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EXECUTIVE SUMMARY

The Federal Communications Commission (FCC) has authorized the frequency band

3700-3980 MHz!' for use by Fifth Generation New Radio (5G NR, simply called 5G in this
report) base stations (technically gNodeBs) and associated user equipment (UEs, colloquially
“cellphones”) in the United States. This authorization has raised technical concerns about
whether 5G transmitters can or will cause harmful?® radio interference to airborne radar (or radio)
altimeter (radalt) receivers which operate in the band 4200-4400 MHz. This overarching concern
can be broken down into two engineering sub-component questions:

e  When or if harmful interference occurs from 5G signals to radalt receivers, what is the
physical interference mechanism?

e At what limiting (coordination) distances, and in what directions, can harmful interference
occur to radalt receivers from 5G transmitters?

The Joint Interagency Fifth Generation (5G) Radar Altimeter Interference (JI-FRAI) Quick
Reaction Test (QRT) was formed to gain a better understanding of potential 5G interference
issues, develop methods for testing 5G interference, and to provide answers to questions from
government and industry communities. While most of the radalts tested under JI-FRAI are
unique to the military, a subset of models tested are also used in civilian aircraft. JI-FRAI QRT
was a Department of Defense led project chartered by the Director, Operational Test and
Evaluation under the Joint Test and Evaluation (JT&E) Program. The QRT was sponsored by the
Office of the Under Secretary of Defense for Acquisition and Sustainment (OUSD [A&S]) and
the United States Transportation Command (USTRANSCOM). The project has been conducted
with government-industry support and cooperation that includes membership from: the
Department of Defense (DoD, including US Air Force, US Army and US Navy); Department of
Homeland Security (DHS, specifically US Coast Guard (USCG)); FCC; National
Telecommunications and Information Administration (NTIA; specifically the Office of Spectrum
Management (OSM) and Institute for Telecommunication Sciences (ITS)); The MITRE
Corporation; the National Institute of Standards and Technology (NIST); the National Advanced
Spectrum and Communications Test Network (NASCTN); Department of Transportation (DoT,
specifically the Federal Aviation Administration (FAA)); Customs and Border Patrol (CBP); the
Department of Justice Drug Enforcement Agency; the Cellular Telecommunications and Internet
Association (CTIA, also known as the Wireless Association); AT&T; T-Mobile; Verizon,;
Ericsson; Nokia; the Boeing Company; American Airlines; Jet Blue; United Airlines; RTCA
(formerly the Radio-Technical Commission for Aeronautics); Aerospace Vehicle Systems

! Called, interchangeably, high C-band and US n77 band in this report in recognition of differing aviation and
wireless community terminology, respectively.

2 As defined in the Code of Federal Regulations (CFR) Part 47 § 15.3, harmful interference is: “Any emission,
radiation or induction that endangers the functioning of a radio navigation service or of other safety services or
seriously degrades, obstructs or repeatedly interrupts a radiocommunications service operating in accordance with
this chapter [of the CFR].”
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Institute (AVSI); Collins Aerospace; Honeywell; Garmin; Johns Hopkins Applied Physics
Laboratory; and the Georgia Institute of Technology (Georgia Tech).

The JI-FRAI QRT work program had four major phases of testing. One of these was bench
testing of radalt receivers, in which radalt units were configured to operate in a laboratory
setting. The radalts were set up to operate with nominal transmissions and ground-bounce echo
returns, all in hardline (closed) loops. Then, 5G radio interference was introduced into those
loops, and its power was adjusted to cause harmful interference into the radalt receivers. The
bench testing, performed by MITRE for JI-FRAI, indicated interference-power thresholds within
the radalt receiver circuits. It also provided information on the underlying physical interference
mechanisms. The procedures and results of closed-loop-conditions bench testing and radiated-
conditions will be reported separately from this report.

A second major JI-FRAI effort was in-flight Joint Test and Evaluation (JT&E) of radalt
performance in the presence of radiated high C-band 5G signals under controlled conditions.
Selected aircraft carrying representative examples of a wide variety of radalts were used for
JT&E at Hill AFB in Utah (outside Salt Lake City) and at Majors Airfield at Greenville, Texas
(near Dallas). Radalt performance, determined via qualitative pilot reports and quantitative
measurements of comparative radalt outputs with 5G signals radiating versus not radiating, will
be reported separately from this report.

The third JI-FRAI task was collection of measured power levels emitted by radalts from taxiing
aircraft at two airfields, military and civilian. These power levels can be compared to
theoretically estimated power levels for such aircraft, which figure in previous work by other
groups. That work attempts to gauge the extent to which power radiated from radalts on the
ground causes radiofrequency interference to aircraft performing landing approaches at such
airfields. The results of those measurements will be published in an NTIA Technical
Memorandum that will follow this report’s publication.

This report describes the procedures and results of the fourth phase of the JI-FRAI QRT effort.
This phase was the characterization, via carefully calibrated radiated measurements, of (a) the
three-dimensional aerial radiation patterns and (b) the emission spectra of 5G base station
transmitters that are being built and sold by the three known manufacturers of US n77 band
equipment now being deployed in the United States.

This work has been led and accomplished for JI-FRAI® by NTIA’s Boulder, Colorado
laboratory, ITS. Between January and June 2022, and working with the support of the US Army,
Verizon and AT&T, ITS engineers performed detailed, precision measurements of aerial
radiation patterns of low C-band (3300-3600 MHz) and high C-band (3700-3980 MHz) multiple
input multiple output (MIMO) transmitter arrays incorporated in four radio models produced by
the three known manufacturers of C-band (3300-3980 MHz) 5G equipment deployed in the
United States. All of the measurements in this report have been performed via radiated 5G

3 Funding for the ITS portion of the JI-FRAI tasking described in this report was provided by the US Air Force
(USAF) under the Hill AFB 5G Project, via an Interagency Agreement between ITS and USAF.
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emissions at the US Department of Commerce (DoC) Table Mountain Radio Quiet Zone
(TMRQZ) north of Boulder, Colorado.

As described in this report, these measurements substantially characterize the effective isotropic
radiated power (EIRP) from these arrays in three dimensions in the skyward-looking (horizon to
zenith) hemispheres of these arrays. These measurements have been performed with calibrated,
helicopter-borne, computer-controlled ITS measurement and data-recording systems using
specially fabricated (by ITS), calibrated antenna arrays extending from the ventral and lateral
surfaces (bellies and sides) of helicopters.

The raw airborne EIRP data, taken as described in this report’s main body, have been converted
by ITS engineers into a variety of processed radiation patterns that are more understandable than
the raw data. While NTIA/ITS has made the raw data available to researchers (see Section 8.3.6),
the majority of readers and users of the collected EIRP pattern data will likely find the processed
plots to be the most useful for their purposes. Examples of those plots are provided in this report.
All of the processed plots are available electronically as described in Section 8.3.6.

Emission spectrum measurements of those same 5G transmitters, performed on the ground at the
TMRQZ with the NTIA/ITS Radio Spectrum Measurement System (RSMS), show radiated 5G
base station emission spectra across a wide frequency range (3500-4400 MHz) and with wide
dynamic range (i.e., with 80 to 95 decibels of total spectrum dynamic range, depending on the
5G radio model).

This report includes descriptions of exactly #ow the data collected at TMRQZ by ITS under the
JI-FRALI tasking, both the EIRP data from the air and the spectrum data from the ground, may be
used to resolve the outstanding technical questions surrounding coexistence between high
C-band 5G operations and adjacent-band airborne radalt receivers. Following this report’s
publication, the remaining pieces of the entire 5G/radalt engineering picture will be filled in by
the MITRE-collected bench-testing data and the airborne flight data from Hill AFB and Majors
Field.

Two substantial stand-alone results are presented in this report. The first is that the measured,
airborne EIRP data for the 5G MIMO arrays are consistent with (albeit more voluminous and
arguably more complicated than) numerical simulation data and manufacturers’ engineering
specification sheets for the same, or similar, MIMO radiating arrays. This similarity between
measured and modeled radiation patterns gives us confidence that future radiation-pattern
modeling should provide credible supporting results in additional, future 5G/radalt engineering
studies, without needing to necessarily perform additional airborne measurements on future 5G
MIMO arrays, at least in the C-band part of the spectrum.

The second substantial stand-alone result is found in the emission spectra of the three high
C-band 5G radio models. These spectra show that all three of these 5G base station transmitters
incorporate effective bandpass filtering in their output stages.

We offer the following conclusions from the results we have published in this report.
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The first conclusion regards the amount of suppression of 5G unwanted emissions within the
allocated radalt spectrum band. As just noted, three models of 5G base station that are being
deployed in the US 5G n77 band show distinctly visible, effective RF bandpass filtering in their
emission spectra. The 5G transmitter high-frequency filter cut-offs are all at 4 GHz; above

4 GHz (i.e., within the radalt band of 4200-4400 MHz) these radios’ spectrum emissions are as
much as 106 decibels lower than their on-tuned intentional-radiation power in the 5G frequency
band 3700-3980 MHz.

As described in more detail in Table 13 of the main report, the 5G unwanted-emission power
levels in the radalt band are upper-bounded by our results as being between -37.5 dBm/MHz (for
the radio on which we achieved the smallest measurement dynamic range) to -48.5 dBm/MHz
(for the radio model for which we achieved the largest measurement dynamic range). These
being upper bounds, the actual unwanted emission levels may have been lower than these
numbers—how much lower, we do not know. This low level of unwanted 5G emissions within
the radalt spectrum band reduces the potential for a 5G-to-radalt harmful interference scenario
which would be due to 5G unwanted emissions on radalt receiver frequencies. The FCC might
seek to examine unwanted emissions from future 5G base station radios to see if they remain
similarly low.

This measurement-based observation increases the likelihood that, to the extent that any EMC
problem exists between 5G transmitters and adjacent-band radalt receivers, the technical solution
to such a problem might be the installation or retrofitting of more-effective RF power-rejection
filters on radalt receivers for frequencies below 4200 MHz.

The second conclusion is that airborne radiation patterns show measurably, significantly less
power than is found in 5G base station main antenna beams directed toward UEs at ground level.
The amount of power reduction in the sky is variable and needs to be examined by researchers in
detail, using the collected data that we have made available.

We note however that our airborne field strength data show that all the SG MIMO arrays have
distinct nulls (not zero power, but significantly reduced power relative to the main antenna-beam
levels) at the skyward zeniths above the arrays. These radiated-power nulls will reduce vertical
height separations between 5G towers and aircraft where any given power level will be
encountered by radalt receivers passing through the sky above the 5G MIMO arrays. This
observation, and the data that we have collected that show this effect, should be addressed for the
EMC cases of radalt receivers whose flight paths carry them directly above 5G base station
transmitter arrays.

A third conclusion is that we have observed a distinct near-far effect in our airborne
measurements on pairs of transportable 5G base stations, called Cells on Wheels (CoWs). This
effect causes the nearer base station transmitters’ emissions to be dominant in a receiver, with
more-distant transmitters’ contributions rapidly fading to insignificance. This effect implies that
aggregates of 5G base station transmitters might be most usefully analyzed for EMC cases in
which there are no individual, nearby transmitters. Otherwise, when a single 5G transmitter is
near a receiver, that single transmitter’s emitted power will tend to be dominant over the
cumulative, aggregated emissions from more-distant groupings of 5G transmitters.
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This report is one of three that will be produced as a result of the JI-FRAI QRT efforts. The other
two reports from the JI-FRAI QRT efforts will describe the approaches and results of radalt
receiver 5G interference-effects bench testing and 5G-versus-radalt flight measurement and
observation results. A second report from ITS will describe in situ measured radalt emission
power levels emitted by aircraft that are sitting and taxiing on the ground. The combined
materials in all of these reports will provide a thorough description of the extent, if any, to which
EMC problems exist between high 3700-3980 MHz 5G emissions and radalt receivers, and will
point the way toward practical and effective technical solutions of any such potential problems.
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MEASUREMENTS OF 5G NEW RADIO SPECTRAL AND SPATIAL POWER
EMISSIONS FOR RADAR ALTIMETER INTERFERENCE ANALYSIS

Frank Sanders, Kenneth R. Calahan, Geoffrey A. Sanders, and Savio Tran*

Introduction of Fifth Generation New Radio (5G NR) systems in the US between 3700 and

3980 MHz has raised concerns about electromagnetic compatibility with airborne radar altimeter
(radalt) receivers operating between 4200 and 4400 MHz. This report describes work performed
by the Department of Commerce’s Institute for Telecommunication Sciences (ITS) for the Joint
Interagency 5G Radar Altimeter Interference (JI-FRAI) Quick Reaction Testing (QRT) program
to address these concerns. Two collected data sets are described: radiated wideband, wide
dynamic range 5G base station emission spectra; and three-dimensional radiation patterns around
5G base station antennas. The emission spectra show effective filtering that reduces out-of-band
(OoB) 5G emissions in the radalt band by as much as -106 dB below the 5G fundamental, for an
upper-bounded OoB 5G power density not exceeding -48.5 dBm/MHz when maximum
measurement range was achieved. The 5G radiation patterns show significantly less power in the
sky than in 5G main beams directed groundward, especially at array zeniths. These data can be
used for receivers whose flight paths carry them laterally past, and even directly above, 5G base
stations. Finally, we have documented a near-far effect in airborne measurements on pairs of 5G
transmitters. This causes the nearer transmitters’ emissions to be dominant in receivers. When a
single 5G transmitter is near a receiver, that single transmitter’s emitted power will tend to
dominate over the cumulative, aggregated emissions from more-distant, aggregated 5G
transmitters.

Keywords: 5G; 5G NR; 5G emissions; 5G electromagnetic compatibility; 5G EMC; 5G
emission spectrum; 5G radiation; 5G spectrum; airborne radar altimeter
interference; airborne radio altimeter interference; JI-FRAI; MIMO antenna
radiation patterns; radar altimeters; radio altimeters; radalts; radalt electromagnetic
compatibility; radalt EMC; radalt interference; radalt receiver interference; radalt
spectrum

1. INTRODUCTION

1.1 Background

The Federal Communications Commission (FCC) has authorized [1] the frequency band
3700-3980 MHz (interchangeably called “high C-band” and “US n77 band” in this report’) for

4 The authors are with the Institute for Telecommunication Sciences (ITS), National Telecommunications and
Information Administration (NTTA), U.S. Department of Commerce, Boulder, Colorado 80305-3337.

3 This report focuses on concerns of two stakeholder communities: aviation and wireless. The aviation community
uses the name “high C-band,” derived from terminology of the Second World War when band designations of P, L,



use by Fifth Generation New Radio (5G NR, called simply 5G in this report) base stations and
associated user equipment (UEs, colloquially “cellphones’) in the United States. This
authorization has raised technical concerns, as expressed in studies [2]-[5], about whether 5G
transmitters can or will cause harmful® radio interference to airborne radar (or radio) altimeter
(radalt) receivers which operate in the band 4200—4400 MHz. This overall concern can be
broken down into engineering sub-component questions:

e At what limiting (coordination) distances, and in what directions relative to 5G main-beam
vectors, can 5G base station transmitters cause harmful interference to radalt receivers?

e When or if harmful interference occurs from transmitted 5G base station signals to radalt
receivers, what is the physical interference mechanism?

1.2 JI-FRAI Membership and Work Program

The Joint Interagency Fifth Generation (5G) Radar Altimeter Interference (JI-FRAI) Quick
Reaction Test (QRT) was formed to gain a better understanding of potential 5G interference
issues, develop methods for testing 5G interference, and provide answers to questions from
government and industry communities. While most of the radalts tested under JI-FRAI are
unique to the military, a subset of models tested are also used in civilian aircraft. JI-FRAI QRT
was a Department of Defense led project chartered by the Director, Operational Test and
Evaluation under the Joint Test and Evaluation (JT&E) Program. The QRT was sponsored by the
Office of the Under Secretary of Defense for Acquisition and Sustainment (OUSD [A&S]) and
the United States Transportation Command (USTRANSCOM). The project has been conducted
with government-industry support and cooperation that includes membership from the
Department of Defense (DoD, including US Air Force, US Army and US Navy); Department of
Homeland Security (DHS, specifically US Coast Guard (USCG)); FCC; National
Telecommunications and Information Administration (NTIA; specifically the Office of Spectrum
Management (OSM) and Institute for Telecommunication Sciences (ITS)); The MITRE
Corporation; the National Institute of Standards and Technology (NIST); the National Advanced
Spectrum and Communications Test Network (NASCTN); Department of Transportation (DoT,
specifically the Federal Aviation Administration (FAA)); Customs and Border Patrol (CBP); the
Department of Justice Drug Enforcement Agency; the Cellular Telecommunications and Internet
Association (CTIA, also known as the Wireless Association); AT&T; T-Mobile; Verizon;
Ericsson; Nokia; the Boeing Company; American Airlines; Jet Blue; United Airlines; RTCA
(formerly the Radio-Technical Commission for Aeronautics); Aerospace Vehicle Systems

S, C, X and K were intended to confound the enemy (and are now an established terminology). The wireless
community uses the 3GPP band designation of n77, with the modifier “US” added because the US n77 band of
3700-3980 MHz differs from the international n77 band of 3300-4200 MHz. The FCC has also referred to
3700-3980 MHz as being in the “mid-band” spectrum of 3700—-4200 MHz.

¢ As defined in the Code of Federal Regulations (CFR) Part 47 § 15.3, harmful interference is: “Any emission,
radiation or induction that endangers the functioning of a radio navigation service or of other safety services or
seriously degrades, obstructs or repeatedly interrupts a radiocommunications service operating in accordance with
this chapter [of the CFR].”



Institute (AVSI); Collins Aerospace; Honeywell; Garmin; Johns Hopkins Applied Physics
Laboratory; and the Georgia Institute of Technology (Georgia Tech).

The JI-FRAI QRT work program is diagrammed in Figure 1. Although much of the JI-FRAI
focus was on radalts used in military aircraft, some of the radalts examined in the JI-FRAI QRT
work program were either civilian or had dual deployment in military, government, and civilian
aircraft.

JI-FRAI

Work Program
{ Start v

Radaltvs5G
l_ Flight Evaluation Tasking

Assess EIRP for ‘Risk Reduction Flights I
radalts on the ground \nleHGronCo Higis

Table Mountain i e

DIA & Buckley SFB Radio Quiet Zone Hill AFB & Majors Field |

| Work
organization

- Measurements
Analysis and
reporting

Figure 1. Tasking overview and flow diagram of the JI-FRAI QRT work program.

The JI-FRAI QRT program had four major phases of testing. These were: (1) bench testing with
hardline-injected 5G interference signals; (2) in-flight radalt performance testing in the presence
of 5G radiated signals; (3) EIRP measurements of on-the-ground radalt emissions from taxiing
aircraft at civilian and military airfields; and (4) controlled, calibrated measurements of emission
spectra and three-dimensional radiated field strength patterns around 5G base station transmitters
being deployed in 3700-3980 MHz in the US.

1.2.1 Radalt Interference Bench Test Phase of the JI-FRAI QRT Work Program

In bench testing, radalt units were operated in a laboratory setting with nominal transmissions
and ground-bounce echo returns running in hardline (closed) loops between the transmitter and



receiver sections. Then 5G radio interference was introduced into those loops, its power level
being adjusted to cause degradation to the radalt receivers. The JI-FRAI QRT bench testing,
performed by MITRE, identified power thresholds for interference within radalt receiver circuits.
It also provided information on underlying physical interference mechanisms (which are
themselves described later in this report). The MITRE bench testing results are to be published
separately from this report.

1.2.2 In-Flight Radalt Performance Test Phase of the JI-FRAI QRT Work Program

The second major JI-FRAI QRT tasking effort was in-flight Joint Test and Evaluation (JT&E) of
radalt performance in the presence of radiated high C-band 5G base station signals under
controlled conditions. Selected aircraft carrying representative examples of a wide variety of
radalts (mostly military but some civilian and some dual-use) were used for JT&E at Hill AFB in
Utah (near Salt Lake City) and at Majors Airfield at Greenville, Texas (near Dallas). In these
flight tests, aircraft with radalts were repetitively flown in closed-loop routes, such as traffic
patterns. Each route was flown while nearby 5G base station transmitters were turned on and
then flown again with them turned off. Comparative radalt performance was assessed for when
5@ base station signals were in transmitter-on versus transmitter-off conditions. The JT&E
results are to be published separately from this report.

1.2.3 Radalt On-the-Ground Emission Measurement Phase of the JI-FRAI QRT Work
Program

The third JI-FRAI QRT tasking effort was to measure emitted radalt power being radiated from
aircraft on the ground while they were sitting in gate areas and taxiing at a major airport (for
civilian airliners) and at a military airfield (for military aircraft). These emissions were needed
for comparison to predictions of such emissions that have been produced in separate work
projects by other groups. The reason is that some predictions of radalt interference thresholds
have tried to take into account stray or background radalt-to-radalt radiation emanating from
planes on the ground and coupled into nearby planes that are in-flight, landing at airports. For
this tasking, the authors of this report measured on-the-ground emissions from airliners at
Denver International Airport (DIA) and from F-16 jet fighters at Buckley Space Force Base
(SFB). The raw data taken in those environments have been converted to effective isotropic
radiated power (EIRP) levels radiating from underneath the on-the-ground aircraft bellies. We
will report those results in a separate report.

1.3 JI-FRAI QRT Sub-Tasking and Results Presented in This Report

This report describes the procedures and results of the RF over-the-air phase of the JI-FRAI
QRT. It is complementary to reports on the other phases of the QRT project. This work-program
component is the characterization, via carefully calibrated radiated measurements, of (a) the
three-dimensional aerial radiation patterns; and (b) the emission spectra of 5G base station
transmitters that are being built and sold by the three known manufacturers of US 5G n77 band
equipment now under deployment in the United States.



The tasking of measuring spatial radiation patterns and emission spectra and establishing the
validity of independent height-above-ground equipment’ has been led and accomplished for JI-
FRAI® by NTIA’s Boulder, Colorado laboratory, ITS. Between January and June 2022, and
working with the support of the US Army, Verizon and AT&T, ITS engineers have performed
detailed, precision measurements of aerial radiation patterns of low C-band (3300-3600 MHz)
and high C-band (3700-3980 MHz) multiple input multiple output (MIMO) transmitter arrays
incorporated four radio models produced by the three known manufacturers of US n77 band
(3300-3980 MHz) 5G transmitter equipment being deployed in the United States. All the
measurements done for this tasking and described in this report have been performed via radiated
5@ base station emissions at the US Department of Commerce (DoC) Table Mountain Radio
Quiet Zone (Table Mountain) north of Boulder, Colorado.

1.4 Measured Airborne 5G EIRP Data

As described in this report, these measurements characterize the effective isotropic radiated
power (EIRP) from the subject SG MIMO arrays in three dimensions in the skyward-looking
(horizon to zenith) hemispheres of these arrays. These measurements have been performed with
calibrated, helicopter-borne, computer-controlled ITS measurement and data-recording systems
using specially fabricated (by ITS), calibrated antenna arrays extending from the ventral and
lateral surfaces (bellies and sides) of helicopters.

The raw airborne EIRP data, taken as described in this report, have been converted by ITS
engineers into a variety of processed radiation patterns that are more understandable than the raw
data. While NTIA/ITS will make the raw data available to researchers upon request, the majority
of readers and users of the collected EIRP pattern data will most likely find the processed plots
to be the most useful for their purposes. Examples of those plots are provided in this report. All
of the processed plots are available electronically as described in Section 8.2.6.

1.5 Measured 5G Base Station Emission Spectra

Emission spectrum measurements of those same 5G transmitters, were performed on the ground
at the Table Mountain with the NTIA/ITS Radio Spectrum Measurement System (RSMS) .
These data show radiated 5G base station emission spectra across a wide frequency range
(35004400 MHz) and with wide dynamic range (i.e., with 80 to 95 decibels of total spectrum
dynamic range, depending on the 5G radio model).

" Performed with a laser altimeter on a UH-60 helicopter from the Redstone Arsenal.

8 The funding sponsorship for ITS for the JI-FRAI tasking described in this report has been from the US Air Force
(USAF) under the Hill AFB 5G Project, via an Interagency Agreement between ITS and USAF Force.



1.6 Integration of These Data with the Overall JI-FRAI QRT Work Program

This report includes descriptions of exactly #ow the data collected at Table Mountain by ITS
under the JI-FRALI tasking, both the EIRP data from the air and the spectrum data from the
ground, may be used to resolve the outstanding technical questions surrounding coexistence of
3700-3980 MHz 5G operations and airborne radalt receivers. Following this report’s
publication, the remaining pieces of the entire 5G/radalt engineering picture will be filled in by
the MITRE-collected bench-testing data and the airborne flight data from Hill AFB and Majors
Field.

1.7 Significant Conclusions Presented in This Report

The first conclusion regards the amount of suppression of 5G unwanted emissions within the
allocated radalt spectrum band. As just noted, three models of 5G base station that are being
deployed in the US 5G n77 band show distinctly visible, effective RF bandpass filtering in their
emission spectra. The 5G transmitter high-frequency filter cut-offs are all at 4 GHz; above

4 GHz (i.e., within the radalt band of 42004400 MHz) these radios’ spectrum emissions are as
much as 106 decibels lower than their on-tuned intentional-radiation power in the 5G frequency
band 3700-3980 MHz.

As described in more detail in Table 13, the 5G unwanted-emission power levels in the radalt
band are upper-bounded by our results as being between -37.5 dBm/MHz (for the radio on which
we achieved the smallest measurement dynamic range) to -48.5 dBm/MHz (for the radio model
for which we achieved the largest measurement dynamic range). These being upper bounds, the
actual unwanted emission levels may have been lower than these numbers—how much lower,
we do not know. This low level of unwanted 5G emissions within the radalt spectrum band
reduces the potential for a 5G-to-radalt harmful interference scenario which would be due to 5G
unwanted emissions on radalt receiver frequencies. The FCC might seek to examine unwanted
emissions from future 5G base station radios to see if they remain similarly low.

This measurement-based observation increases the likelihood that, to the extent that any EMC
problem exists between 5G transmitters and adjacent-band radalt receivers, the technical solution
to such a problem might be the installation or retrofitting of more-effective RF power-rejection
filters on radalt receivers for frequencies below 4200 MHz.

The second conclusion is that airborne radiation patterns show measurably, significantly less
power than is found in 5G base station main antenna beams directed toward UEs at ground level.
The amount of power reduction in the sky is variable and needs to be examined by researchers in
detail, using the collected data that we have made available.

We note however that our airborne field strength data show that all the SG MIMO arrays have
distinct nulls (not zero power, but significantly reduced power relative to the main antenna-beam
levels) at the skyward zeniths above the arrays. These radiated-power nulls will reduce vertical
height separations between 5G towers and aircraft where any given power level will be
encountered by radalt receivers passing through the sky above the SG MIMO arrays. This
observation, and the data that we have collected that show this effect, should be addressed for the



EMC cases of radalt receivers whose flight paths carry them directly above 5G base station
transmitter arrays.

A third conclusion is that we have observed a distinct near-far effect in our airborne
measurements on pairs of CoWs. This effect causes the nearer base station transmitters’
emissions to be dominant in a receiver, with more-distant transmitters’ contributions rapidly
fading to insignificance. This effect implies that aggregates of 5G base station transmitters might
be most usefully analyzed for EMC cases in which there are no individual, nearby transmitters.
Otherwise, when a single 5G transmitter is near a receiver, that single transmitter’s emitted
power will tend to be dominant over the cumulative, aggregated emissions from more-distant
groupings of 5G transmitters.

1.8 Report Outline

Because this report stands alone in reporting one phase of the JI-FRAI QRT, it is organized as
follows:

1) Introduction and description of the JI-FRAI QRT work program, and how the work described
in this report fits within that work program’s overall framework.

2) Historical introduction to the radio spectrum band occupancy of 3700-4200 MHz and
4200—4400 MHz, and how that history has contributed to the current technical
electromagnetic compatibility (EMC) questions for coexistence between 5G transmitters in
the lower-frequency band and radalt receivers in the higher-frequency band.

3) Introduction and description of radalts.
4) Introduction and description of 5G radio signals in the US n77 band.

5) Description of the two potential interference modes for 5G transmitters operating between
3700 and 3980 MHz and coexisting radalt receivers operating within 4200-4400 MHz.

6) Description of how we set up SG MIMO base stations and associated UEs for emission
measurements.

7) Description of our approach for measuring radiated 5G transmitter emission spectra with
wide frequency range (35004400 MHz) and wide dynamic range (at least 90 dB), to
determine the power levels of unwanted 5G spectrum emissions within 4200—4400 MHz.

8) Description of our approach for measuring SG MIMO transmitter antenna radiation patterns
in three dimensions (3D) in spatial hemispheres around the antennas.

9) Wideband, wide dynamic range radiated emission spectrum measurement results for the
same three 5G base station transmitters, showing that unwanted 5G transmitter emissions
from these radios within 42004400 MHz have less than one-billionth of the power in the
transmitters’ on-tuned (desired, licensed) emissions.



10) 3D radiation pattern measurement results for all three models of US n77 band 5G base
station transmitters that are being deployed in the US.

11) A brief description of how the results shown in this report can (and will) be integrated into
the larger EMC coexistence picture for 5G transmitters and radalt receivers.

12) Summary and conclusions

As noted above, this report is one of three that will be produced as a result of the JI-FRAI QRT
efforts. The other two reports from the JI-FRAI QRT efforts will describe the approaches and
results of radalt receiver 5G interference-effects bench testing and 5G-versus-radalt flight
measurement and observation results. The combined materials in all of these reports will 