and 
12 dB, where the exact value depends on the spacing of the knife edges [16], [19]. 

One reason for the differences between the Vogler method and the four alternative methods 
is that the ray path from one knife edge to the next consecutive knife edge is in the transition 
region, and near the incident or reflection shadow boundary. Computations of these ray path 
angles and shadow boundaries confirm this for the examples presented in Sections 5 and 6. 
Figure 6 shows the incident shadow boundary and ray path from one diffraction knife edge 
to the next knife edge.  

The ray path is just the line drawn between one diffraction knife edge and the next 
consecutive diffraction knife edge. The incident shadow boundary is obtained by adding 180 
degrees to the incident ray angle from the previous knife edge or transmitter with reference 
to the vertical line representing the knife edge or transmitter. The reflection shadow 
boundary is obtained by subtracting the same incident ray angle from 180 degrees. The 
reflection shadow boundary is usually far removed from the ray paths and hence does not 
align with the ray paths and causes a problem. However, the incident shadow boundary can 
occur close to or align with the ray path to the next knife edge. When the ray path 
approaches the incident shadow boundary, the value of diffraction loss from the computation 
of diffraction loss using the GTD approaches infinity, since the denominator approaches zero. 
The UTD corrects this problem by multiplying the mathematical equation for the GTD 
prediction by the Fresnel transition function [20].  

Preliminary results of this analysis show where each of the alternative multiple knife-edge 
methods investigated can be used in place of the rigorous Vogler diffraction method to 
reduce computation time while maintaining suitable accuracy. It was shown that no one 
alternative method can cover all scenario variations. Which alternative diffraction method 
works best in a given scenario depends on how a method treats sub-path obstacles and the 
alignment of the ray path from one knife edge to the next knife edge with the shadow 
boundaries at the knife edges. 

Electromagnetic fields are smooth and continuous everywhere, and as a result, 
discontinuities across incident shadow boundaries do not occur in nature but do occur in the 
mathematics of the GTD [21]. The denominator of the mathematical equation for the GTD 
approaches zero in the transition region as it nears the incident shadow boundary. The 
Fresnel transition function approaches zero at the same rate that the denominator in the 
mathematical expression for the GTD approaches zero, resulting in a finite diffraction loss 
prediction at the incident shadow boundary and in the transition region located near the 
incident shadow boundary [21]. The Fresnel transition function has a maximum value of one. 
The mathematical details of the computation of the incident and reflection shadow 
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boundaries and the respective transition regions about these boundaries are given in [17] 
and [21]. 

When applying any of the alternative methods with the Fresnel-Kirchhoff multiple knife-edge 
diffraction, one should avoid the transition regions and incident shadow boundaries. It would 
be appropriate to use a different alternative method that avoids the shadow boundaries and 
transition regions when the ray path from one knife edge to the next knife edge is in the 
transition region for one particular alternative method but not for a different one. The 
alternative methods are different enough in their geometric constructions and the procedure 
and order of computing individual knife-edge diffraction loss that one method would avoid 
having this ray along the shadow boundary even though another method would cause it to 
occur along the incident shadow boundary. 

If the transition region were unavoidable, then it would help in the diffraction loss prediction 
to have this ray as far as possible from the incident shadow boundary to reduce the 
magnitude of the error. A technique will be proposed to determine which alternative method 
avoids the shadow boundaries or has the maximum deviation of the ray path from the 
incident shadow boundary. Selection of the method with the largest angular deviation from 
the incident shadow boundary will improve the accuracy of the diffraction loss prediction.  

The first approach investigated for selecting a more accurate diffraction method was to use 
the method or methods that have the largest angular deviation between the ray path and the 
incident shadow boundary. This angular deviation did not account for the separation 
distance between adjacent knife edges or the wavelength for the radio frequency. The 
argument of the Fresnel transition function was also investigated as a means to judge what 
magnitude of angular separation would produce a minimal diffraction error. It is a function of 
the wavelength and the distance, 𝐿𝐿, from the diffraction knife edge to the observation point 
(separation between adjacent knife edges).  

The second approach used the magnitude of the Fresnel transition function (𝐹𝐹𝐹𝐹𝐹𝐹), which is 
proportional to the magnitude of the correction needed to keep the mathematical 
expression for the GTD finite and is therefore a good indicator of the accuracy of a diffraction 
loss prediction. This second approach used the Fresnel transition function to judge what 
magnitude of angular separation would produce a minimal diffraction loss error. It is a 
function of the wavelength and the distance, 𝐿𝐿, from the knife edge to the observation point 
(separation between adjacent knife edges). This second approach will be described using a 
step-by-step procedure. 

It was finally determined that the best approach was to compute the Fresnel transition 
function argument and the Fresnel transition function magnitude ((11) and (12)) for each knife 
edge and then form the Fresnel transition function product (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) for all the knife edges in a 
subject scenario. The magnitude of the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is proportional to the magnitude of the 
correction needed to keep the mathematical expression for the GTD finite, and is therefore 
an indication of the accuracy of a diffraction loss prediction. The 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is obtained by 
computing 𝐹𝐹𝐹𝐹𝐹𝐹 using (11) and (12) for each knife edge and multiplying the magnitudes of 
each individual 𝐹𝐹𝐹𝐹𝐹𝐹 together to form the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹. The 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is a relative prediction of the 
accuracy of an alternative loss prediction when comparing two alternative loss prediction 
methods, but it is not an absolute value of loss prediction. It is an indication of determining 
which alternative method would result in a better loss prediction. 



INSTITUTE FOR TELECOMMUNICATION SCIENCES  NTIA TR-26-580 

PAGE 17 

The method having the highest value for the FTFP is the one with the least diffraction loss 
prediction error. The Fresnel transition function for one knife edge is given by [21]: 

 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) = 2𝑗𝑗√𝑥𝑥𝑒𝑒𝑗𝑗𝑗𝑗 � 𝑒𝑒−𝑗𝑗𝑢𝑢2𝑑𝑑𝑑𝑑
∞

√𝑥𝑥

 (11) 

The argument 𝑥𝑥 of 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) is given by [21]: 

 𝑥𝑥 =
2𝜋𝜋
𝜆𝜆
𝐿𝐿 cos2 �

𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜙𝜙
2 � 

(12) 

where 𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜙𝜙 in Figure 4 represents the deviation between the ray path and the incident 
shadow boundary, 𝜙𝜙 = 𝜙𝜙′ + 𝜋𝜋, and 𝐿𝐿 is the distance from the diffraction knife edge to the 
observation point, which is actually the distance from the diffracting knife edge to the next 
knife edge. The wavelength is obtained from the operating frequency. A plot of the 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) is 
shown in Figure 7. 

 

Figure 7: The Fresnel transition function 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) magnitude. 

As the argument of the Fresnel transition function varies from very small values (~1.0 E−6) to 
10.0, the Fresnel transition function varies from approximately .05 to 1.0 (Figure 7). Examples 
of this computation of 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) with comparisons to attenuation ratio will be discussed in 
Section 5 for 50 cases. The evaluation of 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) can be performed using (11), but it is easier 
to use Figure 7 with sufficient accuracy after using (12) to calculate 𝑥𝑥, and log 𝑥𝑥. A procedure 
for computing 𝑥𝑥, 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥), and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) is listed below.  
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• Referring to Figure 4, compute 𝑥𝑥 from (12) the argument of 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) using parameters 
defined in (12) ,the parameters 𝜙𝜙 =  𝜙𝜙′ +  𝜋𝜋 and 𝐿𝐿, where 𝜙𝜙 is the incident shadow 
boundary, and 𝐿𝐿 is the distance from the diffraction knife edge to the observation point, 
which is the distance from the diffracting knife edge to the next knife edge, 

• The angle 𝜃𝜃 = 𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜙𝜙 is the difference between the angle of the incident ray path for the 
next knife edge, 𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟, and the angle of the incident shadow boundary 𝜙𝜙. 

• The wavelength 𝜆𝜆 is obtained from the operating frequency. 

• Compute 𝑥𝑥 from (12),compute log𝑥𝑥 from 𝑥𝑥, and then compute 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) from Figure 7 using 
log𝑥𝑥. 

• Repeat the four steps above for each diffraction edge. 

• Compute the product of all diffraction edges, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥), by multiplying all the individual 
𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) computations together. 

The 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) value of 1.0 indicates that for a single diffraction edge the ray path to the next 
edge is far away from the incident shadow boundary and that the computation of the 
diffraction loss will be better than an edge with an 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) value less than 1.0. The 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) of 
1.0 indicates that the total computation of using the product of the 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) for all edges using 
a particular alternative method will be better than an alternative method that has an 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) 
less than 1.0 or less than the other alternative method. 
 

3.3.1 The Bullington Method 

For the Bullington method [3], multiple knife edges are replaced by an equivalent single knife 
edge with an effective height represented by the height of a triangle constructed by drawing 
a line from each of the antennas through the top of the knife-edge peak that blocks the line-
of-sight (LOS) path from each of the antennas. This is equivalent to the horizon from each of 
the antennas.  

Figure 8 is an example of graphical construction using the Bullington method for four knife 
edges. A line is drawn from the transmitter antenna through the first knife-edge peak that 
blocks the LOS path from the transmitter antenna. This is the knife edge with the maximum 
slope with respect to the transmitter antenna. A line is then drawn from the receiver antenna 
through the last knife-edge peak that blocks the LOS from the receiver antenna. This is the 
knife-edge peak with the maximum slope with respect to the receiver antenna. The 
intersection of the two lines locates the height and distances to use for computing the 
Fresnel-Kirchhoff diffraction parameter 𝜈𝜈. 
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Figure 8: A four-knife-edge example of the graphical approach for the Bullington method. 

The height and distances are determined graphically or by solving simultaneous equations in 
Appendix A that represent the two sloping lines. The distance from the transmitter antenna to 
this equivalent knife edge 𝑑𝑑𝑇𝑇 and the distance from the equivalent knife edge to the receiver 
antenna 𝑑𝑑𝑇𝑇𝑇𝑇 are used with this effective height ℎ′ to determine the diffraction parameter and 
the diffraction loss using the equations in Appendix A. In this example, the effective height ℎ′ 
is 550 meters. The frequency is 1500 MHz with a wavelength of 0.2 meters. The distance 𝑑𝑑𝑇𝑇 is 
4600 meters, and the distance 𝑑𝑑𝑅𝑅 is 6600 − 4600 = 2000 meters. The Fresnel-Kirchhoff 
diffraction parameter 𝜈𝜈 is computed as 46.6 from (10) for this equivalent knife edge and the 
diffraction loss is computed using (9) for 𝐽𝐽(𝜈𝜈) and is equal to 46.3 dB. This is the total 
diffraction loss for the Bullington method.  

The Bullington method construction oversimplifies the computation of the diffraction loss 
because it only uses two edges. This results in a low estimation of the diffraction loss and an 
optimistic value for signal level. A comparison of the diffraction loss for this example to the 
results of the other three computation methods in the next three sections demonstrates how 
poorly the Bullington method computes the loss as 46.6 dB. The Epstein-Peterson, Deygout, 
and Giovaneli methods compute the loss for the same edge scenario as: 95.9, 99.87, and 
94.6 dB, respectively. The Vogler prediction method results in a loss prediction of 97.21 dB 
for this scenario. The reader is cautioned here that the Bullington method typically predicts a 
much lower loss than the other alternative methods and as a result a much stronger signal 
level. 
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3.3.2 The Epstein-Peterson Method 

For the Epstein-Peterson method [4], it is assumed that each knife edge is illuminated by the 
transmitter or the diffracted energy from the top of the preceding knife edge. The 
attenuation due to diffraction is computed sequentially for each knife edge in turn, and the 
attenuations for all knife edges are summed together in decibels. The diffraction loss 
computation for 𝑛𝑛 knife edges using this method requires the determination of the effective 
height of each knife edge, and the distances 𝑑𝑑𝑇𝑇 and 𝑑𝑑𝑅𝑅 of the knife edge from the transmitter 
(or previous knife edge) and from the receiver (or next knife edge), respectively.  

Figure 9 shows how the effective height of a knife edge is determined graphically by drawing 
a reference line from the preceding knife-edge peak or transmitter to the next knife-edge 
peak or receiver. The distances between knife edges and knife-edge heights with respect to 
a transmitter to receiver baseline are an essential part of the input data and can be used to 
determine the effective heights of each knife edge. The effective height is the vertical 
distance between this reference line and the knife-edge peak. The original Epstein-Peterson 
method does not address sub-path knife edges explicitly [4], [5], [16], but the modified 
Epstein-Peterson All Knife-Edges Method discussed in this paper (Epstein-Peterson method 
with all knife edges corrected and uncorrected) does address sub-path knife edges to assess 
the effects of their inclusion on diffraction loss. 

 

Figure 9: A four-knife-edge example for the graphical approach for the Epstein-Peterson method. 

Figure 9 is an example of the graphical approach to the Epstein-Peterson method for four 
knife edges. The frequency is 1500 MHz. The effective height of the first knife edge is the 
vertical distance from the first knife-edge peak to the point where this baseline intersects the 
line representing the first knife edge. This can be determined by drawing a baseline from the 
transmitter, or it can be determined algebraically using (B-1) and (B-2) in Appendix B. The 
effective height of the second knife edge is the vertical distance from the second knife-edge 
peak to the point where this baseline intersects the line representing the second knife edge. 
The effective height of the third knife edge is the vertical distance from this knife-edge peak 
up to this baseline, and it is negative since it is a sub-path knife edge. The effective height of 
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the fourth knife edge is the vertical distance from this baseline to the knife-edge peak of the 
fourth knife edge.  

The effective heights ℎ’ and distances 𝑑𝑑𝑇𝑇 and 𝑑𝑑𝑅𝑅 were used to calculate the Fresnel-Kirchhoff 
diffraction parameter 𝜈𝜈 from (10) and the diffraction loss in decibels for each knife edge using 
the 𝐽𝐽(𝜈𝜈) approximation (9). The knife-edge heights ℎ𝑖𝑖 and distances 𝑑𝑑𝑇𝑇 and 𝑑𝑑𝑅𝑅 used to 
compute the effective knife-edge heights and diffraction parameter 𝜈𝜈 are shown in Table 1 
for each knife edge. The total diffraction loss is the sum of the individual losses for each knife 
edge and is (24.0 + 32.9 + 0.0 + 39.0) = 95.9 dB. 

Table 1: Parameters and computation results for Epstein-Peterson example of Figure 9. 

Knife-Edge 
Number/ 

Distance from 
XMTR (m) 

Knife-
Edge 

Height 
𝒉𝒉𝒊𝒊 (m) 

Effective 
Knife-Edge 
Height 𝒉𝒉′ 

(m) 

Knife-Edge 
Computation 

Interval 
Distance 𝒅𝒅𝑻𝑻 (m) 

Knife-Edge 
Computation 

Interval 
Distance 𝒅𝒅𝑹𝑹 (m) 

Diffraction 
Parameter 

𝝂𝝂 

Diffraction 
Loss 𝑳𝑳 (dB) 

1/1200 140 30 1200 1600 3.6 24.0 
2/2800 260 90 1600 1600 10.1 32.9 
3/4400 200 −40 1600 1400 −4.6 0.0 
4/5800 220 145 1400 800 20.3 39.0 

 
In addition to the Epstein-Peterson All Knife-Edges Method, other variations of the Epstein-
Peterson method were also compared to the Vogler method. One variation used only the 
major three knife edges (the Epstein-Peterson Major Three Knife-Edges Method) and one 
deleted the sub-path knife edges (the Epstein-Peterson No Sub-Path Knife-Edges Method). 
Each of these three Epstein-Peterson Methods were also modified with the correction based 
on the GTD described in Beyer [7]. These three additional variations of the Epstein-Peterson 
method were designated as the Epstein-Peterson All Knife-Edges Method corrected, the 
Epstein-Peterson Major Three Knife-Edges Method corrected, and the Epstein-Peterson No 
Sub-Path Knife-Edges Method corrected. 

3.3.3 The Deygout Method 

For the Deygout method [5], it is assumed that each knife edge is illuminated by either the 
transmitter or diffracted energy from the top of the preceding knife edge. This is similar to 
the Epstein-Peterson method, but Deygout uses a different method of computing effective 
height for each knife edge. The knife edges are classified in terms of the magnitude of their 
Fresnel-Kirchhoff diffraction parameter 𝜈𝜈. Figure 10 is an example of the Deygout method for 
four knife edges.  

The procedure starts with computing the Fresnel-Kirchhoff diffraction parameters for all of 
the knife edges using the effective knife-edge heights above the transmitter-to-receiver 
baseline as if the other knife edges were absent using equations from Appendix C. The 
distances for each knife edge in the computation of 𝜈𝜈 are the distances from the transmitter 
to subject knife edge 𝑑𝑑𝑇𝑇 and from the subject knife edge to the receiver, 𝑑𝑑𝑅𝑅. The knife edge 
with the largest Fresnel-Kirchhoff diffraction parameter is the primary knife edge for the 
Deygout method. This is also the knife edge with the largest loss. The solid lines extending to 
the top of knife edge 4 in Figure 10 illustrate the geometry of the computation to determine 
the Fresnel-Kirchhoff diffraction parameter for knife edge 4. After computation of the Fresnel-
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Kirchhoff diffraction parameters for the other remaining knife edges, knife edge 4 has the 
maximum value for this parameter and is the primary knife edge.  

 

Figure 10: A four-knife-edge example for the graphical approach to the Deygout method. 

The diffraction parameter 𝜈𝜈 is used as an indicator instead of the loss, so that the diffraction 
loss does not need to be computed for all knife edges in this interim procedure. The primary 
loss is computed using the effective height and diffraction parameter for only the primary 
knife edge. Subsequent losses, for the remaining knife edges, are computed in a sequence of 
steps with different effective knife-edge heights. In this example, the frequency is 1500 MHz. 
The Fresnel-Kirchhoff diffraction parameters in Table 2 for knife edges 1, 2, 3, and 4 are 
14.13, 20.48, 16.51, and 26.24, respectively, so the fourth knife edge is the primary knife 
edge, and the diffraction loss is 41.27 dB for the primary knife edge. 

As illustrated in Figure 10, the primary knife edge, 4, divides the path into two separate 
regions and the computation of the diffraction parameter is repeated over each region 
separately to determine a secondary knife edge using an effective knife-edge height with 
respect to baselines drawn between the transmitter antenna and the primary knife edge 4 for 
one region and the primary knife edge 4 and the receiver antenna for the other region, using 
graphical methods or the algorithms in Appendix C. Notice only the region to the left of 
primary knife edge 4 has knife edges, and the region to the right of knife edge 4 has no knife 
edges. Since the main (primary) knife edge is knife edge 4, all of the remaining knife edges 
are in a region to the left of knife edge 4.  
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Table 2: Parameters and computation results for Deygout example of Figure 10. 

Knife-Edge 
Number/ 

Distance from 
XMTR (m) 

Knife-
Edge 

Height 
𝒉𝒉𝒊𝒊 (m) 

Effective 
Knife-Edge 
Height 𝒉𝒉′ 

(m) 

Knife-Edge 
Computation 

Interval 
Distance 𝒅𝒅𝑻𝑻 (m) 

Knife-Edge 
Computation 

Interval 
Distance 𝒅𝒅𝑹𝑹 (m) 

Diffractio
n 

Parameter 
𝝂𝝂 

Diffraction 
Loss 𝑳𝑳 (dB) 

Parameters and computations for determining the primary knife edges 

1/1200 140 140 1200 
1600 + 1600 + 
1400 + 800 = 

5400 
14.13 

Secondary 
knife edge 

2/2800 260 260 
1200 +1600 

= 2800 
1600 +1400 + 

800 = 3800 
20.48 

Secondary 
knife edge  

3/4400 200 200 
1200 +1600 
+1600 = 4400 

1400 +1800 
= 2200 

16.51 
Secondary 
knife edge 

4/5800 220 220 
1200 +1600 

+1600 +1400 
= 5800 

800 26.24 
Primary 

knife edge 
41.27 

Parameters and computations for determining the secondary knife edges 

1/1200 140 94.48 1200 
1600 + 1600 

+1400 = 4600 
9.69 

Third-level 
knife edge 

2/2800 260 153.79 
1200 + 1600 

= 2800 
1600 + 1400 

= 3000 
12.78 

Secondary 
knife edge 

34.99 

3/4400 200 33.10 
1200 + 1600 + 
1600 = 4400 

1400 3.21 
Third-level 
knife edge 

Parameters and computations for determining the third-level knife edges 
3/4400 200 −38.67 1600 1400 −4.48 0.0 
1/1200 140 28.57 1200 1600 3.45 23.6 

 
The second part of Table 2 shows the process of determining the secondary knife edge for 
the region to the left of primary knife edge 4. The effective knife-edge height for determining 
the secondary knife edge is the distance from this new baseline to the respective knife-edge 
peaks in the region, determined using graphical methods or the algebraic algorithms in 
Appendix C. The secondary knife edge is the knife edge with the maximum value of 
diffraction parameter over the secondary region to the left of the primary knife edge. Using 
the new baseline, the diffraction parameter is computed only for three potential secondary 
knife edges 1, 2, and 3 using new effective heights. Since knife edge 2 has the maximum 
value for the diffraction parameter 𝜈𝜈, it is the secondary knife edge for this example; the loss 
for this knife edge is shown in the second part of Table 2 as 34.99. 

This is a recursive algorithm where the method repeatedly divides the edge scenario into 
different regions that are subsets of the original region and subregions until the diffraction 
losses have been computed for all edges. This is demonstrated by the equations given in 
Appendix C. The diffraction parameter 𝜈𝜈 for all remaining knife edges is computed using the 
equations in Appendix C and the distances and knife-edge heights shown in Table 2. The 
diffraction parameters for knife edges 1 and 3 are less than that of knife edge 2, so knife 
edges 1 and 3 are the third level knife edges for this region.  

A new baseline for calculating the effective height of third-level knife edge 1 is established by 
drawing a line from the transmitter to secondary knife edge 2. A new baseline for 
determining the effective height of the third-level knife edge 3 is established by a line 
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extending from the peak of secondary knife edge 2 to the peak of primary knife edge 4. 
Since this knife edge 3 is below this new baseline established by knife edges 2 and 4, it has a 
negative effective height. The diffraction parameter 𝜈𝜈 is negative and less than a value of 
−0.78, so the equation for 𝐽𝐽(𝜈𝜈) cannot be used to calculate the diffraction loss.  

From a curve in ITU-R P.526 [8], the value of diffraction loss is less than 1.0 dB for values of 𝜈𝜈 
less than −0.78. The value of 𝜈𝜈 computed for knife edge 3 is −4.48 and from the P.526 curve 
the loss is 0.0 dB.  

The results of the computation for third-level knife edges 1 and 3 are shown in the third part 
of Table 2. The total diffraction loss using the Deygout method is the sum of these individual 
diffraction losses in dB for knife edges 1, 2, 3, and 4 as 23.61 + 34.99 + 0.0 + 41.27 
respectively, which is equal to 99.87 dB. 

Several variations of the Deygout method were also used in the comparison: using only the 
major three diffraction knife edges (the Deygout Major Three Knife-Edges Method) and 
ignoring the sub-path knife edges (the Deygout No Sub-Path Knife-Edges Method). 

3.3.4 The Giovaneli Method 

Giovaneli’s method [6] agrees with Vogler’s more rigorous multiple knife-edge diffraction 
methods [1], [2] for more than two knife edges. The Giovaneli method uses a different 
approach for computing the diffraction losses with a geometry that uses the diffraction angles 
that better represent the ray paths across the knife edges. This method is an improvement 
over the Deygout method and the Epstein-Peterson method when the number of knife edges 
is greater than three.  

The history of the development of the four alternative diffraction computation methods spans 
many years. The Bullington, Epstein-Peterson, Deygout, and Giovaneli methods were 
published in 1947, 1953, 1966, and 1984, respectively. Each was an improvement over the 
previous method, but in many cases each method has an advantage in how it avoids the 
incident shadow boundary, because the ray angles are treated differently in the three later 
methods. In Section 5, it will be shown that for the many different scenarios that can exist, one 
method may be more suitable than another due to the different ray paths and their 
relationship with the incident shadow boundaries. 

Figure 11 is an example of the graphical approach to the Giovaneli method for four 
diffraction knife edges. The frequency is 1500 MHz. For the Giovaneli method [6], the primary 
knife edge over the entire transmitter-to-receiver interval is the tallest knife edge with respect 
to the transmitter-to-receiver baseline, which is unlike the other methods. Its effective height 
can be determined by a graphical construction as shown in Figure 11, or the mathematics of 
Appendix D.  
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Figure 11: A four-knife-edge example for the graphical approach to the Giovaneli method. 

If there are two tallest knife edges with equal heights, then the Fresnel-Kirchhoff parameter 𝜈𝜈 
is computed for both knife edges. The primary or tallest knife edge is the knife edge with the 
largest value of 𝜈𝜈. The graphical construction starts with extending two vertical lines in an 
upward direction, one from the transmitter and one from the receiver. Separate lines are then 
drawn from the main knife edge (knife edge 2 peak) through the preceding (knife edge 1 
peak) and the next knife edge (knife edge 4 peak) that are not sub-path knife edges and have 
the minimum absolute value of slope with respect to the primary knife edge.  

These lines are then extended beyond these knife-edge peaks to intersect the vertical lines 
that have been drawn vertically from the transmitter and receiver at points T1 and R1, 
respectively. This creates observation points for the diffraction over the primary knife edge 
(knife edge 2) from the preceding knife edge 1 and to the next knife edge 4 that are not sub-
path knife edges. A line connecting the points of intersection of these separate lines with the 
vertical lines serves as the baseline for determining the knife-edge effective height of primary 
knife edge 2. The effective height is the distance between this baseline and the knife edge 2 
peak. This height can be determined graphically or algebraically from the equations in 
Appendix D.  

Table 3 contains the knife-edge separation distances, knife-edge heights, effective antenna 
height, diffraction parameter, and diffraction loss. The sub-path knife-edge peaks are 
skipped at this point in the procedure. They are included after the completion of the 
computation loss for the knife edges that are not sub-path knife edges. 
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Table 3: Parameters and computation results for Giovaneli example of Figure 11. 

Knife-Edge 
Number/ 

Distance from 
XMTR (m) 

Knife-
Edge 

Height 
𝒉𝒉𝒊𝒊 (m) 

Effective 
Knife-Edge 
Height 𝒉𝒉′ 

(m) 

Knife-Edge 
Computation 

Interval 
Distance 𝒅𝒅𝑻𝑻 (m) 

Knife-Edge 
Computation 

Interval 
Distance 𝒅𝒅𝑹𝑹 (m) 

Diffraction 
Parameter 

𝝂𝝂 

Diffraction 
Loss 𝑳𝑳 

(dB) 

1/1200 140 28.57 1200 1600 3.0 22.5 

2/2800 260 142.8 
1200 + 1600 = 

2800 
1600 + 1400 + 

800 = 3800 
11.4 34.0 

3/4400 200 −38.67 1600 1400 −3.5 0.0 

4/5800 220 165.26 
1600 +1400 = 

3000 
800 18.2 38.1 

 
This process is repeated as follows for the next largest knife edge, establishing new 
observation points for the diffraction over the knife edges 1, 3, and 4. For knife edge 1 a line 
is drawn through the primary knife edge 2 peak from the peak of knife edge 1, since the 
energy diffracted from knife edge 1 must diffract over knife edge 2. Another line is drawn 
from the transmitter antenna to knife edge 1 since this is the source for the diffraction at knife 
edge 1. The new baseline for the effective height of knife edge 1 is a line connecting the 
transmitter antenna and the peak of knife edge 2. The effective height of knife edge 1 is the 
difference between the knife edge 1 peak and this baseline, which can be determined 
graphically or algebraically from the equations in Appendix D. The knife-edge separation 
distances, knife-edge heights, effective knife-edge heights, diffraction parameter, and 
diffraction loss are contained in Table 3 for knife edge 1.  

Knife edge 4 is the next knife edge that is not a sub-path knife edge on the right side of the 
primary knife edge. For knife edge 4 a line is drawn through the primary knife edge 2 peak 
from the peak of knife edge 4 since the energy diffracted from knife edge 2 must diffract over 
knife edge 4. Another line is drawn from the receiver antenna to knife edge 4, since this is the 
receptor for the energy diffracted from the fourth knife edge 4. The new baseline for the 
effective height of knife edge 4 is a line connecting the receiver antenna and the peak of 
knife edge 2. The effective height of knife edge 4 is the difference between the knife edge 4 
peak and this new baseline. The knife-edge separation distances, knife-edge heights, 
effective knife-edge heights, diffraction parameter and loss are contained in Table 3 for knife 
edge 4. 

The last knife edge (knife edge 3) in Figure 11 is a sub-path knife edge and the baseline for 
computing its effective height is a line extending from the peak of knife edge 2 to the peak of 
knife edge 4. The effective height of knife edge 3 is the distance between this baseline and 
the peak of knife edge 3. This height can be determined graphically or with the equations 
from Appendix D. The total diffraction loss is equal to (34.0 + 22.5 + 38.1 + 0.0) = 94.6 dB. 
The total diffraction loss for the Giovaneli method is obtained by summing the losses of all 
knife edges in decibels.  

Two variations of the Giovaneli method were used in the comparison: using only the major 
three knife edges (the Giovaneli Major Three Knife-Edges Method) and deleting the sub-path 
knife-edges (the No Sub-Path Knife-Edges Method).  
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3.3.5 Summary Comments on the Alternative Methods 

Computations made with all of the alternative methods except Bullington [3] tend to agree 
with measured data. The Bullington method does have its place for use when the actual 
terrain is so complicated that it is difficult to decide which terrain features are significant and 
allow the two major knife edges to be selected as the most prominent diffraction edges. 
Computations made with Bullington for the long path on 63rd Street, mentioned later in 
Section 6.2, were on average within 12 dB of measured data, whereas the other three 
alternative methods were on average within 4 dB of measured data. The 12 dB loss predicted 
with the Bullington method is less than that predicted with the more precise alternative 
methods. This results in a 12 dB increase in predicted signal level. The 12 dB lower loss is 
better than the results shown in Section 3.3.1 where Bullington predicts 46.3 dB and the 
Three alternative methods of Epstein-Peterson, Deygout, and Giovaneli predict 95.9, 99.87, 
and 94.6 dB, respectively. 

When comparing the Epstein-Peterson method to the Deygout method, [22] and [19] 
demonstrated that the Deygout method was more theoretically correct, because of its 
relationship to the rigorous spectral theory of diffraction as described in [19]. The accuracy of 
the Deygout approach is highest when there is one dominant diffraction knife edge. When 
there are two comparable obstacles, a correction can be applied using a spacing parameter 
for the Deygout method [22]. The Deygout method is more difficult to implement than the 
others described. 

Giovaneli [6] claims that his method agrees well with GTD outside of the transition regions, 
and for two or more knife edges the method agrees with the Vogler method [22], [19]. 
Giovaneli also mentions that as the number of knife edges increases, the Deygout method 
incurs a larger error; it is usually terminated after computing the loss for the major three knife 
edges [22], [16]. In general, the Deygout method shows very good agreement (±3 dB) with 
the rigorous multiple knife-edge approach of Vogler [1], but it becomes pessimistic 
(predicting larger diffraction losses than the actual loss or the loss computed with the 
rigorous multi knife-edge approach) when there are multiple obstacles and/or the knife 
edges are close together [22]. In this case, the difference between the diffraction loss 
computed by Deygout and that by Giovaneli increases [17]. The difference can vary with 
different scenarios. 

Results presented later in Section 5.1 (Figures Figure 29 and Figure 30) demonstrate that the 
50 scenarios introduced in Section 4 get better results than the original Epstein-Peterson 
method when compared to the Epstein-Peterson method that contains the GTD-based 
correction cited in [7]. 

The Bullington and Epstein-Peterson methods tend to underestimate the diffraction loss and 
the Deygout method tends to overestimate the diffraction loss when compared to the Vogler 
method. This is demonstrated later in Tables 17 and 18 in Section 5.2. The diffraction angle 
of the knife edge used by the Deygout method for computation of the primary (main) knife-
edge diffraction tends to be larger than the diffraction angle actually required for the ray 
from the previous knife edge to pass over the knife edge in question to the next knife edge. 
Thus, a larger value is used for the Fresnel-Kirchhoff parameter 𝜈𝜈 and the diffraction loss for 
the primary knife edge is overstated. The Deygout-computed loss diverges more from the 
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actual loss when the diffraction knife edges have similar losses and when they are spaced 
close together [17]. 

The Giovaneli method is not reciprocal in general, and it is most important to define the 
primary knife edge for the diffraction analysis before the other minor knife edges are 
selected. If the primary knife edge is not correctly defined, then only a small error occurs in 
the prediction of diffraction loss with this method [6]. This method corrects the Deygout 
method’s error in diffraction angle because it uses a diffraction angle that more closely 
coincides with that used for the GTD method [6].  

Since the Epstein-Peterson method predicts a lower loss than the GTD method, and the 
Deygout method predicts a greater loss than the GTD method, it is expected that the 
Giovaneli method will predict a loss that will more closely agree with the GTD method and be 
bounded from below by the Epstein-Peterson method and above by the Deygout method 
[6]. When a grazing incidence for an intermediate knife edge occurs between two knife 
edges, the intermediate knife-edge height equals zero with respect to the line between the 
transmitter antenna or previous knife edge and the receiver antenna or next knife edge); or a 
sub-path obstacle (negative knife-edge height) occurs, then the Deygout and Giovaneli 
methods for treating sub-path obstacles are equivalent [22].  

Preliminary results of this analysis show where each of the alternative multiple knife-edge 
methods investigated can be used in place of the rigorous Vogler diffraction method to 
reduce computation time while maintaining suitable accuracy. It was shown that no single 
alternative method can cover all scenario variations. Which alternative diffraction method 
works best in a given scenario depends on how a method treats sub-path obstacles and the 
alignment of the ray path from one knife edge to the next knife edge with the shadow 
boundaries at the knife edges. 

3.3.6 The Vogler Method 

The four knife-edge scenario used in Figures 8 through 11 (Case 13 of Table 12) was also 
computed with the Vogler method. The Vogler method uses the diffraction angles for each 
knife edge that are defined in Figure 2 in addition to the effective heights and distances 
between knife edges to compute a diffraction parameter as described in Section 3.1. The 
result for the total diffraction loss was 97.21 dB for the four-knife-edge scenario. (See Case 13 
in Table 17.) 

3.4 Examples of Alternative Computation Methods with Six Knife Edges 

This section demonstrates how complex the  computations get when up to six knife edges 
are present in a diffraction scenario. The discussion of  each of the methods in this section  
shows the different computation procedure and graphical construction. All edges are 
included in the computations. These examples with six edges are different than the 50 cases 
of Section 4. For comparison purposes the total diffraction loss computed in this section for 
the Bullington, Epstein-Peterson, Deygout, and Giovaneli methods are 9.767 dB, 38.038 dB, 
39.421 dB, and 38.161 dB, respectively. The Vogler prediction for this scenario is 38.91 dB. 
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3.4.1 Six Knife-Edge Example for the Bullington Method 

The Bullington method finds the point of two intersecting horizon rays and ascribes the total 
loss to that of a single equivalent knife edge. The procedure first determines the diffraction 
knife edges that represent the horizons using (A-1) and (A-2). Table 4 contains the results of 
applying these equations. Figure 12 illustrates the knife-edge configuration and graphical 
construction for this method. Knife edge 𝑀𝑀1 is the horizon from the transmitter antenna and 
M5 is the horizon from the receiver antenna. The knife-edge computation intervals from 
Figure 10 are 𝑑𝑑𝑇𝑇 = 3.438 km and 𝑑𝑑𝑅𝑅 = 2.962 km. 

Table 4: Horizon parameter determination for the six diffraction knife edges. 

 𝑴𝑴𝟏𝟏 𝑴𝑴𝟐𝟐 𝑴𝑴𝟑𝟑 𝑴𝑴𝟒𝟒 𝑴𝑴𝟓𝟓 𝑴𝑴𝟔𝟔 
Tangent of angle in mrad from Transmitter Antenna 1.6 1.0 1.133 0.714 0.520 0.283 
Tangent of angle in mrad from Receiver Antenna 0.296 0.524 1.0 1.364 1.857 1.700 
Distance of edge from XMTR (km) 1.0 2.2 3.0 4.2 5.0 5.4 

 

 

Figure 12: Six knife-edge diffraction example for Bullington method with sub-path knife edges 
𝑀𝑀2 and 𝑀𝑀6. 
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The heights and distances for knife edge 𝑀𝑀1 in (A-3) and knife edge 𝑀𝑀5 in (A-4) are used to 
represent the equations of the two lines along the horizon from the transmitter and receiver 
antennas, respectively. These equations are solved simultaneously to determine the distance, 
𝑑𝑑𝑇𝑇, of 3.438 km from the transmitter of the single knife edge that represents the effective 
height for the Bullington method. Equation (A-5) is used to calculate the distance 𝑑𝑑𝑅𝑅 of this 
knife edge from the receiver as 2.962 km and (A-6) is used to calculate the effective height of 
the knife edge as 5.501 meters. The diffraction parameter 𝜈𝜈 = 0.4361 and the total diffraction 
loss is 9.767 dB. 

3.4.2 Six Knife-Edge Example for the Epstein-Peterson Method 

The example for the Epstein-Peterson method is best illustrated by referring to Figure 13 and 
the results of Table 5. The single knife-edge diffraction losses are computed over the knife 
edges in order from transmitter to receiver antenna terminals over the convex hull of the ray 
between terminals (similar to a stretched string that passes over all of the intervening knife 
edges). The total diffraction loss is the sum of the six diffraction losses (38.04 dB) in Table 5. 

 

Figure 13: Six knife-edge diffraction example for Epstein-Peterson method with sub-path knife edges 
𝑀𝑀2 and 𝑀𝑀6. 

Table 5: Results for six knife-edge examples for the Epstein-Peterson method. 

Parameter 𝑴𝑴𝟏𝟏 𝑴𝑴𝟐𝟐 𝑴𝑴𝟑𝟑 𝑴𝑴𝟒𝟒 𝑴𝑴𝟓𝟓 𝑴𝑴𝟔𝟔 
𝑑𝑑𝑇𝑇  (km) 1.0 1.2 0.8 1.2 0.8 0.4 
𝑑𝑑𝑅𝑅 (km) 1.2 0.8 1.2 0.8 0.4 1.0 
ℎ𝑖𝑖  (m) 1.6 2.2 3.4 3.0 2.6 1.7 
ℎ𝑖𝑖′ (m) 0.600 −0.480 0.880 0.080 0.467 −0.157 
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Parameter 𝑴𝑴𝟏𝟏 𝑴𝑴𝟐𝟐 𝑴𝑴𝟑𝟑 𝑴𝑴𝟒𝟒 𝑴𝑴𝟓𝟓 𝑴𝑴𝟔𝟔 
Edge Distance from XMTR (km) 1.0 2.2 3.0 4.2 5.0 5.4 

𝜈𝜈 0.0812 −0.0693 0.127 0.012 0.090 −0.029 
𝐿𝐿 (dB) 6.737 5.437 7.135 6.133 6.817 5.779 

3.4.3 Six Knife-Edge Example for the Deygout Method 

Figure 14 is a graphical illustration of the Deygout method. The method begins with using 
(C-1) through (C-5) to compute the Fresnel-Kirchhoff diffraction parameter 𝜈𝜈 and the 
diffraction loss for all knife edges separately as if the other knife edges were absent. The 
actual heights with respect to the transmitter to receiver baseline are used for the effective 
heights in this initial calculation for determining the primary knife edge. Table 6 shows the 
results of this calculation. Knife edge 𝑀𝑀2 is the primary knife edge, since it has the largest 
value of ν and the largest diffraction loss. This is the final loss for knife edge 𝑀𝑀3. The final 
losses for the other knife edges are determined using other reference baselines. 

 

Figure 14: Six-knife-edge diffraction example for Deygout method with sub-path knife edges 
𝑀𝑀2 and 𝑀𝑀6. 
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Table 6: Computation of Fresnel-Kirchhoff diffraction parameter 𝜈𝜈 and diffraction loss to determine the 
primary knife edge. 

Parameter 𝑴𝑴𝟏𝟏 𝑴𝑴𝟐𝟐 𝑴𝑴𝟑𝟑 𝑴𝑴𝟒𝟒 𝑴𝑴𝟓𝟓 𝑴𝑴𝟔𝟔 
𝑑𝑑𝑇𝑇  (km) 1.0 2.2 3.0 4.2 5.0 5.4 
𝑑𝑑𝑅𝑅 (km) 5.4 4.2 3.4 2.2 1.4 1.0 
ℎ𝑖𝑖  (m) 1.6 2.2 3.4 3.0 2.6 1.7 
ℎ𝑖𝑖′ (m) 1.6 2.2 3.4 3.0 2.6 1.7 

Edge Distance from XMTR (km) 1.0 2.2 3.0 4.2 5.0 5.4 
𝜈𝜈 0.174 0.183 0.269 0.250 0.249 0.185 

L (dB) 7.544 7.621 8.364 8.195 8.186 7.638 
 
Knife edge 𝑀𝑀3 divides the path into two regions. Equations (C-1) and (C-5) through (C-9) are 
used to compute the effective heights, diffraction parameter, and diffraction loss for all knife 
edges located to the left of the primary knife edge using a new baseline to determine the 
secondary knife edge in this region. Table 7 shows the results of these calculations. Knife 
edge 𝑀𝑀1 is the secondary knife edge to the left of the primary knife edge, since it has the next 
largest diffraction parameter and diffraction loss. This is the final loss for knife edge 𝑀𝑀1 but 
not for knife edge 𝑀𝑀2. 

Table 7: Computation of Fresnel-Kirchhoff diffraction parameter 𝜈𝜈 and diffraction loss to determine the 
secondary knife edge on the left side of the primary knife edge. 

Parameter 𝑴𝑴𝟏𝟏 𝑴𝑴𝟐𝟐 
𝑑𝑑𝑇𝑇  (km) 1.0 2.2 
𝑑𝑑𝑅𝑅 (km) 2.0 0.8 
ℎ𝑖𝑖  (m) 1.6 2.2 
ℎ𝑖𝑖′ (m) 0.467 −0.293 
𝜈𝜈 0.057 −0.038 

𝐿𝐿 (dB) 6.528 5.703 
 
Knife edge 𝑀𝑀2 is the only third-level knife edge remaining on the left side of the primary knife 
edge, and it is located on the right side of the secondary knife edge 𝑀𝑀1, so (C-1) and (C-17) 
through (C-19) are used to compute the effective heights, distances, and diffraction 
parameter. Equation (C-5) is used to compute the diffraction loss. The results are presented 
in Table 8. This is the final loss for knife edge 𝑀𝑀2. 

Table 8. Computation of Fresnel-Kirchhoff diffraction parameter 𝜈𝜈 and diffraction loss for the third-level 
knife edge on the left side of the primary knife edge and the right side of the secondary knife edge 𝑀𝑀1. 

Parameter 𝑴𝑴𝟐𝟐 
𝑑𝑑𝑇𝑇  (km) 1.2 
𝑑𝑑𝑅𝑅 (km) 0.8 
ℎ𝑖𝑖  (m) 2.2 
ℎ𝑖𝑖′ (m) −0.480 
𝜈𝜈 −0.069 

𝐿𝐿 (dB) 5.437 
 
Equations (C-1) and (C-10) through (C-13) are used to compute the effective heights and 
diffraction parameter, and (C-5) is used to compute the diffraction loss for all knife edges 
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located to the right of the primary knife edge using a new baseline to determine the 
secondary knife edge for this region. Table 9 shows the results of these calculations. Knife 
edge 𝑀𝑀5 is the secondary knife edge to the right of the primary knife edge, since it has the 
largest diffraction parameter and diffraction loss. This is the final loss for the knife edge 𝑀𝑀5. 

Table 9. Computation of Fresnel-Kirchhoff diffraction parameter 𝜈𝜈 and diffraction loss for three edges to 
determine the secondary knife edge on the right side of the primary knife edge. 

 
Knife edges 𝑀𝑀4 and 𝑀𝑀6 are the two remaining third-level knife edges of the right side of the 
primary knife edge. Knife edge 𝑀𝑀4 is on the left side of secondary knife edge 𝑀𝑀5, so (C-20) 
through (C-22) are used to compute the effective heights and distances, (C-1) is used to 
compute the diffraction parameter, and (C-5) is used to compute the diffraction loss. Knife 
edge 𝑀𝑀6 is on the right side of secondary knife edge 𝑀𝑀5, so (C-23) through (C-25) are used to 
compute the effective heights and distances, (C-1) is used to compute the diffraction 
parameter, and (C-5) is used to compute the diffraction loss. The results are shown in 
Table 10. These are the final losses for knife edges 𝑀𝑀4 and 𝑀𝑀6. 

Table 10. Computation of the Fresnel-Kirchhoff diffraction parameter 𝜈𝜈 and diffraction loss for the third-
level knife edges 𝑀𝑀4 and 𝑀𝑀6 on the right side of the primary knife edge and each side of the secondary 

knife edge 𝑀𝑀5. 

 
The total diffraction loss is 40.12 dB, which is the sum of the decibel losses for knife edges 𝑀𝑀1 

through 𝑀𝑀6 from Tables 6 through 10. 

3.4.4 Six Knife-Edge Example for the Giovaneli Method 

Figure 15 is a graphical illustration of the Giovaneli method. The primary knife edge is the 
tallest knife edge 𝑀𝑀3. The procedure starts with determining the effective height of the 
primary knife edge using the secondary knife edges. The slopes of lines drawn from the 
primary knife edge to each of the other knife edges are calculated to determine which knife 
edges have the minimum slope on each side of the primary knife edge. The minimum slope 
is associated with the secondary knife edge 𝑀𝑀1 on the left side of the primary knife edge. To 
determine the equation of the line that passes through the knife-edge peaks of knife edges 
𝑀𝑀3 and 𝑀𝑀1, (D-4) is solved for the y intercept, 𝑏𝑏𝐿𝐿, at the vertical line from the transmitter using 

Parameter 𝑴𝑴𝟒𝟒 𝑴𝑴𝟓𝟓 𝑴𝑴𝟔𝟔 
𝑑𝑑𝑇𝑇  (km) 1.2 2.0 2.4 
𝑑𝑑𝑅𝑅 (km) 2.2 1.4 1.0 
ℎ𝑖𝑖  (m) 3.0 2.6 1.7 
ℎ𝑖𝑖′ (m) 0.80 1.20 0.70 
𝜈𝜈 0.091 0.132 0.083 

𝐿𝐿 (dB) 6.820 7.180 6.755 

Parameter 𝑴𝑴𝟒𝟒 𝑴𝑴𝟔𝟔 
𝑑𝑑𝑇𝑇  (km) 1.2 0.4 
𝑑𝑑𝑅𝑅 (km) 0.8 1.0 
ℎ𝑖𝑖  (m) 3.0 1.7 
ℎ𝑖𝑖′ (m) 0.080 −0.157 
𝜈𝜈 0.012 −0.029 

𝐿𝐿 (dB) 6.133 5.779 
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the fact that it is equal to the height ℎ𝑚𝑚  at the distance location of the primary knife edge 𝑀𝑀3. 
The minimum slope is associated with the secondary knife edge 𝑀𝑀4 on the right side of the 
primary knife edge. The equation of a line that passes through the peaks of knife edges 𝑀𝑀3 
and 𝑀𝑀4 is determined using (D-5). 

 

Figure 15. Six knife-edge diffraction examples for Giovaneli method with sub-path knife edges 
𝑀𝑀2 and 𝑀𝑀6. 

The reference baseline given by (D-6) is then used to connect the points where (D-4) and 
(D-5) intersect the vertical lines at the transmitter and receiver, respectively. Equation (D-6) is 
used to determine the baseline for the effective height of the primary knife edge and (D-7) 
and (D-8) are used for calculating the distances. Equation (D-9) is used for calculating the 
diffraction parameter 𝜈𝜈 and (D-10) is used to calculate the diffraction loss. 

For determination of the effective heights of the secondary knife edges, the secondary knife 
edges are used as the main knife edges and their effective heights calculated with a similar 
computation to that used for the primary knife edge. For the left side of the primary knife 
edge, since knife edge 𝑀𝑀1 has a minimum slope and is not a sub-path knife edge, use (D-15) 
through (D-17) and (D-23) to determine effective heights and distances, and (D-9) and (D-10) 
for the diffraction parameter and diffraction loss. Since knife edge 𝑀𝑀2 has a maximum slope 
and is a sub-path knife edge, use (D-19) through (D-23) to determine the effective heights 
and distances, and (D-9) and (D-10) for the diffraction parameter and diffraction loss. The 
results are presented in Table 11. 
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For the right side of the primary knife edge, since knife edges 𝑀𝑀4 and 𝑀𝑀5are not sub-path 
knife edges, use (D-11) through (D-14) to determine the effective heights and distances, (D-
23) for the diffraction parameter 𝜈𝜈, and (D-10) for the diffraction loss. Since knife edge 𝑀𝑀6 is a 
sub-path knife edge, use (D-19) through (D-23) to determine the effective heights, distances, 
and diffraction parameter 𝜈𝜈, and calculate the diffraction loss with (D-10). The results are 
presented in Table 11. The total diffraction loss is 38.161 dB, which is the sum of the decibel 
losses for all knife edges in Table 11. 

Table 11. Computation of the Fresnel-Kirchhoff diffraction parameter 𝜈𝜈 and diffraction loss for the 
Giovaneli method. 

Parameter 𝑴𝑴𝟏𝟏 𝑴𝑴𝟐𝟐 𝑴𝑴𝟑𝟑 𝑴𝑴𝟒𝟒 𝑴𝑴𝟓𝟓 𝑴𝑴𝟔𝟔 
𝑑𝑑𝑇𝑇  (km) 1.0 1.2 3.0 1.2 0.8 0.4 
𝑑𝑑𝑅𝑅 (km) 2.0 0.8 3.4 2.2 1.4 1.0 
ℎ𝑖𝑖  (m) 1.6 2.2 3.4 3.0 2.6 1.7 
ℎ𝑖𝑖′ (m) 0.467 −0.480 1.966 0.130 0.691 −0.157 

Edge distance from XMTR (km) 1.0 2.2 3.0 4.2 5.0 5.4 
𝜈𝜈 0.057 −0.069 0.156 0.015 0.097 −0.029 

𝐿𝐿 (dB) 6.528 5.437 7.384 6.160 6.873 5.779 
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4. Description of the 50 Multiple Knife-Edge Diffraction Scenarios 
Considered for the Analysis 

Fifty different diffraction scenarios were tested against the alternative methods for an initial 
attempt at simulation of many possible actual diffraction configurations, including some with 
sub-path and grazing incidence knife edges. The test scenarios listed in Tables 12 and 13 
included many variations of distances between knife edges, heights, and height-to-distance 
ratios between knife edges chosen to explore the accuracies and computation limits of the 
alternative methods. The frequency for all scenarios is 1500 MHz. All heights and distances 
are in meters or kilometers. The diffraction knife-edge heights for all figures in this discussion 
are graphically exaggerated for clarity. Due to the actual ratios of the heights to the distances 
in many of the scenarios, the magnitudes of the slant distances are approximately equal to 
the horizontal distances. 

Figures 16 through 25 show the diffraction scenarios described in Tables 12 and 13; the last 
column in Tables 12 and 13 indicates the corresponding figure. Figures 16 through 25 are for 
Cases 3, 8, 13, 18, 23, 28, 33, 38, 43, and 48, respectively. For example, Figure 16 
corresponds to Case 3, Figure 17 corresponds to Case 8, Figure 18 corresponds to Case 13, 
etc. These figure numbers are listed in the last column of the Tables 12 and 13. If there is no 
corresponding figure for a row, then it is indicated by a (-) entry in that row. Tdi = Td1, Td2, 
Td3, …, Td7 are the distances of the edges from the transmitter shown in Tables 12 and 13. 
The last edge entry of the row in the Tables is the receiver location. 

 

Figure 16: Six knife-edge diffraction scenario (Case 3) with two sub-path knife edges, 𝑀𝑀2 and 𝑀𝑀6. 
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Figure 17: Five-knife-edge diffraction scenario (Case 8) with one sub-path knife edge, 𝑀𝑀2. 

 

Figure 18: Four-knife-edge diffraction scenario (Case 13) with one sub-path knife edge, 𝑀𝑀3. 
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zero for simplification of the computation and graphical presentation. There is no loss of 
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scenario. Equation (3) can be used to perform the translation for situations where the antenna 
heights are not zero by subtracting the appropriate Δℎ𝑖𝑖  from each knife-edge height ℎ𝑡𝑡. 

Table 12 contains parameters for scenario Cases 1 through 25 with 6, 5, 4, 3, and 2 diffraction 
knife edges. Table 13 contains parameters for scenario Cases 26 through 50 for a variety of 
scenarios, all with six diffraction knife edges. The first 20 scenario cases (26 through 45) of 
Table 13 demonstrate reciprocity of the methods. Here, the term reciprocity means that the 
predicted path loss is invariant when the transmitter and receiver terminals are interchanged. 
Cases 26 through 30 are reciprocal to Cases 31 through 35, respectively, and Cases 36 
through 40 are reciprocal to Cases 41 through 45, respectively. 

Table 13 shows cases that agree with each other for the diffraction computations, because 
their height-to-distance ratios for each knife edge are the same and hence yield the same 
diffraction parameter and diffraction loss, even though the heights and distances are 
different. Cases that have the same height-to-distance ratios in Table 13 are Cases 28 and 29, 
Cases 33 and 34, Cases 38 and 39, Cases 43 and 44, and Cases 48 and 49. All of these cases 
do not contain the additional propagation loss in free space. The total losses for these cases 
will be different when free space loss is added to the diffraction loss because the distances 
between knife edges are different even though the height-to-distance ratios are the same. 
Longer distances will have larger free space losses for the cases in Tables 12 and 13.  

Table 12: Height and distance parameters for Cases 1 through 25. 

Case # 
Td1 (m) Td2 (m) Td3 (m) Td4 (m) Td5 (m) Td6 (m) Td7 (m) 

Figure # 
𝒉𝒉𝟏𝟏 (m) 𝒉𝒉𝟐𝟐  (m) 𝒉𝒉𝟑𝟑  (m) 𝒉𝒉𝟒𝟒  (m) 𝒉𝒉𝟓𝟓  (m) 𝒉𝒉𝟔𝟔  (m) 𝒉𝒉𝟕𝟕  (m) 

1 
500 1100 1500 2100 2500 2700 3200 

- 
1.6 2.2 3.4 3.0 2.6 1.7 0 

2 
100 220 300 420 500 540 640 

- 
1.6 2.2 3.4 3.0 2.6 1.7 0 

3 
1000 2200 3000 4200 5000 5400 6400 

Figure 16 
160 220 340 300 260 170 0 

4 
10 22 30 42 50 54 64 

- 
1.6 2.2 3.4 3.0 2.6 1.7 0 

5 
20 44 60 84 100 108 128 

- 
0.8 1.1 1.7 1.5 1.3 0.85 0 

6 
500 1100 1500 2100 2700 3200  

- 
1.6 2.2 3.4 3.0 1.7 0  

7 
100 220 300 420 540 640  

- 
1.6 2.2 3.4 3.0 1.7 0  

8 
1000 2200 3000 4200 5400 6400  

Figure 17 
160 220 340 300 170 0  

9 
10 22 30 42 54 64  

- 
1.6 2.2 3.4 3.0 1.7 0  

10 
20 44 60 84 108 128  

- 
0.8 1.1 1.7 1.5 0.85 0  

11 
600 1400 2200 2900 3300   

- 
1.4 2.6 2.0 2.2 0   

12 
120 280 440 580 660   

- 
1.4 2.6 2.0 2.2 0   

13 
1200 2800 4400 5800 6600   

Figure 18 
140 260 200 220 0   
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Case # 
Td1 (m) Td2 (m) Td3 (m) Td4 (m) Td5 (m) Td6 (m) Td7 (m) 

Figure # 
𝒉𝒉𝟏𝟏 (m) 𝒉𝒉𝟐𝟐  (m) 𝒉𝒉𝟑𝟑  (m) 𝒉𝒉𝟒𝟒  (m) 𝒉𝒉𝟓𝟓  (m) 𝒉𝒉𝟔𝟔  (m) 𝒉𝒉𝟕𝟕  (m) 

14 
12 28 44 58 66   

- 
1.4 2.6 2.0 2.2 0   

15 
24 56 88 116 132   

- 
0.7 1.3 1.0 1.1 0   

16 
600 1400 2300 2900    

 
1.8 2.4 2.2 0    

17 
120 280 460 580    

- 
1.8 2.4 2.2 0    

18 
1200 2800 4600 5800    

Figure 19 
180 240 220 0    

19 
12 28 46 58    

- 
1.8 2.4 2.2 0    

20 
24 56 92 116    

- 
0.9 1.2 1.1 0    

21 
800 2000 2800     

- 
2.4 2.0 0     

22 
160 400 560     

- 
2.4 2.0 0     

23 
1600 4000 5600     

Figure 20 
240 200 0     

24 
16 40 56     

- 
2.4 2.0 0     

25 
32 80 112     

- 
1.2 1.0 0     

 
Table 13: Height and distance parameters for Cases 26 through 50 

Case # 
Td1 (m) Td2 (m) Td3 (m) Td4 (m) Td5 (m) Td6 (m) Td7 (m) 

Figure # 
𝒉𝒉𝟏𝟏(m) 𝒉𝒉𝟐𝟐  (m) 𝒉𝒉𝟑𝟑  (m) 𝒉𝒉𝟒𝟒  (m) 𝒉𝒉𝟓𝟓  (m) 𝒉𝒉𝟔𝟔  (m) 𝒉𝒉𝟕𝟕  (m) 

26 
500 1000 1500 2000 2500 3000 3500 

- 
1.4 2.8 3.4 3.75 3.9 4.3 0 

27 
100 200 300 400 500 600 700 

- 
1.4 2.8 3.4 3.75 3.9 4.3 0 

28 
1000 2000 3000 4000 5000 6000 7000 

Figure 21 
14.0 28.0 34.0 37.5 39.0 43.0 0 

29 
10 20 30 40 50 60 70 

- 
1.4 2.8 3.4 3.75 3.9 4.3 0 

30 
20 40 60 80 100 120 140 

- 
0.7 1.4 1.7 1.875 1.95 2.15 0 

31 
500 1000 1500 2000 2500 3000 3500 

- 
4.3 3.9 3.75 3.4 2.8 1.4 0 

32 
100 200 300 400 500 600 700 

- 
4.3 3.9 3.75 3.4 2.8 1.4 0 

33 
1000 2000 3000 4000 5000 6000 7000 

Figure 22 
43.0 39.0 37.5 34.0 28.0 14.0 0 

34 
10 20 30 40 50 60 70 

- 
4.3 3.9 3.75 3.4 2.8 1.4 0 

35 
20 40 60 80 100 120 140 

- 
2.15 1.95 1.875 1.7 1.4 0.7 0 
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Case # 
Td1 (m) Td2 (m) Td3 (m) Td4 (m) Td5 (m) Td6 (m) Td7 (m) 

Figure # 
𝒉𝒉𝟏𝟏(m) 𝒉𝒉𝟐𝟐  (m) 𝒉𝒉𝟑𝟑  (m) 𝒉𝒉𝟒𝟒  (m) 𝒉𝒉𝟓𝟓  (m) 𝒉𝒉𝟔𝟔  (m) 𝒉𝒉𝟕𝟕  (m) 

36 
500 1000 1500 2000 2500 3000 3500 

- 
1.7 1.8 2.5 3.7 4.1 4.3 0 

37 
100 200 300 400 500 600 700 

- 
1.7 1.8 2.5 3.7 4.1 4.3 0 

38 
1000 2000 3000 4000 5000 6000 7000 

Figure 23 
17.0 18.0 25.0 37.0 41.0 43.0 0 

39 
10 20 30 40 50 60 70 

- 
1.7 1.8 2.5 3.7 4.1 4.3 0 

40 
20 40 60 80 100 120 140 

- 
0.85 0.9 1.25 1.85 2.05 2.15 0 

41 
500 1000 1500 2000 2500 3000 3500 

- 
4.3 4.1 3.7 2.5 1.8 1.7 0 

42 
100 200 300 400 500 600 700 

- 
4.3 4.1 3.7 2.5 1.8 1.7 0 

43 
1000 2000 3000 4000 5000 6000 7000 

Figure 24 
43.0 41.0 37.0 25.0 18.0 17.0 0 

44 
10 20 30 40 50 60 70 

- 
4.3 4.1 3.7 2.5 1.8 1.7 0 

45 
20 40 60 80 100 120 140 

- 
2.15 2.05 1.85 1.25 0.9 0.85 0 

46 
500 1000 1500 2000 2500 3000 3500 

- 
2.0 3.3 4.0 3.7 2.7 1.5 0 

47 
100 200 300 400 500 600 700 

- 
2.0 3.3 4.0 3.7 2.7 1.5 0 

48 
1000 2000 3000 4000 5000 6000 7000 

Figure 25 
20.0 33.0 40.0 37.0 27.0 15.0 0 

49 
10 20 30 40 50 60 70 

- 
2.0 3.3 4.0 3.7 2.7 1.5 0 

50 
20 40 60 80 100 120 140 

- 
1.0 1.65 2.0 1.85 1.35 0.75 0 
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Figure 19: Three-knife-edge diffraction scenario (Case 18) with no sub-path knife edges. 

 

Figure 20: Two-knife-edge diffraction scenario (Case 23) with no sub-path knife edges. 
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Figure 21: Six-knife-edge ascending scenario (Case 28) with one sub-path knife edge, 𝑀𝑀5, and one 
grazing knife edge, 𝑀𝑀1. 

 

Figure 22: Six-knife-edge descending scenario (Case 33) with one sub-path knife edge, 𝑀𝑀2, and one 
grazing knife edge, 𝑀𝑀6. 
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Figure 23: Six-knife-edge ascending scenario (Case 38) with two sub-path knife edges: 𝑀𝑀2 and 𝑀𝑀3. 

 

Figure 24: Six-knife-edge descending scenario (Case 43) with two sub-path knife edges: 𝑀𝑀4 and 𝑀𝑀5. 
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Figure 25: Six-knife-edge ascending and descending scenario (Case 48) with no sub-path knife edges. 
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5. Comparison of Alternative Computation Methods with the 
Vogler Method 

5.1 Comparisons of Loss Predictions for the Vogler Method and the Alternative 
Methods  

The results of the loss computations for the knife-edge scenarios in Figures 16 through 25 
discussed in Section 4 are presented in Figures 26 through 34. Figures 26 through 34 
compare the losses predicted with each of the methods to those predicted with the Vogler 
method. These results are based on the scenarios of Figures 16 through 25 and Tables 12 
and 13. The attenuation ratios are plotted versus the case number from Tables 12 and 13. 
The attenuation ratios are computed by subtracting the loss computed by the Vogler method 
from the loss computed by the alternative computation method. 

Figure 26 is a comparison of the four main methods for all 50 cases from Tables 12 and 13. 
The diffraction computations were made with all of the diffraction knife edges included. 
Because the Bullington method has a much larger error than the other methods, the scale on 
the figure had to be expanded; this figure demonstrates the magnitude of error achieved 
with the Bullington method and why the Bullington method was not considered to be a major 
contender for an alternative diffraction computation method. Figure 27 is Figure 26 with the 
Bullington method removed so that the vertical scale could be magnified to show better 
resolution of the attenuation ratio versus case number for the three other alternative 
methods.  

 

Figure 26: Attenuation ratio comparison to Vogler method for four alternative methods with all knife 
edges. Attenuation ratio (dB) = alternative method (dB) − Vogler method (dB). 
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Figure 27: Attenuation ratio comparison to the Vogler method for three alternative methods with all 
knife edges. Attenuation ratio (dB) = alternative method (dB) − Vogler method (dB). 

Each method takes all the diffraction knife edges into consideration. The attenuation ratios 
for Cases 11 through 15 (four knife edges), 16 through 20 (three knife edges), and 21 
through 25 (two knife edges) are much lower than the rest of the cases. The attenuation ratio 
is shown to increase with the number of knife edges. The prediction gets worse with respect 
to Vogler as the number of edges increases.  

Among the three methods the Epstein-Peterson method usually predicts the lowest 
diffraction loss. The Deygout method predicts the highest diffraction loss, and the Giovaneli 
method predicts a diffraction loss that is between the highest and lowest diffraction loss. 
None of the three methods have acceptable attenuation ratios (less than 3 dB) for the cases 
with five or six diffraction knife edges, so it is necessary to look at modifications of the three 
methods to see if the attenuation ratio can be minimized below 3 dB.  

More edges in a scenario will result in a larger attenuation ratio, where the attenuation ratio is 
defined as the alternative method prediction minus the Vogler prediction. As the number of 
edges increases the cumulative computation error increases. In his paper [5], Deygout states 
that the major three knife edges are those with the largest Fresnel diffraction parameter 𝜈𝜈. He 
then uses only those three edges to make his prediction. This approach will minimize the 
cumulative error in the diffraction loss computation. Deygout recommends using not more 
than three or four diffraction edges for a multiple edge diffraction computation. Deygout 
used graphical methods for computation. If many edges are used in the graphical 
computation procedure, cumulative error would occur for four or more edges. The 
mathematical algorithms in the appendices of this report would be more accurate and may 
allow more edges when implemented in a computer program. 

Figure 28 shows the attenuation ratio for the three alternative methods when only the major 
three knife edges of each case are used in the computation. In general, these are those with 
the largest Fresnel-Kirchhoff diffraction parameter for the Epstein-Peterson and the Deygout 
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methods. For the Giovaneli method the major edges are the tallest edge and the two edges 
for which a line drawn between the peak of the tallest edge and the peak of that edge has a 
minimum slope. The cases with 4, 3, or 2 diffraction knife edges (11–15, 16–20, and 21–25, 
respectively) do have reasonably low attenuation ratios, but the rest of the cases with five and 
six diffraction knife edges are not within a 3 dB limit. 

 

Figure 28: Attenuation ratio comparison to the Vogler method for three alternative methods with major 
three knife edges. Attenuation ratio (dB) = alternative method (dB) − Vogler method (dB). 

 

Figure 29: Attenuation ratio comparison to the Vogler method for three alternative methods with no 
sub-path knife edges. Attenuation ratio (dB) = alternative method (dB) − Vogler method (dB). 
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Figure 29 shows the attenuation ratio for the three alternative methods when the sub-path 
knife edges have been deleted from the diffraction loss computation. Deleting the sub-path 
knife edges from the diffraction loss computation adds considerable improvement 
(compared to the all knife edge and major three knife edge variations of Figures 27 and 28, 
respectively) in reducing the attenuation ratio except for Cases 46 through 50, which have no 
sub-path knife edges. Cases 46, 47, and 50 have a scenario geometry that aligns the ray path 
from one knife edge to the next with the incident shadow boundary, causing the large 
attenuation ratio. This phenomenon was discussed previously in Section 3.3, where methods 
to reduce the error in diffraction loss prediction were described. Again, the Epstein-Peterson 
method has the lowest overall attenuation ratio and the Giovaneli method has the second 
lowest attenuation ratio.  

Figure 30 shows the attenuation ratio for the previously described variations of the Deygout 
method: the Deygout All-Knife-Edges Method, Deygout Major Three Knife-Edges Method, 
and Deygout No Sub-Path Knife-Edges Method. The attenuation ratios are shown for Cases 
26 through 50, each of which has six knife edges and uses the Deygout No Sub-Path Knife-
Edges Method.  

The Deygout No Sub-Path Knife-Edges Method has the best performance (i.e., minimum 
overall attenuation ratio) of the four Deygout method variations. The Deygout method is 
more complicated than the other methods, and, as stated above, he recommends computing 
diffraction loss and limiting the number of edges to four or fewer with his method. This is a 
result of the logic Deygout uses, as described in the previous two paragraphs, which limits 
the number of edges to reduce the cumulative mathematical error when performing the 
computations graphically—the only way they could be performed in 1966. 

 

Figure 30: Attenuation ratio comparison to Vogler method for three variations of the Deygout method. 
Attenuation ratio (dB) = Deygout method (dB) − Vogler method (dB). 

Figure 31 shows the attenuation ratio versus case number for six variations of the Epstein-
Peterson method. Three of these variations apply the correction from [7] to the original 
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variations of all knife edges, no sub-path knife edges, and major three knife edges. The 
correction provides a significant improvement to all the knife-edge methods but causes an 
increase in the attenuation ratio for the Major Three Knife Edges Method and the No Sub-
Path Knife-Edges Method. 

 

Figure 31: Attenuation ratio comparison to Vogler method for six variations of the Epstein-Peterson 
method. Attenuation ratio (dB) = Epstein-Peterson method (dB) − Vogler method (dB). 

Figure 32 is Figure 31 with the deletion of the two worst methods involving the major three 
knife edges.  

Figure 32 shows that the Epstein-Peterson cases with all knife edges corrected using the 
correction technique in [7] reduces the attenuation ratio significantly when compared to all 
knife edges variation uncorrected. Also shown is the significant increase in attenuation ratio 
for the Epstein-Peterson No Sub-Path Knife-Edges corrected method when compared to the 
Epstein-Peterson No Sub-Path Knife-Edges uncorrected method. 
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Figure 32: Attenuation ratio comparison to the Vogler method for four variations of the Epstein-
Peterson method (two curves with largest errors removed for clarity). Attenuation ratio (dB) = Epstein-

Peterson method (dB) − Vogler method (dB). 

Figure 33 shows the comparison of attenuation ratio versus case number for three variations 
of the Giovaneli method. The variation containing no sub-path knife edges appears to 
provide the best performance except for cases 46, 47, and 50, which are situations where the 
ray path aligns with the incident shadow boundary causing a large attenuation ratio. 

 

Figure 33: Attenuation ratio comparison to Vogler method for three variations of the Giovaneli method. 
Attenuation ratio (dB) = Giovaneli method (dB) − Vogler method (dB). 

Figure 34 shows the comparison of the four best methods based on the previous analysis of 
attenuation ratio versus case number. This figure demonstrates that no one method can be 

-40

-30

-20

-10

0

10

20

30

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Epstein Peterson no sub-path edges corrected
Epstein/Peterson no sub-path edges
Epstein Peterson all edges corrected
Epstein/Peterson all edges

Case Number

At
te

nu
at

io
n 

Ra
tio

 (d
B)

-40

-30

-20

-10

0

10

20

30

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Giovaneli no sub-path edges
Giovaneli Major 3 edges
Giovaneli all edges

Case Number

At
te

nu
at

io
n 

Ra
tio

 (d
B)

1---~ •-- .. 
e----e 
e---e 

I B----EJ e---e 
...... ----'ii 



INSTITUTE FOR TELECOMMUNICATION SCIENCES  NTIA TR-26-580 

PAGE 51 

used exclusively for the diffraction loss computations, but a combination of methods is 
required to provide a suitable diffraction loss for all of the analyses. A technique for choosing 
a particular method is described in Section 3.3, which requires computation of the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 to 
select the method with the least attenuation ratio.  

 

Figure 34: Attenuation ratio comparison to Vogler method of the alternative methods that result in the 
lowest attenuation ratio. Attenuation ratio (dB) = alternative method (dB) − Vogler method (dB). 

For example, the Deygout No Sub-Path Knife-Edges Method has a small attenuation ratio for 
cases 15 to 25 of less than +6 dB. The Epstein-Peterson method with all knife edges 
corrected method also does well (±6 dB) for most cases. The Giovaneli method can provide 
low attenuation ratios for cases 28, 29, 33, and 34, where other methods cannot. The cases 
that demonstrate poor agreement in these figures are those where Vogler shows in [2] that 
there should be a large deviation between his method and the four alternative methods that 
were investigated. 

Preliminary results of this analysis show where each of the alternative multiple knife-edge 
methods investigated can be used in place of the rigorous Vogler diffraction method to 
reduce computation time while maintaining suitable accuracy. It was shown that no one 
alternative method can cover all scenario variations. Which alternative diffraction method 
works best in a given scenario depends on how a method treats sub-path obstacles and the 
alignment of the ray path from one knife edge to the next knife edge with the shadow 
boundaries at the knife edges. 

The best method implies a larger angle between the ray path and the incident shadow 
boundary and as a result avoidance of the incident shadow boundary. A step-by-step 
procedure for determining the best alternative diffraction loss computation was described in 
Section 3.3. There the argument 𝑥𝑥 in 𝐹𝐹(𝑥𝑥) is described as being related to this angular 
separation between the incident shadow boundary and the ray path and the function 𝐹𝐹(𝑥𝑥) is 
the multiplicative magnitude needed to keep the loss prediction mathematically finite. A 
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large value of 𝐹𝐹(𝑥𝑥) (close to 1.0) results in a small attenuation ratio. A small attenuation ratio 
indicates agreement with the Vogler computation of diffraction loss. 

Figures 35 through Figure 38 plot attenuation ratio on the same graph as the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) to 
demonstrate how the candidate methods can be used to provide an accurate diffraction loss 
prediction. Figure 35 shows the attenuation ratio and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) versus case number for the 
Epstein-Peterson with all knife edges included. The attenuation ratio is minimized when the 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) approaches unity. Figure 36 shows the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) plotted with the attenuation ratio 
versus case number for the Epstein-Peterson method with no sub-path knife edges. The 
attenuation ratio is small when the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) is significantly greater than zero. Examinations of 
Figures Figure 33 through Figure 36 show that a maximum value of 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) = 1.0 
corresponds to a minimum or zero value of attenuation ratio, which is indicative of agreement 
with the Vogler computation of diffraction loss. Values of 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) that are less than 1.0 
corresponds to larger attenuation ratios, which implies a lesser agreement with the Vogler 
diffraction loss prediction. The disagreement with the Vogler method increases as the 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) approaches zero. 

 

Figure 35: Attenuation ratio and Fresnel transition function product versus case number for Epstein-
Peterson method with all knife edges. Attenuation ratio (dB) = Epstein-Peterson method (dB) − Vogler 

method (dB). 
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Figure 36: Attenuation ratio and Fresnel transition-function product versus case number for Epstein-
Peterson method with no sub-path knife edges. Attenuation ratio (dB) = Epstein-Peterson method (dB) 

− Vogler method (dB). 

Figure 37 shows the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 plotted with the attenuation ratio versus case number for the 
Giovaneli method with no sub-path knife edges. This figure also shows that the attenuation 
ratio is small when the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is significantly greater than zero. As the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 approaches 1.0, 
the diffraction loss error is reduced even further.  

 

Figure 37: Attenuation ratio and Fresnel transition function product versus case number for Giovaneli 
method with no sub-path knife edges. Attenuation ratio (dB) = Giovaneli method (dB) − Vogler method 

(dB). 
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Figure 38 shows the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 plotted with the attenuation ratio versus case number for the 
Deygout method with no sub-path knife edges. This figure shows that the attenuation ratio is 
small when the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is significantly greater than zero. As the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 approaches 1.0, the 
attenuation ratio decreases. 

 

Figure 38: Attenuation ratio and Fresnel transition function product versus case number for the Deygout 
method with no sub-path knife edges. Attenuation ratio (dB) = Deygout method (dB) − Vogler method 

(dB). 

Comparisons of the alternative multiple knife-edge diffraction methods show a ±3 dB 
agreement (Look at figures between the Vogler results and both the Epstein-Peterson and 
Giovaneli results for a variety of cases. Some differences depend on whether the sub-path 
knife edges (obstacles) are included in the diffraction loss computation for the different 
methods. It was found by comparative computations that removing the sub-path obstacles 
improves agreement between the Deygout method and the Vogler method. The Epstein-
Peterson method’s agreement with the Vogler method also improves when the sub-path 
knife edges are removed, but if this method with no sub-path knife edges is corrected with 
the ITU method in [8], then the agreement degrades. This agrees with Deygout when he 
mentions in his paper [5] that accuracy improves when the number of edges are limited to 
three or four edges. However, the Epstein-Peterson method with all knife-edges included 
and corrected by the Beyer method [7] improves agreement with the Vogler method.  

The Giovaneli method with no sub-path knife edges agrees well with the Vogler method. This 
can be demonstrated in Tables 17 and 18 for many of the cases. This agreement varies from 
as small as 2 dB up to about 6 dB. The diffraction scenarios of Tables 12 and 13 were created 
to challenge the alternative models, but still represent realizable scenarios that could exist in 
nature. But since they do not exist, they could not be measured. These terrain paths could 
exist if a search were made for paths that contain measured data and were similar in peaks to 
the examples.  
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5.2 Comparisons of Execution Times and Path Loss Predictions for the Vogler 
Method and the Alternative Methods.  

Comparisons of execution times with up to six knife edges between the Vogler method and 
the alternative methods of Bullington, Epstein-Peterson, Deygout, and Giovaneli resulted in 
run times that were more than three orders of magnitude (up to 1000:1) greater than the 
alternative methods. Figure 39 compares the run time results of the 50 different scenarios 
(cases) from Tables 12 and 13 of this section. Table 14 lists the parameters of the personal 
computer used to perform execution time comparisons for the 50 cases from Tables 12 and 
13. Tables 15 and 16 list execution times in milliseconds for the cases in Tables 12 and 13, 
respectively.  

 

Figure 39. Comparison of execution times of the four alternative methods to the Vogler method for 50 
different cases. 

Table 14. Parameters of the computer used to perform the comparisons of execution times of the four 
alternative methods to the Vogler method for 50 different cases. 

Parameter Item Name Parameter Value 
Operating System Microsoft Windows 10 Professional 

Version 10.0.19042 Build 19042 
System Manufacturer Dell Inc. 

System Model Latitude 7490 Laptop 
System Type X64-based PC 

Processor Intel(R)Core™ i7-8650UCPU@1.9 GHz 2112 
Hard Disk 220 Gbytes 

BIOS Version/Date, SM BIOS Version Dell Inc. 1.13.1, 11/8/2019 3.1 
Embedded Controller 255.255 

BIOS Mode UEFI 
Hardware Abstraction Version = “10.019041.1151” 

l !J41 I 

103 
' 

-- 102 lJ'I 

.§. 
; 

QJ 
101 E ' ~ 

i;; 

100 0 
;Q ' ~ 

~ >o: 10- 1 
w ' 

10-2 

' 
10-3 

' 

~~, 
' r'""" p. -"" .,.. f?', 'le-! 

I~ 

1:. 

~ ~ e,,e 

~ -~ 
..... ~ ~ Giovaneli all edges 

~ Deygoot all edges 

J 
~ l:ip:sein-Peterson al l edges 

~ ~, ~ Bui ·ngton al l edges 
-- ¼l<Jler all edges 

T'>l'T _T. a ,J;, I :r T ..l .T. ,. 

l xLI T, , I lJ T, 1 xi. 
'. , p;;, ,,. l 

~ 

~ 
IX 

,!"y-
,...,, 

~ 

l :!i_;,.l s I - J _ 
""' ~ .... 1:ir: ~ I 

:,t""v;. 

t i I 
,..,,, 

I I 
I I I I 

246BillllMffiIBmnM~~~~~~~~~M~~~ 
Case Number 

1 
~ 

~ 



INSTITUTE FOR TELECOMMUNICATION SCIENCES  NTIA TR-26-580 

PAGE 56 

Table 15. Execution times in milliseconds for the Vogler method and the four alternative loss prediction 
methods for Cases 1 through 25 of Table 12. 

Test Case Vogler Giovaneli Deygout Epstein-
Peterson 

Bullington 

1 5404.182 0.170 0.043 0.006 0.032 
2 5413.140 0.134 0.014 0.006 0.014 
3 5503.007 0.258 0.017 0.009 0.014 
4 5383.887 0.099 0.014 0.007 0.011 
5 5351.338 0.095 0.010 0.006 0.009 
6 2034.857 0.094 0.009 0.007 0.010 
7 1906.591 0.089 0.009 0.006 0.011 
8 1885.911 0.094 0.016 0.006 0.010 
9 2009.927 0.083 0.011 0.005 0.010 

10 1885.705 0.086 0.008 0.007 0.013 
11 650.246 0.077 0.011 0.006 0.010 
12 619.995 0.078 0.015 0.011 0.014 
13 665.417 0.079 0.009 0.005 0.008 
14 628.114 0.082 0.099 0.004 0.010 
15 629.208 0.076 0.008 0.006 0.009 
16 14.752 0.059 0.008 0.004 0.009 
17 14.497 0.060 0.007 0.006 0.020 
18 15.810 0.068 0.008 0.005 0.009 
19 18.666 0.097 0.007 0.005 0.014 
20 15.360 0.099 0.007 0.005 0.016 
21 0.485 0.040 0.008 0.002 0.006 
22 0.384 0.039 0.006 0.001 0.006 
23 1.008 0.037 0.005 0.001 0.006 
24 3.332 0.041 0.007 0.002 0.007 
25 0.617 0.044 0.011 0.002 0.006 

 
Table 16. Execution times in milliseconds for the Vogler method and the four alternative loss prediction 

methods for Cases 26 through 50 of Table 13. 

Test Case Vogler Giovaneli Deygout Epstein-
Peterson 

Bullington 

26 3503.589 0.415 0.013 0.013 0.051 
27 3259.990 0.122 0.098 0.007 0.011 
28 3250.047 0.112 0.014 0.006 0.010 
29 3051.458 0.127 0.021 0.007 0.013 
30 5025.433 0.106 0.012 0.010 0.010 
31 3190.233 0.147 0.026 0.007 0.016 
32 3296.204 0.095 0.011 0.006 0.010 
33 3096.530 0.093 0.013 0.005 0.010 
34 3292.862 0.090 0.011 0.005 0.010 
35 3849.522 0.106 0.022 0.007 0.015 
36 6188.151 0.155 0.017 0.007 0.013 
37 5481.165 0.113 0.012 0.055 0.010 
38 5507.022 0.100 0.010 0.006 0.008 
39 5632.101 0.159 0.010 0.008 0.013 
40 6554.998 0.103 0.013 0.015 0.012 
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Test Case Vogler Giovaneli Deygout Epstein-
Peterson 

Bullington 

41 5569.170 0.148 0.013 0.006 0.014 
42 5273.096 0.103 0.011 0.007 0.010 
43 5464.709 0.107 0.024 0.007 0.010 
44 5791.748 0.117 0.011 0.007 0.009 
45 5708.579 0.198 0.010 0.009 0.022 
46 2030.612 0.170 0.042 0.032 0.043 
47 2032.883 0.100 0.011 0.007 0.011 
48 1966.461 0.152 0.011 0.007 0.011 
49 1982.297 0.106 0.011 0.012 0.014 
50 1966.449 0.105 0.018 0.006 0.012 

 
Tables 17 and 18 list the path loss predictions in decibels (dB) greater than free space for the 
Vogler method and the four alternative loss prediction methods for Tables 12 and 13, 
respectively. These loss predictions correspond to the execution times in Tables 15 and 16 
for the cases in Tables 12 and 13, which were obtained from running computer code 
developed by ITS. Although there are faster ways to evaluate the Fresnel Integral in the 
Vogler method, there would still be a large computation time difference between Vogler and 
the alternative diffraction methods. An example of a typical area coverage loss prediction 
over multiple radials from a transmitter using the execution times from Tables Table 15 and 
Table 16. If we choose 36000 radials for 0.01-degree increments in angle from the transmitter 
for an adequate number of sample points for area coverage at a 7 km distance. For Case 28 
in Table 16, with a 7 km path distance with six knife edges, the Vogler method would take 
3250 milliseconds (3.25 seconds) to compute one radial, whereas the slowest alternative 
method would require 0.112 milliseconds, which is a reduction in time ratio of 3.45E-5. The 
Vogler method would then require 32.5 hours to compute the area coverage with 36000 
radials, whereas the slowest alternative diffraction method would require 0.00112 hours. 
Even if a way to evaluate the Fresnel integral were a thousand times faster, then a faster 
integral method implemented in the Vogler method would require 0.0325 hours to compute.  

The free space loss will be different for different cases, since the distances are different for 
the cases. These total distances can be obtained by adding the distances from Tables 12 and 
13 for each case. The free space losses are then computed from these total distances. The 
total loss is computed by adding the corresponding free-space loss to the losses shown in 
Tables 17 and 18. 

Table 17. Path loss predictions in decibels (dB) greater than free space for the Vogler method and the 
four alternative loss prediction methods for Cases 1 through 25 of Table 12. 

Test Case Vogler Giovaneli Deygout Epstein-
Peterson Bullington 

1 21.234 38.765 40.738 38.802 11.147 
2 28.257 41.919 45.911 42.002 16.136 
3 114.433 111.857 119.665 112.855 45.748 
4 49.024 52.126 59.394 52.688 25.754 
5 29.672 42.567 46.913 42.671 16.994 
6 21.516 33.128 33.006 33.149 10.942 
7 28.239 36.768 36.520 36.824 15.805 
8 120.471 119.462 119.434 120.119 45.364 
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Test Case Vogler Giovaneli Deygout Epstein-
Peterson Bullington 

9 47.757 49.128 49.048 49.662 25.371 
10 29.587 37.523 37.263 37.597 16.651 
11 20.446 28.211 28.772 27.769 11.406 
12 26.631 33.030 34.086 32.069 16.546 
13 97.205 99.327 99.884 95.706 46.215 
14 43.636 46.993 48.253 44.632 26.219 
15 27.857 33.998 35.122 32.934 17.418 
16 17.543 21.741 22.999 21.583 10.746 
17 23.227 26.169 28.767 25.823 15.483 
18 96.896 95.992 100.966 94.262 44.984 
19 40.549 40.880 45.625 39.930 24.992 
20 24.380 27.087 29.924 26.705 16.315 
21 13.991 15.513 16.111 15.370 9.901 
22 18.626 19.630 20.846 19.351 14.027 
23 71.448 71.448 73.292 70.517 43.168 
24 32.244 32.409 34.308 31.757 23.188 
25 19.558 20.471 21.789 20.167 14.786 

 
Table 18. Path loss predictions in decibels (dB) greater than free space for the Vogler method and the 

four alternative loss prediction methods for Cases 26 through 50 of Table 13. 

Test Case Vogler Giovaneli Deygout Epstein-
Peterson Bullington 

26 25.412 40.370 43.312 41.078 13.321 
27 34.207 44.904 50.412 46.359 19.310 
28 54.283 55.362 66.642 59.490 29.204 
29 54.283 55.362 66.642 59.489 29.204 
30 35.797 45.744 51.681 47.346 20.244 
31 25.412 41.883 31.387 41.078 13.321 
32 34.207 47.736 38.661 46.359 19.310 
33 54.283 60.869 66.642 59.489 29.204 
34 54.283 60.869 66.642 59.489 29.204 
35 35.797 48.787 51.680 47.346 20.244 
36 24.410 39.984 42.358 41.354 13.942 
37 32.937 44.114 48.315 47.047 20.122 
38 51.770 53.717 60.724 61.357 30.047 
39 51.770 53.717 60.724 61.357 30.047 
40 34.466 44.879 49.346 48.125 21.065 
41 25.580 40.939 42.149 41.354 13.942 
42 33.774 45.677 47.846 47.047 20.122 
43 51.717 55.050 59.275  61.357 30.047 
44 51.717 55.050 59.275 61.357 30.047 
45 35.232 46.497 48.822 48.125 21.065 
46 23.810 40.764 40.586 39.231 11.385 
47 31.856 46.354 45.991 42.986 16.514 
48 56.239 65.316 65.419 57.196 26.183 
49 56.239 65.316 65.419 57.196 26.183 
50 33.476 47.515 47.133 43.785 17.385 

 



INSTITUTE FOR TELECOMMUNICATION SCIENCES  NTIA TR-26-580 

PAGE 59 

6. Comparisons of Alternative Computation Methods with 
Measured Data 

This section contains comparisons of analytical computations of diffraction loss to measured 
diffraction loss for actual paths existing in nature. Measured data was available from four 
sources and used for comparison with analytical predictions using the alternative methods 
described previously and the Vogler method. One source of measured data was Deygout’s 
original paper [5], which gave data for 10 paths over both hilly and mountainous terrain at 
multiple frequencies. The figures of actual terrain for those 10 paths are contained in 
Deygout’s original 1966 paper. The fidelity of the terrain figures in Deygout’s report is poor. 
The other three measurements were performed by ITS at multiple frequencies over three 
separate paths containing multiple diffraction knife edges.  

ITS measured data are presented for three propagation paths. Two of these are located 
along 63rd Street in Boulder, CO. The first path is heading north along a straight section of 
63rd Street located between the Ryssby Church and Nelson Road (“short path”). The second 
path is heading south along 63rd Street from Ryssby Church to Highway 119 (“long path”). 
The 63rd Street terrain paths are illustrated in Section 6.2. The third path is along Plateau 
Road at the Table Mountain Field Site and Radio Quiet Zone, which is 15 km north of the 
Department of Commerce Boulder Laboratories campus. The Plateau Road path is shown in 
Section 6.3. 

The 63rd Street paths are illustrated in Section 6.2 with the edges that were used in the 
Tables of Section 6.2. The Plateau Road path is shown in Section 6.3. The computation 
examples for the 63rd Street paths are limited to six knife edges, which is within the limit for 
the alternative computation methods. The authors used the alternative computation methods 
using only six edges to compare to the measurements made on the 63rd Street paths. As can 
be seen from the results in Section 6.2, the alternative methods also demonstrated a ±2.5 dB 
agreement with the loss predictions for the 63rd Street paths when compared to the loss 
predictions when using the Vogler method. In addition, the alternative methods agreed with 
measured data within ±1.5 dB for the short path and ±2.5 dB for the long path. 

6.1 Comparisons to Measured Data from Deygout’s Original Paper 

Table 1 from Deygout’s original paper [5] describes 10 paths over hilly and mountainous 
terrain. In this table he compares the measured propagation loss data to loss predictions 
made with his own method and the Epstein-Peterson method [4]. In Deygout’s classic paper, 
the method takes all knife edges into consideration for the computation of diffraction loss. 
The Epstein-Peterson method implemented by Deygout considered sub-path knife edges if 
they interfered with the first Fresnel zone, except for his path 5 where he did not include 
them even if they interfered with the first Fresnel zone. The original Epstein-Peterson method 
does not address sub-path knife edges explicitly [4], [5], [19] but the Epstein-Peterson All 
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Knife-Edges Method used for comparison to measured data in this section will take sub-path 
knife edges into consideration. 

Table 19 describes the 10 paths in Deygout’s paper. The alternative methods of Epstein-
Peterson, Deygout, and Giovaneli described previously, which include all knife edges and 
their variations of no sub-path edges, and the major three edges were compared to the 
measured data of all 10 paths of Deygout’s paper. In this table, he compares the measured 
propagation loss data to loss predictions made with his own method and the Epstein-
Peterson method [4]. Path 5 appears to be the most challenging path to all three methods. 
Figures 40 through 42 demonstrate the results of the prediction accuracy for the alternative 
methods of Epstein-Peterson, Deygout, and Giovaneli. 

Table 19. Descriptions of the 10 paths from Deygout’s original paper. 

Path 
Number F (MHz) Total Path 

Length (km) 
Knife-Edge 

Number 
Actual Knife-Edge 

Height (m) 
Knife Edge Distance 

from XMTR (km) 

1 1850 44 𝑀𝑀1 
𝑀𝑀2 

60 
38 

17 
21.5 

2 1800 58 𝑀𝑀1 
𝑀𝑀2 

77.7 
136 

12 
21 

3 1800 41 𝑀𝑀1 
𝑀𝑀2 

53 
70 

22 
27 

4 1850 44 
𝑀𝑀1 
𝑀𝑀2 
𝑀𝑀3 

38.75 
75 
64 

6 
24 
28 

5 1800 52 

𝑀𝑀1 
𝑀𝑀2 
𝑀𝑀3 
𝑀𝑀4 
𝑀𝑀5 

0.5 
29.07 
46.43 

50 
4.5 

6.5 
23 
26 
28 
46 

6 160 89 𝑀𝑀1 
𝑀𝑀2 

560 
364.29 

40 
65 

7 2450 64.5 𝑀𝑀1 
𝑀𝑀2 

435.74 
500 

43 
50.5 

8 2450 22 𝑀𝑀1 
𝑀𝑀2 

393.57 
450 

11 
14 

9 2450 85 𝑀𝑀1 
𝑀𝑀2 

1120 
1067.08 

40.5 
43 

10 2450 40.5 𝑀𝑀1 
𝑀𝑀2 

650 
662.76 

11.5 
14.5 

 
Figure 40 plots the results of the comparisons of the Epstein-Peterson method for all the knife 
edges, no sub-path knife edges, and major three knife edges to the measured data for each 
of the 10 paths. The prediction in Figure 40 for the case where the sub-path knife edges were 
included shows better agreement with measured data than the case where the sub-path knife 
edges were not included. Figure 38 shows that the deviation from measured data for the 
Epstein-Peterson method can be as much as −8.5 dB in Path 9, but as small as −2 dB for Path 
3. Figure 40 does not include the correction by Beyer mentioned previously, because 
Deygout did not correct his computations in his 1966 paper [5], since it predated the report 
by Beyer [7]. Figure 41 plots the results of the comparisons of the Deygout method for all the 
knife edges, no sub-path knife edges, and major three knife edges to the measured data for 
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each of the 10 paths. This resulted in the most accurate loss prediction for his own method. In 
his paper, Deygout only computed the cases with all knife edges [5].  

 

Figure 40: Epstein-Peterson loss prediction compared to measured data for the 10 paths in Deygout’s 
original paper. Attenuation ratio (dB) = Epstein-Peterson method (dB) − measured data (dB). 

Figure 41 shows that the deviation for the Deygout method can be as large as 6 dB for Path 5 
but can be as small as 1 dB for some paths. Figure 42 plots the results of the comparisons of 
the Giovaneli method for all of the knife edges, no sub-path knife edges, and major three 
knife edges to the measured data for each of the 10 paths. Figure 42 shows that the deviation 
for the Giovaneli method can be as much as 7 dB for Path 5, but for the other paths it can be 
as small as 1 dB. The Giovaneli method provides a similar prediction error to the Deygout 
method of diffraction loss for some methods but can have a prediction that is much less than 
the Epstein-Peterson and Deygout methods. Comparison of the results of Figures 40 through 
42 demonstrate this. 
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Figure 41: Deygout loss prediction compared to measured data for the 10 paths in Deygout’s original 
paper. Attenuation ratio (dB) = Deygout method (dB) − measured data (dB). 

 

Figure 42: Giovaneli loss prediction compared to measured data for the 10 paths in Deygout’s original 
paper. Attenuation ratio (dB) = Giovaneli method (dB) − measured data (dB). 
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6.2 Comparisons of Predictions to Measured Data for the 63rd Street Paths 

Table 20 lists terrain heights and distances of each diffraction edge from the transmitter 
along the 63rd Street short path that were selected from the terrain data for the diffraction 
edges for the diffraction analysis. The transmitter and receiver antenna heights and the 
distance of the receiver from the transmitter at the end of the path are also given in Table 20. 
The transmitter location is zero reference for these distances. Diffraction edge distance 
locations used for the diffraction loss computations are at 60, 360, 690, 990, 1260, and 1290 
meters from the transmitter, as shown in Table 20 below. The heights of the diffraction edges 
that were used for the diffraction loss computations are also marked at their peaks with a dot 
in Figure 43. 

Table 20. Diffraction knife-edge height and diffraction-edge distance description of each diffraction 
edge for the short path on 63rd Street. 

Terrain Height (m) Short Path Terrain Distance from Transmitter (m) 
H1 =1578 60 
H2 =1575 360 
H3 =1582 690 
H4 =1572 990 
H5 =1567 1260 
H6 =1566 1290 

XMTR Antenna Height =1579.2 XMTR Antenna Distance = 0 
RCVR Antenna Height =1563.2 RCVR Antenna Distance =1380 

 
Figure 43 is a profile plot of the terrain contour for the short path. The terrain data was 
available at 30-meter intervals along the path with a 1-meter resolution in elevation with 
respect to sea level.  
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Figure 43: Terrain contour for the short (north) path along 63rd Street, 12 km northeast of city center, 
Boulder, CO. 

Table 21 lists terrain heights and distances of each diffraction edge from the transmitter 
along the 63rd Street long path that were selected from the terrain data for the diffraction 
analysis. The transmitter and receiver antenna heights and the distance of the receiver from 
the transmitter at the end of the path are also given. The transmitter location is zero reference 
for these distances. Diffraction edge distance locations used for the diffraction loss 
computations are at 420, 2100, 4890, 5520, 6060, and 6930 meters from the transmitter and 
are listed in Table 21 below. The heights of the diffraction edges that were used for the 
diffraction loss computations are also marked at their peaks with a dot in Figure 44. 

Table 21. Diffraction edge height and diffraction edge distance description of long path on 63rd Street. 

Diffraction Edge Height (m) Long Path Edge Distance from Transmitter (m) 
H1 = 577 420 
H3 = 585 2100 
H5 = 583 4890 
H6 = 583 5520 
H7 =1582 6060 
H8 =1582 6930 

XMTR Antenna Height = 1579.2 XMTR Antenna Distance = 0 
RCVR Antenna Height =1574.2 RCVR Antenna Distance = 7110 

 
Figure 44 is a profile plot of the terrain contour for the long path. The terrain data were 
available at 30-meter intervals along the path with a 1-meter elevation resolution with respect 
to sea level. Figure 45 is a photo of part of the short path along 63rd Street that shows the 
transmitter van on location at the Ryssby Church.  
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Figure 44: Terrain contour for the long (south) path along 63rd Street, 12 km northeast of city center, 
Boulder, CO. 

 

Figure 45: Short propagation path and ITS transmitter van on 63rd Street. 

The 63rd Street paths are considered rural environment: a two-lane road located at a 
constant longitude running directly north-south about 12 km north of the city center flanked 
by open fields and widely separated houses and farmland. Trees and some fences are sparse 
along this section of the road. There are overhead power lines along the entire length of the 
road. The transmitter was located at the Ryssby Church, and the receiver van was driven 
along paths in a north (short path) and south (long path) direction from the church. Data was 
recorded for both incoming and outgoing directions. There was minimal traffic along this 
road during the measurements.  
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The loss prediction of the alternative methods was first compared to the rigorous Vogler 
method. Figure 46 presents these results for both the short and long paths as a function of 
frequency at the maximum distances of 1.38 and 7.11 km for the short and long paths, 
respectively. The seven frequencies at which the loss comparisons to Vogler were made in 
Figure 46 were 183, 430, 915, 1350, 1602.5, 2260, and 5750 MHz. When the alternative 
methods were compared to the Vogler method, the maximum deviation was 3.7 dB. 
Figure 46 shows this agreement between the rigorous Vogler method and the alternative 
approximate methods.  

 

Figure 46. Loss prediction of alternative methods compared to Vogler loss prediction for short and long 
paths along 63rd Street. Attenuation ratio (dB) = alternative method (dB) − Vogler method (dB). 

Figure 47 presents the results of comparisons of the three alternative methods to the 
measured data for the short path with the receiver located at 1.38 km from the transmitter. 
Figure 48 presents the results of comparisons of the three alternative methods to the 
measured data for the long path with the receiver located at 7.11 km from the transmitter. 
The measured data in Figures 47 and 48 was only available at five frequencies: 183, 430, 915, 
1602.5, and 2260 MHz. The measured data is the average of the incoming and outgoing 
recorded data at the receiver location. Figures 47 and 48 demonstrate the agreement with 
measured data. The correction method for the Epstein-Peterson method described by Beyer 
[7] was not used here. The maximum deviation from measured data for the short path in 
Figure 47 is 4 dB, but most of the data for this path is within 2 dB. The maximum deviation 
from measured data for the long path in Figure 48 is 5 dB, but most of the data is within 3 dB. 

The plots of Figures Figure 48 and Figure 49 are the results of a limited amount of measured 
data that can represent the capability of the alternative multiple-edge diffraction models to 
predict basic transmission loss and compare the prediction data to measured data. The 
measured data is from a limited number of distances and frequencies. An extensive 
comparison to measured data is beyond the scope of the study of this report. The 
computation and comparison of the Vogler model to measured data was also beyond the 
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scope of the current report. A future study could address a more comprehensive area for 
research using more extensive measured data. 

 

Figure 47. Prediction of basic transmission loss with Epstein-Peterson, Deygout, and Giovaneli loss 
prediction methods compared to measured data loss for the 63rd Street short path with receiver 

antenna at a distance of 1.38 km. 

 

Figure 48: Prediction of basic transmission loss with Epstein-Peterson, Deygout, and Giovaneli loss 
prediction methods compared to measured data loss for the 63rd Street long path with receiver 

antenna at a distance of 7.11 km. 
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6.3 Comparisons of Predictions to Measured Data for the Table Mountain Field 
Site and Radio Quiet Zone  

The third path is along Plateau Road, which runs through the center of the Table Mountain 
Field Site and Radio Quiet Zone and is itself located approximately 17 km north of the 
Department of Commerce Boulder Laboratories campus. Table Mountain is a rural 
environment and is a mesa elevated from the surrounding terrain. The diffraction path ran 
east-west along a straight section of Plateau Road.  

Figure 49 shows a photograph of the path used in the measurements. Tables 22 and 23 
contain the frequency, antenna heights, and antenna types for the Field Site diffraction path 
measurements for the first and second set of data taken along Plateau Road. 

 

Figure 49: The Table Mountain Field Site Plateau Road diffraction path. 

Table 22. Frequency, antenna type, and antenna height data for the Table Mountain Field Site Plateau 
Road diffraction path measurements for first set of data for Figure 51. 

F (MHz) XMTR Antenna 
Height (m) 

RCVR Antenna 
Height (m) 

XMTR Antenna 
Type 

RCVR Antenna 
Type on Van 

183 1.81 2.2 Discone Monopole 
430 1.81 2.2 Collinear Monopole 
915 0.62 2.2 Collinear Monopole 

1350 0.89 2.2 Collinear Monopole 
1602.5 0.64 2.7 Collinear Discone 
2260 0.79 2.7 Collinear Discone 
5750 0.70 2.7 Collinear Discone 
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Table 23. Frequency, antenna type, and antenna height data for the Table Mountain Field Site Plateau 
Road diffraction path measurements for second set of data for Figure 52. 

F(MHz) XMTR Antenna 
Height (m) 

RCVR Antenna 
Height (m) 

XMTR Antenna 
Type 

RCVR Antenna 
Type on Van 

183 1.0 2.2 Discone Monopole 
430 1.0 2.2 Monopole/GP Monopole 
915 1.0 2.2 Monopole/GP Monopole 

1350 1.71 2.2 Collinear Monopole 
1602.5 1.71 2.7 Collinear Discone 
2260 1.61 2.7 Collinear Discone 
5750 1.52 2.7 Collinear Discone 

 
A different set of antenna heights was used in the first (Table 22) and second (Table 23) sets 
of data. Figure 50 is a plot of the terrain contour for the Table Mountain Field Site Plateau 
Road path. Table 24 contains the terrain elevations and distance locations for this path. The 
elevations are with respect to sea level, and the distances are with respect to the transmitter. 
The transmitter is located at reference distance of 0 m, and the receiver measurements were 
taken at a distance of 400 meters from the transmitter. There are four major diffraction edges 
in Figure 48 at distances of approximately 60, 210, 240, and 270 meters from the transmitter 
indicated by dots at the edge peaks. These four edges were used in the diffraction loss 
computation. The diffraction computation has been limited to the most significant knife 
edges that contribute to the total diffraction loss. The sub-path knife edges that contribute a 
negligible amount to the total diffraction loss were not included. 

 

Figure 50. Terrain contour for the Table Mountain Field Site Plateau Road path. 
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Table 24. Terrain data for the Table Mountain Field Site path. 

Distance (m) Elevation (m) 
0.0 (Transmitter Antenna Location) 1704.0 

30.0 1704.0 
60.0 1705.0 
90.0 1705.0 

120.0 1705.0 
150.0 1705.0 
180.0 1706.0 
210.0 1707.0 
240.0 1707.0 
270.0 1705.0 
300.0 1696.0 
330.0 1693.0 
360.0 1692.0 
390.0 1691.0 

400.0 (Receiver Antenna Location) 1690.7 
 
Figures 51 and 52 show the results of the two test conditions. They are the comparisons of 
predictions of basic transmission loss computed by the three alternative methods of Epstein-
Peterson, Deygout, and Giovaneli to the measured data for the Table Mountain Field Site. 
Basic transmission loss includes the diffraction loss and the free space loss along the path. 

 

Figure 51: Comparisons of three prediction methods to data that was measured at the Table Mountain 
Field Site Plateau Road path at a distance 400 meters from the transmitter using Table 22 scenario data. 
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Figure 52: Comparisons of three prediction methods to data that was measured at the Table Mountain 
Field Site Plateau Road path at a distance of 400 meters from the transmitter using Table 23 scenario 

data. 

The first and second sets of data show the diffraction effects of the different sets of antenna 
heights of the basic transmission loss computations of Figures 51 and 52. Notice that the 
propagation loss predicted with the Deygout and Giovaneli alternative methods agree with 
respect to measured data within ±2 dB, but the propagation loss predicted with the Epstein-
Peterson alternative method does not and deviates as much as 14 dB with respect to 
measured data. In Figure 51 the agreement is within 4 dB at the low frequencies and most of 
the frequencies, but the agreement is within 2 to 3 dB at some frequencies for the Deygout 
and Giovaneli methods. In Figure 52 the agreement is within 6 dB at the lower frequencies, 
but at frequencies between 900 MHz and 1700 MHz the agreement is within 2 to 3 dB for the 
Deygout and Giovaneli methods. This is because the ray paths with the Epstein-Peterson 
alternative method align with the incident shadow boundaries. As discussed previously in this 
report, alignment of ray paths with the incident shadow boundaries can result in large 
prediction errors with some of the alternative methods, but not in the other alternative 
methods. This is due to the different procedures in establishing the ray paths for each of the 
alternative methods. The alternative methods of Deygout and Giovaneli do not have ray 
paths that align with the incident shadow boundaries for the above analysis. 
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7. Conclusions  

This paper has described the results of a comparative analysis of four alternative multiple 
knife-edge diffraction methods and variations of these methods in place of a rigorous 
multiple knife-edge diffraction method to support radio wave propagation model 
development at ITS. The goal of this analysis was to investigate faster methods for computing 
knife-edge diffractions and a technique to select the best method. Section 3.3 describes this 
technique. 

All of the alternative diffraction computation methods are approximations and are based on 
the Fresnel-Kirchhoff scalar theory of diffraction. The Kirchhoff boundary conditions are also 
approximate and only apply to scalars. This diffraction analysis is based on the classical 
approach of the Fresnel-Kirchhoff scalar theory of optics for a single knife edge. The 
assumption is made that the knife edge is a perfectly absorbing screen placed normal to the 
direction of propagation extending to infinity in both directions and vertically downwards. In 
a multiple knife-edge scenario, the losses for each edge will be combined using the 
alternative multiple knife-edge methods. There are a number of alternative methods for 
computing diffraction loss over multiple knife edges. Each method has its own unique 
procedure for computing diffraction loss.  

The original motivation for this analysis effort was to determine which alternative diffraction 
computation method to use to compute diffraction loss over multiple knife edges based on 
criteria discussed in this report. The authors sought a selection technique to determine the 
optimum alternative diffraction computation method that is based on the relative geometric 
location of the incident shadow boundary and the ray path from one knife edge to the next. 

Preliminary results of this analysis show where each of the alternative multiple knife-edge 
methods investigated can be used in place of the rigorous Vogler diffraction method to 
reduce computation time while maintaining suitable accuracy. It was shown that no one 
alternative method can cover all scenario variations. Which alternative diffraction method 
works best for a given scenario depends on how a method treats sub-path obstacles and the 
alignment of the ray path from one knife edge to the next knife edge with the incident 
shadow boundaries at the knife edges. 

A method of selecting the best model in a particular situation was investigated and shows 
promise as a good indicator of which alternative method will predict the best estimate of 
diffraction loss. The procedure and order of computing knife-edge diffraction loss is different 
for each of the alternative methods investigated. As a result, for the same diffraction scenario, 
one method may avoid alignment of the ray path with the incident shadow boundary, while 
another may align the ray path with the incident shadow boundary. The method with the 
largest magnitude of the angular separation of the ray path and the incident shadow 
boundary that avoids this alignment will predict the diffraction loss with better accuracy. 

The evaluation of the Fresnel transition function 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) can be performed using (11), but it is 
easier to use Figure 6 with sufficient accuracy after using (12) to calculate 𝑥𝑥. A procedure for 
computing 𝑥𝑥, 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥), and the Fresnel transition function product 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) is listed below. 
The equations and figures referenced in the procedure below are in Section 3.3. 
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• Referring to Figure 4, compute the argument of 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) using the parameters 𝜙𝜙 = 𝜙𝜙′ + 𝜋𝜋 
and 𝐿𝐿 as defined in (12), where 𝜙𝜙 is the incident shadow boundary and 𝐿𝐿 is the distance 
from the diffraction knife edge to the observation point, which is the distance from the 
diffracting knife edge to the next knife edge. 

• The angle, 𝜃𝜃 = 𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜙𝜙 is the difference between the angle of the incident ray path for the 
next knife edge, 𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟, and the angle of the incident shadow boundary 𝜙𝜙. 

• The wavelength 𝜆𝜆 is obtained from the operating frequency. 

• Compute 𝑥𝑥 from (12), compute log𝑥𝑥 from 𝑥𝑥, and then compute 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) from Figure 6 using 
log𝑥𝑥. 

• Repeat the four steps above for each diffraction edge. 

• Compute the product of all diffraction edges, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥), by multiplying all the individual 
𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) computations together. 

The 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) value of 1.0 indicates that for a single diffraction edge, the ray path to the next 
edge is far away from the incident shadow boundary and the computation of the diffraction 
loss will be better than an edge with an 𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) value of less than 1.0. It follows that the 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) for multiple edges with a value of 1.0 will be better than an alternative method that 
has an 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥) less than 1.0 or less than the other alternative method. 

The approach described above and in Section 3.3 can be used for selecting an alternative 
diffraction method that achieves better accuracy (minimum error). Accuracy is improved by 
using the method that has the largest angular deviation between the ray path from one knife 
edge to the next knife edge and the incident shadow boundary. The best indicator for finding 
what magnitude of angular separation would produce a minimal diffraction loss error was 
determined to be the 𝐹𝐹𝐹𝐹𝐹𝐹 magnitude. The 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is the product of the magnitude of the 
individual 𝐹𝐹𝐹𝐹𝐹𝐹s for each of the edges. The 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 magnitude for all edges is computed by 
multiplying together the magnitudes of the 𝐹𝐹𝐹𝐹𝐹𝐹s of all knife edges in the scenario for each 
alternative method. The alternative method with the maximum magnitude of the 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 was 
the most suitable alternative prediction method with minimum diffraction loss error. 

The Bullington method was found unsuitable due to inaccurate results of the diffraction 
computation even with only two knife edges. Tables Table 17 and 18 show more than 6 dB 
difference between the Vogler method and the Bullington method. In many cases the 
difference is decades of dB.  

Comparisons in Tables 17 and 18 of Section 5.2 show the agreement between the Vogler 
results and both the Epstein-Peterson, Deygout, and Giovaneli results for a variety of cases. 
Some differences depend on whether the sub-path knife edges (obstacles) are included in 
the diffraction loss computation for the different methods.  

It was found by comparative computations that removing the sub-path obstacles improves 
the agreement between the Deygout method and the Vogler method. The Epstein-Peterson 
method’s agreement with the Vogler method also improves when the sub-path knife edges 
are removed. This is in agreement with a comment made by Deygout in his paper [5], about 
limiting the number of edges to 3 or 4 edges for a diffraction loss computation. 
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However, the Epstein-Peterson method with all knife edges included and corrected by the 
Beyer method [7] improves agreement with the Vogler method. This is because the Beyer 
method is designed to improve the loss prediction agreement when increasing the number 
of knife edges by including the sub-path knife edges.  

The Vogler method is valid for many knife edges up to 10. By including the diffraction loss 
effects of the sub-path knife edges, improved agreement with the Vogler method is 
achieved, since both methods include all knife edges. This is valid for both the Epstein-
Peterson and Vogler methods, since the knife edges for the Epstein-Peterson method are 
corrected with the Beyer method [7]. The Giovaneli method with no sub-path knife edges 
agrees with the Vogler method, as shown in Section 5.1. 

Comparisons of the measured data were also performed with four separate sets of available 
data. One was measured data from the classic paper by Deygout [5]; the other three were 
from measurements performed by ITS. Two of these datasets were taken along medium 
length paths and the third along a much shorter diffraction path. Comparisons of measured 
data show the agreement with the Epstein-Peterson, Deygout, and Giovaneli methods in 
addition to the Vogler method, in Section 6. The clutter environment along the paths can 
cause some large deviations, since both the rigorous Vogler method and the alternative 
methods do not consider the reflections and multipath from trees, houses, power lines, and 
fences, etc. along the paths. The alternative multiple knife-edge diffraction methods are 
approximations, but, as shown in this report, they can provide the predictions of diffraction 
loss when care is exercised to avoid the alignment of the incident shadow boundaries with 
the ray paths between knife edges. 

As stated above, the plots of Figures Figure 48 and Figure 49 are the results of a limited 
amount of measured data that can represent the capability of the alternative multiple-edge 
diffraction models to predict basic transmission loss and compare the prediction data to 
measured data. The measured data is from a limited number of distances and frequencies. 
An extensive comparison to measured data is beyond the scope of the study of this report. 
The computation and comparison of the Vogler model to measured data is also beyond the 
scope of the current report. A future study could address a more comprehensive area for 
research using more extensive measured data. 
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Appendix A. The Bullington Mathematical Algorithm 

The mathematical algorithm for the Bullington method begins with finding the knife edge 
with the maximum elevation angle from the transmitter antenna and another knife edge with 
the maximum elevation angle from the receiver antenna. These are the horizons from each 
antenna. This is equivalent to calculating the tangents of the angles for all 𝑛𝑛 knife edges with 
respect to the transmitter antenna 𝜃𝜃𝑇𝑇𝑇𝑇 and the receiver antenna 𝜃𝜃𝑅𝑅𝑅𝑅 using: 

 tan𝜃𝜃𝑇𝑇𝑇𝑇 =
ℎ𝑖𝑖

∑ 𝑑𝑑𝑘𝑘𝑖𝑖
𝑘𝑘=1

 (A-1) 

 tan𝜃𝜃𝑅𝑅𝑅𝑅 =
ℎ𝑖𝑖

∑ 𝑑𝑑𝑘𝑘𝑛𝑛+1
𝑘𝑘=1 − ∑ 𝑑𝑑𝑘𝑘𝑖𝑖

𝑘𝑘=1
 

(A-2) 

The equation for a line from the transmitter antenna to the 𝑖𝑖𝑡𝑡ℎ knife edge of height ℎ𝑖𝑖 
representing the horizon with respect to the transmitter antenna is: 

 𝑦𝑦𝑇𝑇 =
ℎ𝑖𝑖𝑑𝑑

∑ 𝑑𝑑𝑘𝑘𝑖𝑖
𝑘𝑘=1

 
(A-3) 

where the distances 𝑑𝑑𝑘𝑘 are defined in Figures 16 through 25, and 𝑑𝑑 is the distance along the 
path. The equation for a line from the receiver antenna to the 𝑗𝑗𝑡𝑡ℎ knife edge of height ℎ𝑖𝑖, 
representing the horizon with respect to the receiver antenna for 𝑛𝑛 total knife edges is: 

 
𝑦𝑦𝑅𝑅 =

−ℎ𝑗𝑗𝑑𝑑
∑ 𝑑𝑑𝑘𝑘𝑛𝑛+1
𝑘𝑘=1 − ∑ 𝑑𝑑𝑘𝑘

𝑗𝑗
𝑘𝑘=1

+
ℎ𝑗𝑗 ∑ 𝑑𝑑𝑘𝑘𝑛𝑛+1

𝑘𝑘=1

∑ 𝑑𝑑𝑘𝑘𝑛𝑛+1
𝑘𝑘=1 − ∑ 𝑑𝑑𝑘𝑘

𝑗𝑗
𝑘𝑘=1

 
(A-4) 

The effective height ℎ′ of the equivalent knife edge and the distance 𝑑𝑑𝑇𝑇 from the transmitter 
are obtained by solving the above two equations for 𝑑𝑑 =  𝑑𝑑𝑇𝑇 simultaneously where 𝑦𝑦𝑇𝑇 = 𝑦𝑦𝑅𝑅 
after entering all the numerical values for the knife edge heights and computing the 
summations in each of the equations. The distance 𝑑𝑑𝑅𝑅 from the receiver is: 

 
𝑑𝑑𝑅𝑅 = ��𝑑𝑑𝑘𝑘

𝑛𝑛+1

𝑘𝑘=1

� − 𝑑𝑑𝑇𝑇 
(A-5) 

The effective height is: 

 ℎ′ = 𝑦𝑦𝑇𝑇(𝑑𝑑𝑇𝑇) =
ℎ𝑖𝑖𝑑𝑑𝑇𝑇

∑ 𝑑𝑑𝑘𝑘𝑖𝑖
𝑘𝑘=1

 
(A-6) 

The Fresnel-Kirchhoff diffraction parameter is then calculated as [8]: 

 
𝜈𝜈 = ℎ′�

2
𝜆𝜆
�

1
𝑑𝑑𝑇𝑇

+
1
𝑑𝑑𝑅𝑅
� 

(A-7) 
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where 𝜆𝜆 = 𝑐𝑐
𝑓𝑓
 is the wavelength in meters, 𝑓𝑓 is the frequency in Hertz, and 𝑐𝑐 is the speed of 

light in meters per second. This diffraction coefficient is then used to calculate the diffraction 
loss using the equation for 𝐽𝐽(𝜈𝜈) [8]. For 𝜈𝜈 > −0.78, the diffraction loss in dB is computed from 
[8]: 

 𝐽𝐽(𝜈𝜈) = 6.9 + 20 log ��(𝜈𝜈 − 0.1)2 + 1.0 + 𝜈𝜈 − 0.1� (A-8) 
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Appendix B. The Epstein-Peterson Mathematical Algorithm 

The mathematical algorithm for the Epstein-Peterson method begins with assuming that each 
knife edge is illuminated by the transmitter antenna or the diffracted energy from the top of 
the preceding knife edge. The attenuation due to diffraction is computed sequentially for 
each knife edge in dB, and the attenuations for all knife edges are summed together in dB. 
The diffraction loss computation for 𝑛𝑛 knife edges using the Epstein-Peterson algorithm 
requires the determination of the effective height of each knife edge, and the distances 𝑑𝑑𝑇𝑇 
and 𝑑𝑑𝑅𝑅 of each knife edge from the transmitter and receiver antenna, respectively. The 
effective height ℎ𝑖𝑖′ of the 𝑖𝑖𝑡𝑡ℎ knife edge with height ℎ𝑖𝑖 is given by: 

 ℎ𝑖𝑖′ = ℎ𝑖𝑖 −
(ℎ𝑖𝑖+1 − ℎ𝑖𝑖−1)
𝑑𝑑𝑖𝑖 + 𝑑𝑑𝑖𝑖+1

𝑑𝑑𝑖𝑖 − ℎ𝑖𝑖−1 (B-1) 

The distances 𝑑𝑑𝑇𝑇 and 𝑑𝑑𝑅𝑅 are: 𝑑𝑑𝑇𝑇 = 𝑑𝑑𝑖𝑖 and 𝑑𝑑𝑅𝑅 = 𝑑𝑑𝑖𝑖+1. This equation is used for sub-path knife 
edges and non-sub-path knife edges. The Fresnel-Kirchhoff diffraction parameter for the 𝑖𝑖𝑡𝑡ℎ 
knife edge is computed from [8]: 

 
𝜈𝜈𝑖𝑖 = ℎ𝑖𝑖′�

2
𝜆𝜆
�

1
𝑑𝑑𝑇𝑇

+
1
𝑑𝑑𝑅𝑅
� 

(B-2) 

The diffraction loss for each knife edge is computed using (B-3) for 𝐽𝐽(𝜈𝜈) [8]. The total 
diffraction loss is the sum of the individual diffraction losses for each knife edge. 

 𝐽𝐽(𝜈𝜈) = 6.9 + 20 log ��(𝜈𝜈 − 0.1)2 + 1.0 + 𝜈𝜈 − 0.1� (B-3) 
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Appendix C. The Deygout Mathematical Method 

C.1 Equations for the Primary Knife Edge 

The diffraction loss computation algorithm for 𝑛𝑛 knife edges using the Deygout method 
begins with computing the Fresnel-Kirchhoff diffraction parameter 𝜈𝜈i using (C-1) for all knife 
edges as if the other knife edges were absent to determine the primary knife edge [8]. The 
primary knife edge has the highest value for 𝜈𝜈𝑖𝑖. 

 𝜈𝜈𝑖𝑖 = ℎ𝑖𝑖′�
2
𝜆𝜆
�

1
𝑑𝑑𝑅𝑅

+
1
𝑑𝑑𝑇𝑇
� (C-1) 

The distances to the 𝑖𝑖𝑡𝑡ℎ knife edge for 𝑛𝑛 knife edges are computed using the following 
equations: 

 
𝑑𝑑𝑇𝑇 = �𝑑𝑑𝑘𝑘

𝑖𝑖

𝑘𝑘=1

 (C-2) 

 
𝑑𝑑𝑅𝑅 = � 𝑑𝑑𝑘𝑘

𝑛𝑛+1

𝑘𝑘=𝑖𝑖+1

 (C-3) 

 

Note that equations (C-2) and(C-3) are equivalent to equations (1) and (2) with different 
symbols on the left-hand sides, respectively. For the 𝑖𝑖𝑡𝑡ℎ knife edge, ℎ𝑖𝑖′ is the effective height 
of the 𝑖𝑖𝑡𝑡ℎ knife edge with respect to the transmitter antenna to the receiver antenna baseline. 
These effective heights of the diffraction knife edges are used for the determination of the 
primary knife edge and are given by (C-4). The height  ℎ𝑖𝑖  is the original height before 
normalization with respect to a baseline drawn between the transmitter antenna and the 
receiver antenna located at heights ℎ𝑡𝑡 and ℎ𝑟𝑟, respectively. 

 
ℎ𝑖𝑖′ = ℎ𝑖𝑖 − �ℎ𝑡𝑡 +

(ℎ𝑟𝑟 − ℎ𝑡𝑡)∑ 𝑑𝑑𝑘𝑘𝑖𝑖
𝑘𝑘=1

∑ 𝑑𝑑𝑘𝑘𝑛𝑛+1
𝑘𝑘=1

� (C-4) 

If the 𝑚𝑚𝑡𝑡ℎ knife edge has the largest 𝜈𝜈𝑖𝑖, then it is the primary knife edge and the diffraction 
loss 𝐽𝐽(𝜈𝜈) of the 𝑚𝑚𝑡𝑡ℎ knife edge is computed using ℎ = ℎ𝑚𝑚′  for 𝜈𝜈𝑖𝑖 > −0.78 with (C-1) through 
(C-5) [8]. 

 𝐽𝐽(𝜈𝜈) = 6.9 + 20 log ��(𝜈𝜈 − 0.1)2 + 1.0 + 𝜈𝜈 − 0.1� (C-5) 

Only the loss for the 𝑚𝑚𝑡𝑡ℎ knife-edge (primary knife edge) can be computed using the above 
value of 𝜈𝜈𝑚𝑚. The losses for the remaining knife edges are computed using different values of 
𝜈𝜈𝑖𝑖 obtained from other procedures of computing effective heights with different and specific 
reference baselines for determination of the diffraction parameter 𝜈𝜈𝑖𝑖 for the knife edges of 
secondary, third, fourth, and fifth levels. After the primary knife edge has been selected, new 
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baselines must be established for computing effective knife-edge heights and losses of the 
remaining knife edges. The effective heights ℎ𝑖𝑖′ computed above for the determination of the 
primary knife edge for nonzero receiver and transmitter antenna heights, will be used as the 
initial reference heights for the individual computation of the new effective heights ℎ𝑖𝑖′ with 
respect to the new baselines for the second-, third-, fourth-, and fifth-level knife edges. The 
diffraction losses for the primary knife edge and second-, third-, fourth-, and fifth-level knife 
edges are added together to obtain the total diffraction loss. 

C.2 Determination of Effective Knife-Edge Heights and Distances for Secondary 
Knife Edges on Either Side of the Primary 𝑚𝑚𝑡𝑡ℎ Knife Edge 

The 𝑚𝑚𝑡𝑡ℎ knife edge divides the transmitter to receiver distance region into two sub-path 
regions given by the distances 𝑑𝑑𝑇𝑇 and 𝑑𝑑𝑅𝑅 computed above for the primary knife edge. The 
transmitter source for the sub-path region to the left of the primary knife edge is located at 
the original transmitter antenna source, but the receiver antenna is located at the top of the 
primary knife edge. The transmitter antenna source for the sub-path region to the right of the 
primary knife edge is located at the top of the primary knife edge, and the receiver antenna is 
at the location of the original receiver antenna.  

The new baselines are formed for computing effective heights ℎ𝑖𝑖′ for the secondary knife 
edges by drawing a line from the transmitter antenna to the primary knife edge, and from the 
primary knife edge to the receiver antenna. If the total number of knife edges is 𝑛𝑛 and the 
primary knife edge height is ℎ𝑚𝑚′ , with index 𝑚𝑚, then the equation for the new baseline for 
knife edges located to the left of the primary knife edge is: 

 
𝑦𝑦𝑇𝑇 =

ℎ𝑚𝑚′ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑘𝑘=1

∑ 𝑑𝑑𝑘𝑘𝑚𝑚
𝑘𝑘=1

 (C-6) 

The effective heights ℎ𝑖𝑖′ with respect to the new baseline of the 𝑖𝑖𝑡𝑡ℎ secondary knife edge ℎ𝑖𝑖 
for knife edges to the left of the 𝑚𝑚𝑡𝑡ℎ primary knife edge are: 

 
ℎ𝑖𝑖′ = ℎ𝑖𝑖 −

ℎ𝑚𝑚 ∑ 𝑑𝑑𝑘𝑘𝑖𝑖
𝑘𝑘=1

∑ 𝑑𝑑𝑘𝑘𝑚𝑚
𝑘𝑘=1

 (C-7) 

where ℎ𝑖𝑖 is the reference height of the 𝑖𝑖𝑡𝑡ℎ knife edge with respect to the baseline between 
the transmitter and receiver antennas computed previously for the primary knife edge. The 
distances 𝑑𝑑𝑇𝑇 and 𝑑𝑑𝑅𝑅 for the 𝑖𝑖𝑡𝑡ℎ knife edge on the left side of the 𝑚𝑚𝑡𝑡ℎ knife edge are: 

 
𝑑𝑑𝑇𝑇 = �𝑑𝑑𝑘𝑘

𝑖𝑖

𝑘𝑘=1

 (C-8) 

 
𝑑𝑑𝑅𝑅 = � 𝑑𝑑𝑘𝑘

𝑚𝑚

𝑘𝑘=𝑖𝑖+1

 (C-9) 

The equation for the new baseline for the secondary knife edges located to the right of the 
primary knife edge is: 
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𝑦𝑦𝑅𝑅 =

−ℎ𝑚𝑚
∑ 𝑑𝑑𝑘𝑘𝑛𝑛+1
𝑘𝑘=𝑚𝑚+1

� � 𝑑𝑑𝑘𝑘

𝑖𝑖

𝑘𝑘=𝑚𝑚+1

�+ ℎ𝑚𝑚 (C-10) 

The effective heights, ℎ𝑖𝑖′, with respect to the new baseline of the 𝑖𝑖𝑡𝑡ℎ secondary knife edge ℎ𝑖𝑖 
for knife edges to the right of the 𝑚𝑚𝑡𝑡ℎ primary knife edge are: 

 
ℎ𝑖𝑖′ = ℎ𝑖𝑖 +

ℎ𝑚𝑚′ ∑ 𝑑𝑑𝑘𝑘𝑖𝑖
𝑘𝑘=𝑚𝑚+1

∑ 𝑑𝑑𝑘𝑘𝑛𝑛+1
𝑘𝑘=𝑚𝑚+1

− ℎ𝑚𝑚 (C-11) 

where ℎ𝑖𝑖′ is the reference height of the 𝑖𝑖𝑡𝑡ℎ knife edge with respect to the line between the 
transmitter and receiver antennas. The distances 𝑑𝑑𝑇𝑇 and 𝑑𝑑𝑅𝑅 for the 𝑖𝑖𝑡𝑡ℎ knife edge on the right 
side of the 𝑚𝑚𝑡𝑡ℎ knife edge are: 

 𝑑𝑑𝑇𝑇 = � 𝑑𝑑𝑘𝑘

𝑖𝑖

𝑘𝑘=𝑚𝑚+1

 (C-12) 

 𝑑𝑑𝑅𝑅 = � 𝑑𝑑𝑘𝑘

𝑛𝑛+1

𝑘𝑘=𝑖𝑖+1

 (C-13) 

When there is more than one knife edge in the sub-path regions on each side of the primary 
knife edge, each knife edge must be evaluated to determine the secondary knife edge for 
each region. The values of 𝜈𝜈𝑖𝑖 for all knife edges on each side of the primary (𝑚𝑚𝑡𝑡ℎ) knife edge 
are computed using the appropriate values of ℎ𝑖𝑖′, 𝑑𝑑𝑇𝑇 and 𝑑𝑑𝑅𝑅 to determine the knife edge with 
the largest value of 𝜈𝜈𝑖𝑖 on each side of the primary 𝑚𝑚𝑡𝑡ℎknife edge. These are the secondary 
knife edges.  

These values of 𝜈𝜈𝑖𝑖 can be used to compute the losses for only the two secondary knife edges 
that have the maximum value of 𝜈𝜈𝑖𝑖 for that region on each side of the primary knife edge. 
These secondary knife edges subdivide the first two regions into two subregions, one on 
each side of the primary knife edge, for a total of four regions. To determine the losses for 
the third-level knife edges occurring in these regions, it is necessary to establish additional 
baselines that are lines from the previous primary knife edge, secondary knife edge, or 
transmitter to the next primary knife edge, secondary knife edge, or receiver antenna in their 
respective regions. 

C.3 Equations for the Effective Height and Distances of the Third-Level 𝑖𝑖𝑡𝑡ℎ Knife 
Edges on the Left Side of the Primary Knife Edge ℎ𝑚𝑚 

For the left side of the secondary knife edge ℎ𝑞𝑞: 

 ℎ𝑖𝑖′ = ℎ𝑖𝑖 −
ℎ𝑞𝑞 ∑ 𝑑𝑑𝑘𝑘𝑖𝑖

𝑘𝑘=1

∑ 𝑑𝑑𝑘𝑘
𝑞𝑞
𝑘𝑘=1

 (C-14) 

 𝑑𝑑𝑇𝑇 = �𝑑𝑑𝑘𝑘

𝑖𝑖

𝑘𝑘=1

 (C-15) 
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 𝑑𝑑𝑅𝑅 = � 𝑑𝑑𝑘𝑘

𝑞𝑞

𝑘𝑘=𝑖𝑖+1

 (C-16) 

For the right side of the secondary knife edge ℎ𝑞𝑞: 

 ℎ𝑖𝑖′ = ℎ𝑚𝑚 −
�ℎ𝑚𝑚 − ℎ𝑞𝑞�∑ 𝑑𝑑𝑘𝑘𝑖𝑖

𝑘𝑘=𝑞𝑞+1
∑ 𝑑𝑑𝑘𝑘𝑚𝑚
𝑘𝑘=𝑞𝑞+1

− ℎ𝑞𝑞 (C-17) 

 𝑑𝑑𝑇𝑇 = � 𝑑𝑑𝑘𝑘

𝑖𝑖

𝑘𝑘=𝑞𝑞+1

 (C-18) 

 𝑑𝑑𝑅𝑅 = � 𝑑𝑑𝑘𝑘

𝑚𝑚

𝑘𝑘=𝑖𝑖+1

 (C-19) 

All the values of 𝜈𝜈𝑖𝑖 for the knife edges on the left side of the primary knife edge and each side 
of the secondary knife edge are then computed to determine the third-level knife edge for 
each side of the secondary knife edge. The largest values of 𝜈𝜈𝑖𝑖 in these separate regions are 
then used to calculate the diffraction loss only for the third-level knife edges to the left side of 
the primary knife edge on each side of the secondary knife edge. 

C.4 Equations for the Effective Height and Distances of the Third-Level 𝑖𝑖𝑡𝑡ℎ Knife 
Edges on the Right Side of the Primary Knife Edge ℎ𝑚𝑚 

For the left side of the secondary knife edge ℎ𝑑𝑑: 

 ℎ𝑖𝑖′ = ℎ𝑖𝑖 +
(ℎ𝑚𝑚 − ℎ𝑑𝑑)∑ 𝑑𝑑𝑘𝑘𝑖𝑖

𝑘𝑘=𝑚𝑚+1

∑ 𝑑𝑑𝑘𝑘𝑑𝑑
𝑘𝑘=𝑚𝑚+1

− ℎ𝑚𝑚 (C-20) 

 𝑑𝑑𝑇𝑇 = � 𝑑𝑑𝑘𝑘

𝑖𝑖

𝑘𝑘=𝑚𝑚+1

 (C-21) 

 𝑑𝑑𝑅𝑅 = � 𝑑𝑑𝑘𝑘

𝑑𝑑

𝑘𝑘=𝑖𝑖+1

 (C-22) 

For the right side of the secondary knife edge ℎ𝑑𝑑: 

 ℎ𝑖𝑖′ = ℎ𝑖𝑖 +
ℎ𝑑𝑑 ∑ 𝑑𝑑𝑘𝑘𝑖𝑖

𝑘𝑘=𝑑𝑑+1
∑ 𝑑𝑑𝑘𝑘𝑛𝑛+1
𝑘𝑘=𝑑𝑑+1

− ℎ𝑑𝑑 (C-23) 

 𝑑𝑑𝑇𝑇 = � 𝑑𝑑𝑘𝑘

𝑖𝑖

𝑘𝑘=𝑑𝑑+1

 (C-24) 
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 𝑑𝑑𝑅𝑅 = � 𝑑𝑑𝑘𝑘

𝑛𝑛+1

𝑘𝑘=𝑖𝑖+1

 (C-25) 

All the values of 𝜈𝜈𝑖𝑖 for the knife edges on the right side of the primary knife edge and each 
side of the secondary knife edge are then computed to determine the third-level knife edge 
on each side of the secondary knife edge. The largest values of 𝜈𝜈𝑖𝑖 for the right side of the 
primary knife edge and each side of the secondary knife edge determine the third-level knife 
edge on each side of the secondary knife edge. The largest values of 𝜈𝜈𝑖𝑖 are then used to 
calculate the diffraction loss only for the third-level knife edges to the right side of the 
primary knife edge on each side of the secondary knife edge.  

The methods described previously for the primary, secondary, and third-level knife edges are 
then applied to the sub-path regions formed by the remaining knife edges to determine the 
effective heights, distances, Fresnel-Kirchhoff diffraction parameters, and diffraction loss for 
the fourth- and fifth-level knife edges. 

C.5 Determination of Effective Knife-Edge Heights for Higher Order Knife Edges 
on Either Side of the Primary Knife Edge 

After the third- and fourth-level knife edges have been determined and their losses 
computed, the remaining knife edges, if any, are fifth-level knife edges. For the fifth-level 𝑖𝑖𝑡𝑡ℎ 
knife edge, which is the highest level possible for 𝑛𝑛 = 6, the computation reduces to: 

 
ℎ𝑖𝑖′ = ℎ𝑖𝑖 − �

(ℎ𝑖𝑖+1 − ℎ𝑖𝑖−1)𝑑𝑑𝑖𝑖
∑ 𝑑𝑑𝑘𝑘𝑖𝑖+1
𝑘𝑘=1 − ∑ 𝑑𝑑𝑘𝑘𝑖𝑖−1

𝑘𝑘=1
+ ℎ𝑖𝑖−1� (C-26) 

The distances for the fifth-level 𝑖𝑖𝑡𝑡ℎ knife edge are: 

 𝑑𝑑𝑇𝑇 = 𝑑𝑑𝑖𝑖 (C-27) 

 𝑑𝑑𝑅𝑅 = 𝑑𝑑𝑖𝑖+1 (C-28) 

The losses are computed for the higher order knife edges using the distances and effective 
heights from the above equations in (C-1) for the diffraction parameter 𝜈𝜈𝑖𝑖, and then using this 
value of 𝜈𝜈𝑖𝑖 in (C-5) for the loss 𝐽𝐽(𝜈𝜈) [8]. When single or multiple consecutive knife edges with 
negative effective heights occur, then the computation of 𝜈𝜈𝑖𝑖 and the diffraction loss for these 
knife edges are the last knife edge computations, and they are performed using the same 
equations as for the fifth-level knife edge, (C-26) through (C-28). The diffraction losses for all 
knife edges are added together for the total diffraction loss. 
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Appendix D. The Giovaneli Mathematical Algorithm 

For this algorithm, as for the Deygout algorithm, the primary knife edge must be determined 
first. The primary knife edge for the Giovaneli algorithm is that with the maximum height. If 
there are two knife edges with equal maximum heights, then compute the Fresnel-Kirchhoff 
diffraction parameter 𝜈𝜈𝑖𝑖 for each knife edge. The primary knife edge will be the knife edge 
with the largest value of 𝜈𝜈𝑖𝑖. It is possible for the primary knife edge to be the knife edge 
closest to the transmitter antenna, the knife edge closest to the receiver antenna, or a knife 
edge in between the transmitter and receiver antenna locations. When the primary knife 
edge is the knife edge closest to the transmitter antenna or receiver antenna, then the 
remaining knife edges are all on either the receiver antenna side or the transmitter side, 
respectively, of the primary knife edge. The total diffraction loss is the sum of the losses 
computed for all of the knife edges. The diffraction losses for the primary and remaining knife 
edges are computed using the procedure described in the next sections.  

The Giovaneli method is an attempt to obtain more representative diffraction angles, so that 
the loss predictions will be less pessimistic than those produced by the Deygout method. The 
diffraction angles suggested by Giovaneli in his method are those that would be incurred by 
ray paths incident on the subject knife edge from the previous knife edge and by ray paths 
received at the next knife edge from the subject knife edge. 

D.1 Effective Height and Distances for the Primary Knife Edge for the Giovaneli 
Algorithm 

Using the primary knife edge ℎ𝑚𝑚 as the reference for the slope determination, calculate the 
absolute value of the slopes of lines drawn from the main knife edge to each of the secondary 
knife edges. The knife edge with the minimum slope on each side of the main knife edge is 
the secondary knife edge for that side of the primary knife edge and will be used to 
determine the effective height of the primary knife edge. These secondary knife edges are 
not sub-path knife edges. Procedures for sub-path knife edges are described in Section D.3. 
The distance of the 𝑖𝑖𝑡𝑡ℎ knife edge from the transmitter antenna is given by (D-1). 

 𝑑𝑑𝑖𝑖 = �𝑑𝑑𝑘𝑘

𝑖𝑖

𝑘𝑘=1

 (D-1) 

The distance of the 𝑚𝑚𝑡𝑡ℎ knife edge from the transmitter antenna is calculated using (D-2). 

 𝑑𝑑𝑚𝑚 = �𝑑𝑑𝑘𝑘

𝑚𝑚

𝑘𝑘=1

 (D-2) 

The receiver location from the transmitter for 𝑛𝑛 total knife edges is calculated using (D-3). 

 𝑑𝑑 = �𝑑𝑑𝑘𝑘

𝑛𝑛+1

𝑘𝑘=1

 (D-3) 
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The secondary knife edge on the left side of the primary knife edge is the reference source 
knife edge for the energy incident on the primary knife edge and the secondary knife edge 
on the right side of the primary knife edge is the receptor knife edge for energy diffracted 
over the primary knife edge. Computing the effective height of the primary knife edge 
requires the use of three equations of straight lines. This procedure begins when one vertical 
line is drawn at the transmitter antenna location 𝑑𝑑 = 0 and the other vertical line is drawn at 
the receiver antenna location. The first of these lines passes through the primary knife-edge 
peak and the secondary knife-edge peak on the left side of the primary knife edge continuing 
through that peak to intersect the vertical line at 𝑑𝑑 = 0. If 𝐿𝐿 is the index of the secondary knife 
edge of height ℎ𝐿𝐿 on the left (transmitter) side of the main knife edge (index 𝑚𝑚) of height ℎ𝑚𝑚, 
the equation for the line with minimum slope that connects the secondary knife edge to the 
primary knife edge and intersects the vertical line at the transmitter is given by (D-4). 

 𝑦𝑦𝐿𝐿 =
(ℎ𝑚𝑚 − ℎ𝐿𝐿)𝑑𝑑
∑ 𝑑𝑑𝑘𝑘𝑚𝑚
𝑘𝑘=𝐿𝐿+1

+ 𝑏𝑏𝐿𝐿 (D-4) 

At 𝑑𝑑 = ∑ 𝑑𝑑𝑘𝑘𝑚𝑚
𝑘𝑘=1  , 𝑦𝑦𝐿𝐿 = ℎ𝑚𝑚, the equation can be solved for 𝑏𝑏𝐿𝐿. If the primary knife edge is 

adjacent to the transmitter antenna at 𝑑𝑑 = 0, then the index of the secondary knife edge is 
𝐿𝐿 = 0, and the heights are given by: ℎ𝐿𝐿 = ℎ𝑇𝑇, and 𝑏𝑏𝐿𝐿 = ℎ𝑇𝑇. 

The second line passes through the primary knife edge and secondary knife edge on the 
right side of the primary knife edge and the vertical line at the receiver location. If 𝑃𝑃 is the 
index of the secondary knife edge on the right (receiver) side of the primary knife edge, the 
equation for the line with minimum slope that connects the secondary knife-edge peak to the 
primary knife-edge peak and intersects the vertical line at the receiver is given by (D-5). 

 𝑦𝑦𝑃𝑃 =
−(ℎ𝑚𝑚 − ℎ𝑃𝑃)(𝑑𝑑 − ∑ 𝑑𝑑𝑘𝑘𝑚𝑚

𝑘𝑘=1 )
∑ 𝑑𝑑𝑘𝑘𝑃𝑃
𝑘𝑘=𝑚𝑚+1

+ ℎ𝑚𝑚 (D-5) 

If the primary knife edge ℎ𝑚𝑚 is adjacent to the receiver, then ℎ𝑃𝑃 = ℎ𝑟𝑟 (the receiver antenna 
height), and 𝑃𝑃 = 𝑛𝑛 + 1. 

The lines of the equations for 𝑦𝑦𝐿𝐿 and 𝑦𝑦𝑃𝑃 are extended to intersect the vertical lines at 𝑑𝑑 = 0 
and the receiver location distance. A third line is the baseline, which is drawn between the 
intersection points of the two lines given by 𝑦𝑦𝐿𝐿 and 𝑦𝑦𝑃𝑃 with the vertical lines at 𝑑𝑑 = 0 and the 
receiver location distance, respectively. The equation for this baseline is (D-6). 

 𝑦𝑦𝐵𝐵 =
�𝑦𝑦𝑃𝑃 �𝑑𝑑 = ∑ 𝑑𝑑𝑘𝑘𝑛𝑛+1

𝑘𝑘=1 − 𝑦𝑦𝐿𝐿(𝑑𝑑 = 0)�� 𝑑𝑑
∑ 𝑑𝑑𝑘𝑘𝑛𝑛+1
𝑘𝑘=1

+ 𝑏𝑏𝐵𝐵 (D-6) 

At 𝑑𝑑 = 0, (𝑏𝑏𝐵𝐵 = 𝑦𝑦𝐵𝐵 = 𝑦𝑦𝐿𝐿 = 𝑏𝑏𝐿𝐿). 

The effective height for the primary knife edge is ℎ𝑚𝑚′ = ℎ𝑚𝑚 − 𝑦𝑦𝐵𝐵(𝑑𝑑 = ∑ 𝑑𝑑𝑘𝑘𝑚𝑚
𝑘𝑘=1 ). 

The distances for the computation of the diffraction parameter 𝜈𝜈𝑚𝑚 for the primary knife edge 
are computed using (D-7) and (D-8). 
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 𝑑𝑑𝑇𝑇 = �𝑑𝑑𝑘𝑘

𝑚𝑚

𝑘𝑘=1

 (D-7) 

 𝑑𝑑𝑅𝑅 = � 𝑑𝑑𝑘𝑘

𝑛𝑛+1

𝑘𝑘=𝑚𝑚+1

 (D-8) 

The diffraction loss for the primary knife edge is computed using this value of 𝜈𝜈𝑚𝑚 (D-9) and 
(D-10) for 𝐽𝐽(𝜈𝜈) [8]. 

 𝜈𝜈𝑚𝑚 = ℎ𝑚𝑚′ �
2
𝜆𝜆
�

1
𝑑𝑑𝑇𝑇

+
1
𝑑𝑑𝑅𝑅
� (D-9) 

 𝐽𝐽(𝜈𝜈) = 6.9 + 20 log ��(𝜈𝜈 − 0.1)2 + 1.0 + 𝜈𝜈 − 0.1� (D-10) 

D.2 Effective Heights and Distances of the Secondary and Higher Order Knife 
Edges for the Giovaneli Algorithm 

To determine the effective heights of the secondary knife edges, the secondary knife edges 
are used as the main knife edges and their effective heights calculated similarly to the 
primary knife edge. The computation procedures of the effective heights of the secondary 
and higher order knife edges depend on whether the knife edge is on the left (transmitter) or 
right (receiver) side of the primary knife edge. The computation procedure of effective 
heights and distances for third-level and higher-level knife edges is performed by extending 
the procedure for secondary knife edges. 

For the right side (receiver side) of the primary knife edge, the effective knife-edge height of 
the 𝑖𝑖𝑡𝑡ℎ knife edge that is a not a sub-path knife edge is computed by determining the next 𝑞𝑞𝑡𝑡ℎ 
knife-edge peak (located to the right side of the 𝑖𝑖𝑡𝑡ℎ knife edge) that will serve as the receptor 
knife edge for the 𝑖𝑖𝑡𝑡ℎ knife edge. The primary (𝑚𝑚𝑡𝑡ℎ) knife edge is the reference source knife 
edge for the 𝑖𝑖𝑡𝑡ℎ secondary knife edge. The receptor knife edge will be the 𝑞𝑞𝑡𝑡ℎ knife edge to 
the right of the secondary 𝑖𝑖𝑡𝑡ℎ knife-edge peak that is not a sub-path knife edge that has a 
minimum absolute value of slope of a line drawn from the primary 𝑚𝑚𝑡𝑡ℎ knife edge to the next 
𝑞𝑞𝑡𝑡ℎ knife-edge peak. If the 𝑞𝑞𝑡𝑡ℎ knife edge does not exist, because the 𝑖𝑖𝑡𝑡ℎ knife edge is 
adjacent to the receiver antenna, then use the receiver antenna height hr. If the next location 
is the receiver antenna, then 𝑞𝑞 = 𝑛𝑛 + 1, ℎ𝑞𝑞 = ℎ𝑟𝑟. The equation of the line used for the baseline 
to calculate the effective height of the 𝑖𝑖𝑡𝑡ℎ knife edge is determined by finding the equation of 
the line that connects the previous knife edge 𝑚𝑚𝑡𝑡ℎ knife-edge peak of knife edge ℎ𝑚𝑚, to the 
𝑞𝑞𝑡𝑡ℎ knife-edge peak of knife edge ℎ𝑞𝑞. This is given by (D-11). 

 
𝑦𝑦𝑃𝑃𝑃𝑃 =

−�ℎ𝑚𝑚 − ℎ𝑞𝑞�(𝑑𝑑 − ∑ 𝑑𝑑𝑘𝑘𝑚𝑚
𝑘𝑘=1 )

∑ 𝑑𝑑𝑘𝑘𝑛𝑛+1
𝑘𝑘=𝑚𝑚+1

+ ℎ𝑚𝑚 (D-11) 

The effective height ℎ𝑖𝑖′ of the 𝑖𝑖𝑡𝑡ℎ knife edge is evaluated using 𝑦𝑦𝑃𝑃𝑃𝑃 at the 𝑖𝑖𝑡𝑡ℎ knife edge (D-12). 
The distances are calculated using (D-13) and (D-14). 



INSTITUTE FOR TELECOMMUNICATION SCIENCES  NTIA TR-26-580 

PAGE 88 

 ℎ𝑖𝑖′ = ℎ𝑖𝑖 − 𝑦𝑦𝑃𝑃𝑃𝑃 �𝑑𝑑 = �𝑑𝑑𝑘𝑘

𝑖𝑖

𝑘𝑘=1

� (D-12) 

 𝑑𝑑𝑇𝑇 = � 𝑑𝑑𝑘𝑘

𝑖𝑖

𝑘𝑘=𝑚𝑚+1

 (D-13) 

 𝑑𝑑𝑅𝑅 = � 𝑑𝑑𝑘𝑘

𝑛𝑛+1

𝑘𝑘=𝑖𝑖+1

 (D-14) 

This procedure is repeated sequentially to determine the effective heights and distances for 
all knife edges on the right side of the primary knife edge that are not sub-path knife edges 
until there are no knife edges left except the sub-path knife edges, which are treated 
separately in Section D.3. 

For the left side (transmitter side) of the primary knife edge, the effective height of the 𝑖𝑖𝑡𝑡ℎ 
knife edge that is not a sub-path knife edge is computed by determining the previous 𝑥𝑥𝑡𝑡ℎ 
knife-edge peak (located to the left of the 𝑖𝑖𝑡𝑡ℎ knife-edge peak) that will serve as a reference 
source knife edge for the 𝑖𝑖𝑡𝑡ℎ knife edge on the left side of the primary knife edge. The 
reference source knife edge ℎ𝑥𝑥 will be the 𝑥𝑥𝑡𝑡ℎ knife edge that is not a sub-path knife edge 
that is located to the left of the secondary 𝑖𝑖𝑡𝑡ℎ knife edge that has a minimum absolute value of 
slope of a line drawn from the primary 𝑚𝑚𝑡𝑡ℎ knife-edge peak to the 𝑥𝑥𝑡𝑡ℎ knife-edge peak. For 
the 𝑖𝑖𝑡𝑡ℎ knife edge on the left side of the primary knife edge, the primary 𝑚𝑚𝑡𝑡ℎ knife edge is the 
receptor for the energy diffracted by the 𝑖𝑖𝑡𝑡ℎ knife edge. If the 𝑥𝑥𝑡𝑡ℎ knife edge does not exist, 
because the 𝑖𝑖𝑡𝑡ℎ knife edge is adjacent to the transmitter, then use the transmitter antenna 
height ℎ𝑡𝑡 for the knife-edge height. If the next location is the transmitter, then 𝑥𝑥 = 0 and ℎ𝑥𝑥 =
ℎ𝑡𝑡. The transmitter antenna will then serve as the reference source for the 𝑖𝑖𝑡𝑡ℎ secondary knife 
edge. The equation of a line for the baseline used to calculate the effective height of the 𝑖𝑖𝑡𝑡ℎ 
knife edge is the equation of a line that connects the 𝑚𝑚𝑡𝑡ℎ knife-edge peak to the 𝑥𝑥𝑡𝑡ℎ knife-
edge peak of knife edge, given as (D-15). 

 
𝑦𝑦𝑃𝑃𝑃𝑃 =

(ℎ𝑚𝑚 − ℎ𝑥𝑥)𝑑𝑑
∑ 𝑑𝑑𝑘𝑘𝑚𝑚
𝑘𝑘=1

 
(D-15) 

The effective height ℎ𝑖𝑖′ of the 𝑖𝑖𝑡𝑡ℎ knife edge is evaluated using 𝑦𝑦𝑃𝑃𝑃𝑃 at the 𝑖𝑖𝑡𝑡ℎ knife edge (D-16). 
The distances are calculated using (D-17) and (D-18). 

 ℎ𝑖𝑖′ = ℎ𝑖𝑖 − 𝑦𝑦𝑃𝑃𝑃𝑃 �𝑑𝑑 = �𝑑𝑑𝑘𝑘

𝑖𝑖

𝑘𝑘=1

� (D-16) 

 
𝑑𝑑𝑇𝑇 = �𝑑𝑑𝑘𝑘

𝑖𝑖

𝑘𝑘=1

 
(D-17) 

 
𝑑𝑑𝑅𝑅 = � 𝑑𝑑𝑘𝑘

𝑚𝑚

𝑘𝑘=𝑖𝑖+1

 
(D-18) 
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This procedure is repeated sequentially for all knife edges on the left side of the primary knife 
edge that are not sub-path knife edges until there are no knife edges left except the sub-path 
knife edges, which are treated in the next section. 

D.3 Effective Heights and Distances of the Sub-Path Knife Edges for the Giovaneli 
Algorithm 

A sub-path knife edge is a knife edge between two knife edges whose peak is below a line 
drawn between the previous knife edge and the next knife edge. A sub-path knife edge can 
also occur between the transmitter antenna and the second knife edge, or the next-to-last 
knife edge and the receiver antenna. If the first knife edge or last knife-edge peak is below a 
ray represented by a line that is drawn between the transmitter antenna to the second knife- 
edge peak, or a line that is drawn from the next-to-last knife-edge peak and the receiver 
antenna, respectively, then the first or last knife-edge peak is a sub-path knife edge.  

For knife edges on either side of the primary knife edge that are sub-path knife edges, the 
procedure involves using a baseline from the previous 𝑢𝑢𝑡𝑡ℎ knife-edge peak of knife edge ℎ𝑢𝑢 
to the next 𝑧𝑧𝑡𝑡ℎ knife-edge peak of knife edge ℎ𝑧𝑧 that are not sub-path knife edges. The 
procedure shown here will also work for computing effective knife-edge heights of knife 
edges with zero effective height. The equation for the baseline for the effective height of the 
𝑖𝑖𝑡𝑡ℎ knife-edge peak for a sub-path knife edge is. 

 𝑦𝑦𝑁𝑁 =
(ℎ𝑧𝑧 − ℎ𝑢𝑢)(𝑑𝑑 − ∑ 𝑑𝑑𝑘𝑘𝑢𝑢

𝑘𝑘=1 )
∑ 𝑑𝑑𝑘𝑘𝑧𝑧
𝑘𝑘=𝑢𝑢+1

+ ℎ𝑢𝑢 (D-19) 

where ℎ𝑧𝑧 is the height of the 𝑧𝑧𝑡𝑡ℎ knife-edge peak, and ℎ𝑢𝑢 is the height of the 𝑢𝑢𝑡𝑡ℎ knife edge. 
When the 𝑧𝑧𝑡𝑡ℎ knife edge does not exist, because the 𝑖𝑖𝑡𝑡ℎ knife edge is the last knife edge and 
the next location is at the receiver, then the baseline is a line between the 𝑢𝑢𝑡𝑡ℎ knife-edge 
peak and the receiver antenna at height ℎ𝑟𝑟, the index 𝑧𝑧 = 𝑛𝑛 + 1 and ℎ𝑧𝑧 = ℎ𝑟𝑟. When the 𝑢𝑢𝑡𝑡ℎ 
knife edge does not exist, because the 𝑖𝑖𝑡𝑡ℎ knife edge is the first knife edge and the previous 
location is at the transmitter, then the baseline is a line between the 𝑧𝑧𝑡𝑡ℎ knife edge and the 
transmitter antenna height ℎ𝑡𝑡, and the index 𝑢𝑢 = 0, and ℎ𝑢𝑢 = ℎ𝑡𝑡. The effective height is the 
vertical distance from this baseline to the 𝑖𝑖𝑡𝑡ℎ knife-edge peak (D-20). The corresponding 
distances 𝑑𝑑𝑇𝑇 and 𝑑𝑑𝑅𝑅 for each knife edge are also computed (D-21), (D-22). 

 ℎ𝑖𝑖′ = ℎ𝑖𝑖 − 𝑦𝑦𝑁𝑁 �𝑑𝑑 = �𝑑𝑑𝑘𝑘

𝑖𝑖

𝑘𝑘=1

� (D-20) 

 𝑑𝑑𝑇𝑇 = � 𝑑𝑑𝑘𝑘

𝑖𝑖

𝑘𝑘=𝑢𝑢+1

 (D-21) 

 𝑑𝑑𝑅𝑅 = � 𝑑𝑑𝑘𝑘

𝑧𝑧

𝑘𝑘=𝑖𝑖+1

 (D-22) 
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D.4 Final Summation of All Diffraction Losses 

The losses for each knife edge are computed using the diffraction parameter 𝜈𝜈𝑖𝑖 from (D-23) 
for each knife edge and (D-10) for 𝐽𝐽(𝜈𝜈) [8]. The diffraction losses for all knife edges are added 
together for the total diffraction loss. 

 𝜈𝜈𝑖𝑖 = ℎ𝑖𝑖�
2
𝜆𝜆
�

1
𝑑𝑑𝑇𝑇

+
1
𝑑𝑑𝑅𝑅
� (D-23) 
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