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A POWERFUL, FIXED-SIZE MODULATION SPECTRUM REPRESENTATION FOR
PERCEPTUALLY CONSISTENT SPEECH EVALUATION

Stephen D. Voran, Jaden Pieper1

We develop the wideband fixed-size modulation spectra (FMS) and show that they
contain the necessary information to perform perceptually consistent evaluation
of speech. We compare FMS with the already established frame-based modula-
tion spectra as representations for estimating speech quality and speech natural-
ness. We feed the two representations into equally sized, relatively small, fully
connected networks for five proof-of-concept experiments and find that the two
representations perform similarly when estimating speech quality and speech nat-
uralness. But the FMS representation captures an entire speech file into a fixed size
representation, which means that additional temporal processing is neither needed
nor possible. This is in contrast to the frame-based representations, where addi-
tional processing can either destroy information (e.g., averaging over time) or lead
to more complex and difficult to train networks.

We also demonstrate that when speech quality changes within a speech file, FMS
has another distinct advantage which is to be able to efficiently and reliably iden-
tify different situations in a way that is not well-addressed by the frame-based ap-
proach. Our experiments include more than 274 hours of speech in two languages.
This speech is contained in 139,000 speech files and there is a subjective score for
each file. File lengths range from 0.6 to 28 seconds and five different sample rates
are present. Supporting software is available at https://github.com/NTIA/fms.

Keywords: Auditory perception, fixed-size modulation spectra (FMS), machine learning, mel
spectrum, modulation spectrum, speech naturalness, speech quality, time-varying
speech quality

1The authors are with the Institute for Telecommunication Sciences, National Telecommunications and Informa-
tion Administration, U.S. Department of Commerce, Boulder, Colorado 80305.
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1 INTRODUCTION

As mobile and fixed telecommunications options continue to proliferate and evolve, users com-
monly experience dramatic variations in speech quality due to different devices, connections, and
acoustic environments. Accurate real-time measurements of received speech quality without ref-
erence to transmitted speech are invaluable. Thus no-reference (NR) speech quality estimation,
often enabled by machine learning (ML), is an active research area. ML can extract powerful
frame-based speech-quality features directly from waveforms (e.g., [1]) but this can be computa-
tionally intensive. Hand-crafted frequency-domain features can be an efficient alternative. These
often involve the short-time Fourier transform (STFT) and thus are also frame-based, meaning an
individual set of features is produced for each 10 to 30 ms frame of speech (e.g., [2]–[4]).

No matter the source, a frame-based feature sequence requires some sort of processing that ex-
tracts a single speech quality value from a sequence of frame-level results. Averaging is an easy
solution [2], [5], [6], but is not fully consistent with human perception [7], [8]. ML can leverage
attention mechanisms and long short-term memory (LSTM) structures to potentially learn more in-
tricate solutions, but these can dramatically increase architecture complexity. This memorandum
demonstrates that the modulation spectrum (MS) can extract the needed information, and, when
properly implemented, can also bypass the need for processing of frame-level results.

An MS describes how the power at different acoustic frequencies changes over time. The frame-
based narrowband MS has been successfully used to estimate narrowband speech quality in a
variety of contexts (e.g., [9]–[12]) but as a frame-based feature, it requires a processor that re-
duces the sequence of per-frame results to a single value, and this has typically meant some type
of averaging MS over time. In addition, current approaches often include assumptions about desir-
able and undesirable modulation frequencies, thresholding, and additional averaging that are not
always fully aligned with human perception. In some cases (e.g. [13]–[16]) ML has been invoked
to perform data reduction that reduces, but does not eliminate, the need for potentially harmful
averages and assumptions.

In this memorandum we present wideband fixed-size modulation spectra (FMS, singular or plural)
that generate global representations of entire signals (as opposed to a frame-based approach). Thus
it produces a fixed-size representation for a wide range of signal lengths. It uses the perceptually
motivated mel frequency scale [17] to cover the wideband or fullband audio frequency range (nom-
inally extending to 8 or 20 kHz, respectively) rather than the narrowband range which nominally
extends to just 4 kHz. It presently accommodates six sample rates and is easily extended to others.
We allow the entire MS to be used by subsequent ML — there are no averaging, thresholding, or
processing assumptions. Our code is available at https://github.com/NTIA/fms.

In the following we describe the problem and previous MS-based work in more detail. We then
develop FMS, clearly contrast it with previous approaches, and provide example results. In Section
4 we offer proof-of-concept experiments that demonstrate the utility of FMS in emulating human
perceptual tasks. These experiments add lightweight networks to FMS in order to emulate human
perception and judgement for rating speech quality and speech naturalness. The FMS results are
similar to results from frame-based modulation spectra when we employ identical lightweight
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networks for the estimation task.

In Section 5 we show that FMS has a unique ability to detect different situations when speech qual-
ity varies in time. This proof-of-concept work suggests that FMS has a strong innate advantage for
estimating time-varying speech quality. A full demonstration of this is not possible until sufficient
subjective scores are available for time-varying speech quality recordings.

While prior MS speech-quality work used no more than a few thousand speech files at most,
generous sharing of crowdsourced ratings allows us to present results from over 139,000 speech
files and subjective scores (before augmentation). This is more than 274 hours of speech and both
English and Chinese are represented. The results allow us to conclude that FMS are compact,
fixed-size representations for entire speech files that need only very simple networks to produce
human-like judgments of speech.
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2 FRAME-BASED SPEECH QUALITY FEATURES

The first step for any machine learning method for speech quality estimation involves feature
extraction. This can be done through digital signal processing (DSP) on raw speech inputs, or
through the first learned component in the network, or in combinations of these two (e.g., [2], [4],
[18]–[20]). In principle, raw speech is the ideal input, as no information is lost and the network
has the ability to learn the most meaningful representation of the speech. However, this approach
requires a vast amount of training data and can require complex, large network components in
order to learn interesting representations.

DSP can be applied to the speech prior to entering the network in order to generate a feature rich
representation, often in the frequency domain using the STFT. Further, by aggregating through
meaningful filter banks (e.g., computing mel spectra), we can create lower-dimensional, perceptu-
ally relevant representations of the speech.

An alternative approach can utilize the frame-based modulation spectrum (MS). In [21] it was
observed that temporal envelopes are related to speech quality and intelligibility and those obser-
vations are supported by earlier work in [22]–[24]. Also, [21] suggests the MS as a suitable basis
for detailed analysis of temporal envelopes. The MS had been developed earlier (and named mod-
ulation spectrogram) as a perceptually grounded signal representation for speech enhancement
[25]. The no-reference telecommunications speech-quality estimator called ANIQUE [9] uses the
MS to separate modulations below 30 Hz that are often associated with speech production from
other modulations that may be caused by impairments to the speech signal. This separation feeds
articulation-to-nonarticulation ratios (ANRs) which are accumulated across 23 critical bands and
then combined across frames to produce a single quality estimate for an entire speech file. In
ANIQUE+ a small neural network is used to combine per-critical band articulation power, nonar-
ticulation power, and ANR (3× 23 = 69 values) to a single value for each frame [13]. In [15],
the mean, variance, skewness, and kurtosis of these 69 values are computed over frames and the
resulting 276 statistics are combined with additional parameters and used to predict speech quality.
The MS also provides the basis for the speech-to-reverberation modulation energy ratio (SRMR)
used to estimate speech quality and speech intelligibility in [10]–[12]. ML was used to further
advance this work in [14], [16].

Extracted features typically represent time through frame-based representations, where a set of
features are extracted from each time-frame or window across a speech signal. Frame-based fea-
ture extraction is powerful and easily accommodates speech signals of different lengths. But it
must be followed by appropriate processing to extract a value from a sequence. Humans do not
average short-term impressions of speech quality to arrive at longer term impressions. Instead,
larger and more frequent quality variations reduce long-term quality [7]. In addition, a long-term
rating is typically lower-bounded by the minimum of short-term ratings and upper-bounded by the
average of short-term ratings, and the recency effect can also be a factor [7], [8]. But speech qual-
ity estimators often simply average per-frame quality estimates to arrive at a single global quality
estimate [2], [5], [6].

Networks can use recurrent layers (e.g., LSTM) and attention mechanisms to learn frame-based

4



relations and aggregations that are more nuanced and perceptually consistent than a simple aver-
age [18]. However, these layers can dramatically increase the complexity and size of the network.
In addition, since time-varying impairments are often under-represented compared to constant im-
pairments, it may be difficult to enable these layers to properly learn meaningful and extendable
relationships. Baking meaningful time relationships into the speech features up front can poten-
tially mitigate these problems and allow for smaller, simpler networks with perceptually consistent
temporal behavior. This motivates a different, light-weight approach for feature extraction that
does not rely on frame-based representations and the associated aggregations that can be at odds
with human speech perception.
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3 FIXED-SIZE MODULATION SPECTRUM

To our knowledge, all prior uses of MS for speech quality estimation have used a narrowband,
frame-based MS. In addition to the inherently required aggregation of samples into perceptual
acoustic bands and perceptual modulation bands, these have also imposed additional forms of
grouping, averaging, or thresholding out of necessity. Here we develop a frame-less, wideband,
fixed-size MS that does not impose any additional processing or assumptions beyond the acoustic
and modulation filter banks.

In the following we require the input speech signal to have a duration of at least three seconds. This
is not a significant restriction, since the speech signals used in telecommunications testing almost
always meet this requirement; and when they fall a bit short, zero padding can be used to meet the
requirement. This duration requirement stems from our desire to capture modulation frequencies
as low as 0.25 Hz because these modulations can capture attributes of time-varying speech quality.

Given a sequence of audio samples xi (i = 0 to Na −1), we first calculate frame-based mel spectra
using the normalized periodic Hamming window with 16 or 17.4 ms duration as shown in Table 1.
We then zero pad each frame to twice its original length and apply the STFT. The zero padding is
needed to achieve the desired spectral resolution. These STFT results are then aggregated using a
mel-scale filter bank [17]. Full details of this filter bank are provided in Appendix A.

This yields an Nwin ×Nmel representation of the signal, where Nwin is determined by the sample
rate of the audio signal, fs, and the stride, Ns, used in the STFT. Nmel describes the number of
mel-frequency bands considered. Let Pi,w describe the square root of the power in mel band i, for
window w such that Pi,· is a time history of the square root of the power in mel band i and that
history (or envelope) is sampled at fs/Ns Hz.

For any fs we select Ns to keep this new sample period approximately constant (Ns/ fs ≈ 2 ms)
to enable consistent modulation spectrum analyses across fs values (see Table 1). We perform
spectral analysis on each envelope using the symmetric unnormalized Hamming window and the
DFT:

Γi,k =
Nwin−1

∑
w=0

Pi,w

(
0.54−0.46cos

(
2πw

Nwin −1

))
e− j2πkw/Nwin,

i = 0 to Nmel −1, k = 0 to Nwin −1. (1)

Γi,k are complex envelope modulation spectrum values for mel band i. The index k corresponds to
modulation frequency via fmod = ( fs/Ns)× k/(Nwin −1).

Following the successful precedent set in [9] and [10], we aggregate these values in a logarithmic
fashion. But in a departure from precedent, FMS uses uniform rather than triangular weighting
(or modulation filters). This choice is motivated by the sparsity of spectral samples at the low
frequency end of our analysis range (i.e., 0.25 Hz). This sparsity precludes smooth triangular
weighting but does not interfere with uniform weighting.
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Table 1. FMS parameters selected to produce 32 identical mel bands between DC and 8 kHz for
six sample rates, fs. Ns is chosen so that Ns/ fs ≈ 2 ms for each sample rate. The constraint that mel
bands be equally sized can cause the upper frequency limit u f to be less than Nyquist frequency.

fs
(kHz)

Win. Len.
(samples)

Win. Len.
(ms)

Ns
(samples)

Stride
Duration (ms)

u f
(kHz) Nmel

16 256 16.000 32 2.000 8.000 32
24 384 16.000 48 2.000 11.108 36
32 512 16.000 64 2.000 15.326 40
48 768 16.000 96 2.000 22.778 45
22.05 384 17.415 44 1.995 10.240 35
44.1 768 17.415 88 1.995 21.052 44

This uniformly weighted, logarithmically spaced aggregation of modulation spectrum values can
be viewed as a filter bank operation and is fully described in Appendix B. That is, we use the bank
of Nmod rectangular filters Φk,m defined in Appendix B to produce modulation spectrum results.

The filters Φk,m aggregate spectral magnitudes and spectral phases:

Ψ
M
i,m =

⌊Nwin/2⌋

∑
k=0

|Γi,k|Φk,m, Ψ
P
i,m =

⌊Nwin/2⌋

∑
k=0

∠(Γi,k)Φk,m,

i = 0 to Nmel −1, m = 0 to Nmod −1, (2)

where ⌊·⌋ is the floor function and ∠(·) extracts the angle of the complex argument. Together,
ΨM

i,m and ΨP
i,m form the fixed-size modulation spectrum. We use Nmod = 11 and the associated 11

modulation frequencies are nominally 0, 0.25, 0.50, 1.0, 2.0, ..., and 128 Hz.

The length of the speech signal and the stride, Ns, determine the number of windows produced,
Nwin. This in turn determines the envelope modulation spectral resolution in Γi,k. This resolution
is removed in the aggregations given in (2), resulting in modulation spectra ΨM

i,m and ΨP
i,m that have

fixed-size, (size Nmel ×Nmod), independent of the length of the speech signal.

Table 1 shows FMS parameters we selected for uniformity across six sample rates. For each sample
rate we calculated Nmel and an upper frequency limit u f such that the steps in Appendix A yield
32 identical uniform mel bands between DC and 8 kHz. The window stride Ns equates to about
2 ms and this becomes the envelope sample period (equivalent to an envelope sample rate of 500
Hz). We selected this value so that our analyses include modulation frequencies up to 250 Hz.

FMS and the ways that we use them are very different from frame-based narrowband MS and the
ways they have been used:

• FMS are global (not frame-based) in the sense that information from an entire speech file
is represented in a fixed-size MS. This allows FMS to provide per-signal results without
restricting signals to a fixed length (e.g., [19], [26]) or explicit temporal processing (e.g.,
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[14], [18], [20], [27]). This is significant as the work presented in Section 4 uses signals
with durations from 3.0 (after zero padding) to 28.0 seconds and FMS represent them all
without losing relevant information. This approach fits best with file-based (not stream-
based) workflows.

• FMS support wideband (and fullband) audio analysis.

• FMS use all information, and all aggregation is perceptually grounded. They do not average
over frames, apply thresholds, and do not invoke any assumptions about the meaning or
importance of different modulation bands.
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4 EXAMPLE FMS APPLICATIONS

We now demonstrate that FMS contain sufficient information to emulate human ratings of speech
quality and speech naturalness. We do this first by exploring FMS representations of example
speech files, and then with five proof-of-concept experiments that use extremely simple, relatively
small networks.

4.1 Example FMS structure

FMS create a rich representation of speech, and speech signal impairments are reflected in an FMS
through intricate interactions. Figure 1 shows results for an example speech segment (4.1 second
duration, female talker saying “The wreck occurred by the bank on Main Street. The doorknob
was made of bright clean brass.”) The figure also shows results for three impaired versions of
that original speech. These include impairment by non-stationary coffee shop noise at 0 dB SNR,
impairment by significant reverberation, and impairment by the muting of 20 ms segments at
random locations. The original speech MS provides a reference. It shows that modulation power
drops off steadily as modulation frequency increases and that higher acoustic frequencies carry
less modulation. While this trend is still seen when noise, reverb, and muting impair the speech, it
is clear that these impairments also cause noticeable differences in the MS.

Figure 2 showcases the differences and general trends in these differences. That figure displays
mathematical differences (impaired log MS minus reference log MS) for each mel band and mod-
ulation band. In this example, noise has reduced MS power at the middle modulation frequencies
for most mel bands, but the lowest mel band shows increased power at all modulation frequencies.
The example reverberation has caused a marked decrease in MS power for just two of the middle
modulation bands, and an increase in the lower mel bands at the higher modulation frequencies.
Finally, the random muting example produced dramatic decreases in modulation band 2, but only
at higher mel bands, and dramatic increases in modulation band 8, but only at lower mel bands.
These examples make it clear that different impairments cause unique deviations in the MS, and
thus suggests that the MS could be analyzed to understand types and severities of impairments.
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Figure 1. Images showing example log-scale modulation spectra for speech, speech with noise,
speech with reverb, and speech with muting (dark blue for smallest values and bright yellow for
largest values).
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Figure 2. Images showing differences in log-scale modulation spectra arising when speech is
impaired by noise, reverb, or muting (dark blue for largest power decreases and bright yellow for
largest power increases).
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Table 2. Dataset summary. Values shown for Tencent, VCC2018, and NISQA include a doubling
produced by data augmentation.

Dataset Language
fs
(kHz)

Lengths
(s) Rating Task

Training
(files)

Validation
(files)

Testing
(files)

Total
Hours

IUB [20] English 16 2.0 – 7.8 Quality 30,600 1800 3600 38.5
Tencent [28] Chinese 16, 32, 44.1, 48 5.0 – 28.0 Quality 19,958 1156 2312 47.0
VCC2018 [29] English 16, 22.05 0.6 – 7.9 Naturalness 34,986 2058 4116 37.6
NISQA [30] English 48 4.5 – 12.0 Quality 21,250 1250 2500 61.3
PSTN [31] English 8 10.0 Quality 49,904 2935 5870 163.0

4.2 FMS and frame-based MS as features for speech quality estimation

We ran experiments to compare FMS with conventional frame-based MS. The experiment task is
to estimate subjective speech quality scores for four databases and subjective speech naturalness
scores for a fifth database. FMS and frame-based MS are used as inputs to identical extremely
simple, relatively small networks and those networks are trained to produce the desired targets. We
then report performance using set-aside testing data from each database. We expect that the results
here form a lower bound for what could be achieved with more insightful and complex networks.
The intent of these experiments is not to show optimal solutions, but rather to demonstrate that
FMS carry relevant speech quality and speech naturalness information similar to that carried in
frame-based MS. Key attributes of the five datasets are summarized in Table 2.

Across the first four datasets, the lowest sample rate is 16 kHz, so the smallest number of mel
bands available is 32. For consistency, experiments on these datasets use only these 32 lowest mel
bands (Nmel = 32) covering 0 to 8 kHz. To continue with the consistent size approach, we seek
to use 32 mel bands on the PSTN dataset as well. Since the PSTN dataset is narrowband (sample
rate is fs = 8 kHz and Nyquist frequency is 4 kHz), those 32 mel bands are located between DC
and 4 kHz (i.e., u f = 4000 Hz in Appendix A). Other than this necessary departure, the FMS
calculations for the PSTN database match those of the other databases by using a 16 ms window
and a 2 ms stride.

Each FMS has Nmel ×Nmod = 32×11 = 352 magnitude values and 352 phase values. The magni-
tude values are used to construct a length 352 column vector xxx000, where the individual entries of xxx000
are given by

x32m+i = log10(Ψ
M
i,m), i = 0 to 31, m = 0 to 10. (3)

In general, ΨP
i,m can provide important additional information. For example, ΨM

i,m is nearly identi-
cal if we place a short noise burst at the start of a speech file or at the end of the speech file, but
ΨP

i,m changes dramatically based on the location of the noise burst. In this example ΨP
i,m carries

impairment location information that could be needed in some applications. We provide a much
more formal and quantitative demonstration of the utility of ΨP

i,m in Section 5. But for the speech
data and rating tasks used in this current section, we have found that ΨP

i,m does not add value, so
we form the network input xxx000 from the logarithm of ΨM

i,m only.
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In all experiments the network first removes the global mean of the training set, and then applies
four fully connected layers with ReLU activation:

xxxi+1 = max(Wixxxiii +bbbiii,000), i = 0 to 3. (4)

In the ith layer, the weight matrix Wi has size Ni ×Ni+1 and the bias column vector bbbiii has length
Ni+1. Layer zero maps the length 352 input vector of FMS values to a length 256 internal repre-
sentation, so N0 = 352 and N1 = 256. Layers one and two continue to process length 256 internal
representations, so N2 = N3 = 256. And layer three (the fourth and final layer) maps the resulting
internal representation to a final scalar value (N4 = 1).

Our experiments are made possible through generous sharing of crowdsourced subjective test re-
sults. Crowdsourced tests lack many of the controls used in laboratory tests, but very large sample
sizes, simple cross-checks, and data cleaning can more than compensate for that lack of con-
trol [32]. Key attributes of the datasets are shown in Table 2 and further details are provided in 4.3
below.

For each experiment, we used 85% of the data and the Adam optimization algorithm to train
weights and biases. We used 5% of the data for validation and terminated training when perfor-
mance on this data was consistently worse than on training data. We used the previously unseen
10% of the data for testing. We ran 10 repetitions of each experiment, and present averaged results
for unseen test data on the FMS row in Table 3 and Table 4. All targets are mean opinion scores
(MOS) on a scale between 1 and 5.

The FMS results can be compared with frame-based MS results, also shown in Table 3 and Ta-
ble 4. We constructed the frame-based MS to match FMS, where possible. Thus the frame-based
approach uses the same mel spectra as FMS and Nmel = 32. But instead of analyzing the entire
time-history of the mel spectra as with FMS, we analyze each individual 256 ms (128 sample)
window as in [9], [10]. We advance this window with a stride of 32 ms (16 samples) as in [10].
This is made precise by adding the frame index f to (1) and setting Nwin = 128:

Γi,k, f =
Nwin−1

∑
w=0

Pi,16 f+w
(
0.54−0.46cos

(
2πw

Nwin −1

))
e− j2πkw/Nwin,

i = 0 to Nmel −1, k = 0 to Nwin −1, f = 0 to Nfrm −1. (5)

Consistent with [9] and [10], we then aggregate these values using logarithmically spaced triangu-
lar filters Φ̂k,m fully defined in Appendix C. One filter is at DC, and the others cover the range from
4 to 128 Hz which is again similar to the work in [9]. In order to match FMS, we use Nmod = 11
filters total, so one filter is at DC and 10 filters cover the range from 4 to 128 Hz.

Ψ
M
i,m, f =

64

∑
k=0

|Γi,k, f |Φ̂k,m , Ψ
P
i,m, f =

64

∑
k=0

∠(Γi,k, f )Φ̂k,m ,

i = 0 to Nmel −1, m = 0 to Nmod −1, f = 0 to Nfrm −1, (6)
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where ∠(·) extracts the angle of the complex argument.

We then average ΨM
i,m, f over all frames as in [10] to produce a single MS value for each of the

32 acoustic frequencies and each of the 11 modulation frequencies. Consistent with FMS, the
logarithm of the resulting 352 values become the elements of the feature vector xxx000:

x32m+i = log10

(
1

Nfrm

Nfrm−1

∑
f=0

Ψ
M
i,m, f

)
, i = 0 to 31, m = 0 to 10. (7)

The network architecture and training details for the frame-based approach match those for FMS
exactly.

Table 3 shows correlations between the estimators and the subjective scores. The table makes it
clear that the estimation problem is harder in some datasets (e.g., VCC2018) and easier in others
(e.g., IUB). This is caused by several factors, including the types, ranges, and numbers of different
impairments found in each database, along with the methodology and number of subjects used to
obtain a mean subjective score for each file. Across this wide range of estimation problems we see
that the FMS correlation is between 0 and 5% lower than that of frame-based MS. On average, the
correlation is reduced by 2% when FMS is used in place of the frame-based approach.

Table 4 is analogous to Table 3 but it provides RMS estimation errors in place of correlations.
Here we see that the FMS approach increases the RMS error slightly over that of the frame-based
approach. That increase ranges from 1 to 7% with an average value of 4%.

We earlier suggested that performing speech quality estimation by using FMS and frame-based MS
as inputs to extremely simple, relatively small networks might illustrate a lower bound for what
could be achieved with more insightful and complex networks. Here we offer one comparison with
the somewhat earlier work reported in [2]. In that study, speech quality was estimated by passing a
Hertz-scale magnitude spectrum through a range of different ML architectures built from various
combinations of CNN and BLSTM blocks. Many of these architectures were significantly more
complex than the networks we have used here. While the training, validation, and test split ratios
differ, the results in [2] for the VCC2018 database include correlations ranging from 0.25 to 0.64.
The values given in Table 3 for VCC2018 (0.61 and 0.62) are near the top end of this correlation
range. The MSE values given in [2] equate to RMSE values ranging from 0.70 to 0.90. The values
given in Table 4 for VCC2018 (0.69 and 0.70) are at the very bottom of this range. The values
in [2] are certainly affected by the smaller amount of training data used for the networks, but
these results still suggest that MS contain rich speech information. In particular the MS captures
temporal relationships directly, obviating the need for sophisticated network elements as typically
required with networks using Hertz-scale magnitude spectra as inputs.

Table 3. Linear (Pearson) correlation coefficients for unseen test data.

IUB Tencent VCC2018 NISQA PSTN
FMS 0.97 0.85 0.61 0.74 0.74
frame-based 0.97 0.86 0.62 0.78 0.75

14



Table 4. RMS errors for unseen test data.

IUB Tencent VCC2018 NISQA PSTN
FMS 0.21 0.62 0.70 0.74 0.59

frame-based 0.20 0.60 0.69 0.69 0.57

4.3 Dataset Details

4.3.1 Speech quality for IUB dataset

The Indiana University Bloomington (IUB) dataset [20] contains high-quality speech from close-
talking microphones as well as lower-quality speech from more distant microphones. Distant
microphones capture more background noise (SNRs range from -10 to +11 dB) and reverbera-
tion (speech-to-reverberation ratios range from -5 to +4 dB). A portion of the files were low-pass
filtered at 3.4 kHz to create anchor conditions for subjective testing. The crowdsourced speech-
quality ratings were filtered and scaled. There are five votes for each of the 36,000 files and these
were averaged to obtain a single MOS for each file.

4.3.2 Speech Quality for Tencent Dataset

The Tencent dataset [28] contains speech with simulated online conferencing impairments. Im-
pairments include reverberation, background noise, codecs, packet loss and concealment, filtering,
clipping, and combinations of these. Crowdsourced speech-quality ratings were collected and af-
ter data cleaning each of the 11,563 files had 20 or more ratings, which were averaged to a single
MOS value for each file. We augmented the data by creating a second version of each speech
file by trimming 2.3 ms from the front of the file. This is inaudible and allowed us to use the
same MOS value for both versions. We accounted for the augmentation so that the unseen testing
portion was indeed actually unseen.

4.3.3 Speech Naturalness for Voice Conversion Challenge Dataset

The 2018 Voice Conversion Challenge (VCC2018) evaluated numerous algorithms that convert a
speech recording from one (source) talker to sound as if it had been produced by a different (target)
talker. One aspect of the evaluation was crowdsourced subjective ratings of how natural the results
sound (1 = “completely unnatural” and 5 = “completely natural”). The various combinations
of source talker, target talker, utterance, and algorithm produced 20,580 files and all but 15 of
these have 4 ratings per file [29]. (Fourteen files have three ratings and one file has two ratings.)
The ratings were averaged to yield a single MOS value for each file. We augmented the data as
described in 4.3.2.
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4.3.4 Speech Quality for NISQA Dataset

We combined the two simulation portions (NISQA TRAIN SIM and NISQA VAL SIM) of the
NISQA database [30] to obtain 12,500 speech files impaired by various types of additive noise,
clipping, filtering, the modulated noise reference unit, a range of speech codecs, packet loss con-
ditions, and combinations of these. Crowdsourced ratings of five different dimensions accompany
these files, and we used the overall speech quality ratings. Between 3 and 10 overall speech quality
ratings are available for each file with an average of 5.2 and a median of 5 ratings per file. The rat-
ings were averaged to yield a single MOS value for each file. We augmented the data as described
in 4.3.2.

4.3.5 Speech Quality for PSTN Dataset

The PSTN database [31] is unique in that it holds narrowband speech ( f s = 8 kHz) consistent
with the transmission bandwidth of the legacy public switched telephone network (PSTN). It was
created by placing automated calls to pass speech recordings through 80 different PSTN networks
(in more than 50 different countries) and then on to one of several VoIP networks where it was
then recorded. The database contains 58,709 files. For 69% of these files, noise recordings were
mixed with speech recordings before transmission to simulate less desirable acoustic environ-
ments. Crowdsourced speech-quality ratings were collected. After data cleaning, each file had
between 1 and 10 ratings with an average of 4.6 and a median of 4 ratings per file. The ratings
were averaged to yield a single MOS value for each file.
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5 TIME-VARYING SPEECH QUALITY EXAMPLE

We have established that FMS can extract useful speech quality and speech naturalness information
from entire speech files and that this information can be used to produce estimates of quality and
naturalness. These estimates agree with human perception, but not quite as closely as estimates that
are produced by the frame-based time-averaged MS. Now we demonstrate that FMS can capture
time-varying speech-quality information that is not available after averaging over frame-based MS
representations.

We extracted 6,000 speech files ( fs = 16 kHz) from the LibriSpeech “dev clean” and “train clean
100” databases [33], and trimmed them to ten seconds. For each file, we randomly selected one
of five environmental noise types (bus, car, coffee shop, party, street) and a random segment of
that noise type. We used the selected noise segment to create four versions of the speech file: low
noise (15 dB SNR), high noise (5 dB SNR), decreasing noise (5 dB SNR for the first 5 seconds,
then 15 dB SNR for the final 5 seconds), and increasing noise (15 dB SNR for the first 5 seconds,
then 5 dB SNR for the final 5 seconds). In the decreasing noise and increasing noise versions,
the noise level ramps down or up over a period of 100 ms. The time of the start of the transition
includes a small random component so that the exact start times are uniformly distributed between
4.9 and 5.1 seconds. Note that the first two versions have fixed speech quality and the second
two have time-varying speech quality. These 4 versions produce 24,000 speech files total. These
four versions allow us to construct a four-way audio impairment classification problem and use
modulation spectra and small networks to solve that problem.

For each file we compute the FMS and the frame-based MS as described in 3 and 4. We then create
three FMS feature vectors xxx000: The elements of the magnitude-only feature vector are

x32m+i = log10(Ψ
M
i,m), i = 0 to 31, m = 0 to 10, (8)

elements of the phase-only feature vector are

x32m+i = log10(Ψ
P
i,m), i = 0 to 31, m = 0 to 10, (9)

and elements of the magnitude with phase feature vector are

x32m+i = log10(Ψ
M
i,m), i = 0 to 31, m = 0 to 10,

x352+32m+i = log10(Ψ
P
i,m), i = 0 to 31, m = 0 to 10. (10)

Similarly, we create the same three options for the frame-based MS: magnitude only,

x32m+i = log10

(
1

Nfrm

Nfrm−1

∑
f=0

Ψ
M
i,m, f

)
, i = 0 to 31, m = 0 to 10, (11)

phase only,

x32m+i = log10

(
1

Nfrm

Nfrm−1

∑
f=0

Ψ
P
i,m, f

)
, i = 0 to 31, m = 0 to 10, (12)
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and magnitude with phase,

x32m+i = log10

(
1

Nfrm

Nfrm−1

∑
f=0

Ψ
M
i,m, f

)
, i = 0 to 31, m = 0 to 10,

x352+32m+i = log10

(
1

Nfrm

Nfrm−1

∑
f=0

Ψ
P
i,m, f

)
, i = 0 to 31, m = 0 to 10. (13)

This gives six types of feature vectors that we can use with networks to solve the four-way classifi-
cation problem. The networks are as defined in (4) with N0 = 352 (magnitude only or phase only)
or N0 = 704 (magnitude with phase). We have N1 = N2 = N3 = 256, as before. Finally, N4 = 4,
since each network has four outputs. Each output indicates the probability that the input audio
signal belongs to one of the four classes (low noise, high noise, decreasing noise, or increasing
noise). We find the output with the greatest value and use it as a hard classification. This means
the network can assign each input audio file to a single class at inference.

For each of the six types of feature vectors, we used 85% of the data to train a network and 5% to
validate it. We use the remaining 10% of the files (2400 files, 6.7 hours) to test the classification
capabilities of each network. More specifically, we consider the confusion matrices generated by
recording the distribution of inferred classes for each true class. Table 5a through Table 5f show
the six confusion matrices. In the tables, the abbreviations low, high, dec., and inc. indicate the
classes of low noise, high noise, decreasing noise, and increasing noise, respectively. Note that
the ideal confusion matrix has 1.0 as each diagonal entry and 0.0 elsewhere. Table 6 and Table 7
summarize the mean error rates for the six cases.

These confusion matrices can be viewed as images, where 0.0 is shown as black and 1.0 is shown
as white, which can be seen in Figure 3. Table 5 through Table 7 and Figure 3 make several
results clear. When magnitude is used alone, both frame-based MS and FMS can identify the low
and high classes reliably, but the decreasing and increasing classes cannot be properly identified.
When phase is used alone, neither frame-based MS nor FMS works well overall. The frame-
based approach works better for the low and high classes, while FMS does better with decreasing
and increasing classes. When magnitude and phase are used together, the frame-based MS can
reliably identify the low and high classes, but it struggles to classify the time-varying classes
(“decreasing” and “increasing”). With FMS, magnitude and phase provide sufficient information
to reliably identify all four classes, and the mean error rate is roughly one-third that of the frame-
based approach. If we focus in on the two cases of time-varying speech quality we see (Table 7)
that using magnitude and phase of the FMS gives an error rate that is less than one-fifth the error
rate obtained using the frame-based approach. That is, when the MS represents the full audio file,
we have a fixed size without any time averaging, and time varying speech quality information is
preserved, rather than destroyed, by averaging.

Given that the frame-based approach includes averaging over frames, it may seem surprising that
it can do any better than guessing when identifying the “decreasing” and ”increasing” cases. The
explanation is that some frames span the transition between noise levels and due to the impressive
capabilities of MS and ML, these few frames can provide non-zero information regarding the type
of transition and thus raise classification performance somewhat above the guessing level.
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Figure 3. Confusion matrices displayed as images (black indicates 0.0 and white indicates 1.0)
Classes 1, 2, 3, and 4 are low noise, high noise, decreasing noise, and increasing noise, respectively.
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Table 5. Confusion matrices.

(a) Frame-based MS using magnitude only,
mean error rate 0.26.

Inferred Class
True Class Low High Dec. Inc.
Low 0.98 0.00 0.00 0.02
High 0.00 0.96 0.04 0.00
Dec. 0.01 0.05 0.51 0.43
Inc. 0.01 0.04 0.45 0.50

(b) FMS using magnitude only, mean error
rate 0.29.

Inferred Class
True Class Low High Dec. Inc.
Low 0.97 0.00 0.00 0.03
High 0.00 0.91 0.08 0.01
Dec. 0.02 0.08 0.44 0.47
Inc. 0.02 0.05 0.41 0.52

(c) Frame-based MS using phase only, mean
error rate 0.50.

Inferred Class
True Class Low High Dec. Inc.
Low 0.56 0.04 0.17 0.23
High 0.02 0.64 0.20 0.14
Dec. 0.17 0.25 0.37 0.20
Inc. 0.24 0.16 0.18 0.42

(d) FMS using phase only, mean error rate
0.50.

Inferred Class
True Class Low High Dec. Inc.
Low 0.32 0.21 0.23 0.24
High 0.35 0.18 0.25 0.22
Dec. 0.18 0.08 0.72 0.02
Inc. 0.11 0.08 0.02 0.79

(e) Frame-based MS using magnitude and
phase, mean error rate 0.30.

Inferred Class
True Class Low High Dec. Inc.
Low 0.92 0.01 0.04 0.03
High 0.00 0.91 0.06 0.03
Dec. 0.05 0.12 0.48 0.35
Inc. 0.05 0.12 0.35 0.49

(f) FMS using magnitude and phase, mean
error rate 0.11.

Inferred Class
True Class Low High Dec. Inc.
Low 0.92 0.01 0.03 0.03
High 0.01 0.85 0.07 0.07
Dec. 0.03 0.07 0.89 0.02
Inc. 0.03 0.06 0.01 0.91

Table 6. Mean error rates for the 4-way classification problem.

Mag Only Phase Only Mag and Phase
frame-based 0.26 0.50 0.30
FMS 0.29 0.50 0.11

Table 7. Mean error rates for identification of decreasing noise and increasing noise cases.

Mag Only Phase Only Mag and Phase
frame-based 0.49 0.60 0.52
FMS 0.52 0.24 0.10
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6 DISCUSSION

FMS provide rich, fixed-size, and perceptually consistent representations of speech. Our experi-
ments show that FMS and frame-based MS give similar results when used with simple networks to
estimate speech quality and naturalness for five large datasets. A separate experiment shows that,
as expected, FMS captures time-varying speech quality information that is mostly lost when the
frame-based MS is followed by averaging over frames.

If one elects to use a frame-based MS and not average over frames, more information can be pre-
served but the size of the representation is increased as well. For the data used here and described
in Table 2, representations would be, on average, 212 times larger than FMS. These larger repre-
sentations have memory implications and naturally increase the computations per file required for
training and inference. Further, we found that training networks to use unaveraged frame-based
MS inputs has much slower convergence (about three times as many epochs were required) than
training for file-based inputs.

From these experiments we conclude that the FMS is a compact, fixed-size representation of an
entire, arbitrary-length speech file that is sufficiently descriptive to allow for human-like judgments
of telecommunications speech quality and judgments of the naturalness of synthetic speech. One
path to better speech quality estimation is to pursue extremely large models, some of which have
hundreds of millions of parameters. But it remains important for researchers to peruse smaller and
more efficient networks and to push their performance as far as possible. Our work with FMS is
one example of that approach. FMS innately encode important temporal information that can be
missed when averaging across frame-based representations. FMS can reduce the need for complex
temporal processing inside a speech quality estimation network and may allow FMS-based speech
quality estimators to use smaller, less complex networks and still achieve performance similar to
the best frame-based alternatives.
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Appendix A: Mel Spectrum Filter Bank

The mel spectrum filter bank used to create the fixed-size modulation spectrum (FMS) accumulates
Hertz-scale spectral samples to create a mel-scale spectral representation [17]. The filters have
uniform width and spacing on the mel scale and triangular shape on the Hertz scale. There are
Nmel filters θk,i, i = 0 to Nmel − 1, k = 0 to NHertz − 1. Since the length of the DFT that produces
the Hertz-scale spectral representation is Nt (even), it follows that NHertz = (Nt/2)+1.

The upper frequency limit for the analysis is u f (in Hz). This value is converted to a mel-scale
value ũ f (in mel) using the relationship given in [17],

ũ f = 2595log10(1+u f /700), (14)

and the resulting range is evenly divided:

∆̃ = ũ f /(Nmel +1). (15)

Let b̃i = i∆̃, for i = 0 to Nmel +1. Then the filter centered at b̃i (i = 1 to Nmel) extends from b̃i−1 to
b̃i+1. We use the inverse of (14) to convert the b̃i to their Hertz scale equivalents bi:

bi = 700
(

10(b̃i/2595)−1
)
. (16)

The filter bank values are given by

θk,i =


ηi

fk−bi
bi+1−bi

, bi ≤ fk < bi+1,

ηi

(
1− fk−bi+1

bi+2−bi+1

)
, bi+1 ≤ fk < bi+2,

0, otherwise,

k = 0 to NHertz −1, i = 0 to Nmel −1. (17)

The Hertz-scale frequencies fk used in (17) are calculated from the audio sample rate fs and the
DFT length Nt (even):

fk = k
fs

Nt
, k = 0 to Nt/2. (18)

The limits for k given in (17) and (18) are consistent because NHertz = (Nt/2)+1. Normalization
for the width of each band is accomplished by

ηi =
1

bi+2 −bi
, i = 0 to Nmel −1. (19)

Using (17), we can show that the upper slope of filter θ·,i−1 and the lower slope of filter θ·,i intersect
at

ηi−1bi+1 +ηibi

ηi−1 +ηi
Hz. (20)

In the simplified case ηi−1 = ηi, the intersection given in (20) becomes the midpoint of bi and
bi+1. We can also use (17) to show that the filter centered at bi has a peak value of ηi and at the
simplified intersection locations (bi + bi−1)/2 and (bi + bi+1)/2 it has value ηi/2. Thus, at the
simplified intersection location, the value of the filter relative to its peak value is 1/2 or minus 6.0
dB.
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Appendix B: Modulation Spectrum Rectangular Filter Bank

The rectangular modulation spectrum filter bank contains Nmod filters and each performs a different
aggregation of N linear-Hertz-scale spectral samples. The result is a logarithmic-Hertz-scale spec-
tral representation with Nmod samples. When viewed on a logarithmic frequency scale, the filters
have uniform spacing and they place the same weight on each spectral sample (i.e., they have rect-
angular shape). The Nmod filters can be described as elements in a matrix Φk,m, m = 0 to Nmod −1,
k = 0 to N −1.

The first filter simply selects the linear-Hertz-scale spectral sample at DC. The remaining Nmod −1
filters collect multiple linear-Hertz-scale spectral samples to produce a log-scale output. The first
of these is nominally located at 0.25 Hz. The last is nominally at 128 Hz. Thus, it is required that
3 ≤ Nmod .

Since the number of per-frame results used in the modulation spectrum DFT is N f , the number of
resulting unique spectral values is

⌊
N f /2

⌋
+ 1. This means that the number of linear-Hertz-scale

spectral values input to the filter bank is N =
⌊
N f /2

⌋
+1.

The modulation spectrum filter bank is constructed as follows. The range from 0.25 to 128 Hz is
evenly divided on the log scale:

∆̄ =
log2(128)− log2(0.25)

Nmod −2
. (21)

The log-scale center frequencies are given by

b̄m = log2(0.25)+m∆̄, m = 0 to Nmod −2. (22)

These Nmod −1 center frequencies are used to define Nmod thresholds, δi, given by

δi =


−∞, i = 0,
1
2(b̄i−1 + b̄i), i = 1 to Nmod −2,
+∞, i = Nmod −1.

(23)

The frequencies of the DFT bins can be calculated from the audio sample rate, fs, the frame stride,
Ns (number of samples of advance when forming the next frame), and the number of frames used
in the modulation spectrum DFT, N f :

∆h =
fs

NsN f
. (24)

The log frequencies of the DFT bins are given by

f̄k = log2 (k∆h) , k = 0 to N −1, (25)

with log2(0) defined to be −∞.
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We can now define the filter bank values:

Φ0,0 = 1,
Φk,0 = 0, k = 1 to N −1,

(26)

and for m = 1 to Nmod −1, k = 0 to N −1,

Φk,m =

{
νm, δm−1 < f̄k ≤ δm,

0, otherwise.

(27)

The weights νm serve to normalize each filter by the number of DFT samples it spans:

νm =
1∣∣{k ∈ Z : δm−1 < f̄k ≤ δm

}∣∣ ,
m = 1 to Nmod −1, (28)

where |·| indicates set cardinality in this context.
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Appendix C: Modulation Spectrum Triangular Filter Bank

The triangular modulation spectrum filter bank accumulates N linear-Hertz-scale spectral samples
to create a logarithmic-Hertz-scale spectral representation with Nmod samples. When viewed on a
logarithmic frequency scale, the filters have uniform spacing and identical triangular shape. Fol-
lowing the successful precedent established in [9], the first filter is centered at 4 Hz and the last
filter is centered at 128 Hz, so it is required that 2 ≤ Nmod . The filter bank contains Nmod filters and
they can be described as elements of the matrix Φk,m, m = 0 to Nmod −1, k = 0 to N−1. Since the
number of per-frame results used in the modulation spectrum DFT is N f , the number of resulting
unique spectral values is

⌊
N f /2

⌋
+ 1. In other words, the number of linear-Hertz-scale spectral

values used as input to the filter bank is N =
⌊
N f /2

⌋
+1.

The modulation spectrum filter bank is constructed as follows. The range from 4 to 128 Hz is
evenly divided on the log scale:

∆̄ =
log2(128)− log2(4)

Nmod −1
. (29)

The initial log-scale center frequencies are given by

b̄m = log2(4)+m∆̄, m = 0 to Nmod −1. (30)

To maximize consistency across different file lengths, we move each of these initial filter center
frequencies to match the nearest DFT bin. The spacing of the DFT bins can be calculated from the
audio sample rate fs, the frame stride Ns (number of samples of advance when forming the next
frame) and the number of frames used in the modulation spectrum DFT N f :

∆h =
fs

NsN f
, (31)

and the log frequencies of the DFT bins are given by

f̄k = log2 (k∆h) , k = 0 to N −1, (32)

with log2(0) defined to be −∞. Moving b̄m to match the nearest value of f̄k is achieved by

b̄′m = log2

([
2b̄m

∆h

]
∆h

)
, m = 0 to Nmod −1, (33)

where [·] indicates rounding to the nearest integer. Due to the logarithmic scale, these adjustments
are very small near the top of the frequency scale (128 Hz), but larger near the bottom of the scale
(4 Hz). The filter half-widths are given by

δ̄ = ∆̄/(2−
√

2), (34)

and these values are selected to make unweighted adjacent filters intersect at minus 3 dB.
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The filter bank values are given by

Φ̂k,m =


νm

f̄k−(b̄′m−δ̄)

δ̄
, b̄′m − δ̄ ≤ f̄k < b̄′m,

νm

(
1− f̄k−b̄′m

δ̄

)
, b̄′m ≤ f̄k < b̄′m + δ̄,

0, otherwise,

k = 0 to N −1, m = 0 to Nmod −1. (35)

The weights, νm, serve to normalize each filter by the number of DFT samples it spans:

νm =
1∣∣{k ∈ Z : −δ̄ ≤ f̄k − b̄′m < δ̄

}∣∣ ,
m = 0 to Nmod −1, (36)

where |·| indicates set cardinality in this context.

Using (35), we can show that the upper slope of filter Φ̂·,i and the lower slope of filter Φ̂·,i+1
intersect at

νi(b̄′i + δ̄)+νi+1(b̄′i+1 − δ̄)

νi +νi+1
log2(Hz). (37)

In the simplified case of νi = νi+1, (37) becomes the midpoint of b̄′i and b̄′i+1.

We can also use (35) to show that the filter centered at b̄′i has a peak value of νi and at the simplified
intersection locations (b̄′i+ b̄′i+1)/2 it has value νi/

√
2. Thus, at the simplified intersection location,

the value of the filter relative to the peak value is 1/
√

2 or minus 3.0 dB.
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