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The Precision and Repeatability of Media Quality
Comparisons: Measurements and

New Statistical Methods
Margaret H. Pinson

Abstract—This paper calculates confidence intervals for 89
datasets that use the 5-level Absolute Category Rating (ACR)
method to evaluate the quality of speech, video, images, and video
with audio. This data allows us to compute the subjective test con-
fidence interval (�SCI) for 5-level ACR tests. We use a confusion
matrix to compare conclusions reached by 88 lab-to-lab compar-
isons, 22 method-to-method comparisons, and 12 comparisons
between expert and naïve subjects. We estimate the differences
in conclusions reached by ad hoc evaluations, compared to sub-
jective tests. We recommend using the disagree incidence rate to
identify lab-to-lab differences (i.e., the likelihood that significantly
different stimulus pairs receive opposing rank order from the two
labs). Disagree incidence rates above 0.31% are unusual enough
to warrant investigation and disagree incidence rates above 1.0%
indicate differences in method, test environment, test implemen-
tation, or subject demographics. These incidence rates form the
basis for a new statistical method that calculates the confidence
interval of a metric (�MCI). When �MCI is used to make deci-
sions, the equivalence to a video-quality test (EVQT) method
determines whether a metric acts similarly to a subjective test.
When �MCI is not used, the metric is likened to a certain num-
ber of people in a video-quality test (PVQT). This information
will help users make the better decisions when applying quality
metrics. The algorithm code is made available for any purpose.
Most of the ratings used in this paper come from open datasets.

Index Terms—Audiovisual quality, CI, confidence interval,
confusion matrix, false ranking, image quality, metric, MOS,
precision, statistics, subjective test, video quality.

I. INTRODUCTION

SUBJECTIVE tests are the most accurate way to assess
audio and video quality. They are also expensive, slow,

and thus rare. Quality metrics are less accurate but provide fast
insights into video and audio quality. These sweeping state-
ments, while correct, fail to convey a deeper understanding
that end-users need—such as the likelihood of choosing the
worst quality system by mistake.
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Ultimately, the choice between subjective tests and qual-
ity metrics is a false dichotomy. Ad hoc evaluations are
more common—like engineers relying on their own observa-
tions. Some of these people know that ad hoc evaluations are
inaccurate but have no viable alternative.

ITU-T Rec. P.1401 identifies best practices for comparing
quality metrics to subjective tests. P.1401 focuses on the needs
of standards organizations to assess the accuracy of quality
metrics. By contrast, companies must choose between relying
on ad hoc evaluation, deploying a quality metric, or con-
ducting a subjective test. They would like to understand how
this choice impacts the likelihood of making an error. ITU-T
Rec. P.1401 cannot answer this question.

This paper offers solutions. We begin by examining
previously proposed statistics that characterize the accuracy,
repeatability, and precision of subjective tests and objective
metrics (Section II). We then define terms and summarize
the subjective tests that we will be analyzing (Section III).
We complete our introduction by describing our strategy for
designing new statistical methods (Section IV).

Section V analyzes the observed precision of subjective
tests. We defined the subjective test’s confidence interval
(�SCI) as the minimum difference in mean opinion scores
(MOS) at which 95% of the pairs will be statistically
different (according to the Student’s t-test using a 95%
confidence level). We focus on the most popular rat-
ing method—the 5-level Absolute Category Rating (ACR)
method—to maximize the available data. We calculate �SCI
for 91 datasets to indicate trends within a single test.

Section VI compares ratings from multiple labs to analyze
similarities and differences in their conclusions. We will use
a confusion matrix to classify the conclusions reached by two
labs. We define the disagree incidence rate as the likelihood of
two tests reaching opposing conclusion on the quality ranking
of stimuli A and B, when the paired Student’s t-test indicates
that these stimuli have different quality (using a 95% con-
fidence level). We examine disagree incidence rates from 88
lab comparisons, 22 method comparisons, and 12 comparisons
between naïve and expert subjects.

This allows us to estimate expected disagree incidence rate
for well-designed and carefully conducted subjective tests. We
conclude that two subjective tests can be considered equivalent
when the disagree incidence rate is below 0.31%. Disagree
incidence rates above 0.31% are unusual enough to war-
rant investigation and disagree incidence rates above 1.0%
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indicate significant differences in method, test environment,
test implementation, or subject demographics.

Section VII infers the false ranking incidence rates for
ad hoc evaluations. We propose false ranking as a logical
extension of the disagree incidence rate. False ranking occurs
when the ad hoc evaluation indicates that media A has bet-
ter quality than media B, but a subjective test concludes that
media A has significantly worse quality than media B. False
ranking explains the ad hoc evaluation or metric’s performance
in terms that an end user can understand: the odds of making
a mistake.

Section VIII compares the decisions reached by a subjective
test (using the Student’s t-test) with conclusions reached by the
ad hoc evaluation, where any change in quality is significant.
We will use Monte Carlo simulations to divide ≈70 subjects
into a formal subjective test with 24 subjects and an ad hoc
assessment of 1, 2, or 3 subjects. We will repeat this analysis
for pilot tests of 6, 9, or 12 subjects. This lets us estimate the
expected false ranking incidence rate for ad hoc evaluations.

Then we switch to objective metrics and repeat these anal-
yses, in the reverse order. When confidence intervals (CIs) are
not used to make decisions, we can equate the performance
of the quality metric to a certain number of people in a
video-quality test (PVQT). We do this by computing the false
ranking incidence rate of the metric (relative to a subjective
test) and comparing it to our observed false ranking incidence
rates of ad hoc evaluations and pilot tests.

Section IX establishes the metric’s confidence interval
(�MCI). This formula applies our previous observations (e.g.,
�SCI and disagree incidence rates) to calculate a confidence
interval at which the metric has error rates similar to a subjec-
tive test. �MCI allows users to perform significance tests on
metric values—instead of carelessly assuming that any change
in metric value is significant.

Section IX also establishes the equivalence to a video-
quality test (EVQT) to determine whether a metric acts
similarly to a subjective test. We will use a confusion matrix
to classify the conclusions reached by a lab with conclusions
reached by the metric (using �MCI). We will compare this
lab-to-metric data to our lab-to-lab data. If the correct decision
and error incidence rates fall within the expected behavior of
lab-to-lab comparisons, then we can conclude that the metric
is acting like a subjective test lab.

Section X summarizes our findings and draws the reader’s
attention to important Tables.

This paper builds upon research presented in [1]. Some
details have been changed, for improved clarity when these
methods are used in later publications. Code implementing
the new statistical methods is available in the GitHub reposi-
tory NRMetricFramework [2], but none of these new statistics
are suitable for comparing metrics and deciding which is more
accurate.

II. BACKGROUND

Let us begin by examining previously proposed statistics
that characterize the accuracy, repeatability, and precision of
subjective tests and objective metrics. After introducing the
differences between video and speech tests, we will proceed
chronologically.

A. Differences Between Video- and Speech-Quality Tests

ITU-R Rec. BT.500 addresses the specialized needs of
broadcasters and contribution-quality television to conduct
subjective video-quality tests. BT.500 recommends a mini-
mum of 15 subjects, as it has for decades. By contrast, ITU-T
Rec. P.913 describes best practices for Internet video, mobile
devices, and new video technologies. P.913 recommends a
minimum of 24 subjects. In both Recommendations,1 MOSs
are calculated for each media (an image, silent video, or
audiovisual file).

ITU-T Rec. P.800 describes speech-quality tests. The test
methods are very similar, but the number of listeners per file
is often quite low (e.g., 6 or 8). MOS is calculated by averaging
all subject ratings for all speech samples associated with one
system. When the same test is conducted at multiple labs,
each lab uses different speech recordings (e.g., phonetically-
balanced sentences in the native language of that area).

This paper uses the video convention. Each MOS describes
one media file, which we will refer to as a stimulus. Due to
this difference, we will focus on statistics for video-quality
analysis (VQA) and image-quality analysis (IQA). Most of
these statistical methods compare subjective test methods and
objective metrics

B. Statistical Analyses of Subjective Ratings

Cermak and Fay [3] use Analysis of Variance (ANOVA)
in their 1994 Contribution to the T1A1 subcommittee of the
American National Standards Association (ANSI) accredited
Alliance for Telecommunications Industry Solutions (ATIS).
Cermak and Fey analyze the distribution of rating differences
when subjects view and rate the same stimuli twice. ANOVA
rarely appears in later publications, due to the constraints on
experiment design.

Using this same T1A1 dataset, Webster [4] proposed no-
reference (NR) metrics spatial information (SI) and temporal
information (TI). Metrics SI and TI characterize the coding
complexity of videos in a subjective test. SI and TI appear in
ITU-T Rec. P.910 and continue to be widely used.

Over the next decade, Pearson correlation became the de
facto standard for lab-to-lab comparisons. Pinson and Wolf [5]
has the most data of this sort, with three tables that each
compare MOSs from 13 or 14 labs. This report also provides
scatter plots and linear fits (gain and offset).

The Student’s t-test can be used to compare individual
systems, as per the comparison of H.264 and MPEG2 in [6].
P.913 recommends the Student’s t-test for such analyses.

In 2010, Tominaga et al. [7] evaluated the pros and cons
of eight subjective rating methods. They compare the MOSs
produced by different methods using Pearson correlation and
Spearman correlation. They also compute statistics for each
subjective method separately: (1) a histogram showing the
distribution of MOSs, (2) the range of MOSs in the test
(MOS range), (3) the mean of the 95% confidence intervals

1We will ignore ITU-T Rec. P.910 and P.911 because they remain focused
on standard-definition televisions and cathode ray tube (CRT) monitors. The
Video Quality Experts Group (VQEG) is developing a proposal to merge and
update P.910, P.911, and P.913. This proposal is expected to harmonize BT.500
and P.913 by identifying use cases for 15 subject tests.
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(MCI), (4) MCI normalized by MOS range (MCInorm), (5) the 
total assessment time required, and (6) the ease of evaluation, 
from a questionnaire. Tominaga et al. conclude that MOSnorm, 
assessment time, and ease of evaluation were the most sen-
sitive to differences between methods. They recommend the
5-level ACR method.

Huynh-Thu et al. [8] compared different subjective methods
and ultimately recommend ACR. They use rating distribu-
tions, confidence interval distributions, lab-to-lab scatter plots,
ANOVA, the correlation between subjects (as a measure of
repeatability), the fraction of media pairs that significantly
differ, and linear fits (e.g., transforming from one scale to
another). After these two studies were published, the 5-level
ACR method notably increased in popularity, and other meth-
ods decreased in popularity.

Hoßfeld et al. [9] propose a statistic that characterizes the
overall relationship between MOS and standard deviation of
scores (SOS). This statistic is called α in [9], but we will use
the authors’ initials instead (HSE), because α is commonly
used in equations. HSE uses the level of agreement or dis-
agreement among subjects to estimate the reliability of the
test data. Like SI and TI, HSE can help the reader understand
a subjective test’s characteristics.

Pinson et al. [10] present a battery of statistical analyses
to explore the impact of multiple labs and test environments
on MOSs. These statistics include Pearson correlation, the
Kruskal-Wallis test, confidence intervals, random subsets of
subjects, and a confusion matrix. Pinson et al. conclude that
MOS is relative—we expect the ordering of impairments
and relative distances to be replicable. Since MOSs are not
absolute, we cannot rely upon MOS thresholds.

Le Moan et al. [11] compare the impact of side-by-side
and one-after-another presentation methods on image-quality
tests. Both are implemented with the 3-level Pair Comparison
method (e.g., better, same, worse). They consider assessment
time and a confusion matrix to compare each subject’s ratings
from these two methods (e.g., prefer A, prefer B, or tie), and
then aggregate over subjects and content type.

Kumcu et al. [12] propose seven statistics for analyz-
ing subjective methods, including four statistics taken from
Mantiuk et al. [13] in identical or modified form. Two of the
seven statistics are simple—assessment time (as per [7]) and
Cohen’s D—and the rest are too complex to be summarized
here. In broad terms, they examine retrospective power, the rank
order of stimulus pairs, and the probability that the subjective
test will detect significant differences between stimulus pairs.

Nehmé et al. [14] calculate the accuracy of a subjective test
as the fraction of stimulus pairs that are significantly different,
given the unpaired two-sample Wilcoxon test and a sub-set
of the available subjects. This produces a range of accuracy
estimates for any given number of subjects. They plot this
range of accuracy estimates (on the y-axis) as a function of
the number of subjects (on the x-axis). Sample plots are shown
for two subjective methods and two labs.

Most of these papers evaluate the impact on MOSs when
there are changes to the test environment, subject demograph-
ics, number of subjects, or rating method. The exceptions are
SI, TI, MCInorm, and HSE, which generally characterize the

subjective test and are intended to be compared across different
publications.

C. Analyzing Objective Metrics

In the early 1990s, subject matter experts from T1A1
brainstormed improved methods to express the accuracy and
precision of video-quality metrics. These discussions culmi-
nated in two proposed solutions.

The first proposed solution, resolving power, is described
in Brill et al. [15], ATIS T1.TR.72, and ITU-T Rec. J.149.
Loosely described, resolving power is the threshold at which
95% of all stimulus pairs are significantly different. Resolving
power is calculated for a specific subjective dataset. Either the
metric is mapped to the subjective test or vice versa. Resolving
power was rejected by industry and subject matter experts.
Resolving power yields large thresholds and a pessimistic con-
clusion that even the best metric has minimal practical value.
See [5] for example data.

Resolving power has three design flaws. First, resolving
power uses the Student’s t-test when comparing subjective
data but CIs when comparing metric data. This predisposes the
measurement sensitivity in favor of subjective testing. Second,
resolving power is calculated for a specific dataset and greatly
influenced by quirks of its experiment design (e.g., MCInorm,
number of subjects, and MOS range). Third, resolving power
assumes (without proof) that subjective tests are perfect.

The second proposed solution is based on a confusion
matrix and appears in [15] and ATIS T1.TR.72. In a nutshell,
the idea is to use a confusion matrix that classifies the conclu-
sions reached by a subjective test with the conclusions reached
by the metric, measured as a function of the change in metric
value. This confusion matrix idea also failed to gain traction.
One problem is that the method proposes many options for
the metric’s CI without recommending how to choose among
them.

From 1994 to around 2010, objective metric analyses and
subjective test analyses used similar statistics. For example,
Cermak and Fay [3] use regression and ANOVA. Over this
period, the Video Quality Experts Group (VQEG) considered
various statistics and eventually settled on Pearson correlation,
root mean square error (RMSE), and outlier ratio, with CIs and
significance tests for each. Nonlinearities in the subjective data
are removed by fitting the objective data to the MOSs using
a 3rd order monotonic polynomial fit. These techniques are
described in ITU-T Rec. P.1401. Sample analyses and code
can be found in [5].

Pearson correlation, RMSE, Outlier Ratio, and variations
like Spearman correlation fail to acknowledge or accommo-
date the variation in opinion among subjects. For example,
Pinson et al. [10] identifies a flaw when Pearson correlation is
used to analyze MOSs. Pearson correlation is proportional to
the fraction of the rating scale that is spanned by the dataset’s
MOSs (MOS range). Thus, lower values of Pearson correlation
do not necessarily indicate an inaccurate metric—they could
instead be caused by a narrow range of MOSs. This problem
led to the proposal of two new statistics.
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One solution is epsilon insensitive RMSE, which is abbre-
viated RMSE*. Epsilon insensitive RMSE is a simple variant
of RMSE that considers the confidence interval of the indi-
vidual MOS scores.2 Epsilon insensitive RMSE is described
in ITU-T Rec. P.1401, and data can be found in Appendix I
of ITU-T Rec. P.863.

Another solution is proposed by Krasula et al. [16]. They
divide the dataset into pairs of media and compare the distance
between metric values (�model) with the conclusions reached
by the subjective data (better, worse, or tie). For values of
�model near zero, the subjective data always indicates a tie;
and for values of �model far from zero, the subjective data
always indicates a difference in quality. Krasula et al. focus
on the overlap: values of �model that could either be associated
with ties or better/worse quality. Krasula et al. propose a set of
three statistical tests that indicate whether one metric performs
better than, the same as, or worse than another metric. One test
examines whether the metric correctly distinguishes between
media that are statistically identical vs statistically different,
and the other two tests examine rank ordering.

Tiotsop et al. [17] adopt a completely different approach
of analyzing the differences among multiple objective met-
rics, without any subjective data. If multiple metrics agree,
the commonly indicated ratings are likely to be accurate. If
multiple metrics disagree, subjective testing is recommended.

III. DATASETS

We will begin by describing our datasets and providing
definitions related to subjective testing. People who are unin-
terested in these details are encouraged to read Section III-A
before skipping ahead.

A. Overview, Terms, and Definitions

To understand the precision and repeatability of subjective
tests, we collected individual subject ratings from 31 studies
of video quality, audio quality, audiovisual quality, and speech
quality. When aggregated, these studies contain 95 datasets
conducted with the 5-level ACR method, 86 lab-to-lab com-
parisons (where two labs conducted the same subjective test),
20 rating method comparisons, and 12 comparisons of expert
and naïve subjects. Expert subjects have specialized experi-
ence that naïve subjects lack (e.g., physicians vs a random
sampling of people when rating ultrasound images).

In this section, we will describe each study and dataset.
These summaries omit information that is not pertinent to our
CI and lab-to-lab analyses, such as the media content, type
of impairments, media duration, and test environment. If there
is a discrepancy between the published study description and
the freely available data, we will describe the available data.
These rare discrepancies are not marked.

Through this paper, we will use the term “dataset” to refer
to a set of media files that were rated by a common pool
of subjects. The subjects may be associated with multiple
labs, and different subjects may use different ratings method.
However, all subjects must rate all media files.

2RMSE* appears to have been proposed during meetings of ITU-T Study
Group 12. The Chairs were unable to recommend a reference.

If a study’s experiment design does not conform to this
definition, then we will split the study into multiple datasets.
This will allow us to compare stimulus pairs within a single
dataset using the two sample Student’s t-test (i.e., compare the
rating distributions of any two stimuli using the same pool of
subjects). An occasional missing rating is acceptable. When
this occurs, the two samples for the Student’s t-test will have
slightly different sizes (e.g., 16 ratings for stimulus A and 17
ratings for stimulus B).

For crowdsourcing, we will omit the restriction that all sub-
jects must rate all media files in the dataset. Unlike lab studies,
crowdsource subjects are not expected to rate all media files.
Thus, we will analyze the crowdsource ratings as they are
intended to be analyzed: as a single pool of subjects.

These studies were conducted according to ITU-R Rec.
BT.500, ITU-T P.913, or ITU-T P.800 and thus follow best
practices for subjective testing and the ethical treatment of
subjects. Most of these studies use standard rating meth-
ods and scales: Absolute Category Rating (ACR) method,
the Double Stimulus Comparison Scale (DSIS), the Double
Stimulus Continuous Quality Scale (DSCQS), the Comparison
Category Rating (CCR), Single Stimulus Continuous Quality
Evaluation (SSCQE), and Forced Choice (FC). Unless other-
wise stated, ACR is implemented as a 5-level scale, CCR as a
7-level scale (−3 to 3), SSCQE as a 100-level scale, and FC
as a 2-level scale.

The remaining studies compare standard methods with
experimental rating methods. Boolean is a single-stimulus
method where subjects rated whether the video quality
was acceptable for public safety applications. The Content-
Immersive Evaluation of Transmission Impairments (CIETI)
method simulates realistic viewing conditions with a 5-level
scale, longer video sequences, and changing impairment lev-
els. Preference (PREF) is a variant of CCR with alternate
instructions and a −50 to 50 scale. Dissimilarity (DISSIM) is
a double-stimulus method where subjects rated the similarity
of two sequences in terms of quality on a 100-level scale.

Most of these studies use conventional experiment designs.
For speech-quality studies, this means a balance of phonemes
and talkers for each impairment. For image and video stud-
ies, this means a set of high-quality recordings (original)
are impaired identically (e.g., a set of compression bit-rates).
Thus, each source medium is repeatedly played to the sub-
jects. Video-quality studies with unrepeated source experiment
designs are noted. Unrepeated source experiment designs
avoid re-using the same source media. Strategies include pho-
tographing the same scenes with different cameras or culling
a particular camera impairment from a large pool of content.

We will present datasets in the following order: studies by
standards developing organizations (SDO), lab studies, field
studies, and private studies. Most of the individual subject
ratings and media files for SDO, lab, and field studies are
available on the Consumer Digital Video Library (CDVL,
www.cdvl.org). Exceptions are noted.

B. Datasets From Standards Developing Organizations

The studies described in this sub-section were conducted by
SDOs. These tests represent an ideal of carefully designed and
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executed lab studies. These datasets were designed with the 
aid of a considerable number of experts in the field in addition 
to the organizations identified. We identify organizations and 
countries to demonstrate that these datasets include diverse 
countries, cultures, and native languages.

1) VQEG FRTV Phase I [18], [19]: In 1999–2000, the 
Video Quality Experts Group (VQEG) conducted the Full-
Reference Television (FRTV) Phase I validation test. The 
goal was independent validation of the performance of video-
quality metrics that assess the quality of standard-definition 
television (625-line and 525-line). Independent test labs cre-
ated four datasets, divided by bit-rate quality (high vs low) and 
video format (625-line vs 525-line). Each dataset contains 100 
videos that were rated by either 67 or 70 subjects using the 
DSCQS method.

The subjective testing was carried out by eight labs. Each 
lab contributed ≈25% of the subjects in a particular test. Thus, 
each FRTV Phase I dataset enables six lab-to-lab comparisons 
for each test (choose two of four labs). Among all four tests, 
there are 24 lab-to-lab comparisons.

The 525-line tests (high and low quality) were con-
tributed by Berkom (France); the Canadian Research Centre 
(CRC, Canada); Fondazione Ugo Bordoni (FUB, Italy); and 
Nippon Hoso Kyokai (NHK, Japan). The 625-line test subjects 
were contributed by Centre commun d’études de télévi-
sion et télécommunications (CCETT, France); Centro Studi 
e Laboratori Telecomunicazioni (CSELT, Italy); Department 
of Communications, Information Technology and the Arts 
(DCITA, Australia); and Radiotelevisione Italiana (RAI, Italy).

Two issues were identified with the FRTV Phase I datasets. 
First, each dataset contained a narrow range of quality, so it 
was difficult to differentiate between the performance of the 
objective metrics. Second, the ratings include occasional scor-
ing inversion errors. Subjects watched both videos and then 
marked ratings on a paper scoring sheet. Accidents occurred 
where subjects wrote their rating of the earlier video where 
they should have written their rating of the later video, and 
vice versa.

2) VQEG FRTV Phase II [20], [21]: In 2002–2003, VQEG 
conducted the FRTV Phase II validation test. As with Phase I, 
the goal was independent validation of objective metrics for 
standard-definition television. FRTV Phase II conducted two 
subjective tests: a 625-line dataset with 70 videos rated by 
27 subjects from FUB (Italy), and a 525-line dataset with 63 
videos rated by 32 subjects each from CRC (Canada) and 
Verizon (USA), for a total of 64 subjects. The FRTV Phase II 
datasets enable one lab-to-lab comparison (CRC vs Verizon). 
Many other organizations contributed to other aspects of this 
endeavor. As with Phase I, the FRTV Phase II data likely 
contains scoring inversions errors, since these tests also used 
DSCQS and paper scoring sheets. Only the individual subject 
ratings are available on CDVL.

3) VQEG RRNR-TV [22]: In 2008–2009, VQEG con-
ducted the Reduced-Reference and No-Reference television 
(RRNR-TV) validation test. The goal was independent valida-
tion of in-service video-quality metrics for standard-definition 
television. RRNR-TV produced two datasets that used the 
5-level ACR method. The 625-line dataset contains 168 videos

rated by 34 subjects: 18 from FUB (Italy) and 16 from the
National Telecommunications and Information Administration
(NTIA, USA). The 525-line dataset also contains 168 videos
rated by 32 subjects: 16 from NEC (Japan) and 16 from
Yonsei University (Republic of Korea). The RRNR-TV dataset
enables two lab-to-lab comparisons (FUB vs NTIA and NEC
vs Yonsei). CRC (Canada) was the principal investigator who
designed these experiments. Only the individual subject ratings
are available on CDVL.

4) VQEG HDTV [23]: In 2009–2010, VQEG conducted
the high-definition television (HDTV) validation test. The
goal was independent validation of in-service and out-of-
service video-quality metrics for high-definition television.
VQEG HDTV produced six datasets, numbered 1 to 6. Each
dataset contains 168 videos and ACR ratings from 24 sub-
jects from a single lab. Part of one dataset was discarded
due to low-quality source material, so HD3 contains only 152
videos. The organizations most directly involved in creating
these datasets and running subjects were University of Ghent
(Belgium), NTIA (USA), the University of Nantes (France),
Ericsson (Sweden), Acreo (Sweden), AGH University of
Science and Technology (Poland), CRC (Canada), Psytechnics
(United Kingdom), Deutsche Telekom (DT, Germany), and
FUB (Italy). Many other organizations made significant con-
tributions to the HDTV datasets. Some of the HDTV videos
cannot be redistributed.

5) VQEG Hybrid [24]: In 2013–2014, VQEG conducted
the Hybrid Perceptual/Bit-stream validation test. The goal was
independent validation of video-quality metrics that supple-
ment the decoded video with information extracted from the
encoded bit-stream. The Hybrid test produced 10 datasets.
Each dataset has between 114 and 184 videos. Each dataset
has 5-level ACR ratings from 24 subjects from a single lab.

Each dataset included 24 sequences that overlapped with
other Hybrid tests of the same video resolution. Due to the
small size of this subset, we will only make lab-to-lab anal-
yses for the five datasets with HD resolution. Because each
comparison yields minimal data, we will aggregate the results
of all ten lab-to-lab comparisons (i.e., all combinations of five
labs) to obtain a more robust estimate. Thus, Table IV lists
one lab-to-lab comparison for VQEG Hybrid.

The organizations most directly involved in creating these
datasets were Acreo (Sweden), DT (Germany), RT-RK
(Serbia), AGH University (Poland), University of Ghent
(Belgium), Yonsei University (Republic of Korea), SwissQual
(Switzerland), OPTICOM GmbH (Germany), FUB (Italy),
NTIA (USA), University of Nantes (France), and Intel (USA).
Many other organizations made significant contributions to the
Hybrid datasets. The videos are not available on CDVL.

6) VQEG Multimedia Phase II [10]: In 2010–2011, VQEG
conducted the Multimedia Phase II (MM2) test. Sixty audio-
visual sequences were rated by six labs in diverse viewing
conditions. The goal was to understand the impact of environ-
mental variables on subject ratings. All labs used the 5-level
ACR method.

All six labs ran subjects in controlled environments.
Four labs also ran subjects in uncontrolled environments
(e.g., restaurant, break area, or hallway). Thus, the MM2
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dataset enables 45 lab-to-lab comparisons. The labs who con-
tributed subjects were NTIA (USA), Intel (USA), OPTICOM
(German), AGH University (Poland), Université de Nantes
(France), and Technicolor R&D (France).

MM2 concluded that the number of subjects was the most
important control variable. More subjects were needed in an
uncontrolled environment to replicate the lab-to-lab statistics
of controlled environments. However, the native language,
speech comprehension, country of origin, and translation of the
ACR scale labels did not seem to matter—or at least mattered
so little that the difference was obscured by human factors.
The results from this study were pivotal in the development of
ITU Rec. P.913, which gives researchers more freedom to con-
duct subjective tests in the uncontrolled environments where
mobile devices are likely to be used.

7) ITU-T P.Sup23 [25]: ITU-T Rec. P.Sup23 contains three
speech-quality experiments that were created during the char-
acterization phase tests for the ITU-T G.729 speech codec and
made available on the ITU website.3 Although each of the
three experiments were conducted in multiple labs, lab-to-lab
comparisons are not possible. Each lab used speech samples in
their country’s native language, as is the convention in speech-
quality testing. This confounding factor would cause problems
for the two sample Student’s t-tests. Therefore, we will treat
each lab’s subjects as a separate dataset.

P.Sup23 experiment 1 contains three datasets, each with
176 speech samples and 5-level ACR ratings from 24 sub-
jects; P.Sup23 experiment 2 contains three datasets, each
with 136 speech samples and CCR ratings from 48 subjects;
and P.Sup23 experiment 3 contains four datasets, each with
200 speech samples and 5-level ACR ratings from 24 subjects.
These datasets were created by AT&T (USA), CNET (France),
CSELT (Italy), Nortel (formerly Bell-Northern Research,
Canada), and Nippon Telegraph and Telephone (NTT, Japan).

8) SDO Emulation [1]: We will use the VQEG HDTV and
VQEG Hybrid studies to emulate the response of 15, 9, and
6 subjects, by randomly selecting subsets of the available sub-
jects and aggregating the response of all 16 datasets. This
random selection is repeated ten times.

9) VQEG Multimedia [26]: In 2007–2008, VQEG con-
ducted the multimedia validation test. Agreements between
the participants prohibit the use of these datasets for most
purposes, but we obtained permission to use the anonymized
ratings and metric values to develop improved methods for
analyzing metric performance. We will use the 13 VGA
datasets to demonstrate our new methods. Each dataset con-
tains 166 videos and 5-level ACR ratings from 24 subjects
from a single lab.

C. Lab Studies

The studies described in this sub-section were conducted
by various academic and industry researchers in lab settings.

3ITU-T P.Sup23 constrains the use of the speech files to the development of
new and revised ITU-T Recommendations. This paper does not use the speech
files. Also, our goal is to develop and socialize new analysis techniques for
potential inclusion in ITU-T Rec. P.1401, “Methods, metrics and procedures
for statistical evaluation, qualification and comparison of objective-quality
prediction models.”

These studies were carefully designed and executed. Each lab
study involved fewer organizations and experts than the SDO
studies—but the use cases and media are much more varied.

1) Ghent Denoising [12]: Ghent Denoising is a video-
quality study conducted with expert subjects and naïve subjects
using three different methods: FC, PREF, and DISSIM. The
FC dataset contains 70 videos rated by 19 experts and 18 naïve
subjects. The PREF dataset contains 70 videos rated by 18
experts and 20 naïve subjects. The DISSIM data contains 70
videos rated by 18 experts and 20 naïve subjects. The Ghent
Medical study will only be used to compare expert and naïve
subjects, enabling three such comparisons.

2) Ghent Medical [12]: Ghent Medical is a video-quality
study conducted with expert subjects and naïve subjects
using four different methods: 100-level ACR, FC, PREF, and
DISSIM. The same subjects were used for all four methods,
but some subjects did not rate all methods. The ACR dataset
contains 20 videos rated by 9 experts and 16 naïve subjects.
The FC dataset contains 70 videos rated by 10 experts and 17
naïve subjects. The PREF and DISSIM datasets contains 70
videos rated by 10 experts and 16 naïve subjects. The Ghent
Medical study will only be used to compare expert and naïve
subjects, enabling four such comparisons.

3) ITS 2010 [27]: ITS 2010 is an audiovisual study that
explores the relationship between audio quality and video
quality in the overall audiovisual quality. Conducted in 2010
by NTIA, this dataset contains 240 media, rated by ∼26 sub-
jects on a 5-level ACR scale. This dataset is named after our
laboratory within NTIA: the Institute for Telecommunication
Sciences (ITS).

4) ITS AV-Sync 2010 [28]: ITS AV-Sync 2010 is an audio-
visual study that explores the relationship between audio
quality, video quality, and delay in the overall audiovisual
quality. Conducted in 2010 by NTIA, this dataset contains
407 media that were rated on a 5-level ACR scale. The
media were divided into overlapping subsets, each contain-
ing 297 media. These two datasets were rated by 12 and
16 subjects.

5) Public Safety #1 [29]: Public Safety #1 (PS1) studied
the quality required by first responders for their video systems.
Conducted by NTIA in 2005–2006, 16 first responders rated
400 videos on the 5-level ACR scale, and then rated whether
the video quality depicted was acceptable for public safety
applications, on a Boolean scale.

6) Public Safety #2 [30]: Public Safety #2 (PS2) builds on
PS1. Conducted by NTIA in 2006, 19 first responders rated
576 videos on the 5-level ACR scale, and then rated whether
the video quality depicted was acceptable for public safety
applications, on a Boolean scale.

7) SJTU 4K [31]: The Shanghai Jiao Tong University
(SJTU) 4K dataset was created in 2016 in response to
the need for research-free datasets with 4K video content
(3840 × 2160, 30fps). SJTU 4K aided the study adaptive bit
rate (ABR) bitrate estimation. SJTU 4K contains 60 videos
with HEVC/H.265 compression that were rated by 42 sub-
jects on the DSIS scale. Individual subject ratings are only
available for 30 videos rated by 28 subjects.
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8) UPM-Acreo [32]: The UPM-Acreo study compares 
5-level ACR with an experimental method, CIETI, which pro-
duces single-stimulus ratings on a 5-level scale. Conducted in 
2015 by Universidad Politécnica de Madrid (Spain) and Acreo 
(Sweden), the study includes 132 audiovisual sequences. Three 
subject pools rated the media differently: 20 subjects rated 
the video (no audio) on the 5-level ACR scale, 22 subjects 
rated the video (no audio) on the CIETI scale, and 21 sub-
jects rated the audiovisual sequences on the CIETI scale. This 
allows three lab-to-lab comparisons that include the confound-
ing factor of rating method. Only the individual subject ratings 
are available on CDVL.

D. Field Studies and Crowdsourcing

This section describes field studies and crowdsourcing
studies. These studies were as rigorous as the lab studies,
but they include unconventional elements (e.g., unrepeated
scene designs, and camera capture impairments). This sec-
tion includes studies with experimental designs, prototype
tests with few subjects, and real-world impairments with
confounding factors such as camera capture.

1) AGH/NTIA/Dolby [33]: This 2015 video-quality study
is named after the three labs who contributed subjects: AGH
University (Poland), NTIA (USA), and Dolby (USA). The goal
was to examine experiment designs that do not re-use source
content, including their impact on subject scoring behaviors.
The same 230 videos were rated on the 5-level ACR method,
with an uneven distribution of subjects among the three labs
(31, 22, and 18).

2) CCRIQ [34]: Consumer Content Resolution and Image
Quality (CCRIQ) study analyzes the image quality produced
by consumer cameras: smartphones, tablets, compacts, and
digital single lens reflex (DSLR). CCRIQ uses an unrepeated
experiment design where the same scenes were photographed
with 23 different cameras. Three labs contributed subjects to
this 2014–2015 experiment: Intel (USA), NTIA (USA), and
the University of Ghent (Belgium). The images and each lab’s
subjects were divided into two non-overlapping pools. Thus,
CCRIQ contains two datasets: 221 images rated by 26 subjects
on the ACR scale, and 171 images rated by 27 subjects on the
ACR scale. Each lab ran 8 or 9 subjects for each image pool.
This enables three lab-to-lab comparisons for each dataset, for
a total of six lab-to-lab comparisons.

The CCRIQ test was conducted on two identical monitors,
placed side-by-side. One was configured with 4K resolution
(3840 × 2160) and the other HD resolution (1920 × 1080).
This enables two method-to-method comparisons for HD vs
4K monitors (one for each pool). For all other analyses, we
will follow the protocol of the original study and pool the HD
and 4K monitor ratings.

3) CCRIQ2 and VIME1 [35]: This 2018 image quality-
study was conducted by AGH University (Poland) and NTIA
(USA) to analyze unrepeated scene experiment designs using
camera capture impairments. This study contains two datasets:
one with images left over from CCRIQ (created but not used)
and the other with images photographed by VQEG’s Video
and Image Models for Consumer Content Evaluation (VIME)

project. The CCRIQ2 dataset contains 88 images that were
rated by 19 subjects using the 5-level ACR scale. The VIME1
dataset contains 101 images that were rated by 22 subjects
using the 5-level ACR scale.

4) ITS4S [36]: ITS4S, ITS4S2, ITS4S3, and ITS4S4 form
a series of four studies conducted by ITS. These image and
video-quality studies were designed specifically to enable no-
reference metric development. All four studies use unrepeated
scene designs.

The first study, ITS4S, was conducted in 2017–2018 as a
proof of concept for many novel design choices, including
4-second video sequences, the “skip” rating option, unrepeated
scenes, and a few videos where the original production quality
is poor or worse. The full test contains 813 videos rated by
27 subjects on the 5-level ACR scale. A subset of 212 videos
were later rated by 24 subjects at AGH University (Poland).
This enables one lab-to-lab comparison.

5) ITS4S2 [37]: ITS4S2 was conducted in 2018–2019,
using similar techniques as ITS4S. ITS4S2 is an image-quality
test that contains a diverse selection of images with cam-
era impairments. Some of these images were collected by
VIME. The dataset contains 1,429 images that were rated by
16 subjects on the 5-level ACR scale.

6) ITS4S3 [38]: ITS4S3 was conducted in 2018–2019.
ITS4S3 contains six sessions, each with 99 videos that depict
camera impairments in the context of a first-responder appli-
cation (e.g., fireground, crime scene, search & rescue). The
videos in each session were rated by different subjects at a
public safety conference, using the 5-level ACR scale. Each
dataset was rated by between 13 and 19 subjects. For three of
the six datasets, the subject pool contains enough first respon-
ders to enable comparisons between naïve subjects and expert
subjects.

7) ITS4S4 [39]: ITS4S4 was conducted in 2019. ITS4S4
contains 196 videos depicting camera pans, real and simulated,
that were rated by 26 subjects on the 5-level ACR scale. The
ratings sessions for ITS4S3 and ITS4S4 occurred at a large
meeting venue, in a quiet room.

8) 401, 501, 701 [40]: Datasets 401, 501, and 710 are
crowdsource studies published in 2020. Dataset 401 (by
Psytechnics) contains 1,152 speech files, each rated by 8 sub-
jects. Dataset 501 (by SwissQual) contains 200 speech files,
each rated by 24 subjects. Dataset 701 (by Dolby) contains
1,152 speech files, each rated by 8 subjects. All three datasets
use the ACR scale. These datasets were intended to be ana-
lyzed per condition instead of per file, with 192, 96, and 128
conditions, respectively.

E. Private Studies

The remaining datasets are unpublished. Only limited
information can be made available.

1) Private Speech #1: Private Speech #1 contains results
from a 5-level ACR test conducted on narrowband speech
codecs using simulated wireless channels. This dataset con-
tains 1,359 speech files, each rated by ≈11, ≈22, or 43 sub-
jects on the 5-level ACR scale. This lab study was intended
to be analyzed per speech condition, with either 344 or 440
ratings per condition.
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2) Private Speech #2: Private Speech #2 contains results
from proprietary subjective ACR tests conducted on narrow-
band speech codecs using wireline and simulated wireless
channels. This dataset contains 2,432 speech files, each rated
by 8 subjects on the 5-level ACR scale. This lab study was
intended to be analyzed per speech condition, with 512 ratings
per condition.

3) Private Speech #3: Private Speech #3 contains four
datasets, each with 288 speech files rated by 16 or 18 sub-
jects on the 5-level ACR scale. Each dataset has ratings from
two labs, usually 8 subjects per dataset per lab. One lab instead
contributed 10 subjects to one of these tests. This enables four
lab-to-lab comparisons.

4) Private Video #1: The Private Video #1 contains two
video-quality subjective tests. The first is a lab study where
15 experts rated 75 videos on the 100-level ACR scale. The
second is a crowdsourcing test where 61 subjects rated 112
videos on a 100-point scale using the SSCQE method.

5) Private Video #2: The Private Video #2 contains 60
video sequences, 1 minute in duration, that were rated by
30 subjects on the 5-level ACR scale. This subjective test was
conducted by OPTICOM (Germany).

6) Private Video #3: The Private Video #3 has been
referred to as Netflix Quality Variation 2017 in presentations
to VQEG. The 320 video sequences were rated on the 5-level
ACR scale on two different monitors and rated on a 5-level
SSCQE scale at a second lab. Due to the way the subjects and
videos were divided, this study yields five datasets: four with
180 video sequences and 48 to 51 subjects (ACR), and one
with 320 video sequences and 41 subjects (SSCQE). These
datasets enable five method-to-method comparisons.

7) Private Image: Private Image is an image-quality study
conducted with expert and naïve subjects using two different
methods: DISSIM and FC. Each dataset contains 352 images
rated by 8 experts and 9 naïve subjects. This enables two
naïve-to-expert comparisons.

IV. STATISTICAL METHOD DESIGN STRATEGY

Our goal is to establish new statistical methods that let users
understand the precision of objective metrics, relative to the
subjective tests (the gold standard) and ad hoc evaluations (the
de facto standard). The nature of subjective tests and metrics
provides us with several challenges.

As Janowski and Pinson conclude in [41]: “Subjects’ scor-
ing is a random process. This is expected behavior that must
be accepted, not a flaw or fault that can be eliminated. These
error terms explain apparent inconsistencies within a single
subject’s data and probably cause much of the lab-to-lab dif-
ferences seen in datasets scored at multiple labs. These error
terms also explain why the original video sequence is not rated
“imperceptible” by DSIS and other double-stimulus subjective
methods.”

The nature of outliers is very different for subjective tests
and metrics. Subjective tests assume that there is an underlying
“true quality” for each media, and studies such as [41] support

Fig. 1. Scatter plots compare a high performing metric to MOSs (left) and
MOSs from two labs (Right). The dashed lines are at 1.5 × std(R), where
R is the residuals of a linear fit. Notice the irregular distribution of data for
the lab-to-metric comparison (left) and the orderly distribution of data for the
lab-to-lab comparison (right).

this assumption.4 While MOS values differ from one test to
another, we expect the ordering of impairments and relative
distances to be replicable [10]. When we replicate a subjective
test in two labs, we expect the residuals to have a Gaussian
distribution.

By contrast, metrics are deterministic. When a metric fails
to grasp the quality impact of an impairment, the residuals
(between metric and MOS) will have an irregular distribution
with clumps of data points and far-flung outliers (see Fig. 1).
A statistical method that assumes a Gaussian distribution of
residuals is biased in favor of subjective testing.

We want to estimate two factors: precision and repeatability.
We will use CIs to measure precision. CIs are simple to use
and can be applied identically to MOSs and metric values. We
will use a confusion matrix to measure repeatability. CIs and
confusion matrices let us re-frame the problem as “what is the
likelihood of erroneous decisions.”

Section II includes precedents for both choices and guid-
ance on best practices for the statistical analysis of subjective
and objective metrics. To ensure fair comparisons, we will use
the same techniques previously described to analyze the sub-
jective ratings and the objective metric data. To ensure reliable
comparisons, our baseline performance of subjective tests will
be based on measurements of nearly 100 datasets.

V. CONFIDENCE INTERVAL OF A SUBJECTIVE

TEST (�SCI)

A. Calculating the Confidence Interval of a Subjective Test

We will define the subjective test’s confidence interval
(�SCI) as the minimum difference in MOS at which 95% of
the stimulus pairs will be statistically different. Fundamentally,
the data we have to work with are individual subject ratings,
pairs of stimuli (A, B), and the absolute value of the distance
between the MOSs of A and B, which we will call �A,B. We
have two choices when using this information to calculate the
CI of a subjective test.

4Private discussions among subject matter experts indicate rare instances
where a media’s subject ratings have a bimodal distributions. Opinions on the
“true quality” of a media genuinely seem to diverge.
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Fig. 2. For two DSCQS datasets, this figure shows the relationship between
�A,B and conclusions reached by the Student’s t-test (ω). On the histograms,
blue means that A and B are statistically identical (ω=0), orange means that
A and B are statistically different (ω=1), and the overlap is brown. The
line plot summarizes these histograms as a percent of stimulus pairs that are
statistically different (π ). The rise from π=0% to π =100% corresponds to
the brown overlap on the histogram. The dashed line at π=95% marks �SCI.
These �SCI values are 0.5 and 0.7.

Our first choice is how to determine whether the quality
of A and B are significantly different (e.g., Student’s t-test,
F-test, 1.96 × standard error). We will use the two-sample
Student’s t-test, which uses the individual subject ratings from
a specific (A, B) pair to test the hypothesis that A and B
have the same mean. MOSs have a normal distribution [41],
so the requirements for the Student’s t-test are met. The two
population variances can be, and likely are, unequal.

Our second choice is how to aggregate across all pairs of
stimuli in the dataset. We are concerned that an uneven distri-
bution of �A,B could impact aggregation statistics like mean
and 95th percentile. For example, consider the fraction of stim-
ulus pairs with �A,B close to zero. The fraction will be larger
if most of the dataset’s media have MOSs near the top or bot-
tom of the rating scale, where SOS is low (like FRTV Phase I
and II); and this fraction will be smaller for datasets that have
an even distribution of MOSs (like VQEG MM2 and VQEG
HD6).

We will divide the stimulus pairs (A, B) into subsets that
have similar values for �A,B. This will let us reach conclusions
based on localized data, without being overly influenced by the
distribution of �A,B across the entire dataset.

Let us explore the relationship between conclusions reached
by the Student’s t-test and �A,B. This allows us to calculate
�SCI, a new measure of the precision of a subjective test that
is calculated as follows.

Given a subjective test, we will choose all pairs of stimuli
(A, B), where both stimuli were rated by the same subjects and
the stimuli are drawn from the same dataset. An occasional
missing rating is acceptable. For each pair of stimuli, we will
measure �A,B, the absolute value of the distance between the
MOSs of A and B. Most of our datasets use the 5-level ACR
method, where MOS ranges from 1 to 5 and �A,B ranges
from 0 to 4.

We will use the paired stimuli Student’s t-test to compare
the rating distributions for A and B at the 95% confidence
level. We will record 1 if the conclusion is that A and B

Fig. 3. For four ACR datasets, this figure shows the relationship between
�A,B and conclusions reached by the Student’s t-test (ω). The �SCI values
are 0.2, 0.5, 0.6, and 1.3.

are significantly different and 0 otherwise. We will tally these
comparisons in a new binary variable, ω.

Each dataset has few stimulus pairs, so we must bin �A,B

by MOS intervals. We will bin 5-level ACR data by 0.1
MOS intervals (0 ±0.05, 0.1 ±0.05, 0.2 ±0.05, . . . ), 100-level
DSCQS data by 0.5 MOS intervals, etc.

We must quantify the relationship between �A,B and ω as a
threshold. Let us compute π as the average response of ω for
stimulus pairs in each bin. We will express π as a percentage
(i.e., average the ω responses and multiply by 100). Thus, π

ranges from 0 to 100 where 0% means that all pairs of stimuli
(A, B) in the bin have equivalent quality, and 100% indicates
that all pairs of stimuli in the bin have significantly different
quality (measured at the 95% confidence level). Finally, we
will calculate �SCI as the �A,B that comes closest to produc-
ing π = 95%. �SCI is the value of �A,B where the π curve
crosses the 95% threshold.

Fig. 2 and Fig. 3 show this data presented as histograms and
line plots (π as a function of �A,B). Fig. 2 shows two DSCQS
datasets, and Fig. 3 shows four ACR datasets. The histograms
are similar to those used in [16]. In Fig. 2, we see that the
VQEG FRTV Phase I tests (top left) has a much narrower
range of quality than the VQEG FRTV Phase II tests (top
right). In Fig. 3, all ten datasets of the VQEG MM2 study are
aggregated (top left) and the large number of subjects causes
ω=0 to span a very narrow range. The ITS2010 study (top
right) has an unusually large overlap between the ω=0 and
ω=1 curves, probably because the stimuli include very dif-
ferent levels of audio and video quality. The VQEG HD6 and
PS1 histograms (middle) have an uneven distribution of �A,B.
This pattern would disappear if we used larger bins.

B. �SCI Observed for 5-Level ACR Datasets

Although this technique could be used for any rating scale,
most of our datasets were conducted with 5-level ACR. Table I
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TABLE I
SUMMARY OF 5-LEVEL ACR DATASETS FOR �SCI

lists the 91 datasets that will be used to calculate �SCI for a
typical 5-level ACR test. The first column identifies the media
type and a name attributed to the entire study. The second col-
umn divides the study into datasets, presented as the number
of files and number of subjects in parentheses. In a few cases,
subjects from multiple labs allow us to estimate each lab’s CI
(presented in italics) and to estimate the overall CI (presented
in regular font). Details of the “SDO Emulation” dataset will
be presented below.

C. Analysis

Fig. 4 shows the resulting relationship between �SCI and
the number of subjects in a 5-level ACR dataset. The area
of the dot increases linearly with the number of datasets that
produce this result.

Table II shows the observed trend connecting �SCI and the
number of subjects. The bottom row shows the range of �SCI
observed for the 16 SDO datasets (with all 24 subjects) and
extrapolated �SCI for fewer subjects. These points are near

Fig. 4. Relationship between �SCI and number of subjects in a 5-level
ACR dataset, presented as a 2-D histogram. The right side enlarges the region
outlined in a blue box on the left.

TABLE II
EXPECTED CONFIDENCE INTERVAL FOR A 5-LEVEL ACR TEST

the lower edge of the response curve in Fig. 4. We cannot
accurately predict trends for more than 24 subjects, because
datasets rarely have more than 30 subjects. �SCI ≤ 0.3 is very
difficult to achieve, and the number of subjects would need to
be increased dramatically above numbers typically used today.

We divided the tests into sub-sets based on test type (SDO,
lab environment, field tests, and tests in a public environment)
and stimulus type (video, audiovisual, image, and speech). The
following factors yielded data across the entire response curve
with no apparent bias: lab studies, field studies, video stimuli,
and image stimuli. Ten or fewer subjects seem to have too
much noise to observe trends based on test type or stimulus
type.

The following factors impacted the range of �SCI. The SDO
and speech datasets had lower values for �SCI. The former
can be explained by the extra oversight: perhaps 20 to 50
experts contribute to these experiment designs. The latter can
be explained by relative homogeneity of speech, which uses a
limited set of phonemes. The audiovisual datasets had higher
values for �SCI and included the two outliers at �SCI = 1.3.
This can be explained by stimuli where the audio quality and
video quality were unrelated.

The relationship in Table II appears to be a characteristic
of the 5-level ACR method itself, not a characteristic of the
media or the test environment. The bottom and top of the
�SCI range indicate the most favorable and least favorable
performances of well-designed and carefully conducted sub-
jective tests. Higher values within this range do not indicate
that something is wrong. The analyses above imply that com-
plex impairments contribute to higher �SCI. For example, the
background quality could be poor while the foreground quality
is good.

The number of subjects and �SCI in Table II are calculated
after removing outliers. Some researchers eliminate subjects
with noisy data, typically by applying somewhat arbitrary
thresholds. Other researchers retain subjects with noisy data,
since rating noise occurs randomly and is unlikely to indicate
poor behavior on the part of the subject. Outlier data are rarely
distributed, so we could not study this variable.
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TABLE III
CONFUSION MATRIX BETWEEN TWO SUBJECTIVE TEST LABS

VI. SUBJECTIVE TEST DECISION COMPARISONS

A. Comparing Decisions Reached by Two Subjective Tests

Now that we understand the precision of subjective tests, let
us examine their repeatability. We will use confusion matrices
to compare conclusions reached by subjective tests. We will
denote the MOS for stimuli A and B as MOSA and MOSB,
respectively.

When a subjective test is repeated in multiple labs, we
observe different MOSs and different rating distributions for
the same stimuli. This allows us to calculate the repeatability
of subjective testing, based on the frequency with which the
same or different conclusions are reached by different labs.

Given a subjective test conducted identically at two or more
different labs, we will choose all pairs of stimuli, A and
B, where both stimuli were rated by the same subjects and
the stimuli are drawn from the same dataset. An occasional
missing rating is acceptable. We will use the paired stimuli
Student’s t-test to compare the rating distributions for A and
B at the 95% confidence level. For each lab’s subjects, we will
decide whether A is better than, equivalent to, or worse than B.
We will perform this procedure for all 88 lab-to-lab compar-
isons, 22 method-to-method comparisons, and 12 comparisons
of expert and naïve subjects.

Table III shows the confusion matrix when two labs perform
the same subjective test. Each lab uses the Student’s t-test to
determine whether stimulus A is better than, equivalent to, or
worse than stimulus B.

We cannot trust one lab’s results more than the other lab’s
results, so the outcomes are phrased in terms of agreement
and disagreement: agree ranking, agree tie, unconfirmed, and
disagree. An agree ranking incident occurs when both labs
conclude that A is statistically better than B. An agree tie
incident occurs when both labs conclude that A and B have
the same quality. An unconfirmed incident occurs when one
lab concludes that A is statistically different than B, but the
other lab concludes that A and B are statistically equivalent.
A disagree incidence occurs when one lab concluded that A
is statistically better than B, but the other lab concluded that
A is statistically worse than B.

B. Observed Incidence Rates

Table IV lists datasets where individual subject ratings are
available from two or more labs, with other aspects of the
subjective test held constant. We will use these datasets to
establish a baseline for the repeatability of subjective tests. The
columns identify the name of the subjective test, the subjective
test method, the number of media, and the number of subjects
in each lab, presented as pairs of numbers in parentheses. Each
pair of numbers in parentheses enables a single comparison.

TABLE IV
SUMMARY OF LAB-TO-LAB COMPARISONS

Table V lists datasets where individual subject ratings are
available for two or more rating methods. Table VI lists
datasets where individual subject ratings are available for
expert subjects and naïve subjects. We will use these datasets
to understand how repeatability degrades when subjects may
genuinely disagree, due to differences in presentation method
or task.

We will tally the frequency of the four possible clas-
sification types in the Table III confusion matrix for the
lab-to-lab comparisons listed in Table IV. We will split the
lab-to-lab comparisons into two categories: narrow range
of quality (from the VQEG FRTV Phase I datasets) and
wide range of quality. The resulting incidence rates appear
in Table VII. Similarly, Table VIII shows method-to-method
comparisons (from Table V) and expert-to-naïve comparisons
(from Table VI).

An outlier at 1.82% is omitted from Table VII to avoid
skewing the statistics. This outlier may be caused either by
scoring inversions (see Section III-B) or known differences
in how the labs implemented DSCQS. When this outlier is
included, the overall average lab-to-lab disagree incidence rate
rises to 0.32%.

C. Disagree Incidence Rates

Table VII indicates that the disagree incidence rate does
not depend upon the distribution of MOSs in the dataset.
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TABLE V
SUMMARY OF METHOD-TO-METHOD COMPARISONS

TABLE VI
SUMMARY OF EXPERT VS NAÏVE SUBJECT

TABLE VII
LAB-TO-LAB CLASSIFICATION INCIDENCE RATES

TABLE VIII
METHOD-TO-METHOD AND EXPERT-TO-NAÏVE CLASSIFICATION

INCIDENCE RATES

This matches our expectations that the disagree incidence rate
depends on the experiment design (e.g., rating method, subject
demographics, and the system used to reproduce the media).
The two largest disagree incidence rates are for the method-to-
method comparisons for the PS1 and PS2 datasets, where the
5-level ACR method is compared to the experimental Boolean
method.

Fig. 5 shows a histogram with the disagree rates for all three
types of comparisons combined. The distribution of disagree
incidence rates has a main cluster below 0.31% with a long

Fig. 5. Histogram of disagree incidence rates for lab-to-lab, method-to-
method, and expert-to-naïve subjective test comparisons.

tail of higher values. The disagree incidence rate is very small
for all lab-to-lab comparisons (except for the outlier), as well
as most of the method-to-method and expert-to-naïve subject
comparisons.

We saw no evidence that experts and naïve subjects rank
order of stimuli differently, but experts may be more sensi-
tive to quality differences. The unconfirmed incidence rates for
expert-to-naïve subjects are unusually higher than the uncon-
firmed incidence rates for lab-to-lab and method-to-method
comparisons. The root cause is differences in likelihood that
experts and naïve subjects will conclude that A and B are
equivalent. For the Ghent Medical and Ghent Denoising
datasets, the equivalent incidence rate is 20% to 40% lower
for expert subjects than naïve subjects. For the ITS4S3 dataset,
the equivalent incidence rates are roughly the same for expert
and naïve subjects—but the naïve subjects worked in related
fields and had some understanding of first responder needs.

We conclude that disagree incidence rates above 0.31%
are unusual enough to warrant investigation and disagree
incidence rates above 1.0% indicate a method-to-method
difference or lab-to-lab difference.

D. Applying the Disagree Thresholds

Disagree incidence rates above 1.0% occur for one lab-
to-lab comparison and seven method-to-method comparisons.
The lab-to-lab comparison outlier was noted earlier. UPM-
Acreo indicates differences between the ACR (no audio) and
SSCQE (with audio) methods. PS1 and PS2 indicate differ-
ences between the ACR and Boolean methods. The remaining
four comparisons (from Private Video #3) indicate differ-
ences between the ACR and SSCQE methods. This matches
our expectations that the test method has a major impact on
conclusions.

The disagree incidence rate can only detect patterns that
impact the relative ranking of stimuli. The two CCRIQ
method-to-method comparisons produced 0.0% and 0.02%
disagree incidence rates. This means the HD and 4K mon-
itors agree on the quality ranking of the 24 consumer cameras
in this study. However, analyses of CCRIQ in [34] indicate
≈0.2 differences between the MOSs of HD and 4K moni-
tors for high quality images and no significant difference for
low quality images. This means 4K monitors are slightly bet-
ter than HD monitors—a phenomenon the disagree incidence
rate cannot detect.
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TABLE IX
CONFUSION MATRIX BETWEEN A SUBJECTIVE TEST AND AN AD HOC

EVALUATION OR PILOT TEST

VII. AD HOC EVALUATIONS AND PILOT TESTS

A. Comparing Decisions Reached by Ad Hoc Evaluations
and Subjective Tests

Ad hoc evaluations dispense with the scientific method
in favor of convenience. For example, a management team
encodes select test sequences with hardware video encoders
on loan from competing vendors, discusses the quality dif-
ferences, and makes a purchase decision. A bit of subjective
testing knowledge lets us add a minimum of structure and for-
mality. For example, two or three researchers watch or listen
to each stimulus in a proposed experiment and write down
their ratings.

Pilot tests are similar to ad hoc evaluations, from a statistical
analysis standpoint, in that MOSs are compared deterministi-
cally. ITU-T Rec. P.913 recommends eight to twelve subjects
for pilot studies to indicate trending. Section V indicates that
�SCI for nine subjects will range from 1.0 to 1.4, so the
Student’s t-test is unlikely to reach any interesting conclusions.

Table IX shows the confusion matrix when a pilot test or
ad hoc evaluation is compared to a subjective test. The subjec-
tive test uses the Student’s t-test, as above. Ad hoc evaluations
and pilot tests produce MOSs with low precision that must be
compared deterministically (>, <, =). We will ignore ties since
our ad hoc or pilot test data seldom produce identical MOSs.
We will evaluate the ad hoc evaluations and pilot tests rela-
tive to the subjective test’s more accurate assessments, so the
outcomes are phrased in terms of correctness: correct ranking,
false distinction, and false ranking.

B. Simulating Ad Hoc and Pilot Test Ratings

We want to establish the relationship between the decisions
reached by an ad hoc evaluation and the decisions reached
by a formal subjective test. The ad hoc subjects are likely to
have an over-inflated sense of the accuracy of their judgements
and to make an occasional error due to miscommunication.
The interesting questions probably span a narrow range of
quality.

We will simulate likely behaviors using the VQEG FRTV
Phase I datasets. These four datasets have a narrow range of
quality, continuous scale (from 0 to 100), and the occasional
rating error. These characteristics seem appropriate and real-
istic for ad hoc decisions. Each FRTV Phase I dataset has 16
to 18 ratings from four different labs. This will allow us to
assign one lab the role of ad hoc evaluation (or pilot test) and
the other labs their actual role of a formal subjective test.

TABLE X
ESTIMATED FALSE RANKING RATES FOR AD HOC & PILOT TESTS

TABLE XI
ESTIMATED INCIDENCE RATES FOR AD HOC & PILOT TESTS THAT SPAN

A NARROW RANGE OF QUALITY

C. Error Incidence Rates

To frame discussions, we will establish six performance lev-
els: ad hoc evaluation with one, two, or three people; and
pilot tests with six, nine, or twelve subjects. The former may
consist of nothing more than verbal discussion, while the lat-
ter are presumed to follow the standard methods in an ITU
Recommendation.

Let us now compare conclusions reached by the subjective
test with the ad hoc evaluation or pilot test (see Table IX). We
will simulate a typically subjective test by drawing 24 subjects
at random from three labs. All possible stimulus pairs will be
compared using the Student’s t-test. To simulate the ad hoc
evaluation or pilot test, we will draw 1, 2, 3, 6, 9, or 12 subjects
at random from the fourth lab; these MOSs will be compared
deterministically.

Table X lists the false ranking incidence rates, computed
on all four FRTV Phase I tests. As mentioned above, the
false ranking incidence rates are not impacted by the range
of quality in the test.

Table XI lists the average incidence rates across all trials,
using the dataset that has the narrowest range of quality (39%
of the 100-level scale). In ACR scale language, this test covers
from “excellent” to part way between “good” and “fair.” This
represents the worst-case scenario: a critical business decision
about similar video systems.

Compare Table VII and Table VIII with Table X and
Table XI to understand the quantitative superiority of subjec-
tive tests over ad hoc evaluations. Essentially, one person can
use a single media to identify the higher-quality system, but a
subjective test would only support 36% of their conclusions,
and about 12% of their conclusions will be erroneous (i.e.,
chose the lower-quality system). Private communications with
industry anecdotally support the high error rates of ad hoc
evaluations.

With a subjective test, the odds of choosing the lower-
quality system drops to 0.15% on average, with 0.31% as the
expected worst case. Moreover, statistical methods can be used
to aggregate media MOSs into system MOSs, which increases
the likelihood of choosing the best system. This is not possible
with ad hoc evaluations.
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TABLE XII
CONFUSION MATRIX BETWEEN SUBJECTIVE TEST AND METRIC

DECISIONS MADE USING DETERMINISTIC MATH

VIII. COMPARING QUALITY METRICS WITH

VIDEO-QUALITY SUBJECTIVE TESTS

We want to compare the conclusions reached by a metric
with the conclusions reached by people. Quality metrics can
be considered as substitutes—or proxies—for subjective qual-
ity ratings. For this reason, we denote the metric value for a
certain stimulus, A, as ̂MOSA.

We will begin with the simplest case where the user
makes decisions based on deterministic comparisons between
̂MOSA and ̂MOSB. Like an ad hoc evaluation or pilot test
in Section VIII, any increase or decrease in metric value is
significant.

A. Comparing Deterministic Decisions Reached by Metrics
and Subjective Tests

We will compare conclusions reached by the metric with
conclusions reached by a subjective test. As noted earlier,
we must avoid predisposing our measurement sensitivity in
favor of subjective testing. Thus, when comparing MOSs, we
will use the CI of a 24-subject test conducted by an SDO
(�SCI = 0.5) from Table II.

Table XII contains a confusion matrix that describes the
possible outcomes when a metric is compared to a subjective
test. Like the confusion matrix in Table IX, CIs are used for
MOS comparisons, but ̂MOS comparisons are made determin-
istically. Outcomes are phrased in terms of correctness: correct
ranking, false distinction, and false ranking.

We will ignore the possibility of identical metric val-
ues, which would impose a “Metric Equivalent” row, as per
Table III. The metric equivalent incidence primarily occurs if
the metric clips values at a maximum (or minimum) value.
That data must be discarded err it distort our measurements.
Metric equivalence scarcely occurs otherwise, since computa-
tions typically use double-precision floating-point numbers.

B. Equating a Metric to a Number of People

We want to liken the metric to a number of people in video-
quality test (PVQT). We will use the statistics from ad hoc
evaluations, because people make direct comparisons between
metric values (without CIs). PVQT will let us make simple
statements like, “This metric is analogous to two people mon-
itoring the quality of your video stream.” The analogy assumes
the use of CIs to compare MOSs and deterministic math to
compare ̂MOSs.

The confusion matrix is presented in Table XII. Due to the
similarity between Table IX and Table XII, we can compare
the false distinction incidence rate of an ad hoc evaluation

TABLE XIII
RANGE OF FALSE RANKING RATES WHEN EQUATING A QUALITY METRIC

TO A NUMBER OF PEOPLE IN AN AD HOC EVALUATION OR PILOT TEST

and a metric. If the false distinction rates are similar, we
can conclude that the metric is behaving similarly to an ad
hoc assessment. We will not constrain correct ranking and
false distinction because we do not have a figure of merit to
remove the confounding factor (range of quality examined).
False ranking is the most egregious type of error, and thus the
most important to constrain.

The false ranking rates in Table X overlap. An argument
could be made for choosing 30% as the maximum false
ranking incidence rate for one PVQT. However, that low
level of performance would make the “one person” analogy
meaningless.

The false ranking incidence rates get closer together as the
number of subjects increases. The average false ranking rates
for 9 and 12 subjects only differ by 0.5%. This is probably
within the measurement uncertainty of the Table X estimates.
Therefore, we will limit the upper end of PVQT at nine people.

Table XIII identifies the range of a metric false ranking inci-
dence rates that are associated with 1, 2, 3, 6, and 9 people.
We rounded these thresholds to the nearest integer, for ease
of use. This rounding also reflects the limited accuracy of
our Table X estimates. The lower threshold (larger value) is
included in the range, while the upper threshold is excluded.

C. Applied Results

Let us begin with MOSs and metrics evaluated by VQEG
during Multimedia [26] validation tests. These validation tests
provide a robust set of well-designed subjective datasets to
calculate equivalence to a number of people. All eight met-
rics except PSNR are referred to by randomly assigned letters
(A to H) and linearly mapped onto a 1 to 5 scale. The VGA
metrics were analyzed against thirteen datasets: twelve with
166 videos and one with 142 videos. Decisions reached by
each dataset’s stimulus pairs are pooled into a single tally of
incidence rates.

Table XIV shows the metric letter, correlation between the
metric and MOS (when stimuli from all thirteen datasets are
pooled), PVQT, and the incidence rates. Metrics E and C are
less accurate than a single person, with 19% and 22% false
ranking, respectively.

Equating a metric to a number of people in a video-
quality test will help naïve users easily understand the effective
precision of a metric. However, the discrete nature of these
values and the absolute thresholds make this method unsuited
for comparing accuracy between metrics. A small change in
false ranking incidence rates could produce a large change in
PVQT.
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TABLE XIV
PVQT FOR VQEG MULTIMEDIA VALIDATION TEST METRICS

TABLE XV
CONFUSION MATRIX BETWEEN A SUBJECTIVE TEST AND METRIC

DECISIONS MADE USING CIS

The drawback with likening a metric to a number of people
in a video-quality test is that any change in ̂MOS is treated as
significant. We know this is false. ̂MOSs are imprecise, and
we would like to understand their precision.

We cannot recommend false ranking for comparisons
between metrics. However, like a scatter plot, false ranking
can help metric researchers understand the behavior of a single
metric.

IX. CONFIDENCE INTERVALS FOR METRICS

We would like to compare the conclusions reached by a
metric to the conclusions reached by a subjective test when
all comparisons use CIs. This will let us compute a CI for the
metric, such that the metric’s error rate will not exceed the
error rate of a subjective test when this CI is used to make
decisions. We can also test whether all of the metric’s decision
incidence rates are equivalent to a subjective test’s decision
incidence rates, when this CI is used to make decisions.

A. Metric’s Confidence Interval (�MCI)

Table XV shows the confusion matrix when a quality metric
is compared to a subjective test. CIs are used to determine the
significance of MOS comparisons and ̂MOS comparisons. The
subjective test provides our ground truth, so the outcomes of
the metric are phrased in terms of correctness: correct ranking,
correct tie, false tie, false distinction, and false ranking. Note
the similarities between Table XV and Table III. We will tally
the frequency of the four possible classification types in the
Table XV confusion matrix.

Philosophically, we want a metric confidence interval that
can be used to make decisions that yield error rates similar
those seen in the lab-to-lab comparisons. From most egregious
to least egregious, these error categories are false ranking, false
distinction, and false tie.

The disagree category (in Table III) corresponds to the
false ranking category (in Table XV). Our observations in
Section VI indicate that the disagree incidence rate should
be ≤ 1%. This is the maximum observed disagree incidence
rate, based on all lab-to-lab comparisons that had no known
problems with implementation.

The unconfirmed category (in Table III) corresponds to the
false tie and the false distinction categories (in Table XV). In
terms of incidence rates:

unconfirmed = false tie + false distinction (1)

Thus, we will limit the false distinction incidence rate to half
of the unconfirmed incidence rate. The unconfirmed incidence
rate depends on the range of quality in the subjective test.
Since the metric is likely to be applied to various media, we
will use the “wide range of quality” statistics from Table VII.
The unconfirmed incidence rate should be ≤ 31%, so our
threshold will be 15.5% (i.e., 31%/2).

We will ignore the false tie category, which is arguably the
least offensive type of error a metric can make. Pragmatically,
we lack defensible limits. To limit false ranking and false
discrimination incidence rates, we must allow the false tie
incidence rate to increase.

We could place separate limits on the false ranking and false
distinction incidence rates. That solution has two problems.
First, metrics have a higher relative rate of false ranking com-
pared to false distinction, due to imperfect modeling of human
perception. So, in practice, the CI would only depend on the
false ranking rate. Second, the CI would be too large for most
applications. Users are willing to tolerate a low level of false
ranking incidents to improve the correct ranking incidence
rate.

Instead, we will define the overall metric error incidence
rate to be the sum of false ranking and false distinction inci-
dence rates. This will allow false ranking to become a larger
proportion of metric error incidence rate.

Let us calculate the �M as:

�M = ̂MOSA − ̂MOSB. (2)

We then calculate the metric’s confidence interval, �MCI, as
the value of �M where the metric error incidence rate is equal
to the sum of false ranking (comparable with 1% disagree)
and false distinction (comparable with 15.5% unconfirmed),
or 16.5%.

B. Agree Ranking, Agree Tie, and Figure of Merit Concur

When we use �MCI to make decisions, the false ranking
and false distinction incidence rates are, by definition, con-
strained to fall within subjective testing incidence rates. To
demonstrate equivalence to a subjective test, we must also
ensure that agree ranking, agree tie, and false ranking fall
within the expected range.

As we would expect, the agree ranking, agree tie, and
unconfirmed incidence rates in Table VII depend on the range
of quality in the subjective tests. In general, when the range
of quality is smaller, agree ranking is reduced and agree tie
becomes greater, consistent with intuition. Setting expectations
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for agree ranking and agree tie is thus confounded by the
spread of quality in the test.

To gain independence from the spread of quality, we observe
that spread drives a strong and reliable trade-off between agree
ranking and agree tie, expressed as fractions. This trade-off is
described by:

r̂ = (−1.2 × agree tie + 1.0)2 (3)

where agree ranking and agree tie are expressed as fractions,
r is the measured agree ranking, and r̂ describes the predicted
agree ranking as a function of agree tie. We computed r̂ using
linear regression (see the red line in Fig. 6, left). A square root
is needed to remove a non-linearity.

The relationship in (3) explains our observed measure-
ments and establishes the relationship between agree_tie and
agree_ranking. Next, given a comparison between two unfore-
seen tests, we must assess whether their incidence rates fall
within expectations. That is, if we measure agree_tie and
agree_ranking and add this point to our plot, would it lie
within the scatter around the red fit line. Motivated by (1),
we now define a new statistic concur as:

concur = √

agree ranking − √̂
r

= √

agree ranking + 1.2 × agree tie (4)

where concur measures the residual between r̂ and
agree_ranking.

Concur directly measures whether the observed trends
within our subjective datasets reoccur in another subjective
test or objective metric. Note that concur takes a value of 1.0
when the approximation in (3) is exact, and it deviates about
1.0 for our data. Concur ranges from 0.91 to 1.05 and his-
tograms of concur are shown in Fig. 6. The range of values
(0.91 to 1.05) was calculated empirically. This mathematical
function of agree ranking and agree tie allows us to remove
the influence of the dataset’s quality range. This is demon-
strated by the fact that the two classes of subjective tests
largely overlap in Fig. 6.

Concur is a single figure-of-merit for comparing the results
of two tests (subjective-to-subjective, or subjective-to-metric).
Larger values of concur indicate higher levels of agreement.
The downside of this convenience is that concur is a bit more
abstract than agree ranking or agree tie. Also note that concur
is unitless.

C. Showing Equivalence to Subjective Testing

We would like to determine whether a metric’s decision
incidence rates are equivalent to a subjective test’s decision
incidence rates, when �MCI is used to make decisions. We
will use the figure-of-merit concur, as defined above, and set
a threshold that concur must be no less than 0.91. Thus, we
define a metric to be equivalent to a subjective test when it
produces concur ≥ 0.91.

We will not place limits on the final category, false tie, for
three reasons. We lack defensible limits; the false tie rate is
arguably the least offensive type of error a metric can make;
and false tie incidence rates are inherently limited by the other
four factors.

Fig. 6. The scatter plot (left) shows the relationship between agree ranking
and agree tie incidence rates, with (1) plotted in red. The histogram (right)
shows the distribution of (2) for wide range of quality tests in blue and tests
with narrow range of quality tests in orange. The overlap is brown.

TABLE XVI
AD HOC TEST EQUIVALENCE FOR VQEG MULTIMEDIA VALIDATION

TEST METRICS

In conclusion, equivalence to a video-quality test (EVQT)
is true when:

• Concur ≥ 0.91
• �MCI is used to make decisions

D. Applied Results

We will analyze the same metrics that were evaluated by
VQEG during Multimedia validation tests. Decisions reached
by each dataset’s stimulus pairs are combined into a single
tally of incidence rates. Table XVI shows the metric name,
correlation between the metric and MOS, �MCI, EVQT, the
incidence rates, and metric concur. The table contains rounded
incidence rates for ease of comprehension.

�MCI and EVQT must not be used for comparisons
between metrics. The metrics are sorted from most accurate
to least accurate, but �MCI both increases and decreases. The
problem is that �MCI depends on the distribution of ̂MOS,
which is a unique characteristic of the metric.

X. CONCLUSION

Our goal is to provide the information and techniques that
people need to make better decisions. To accomplish this,
we provide new statistical methods that measure and com-
pare the decisions reached by subjective tests and metrics that

U.S. Government work not protected by U.S. copyright. This article has been accepted for inclusion in a future issue of IEEE TRANSACTIONS ON 
BROADCASTING, licensed under a Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/).



17

assess media quality. �SCI, disagree, and false ranking char-
acterize the expected precision and repeatability of subjective 
tests. Expected values for these statistics become the basis of 
PVQT, �MCI, and the EVQT equivalence test. They measure 
the precision and repeatability of metrics against the base-
line performance of subjective tests. Our six new statistical 
methods are as follows:

• �SCI—subjective test’s confidence interval
• Disagree—likelihood that two labs agree that stimuli A

and B are significantly different, but disagree about their
quality ranking (MOSA < MOSB vs MOSA > MOSB)

• False ranking—likelihood that a metric or ad hoc evalua-
tion will rank stimuli in the opposite order to a subjective
test

• PVQT—equates the metric to a number of people in a
video-quality test

• �MCI—metric’s confidence interval, at which the metric
has error rates similar to a subjective test

• EVQT—determines whether the metric responds simi-
larly to a subjective test, when �MCI is used to make
decisions

These new statistical methods have a few limitations. We
were only able to characterize �SCI for the 5-level ACR
method. These statistical methods cannot be used to compare
the performance of multiple metrics; PVQT and �MCI could
be particularly misleading if used in that way.

These new statistical methods are designed for quality
assessments of individual media files. Additional work would
be needed to extend PVQT, �MCI, and EVQT to speech qual-
ity, where the goal is to assess the quality of a system (e.g.,
aggregating results from multiple speakers). Additional work
would also be needed to characterize �SCI for the system qual-
ity, as measured by most speech-quality tests (i.e., aggregating
ratings from multiple speakers).

This paper provides important insights into the precision
and repeatability of subjective tests. Key measurements are:

• The range of �SCI for the 5-level ACR method in Table II
• The likelihood of two subjective tests reaching different

conclusions in Table VII and Table VIII
• A mapping between the false ranking incidence rate of a

metric and the number of people in an ad hoc evaluation
or pilot test in Table XIII

We recommend the disagree incidence rate for lab-to-lab
comparisons and to determine whether experimental sub-
jective test protocols differ significantly from proven pro-
tocols. We conclude that disagree incidence rates above
0.31% are unusual enough to warrant investigation and dis-
agree incidence rates above 1.0% indicate difference in
method, test environment, test implementation, or subject
demographics.

Our Monte Carlo simulations indicate that ad hoc evalua-
tions have dramatically higher false ranking incidence rates
than the lab-to-lab disagree incidence rates noted above.
Typical false ranking rates for an ad hoc evaluation are 13%
to 10% for one person, 10% to 8% for two people, and 8% to
6% for three people. However, ad hoc evaluation repeatability
is erratic, with the worst case being approximately three times
higher (e.g., 30% for one person).

We welcome future discussions on these statistical methods
and proposals for improved techniques. Code implementing
PVQT, �MCI, and the EVQT equivalence test is freely avail-
able in [2]. See function ci_calc.m and ci_calc.py. Many of
the subject ratings used in this analysis are available on the
Consumer Digital Video Library (CDVL, www.cdvl.org).

REFERENCES

[1] M. Pinson, “Confidence intervals for subjective tests and objective met-
rics that assess image, video, speech, or audiovisual quality,” NTIA,
Washington, DC, USA, Rep. TR-21-550, Oct. 2020. [Online]. Available:
https://www.its.ntia.gov/publications/3253.aspx

[2] “NR metric framework.” National Telecommunications and Information
Administration, Institute for Telecommunication Sciences. Accessed:
Jul. 27, 2020. [Online]. Available: https://github.com/NTIA/
NRMetricFramework

[3] G. Cermak and D. Fay, “T1A1.5/94-148: Correlation of objective and
subjective measures of video quality.” Sep. 20, 1994. [Online]. Available:
https://www.vqeg.org

[4] A. Webster, “Two criteria for video test scene selection,” Working
Party 2, Study Group 12, Question 22, document 35-E, ITU, Geneva,
Switzerland, Dec. 1994. [Online]. Available: https://www.its.ntia.gov/
publications/2598.aspx

[5] M. Pinson and S. Wolf, “Techniques for evaluating objective video qual-
ity models using overlapping subjective datasets,” NTIA, Washington,
DC, USA, Rep. TR-09-457, Nov. 2008. [Online]. Available: https://its.
ntia.gov/publications/2494.aspx

[6] M. Pinson, S. Wolf, and G. Cermak, “HDTV subjective quality of H.264
vs. MPEG-2, with and without packet loss,” IEEE Trans. Broadcast.,
vol. 56, no. 1, pp. 86–91, Mar. 2010.

[7] T. Tominaga, T. Hayashi, J. Okamoto, and A. Takahashi, “Performance
comparisons of subjective quality assessment methods for mobile video,”
in Proc. 2nd Int. Workshop Qual. Multimedia Exp. (QoMEX), 2010,
pp. 82–87, doi: 10.1109/QOMEX.2010.5517948.

[8] Q. Huynh-Thu, M. Garcia, F. Speranza, P. Corriveau, and A. Raake,
“Study of rating scales for subjective quality assessment of high-
definition video,” IEEE Trans. Broadcast., vol. 57, no. 1, pp. 1–14,
Mar. 2011, doi: 10.1109/TBC.2010.2086750.

[9] T. Hoßfeld, R. Schatz, and S. Egger, “SOS: The MOS is not enough!”
in Proc. 3rd Int. Workshop Qual. Multimedia Exp., 2011, pp. 131–136,
doi: 10.1109/QoMEX.2011.6065690.

[10] M. H. Pinson et al., “The influence of subjects and environment on
audiovisual subjective tests: An international study,” IEEE J. Sel. Topics
Signal Process., vol. 6, no. 6, pp. 640–651, Oct. 2012.

[11] S. Le Moan, M. Pedersen, I. Farup, and J. Blahová, “The influ-
ence of short-term memory in subjective image quality assessment,”
in Proc. IEEE Int. Conf. Image Process. (ICIP), 2016, pp. 91–95,
doi: 10.1109/ICIP.2016.7532325.

[12] A. Kumcu, K. Bombeke, L. Platiša, L. Jovanov, J. Van Looy, and
W. Philips, “Performance of four subjective video quality assessment
protocols and impact of different rating preprocessing and analysis meth-
ods,” IEEE J. Sel. Topics Signal Process., vol. 11, no. 1, pp. 48–63,
Feb. 2017, doi: 10.1109/JSTSP.2016.2638681.

[13] R. K. Mantiuk, A. Tomaszewska, and R. Mantiuk, “Comparison of
four subjective methods for image quality assessment,” Comput. Graph.
Forum, vol. 31, no. 8, pp. 2478–2491, Aug. 2012.

[14] Y. Nehmé, J. Farrugia, F. Dupont, P. Le Callet, and G. Lavoué,
“Comparison of subjective methods for quality assessment of 3D
graphics in virtual reality,” ACM Trans. Appl. Percept., vol. 18, no. 1,
pp. 1–23, Jan. 2021.

[15] M. H. Brill, J. Lubin, P. Costa, and J. Pearson, “Accuracy
and cross-calibration of video-quality metrics: New methods from
ATIS/T1A1,” in Proc. Int. Conf. Image Process., 2002, p. 3,
doi: 10.1109/ICIP.2002.1038897.

[16] L. Krasula, K. Fliegel, P. Le Callet, and M. Klíma, “On the accuracy
of objective image and video quality models: New methodology for
performance evaluation,” in Proc. 8th Int. Conf. Qual. Multimedia Exp.
(QoMEX), 2016, pp. 1–6, doi: 10.1109/QoMEX.2016.7498936.

[17] L. F. Tiotsop et al., “On the link between subjective score prediction
and disagreement of video quality metrics,” IEEE Access, vol. 9,
pp. 152923–152937, 2021, doi: 10.1109/ACCESS.2021.3127395.

[18] P. Corriveau and N. Walch. “VQEG subjective test plan, full reference
phase 1.” Video Quality Experts Group (VQEG). Jan. 18, 1999. [Online].
Available: https://vqeg.org/publications-and-software/publications

U.S. Government work not protected by U.S. copyright. This article has been accepted for inclusion in a future issue of IEEE TRANSACTIONS ON 
BROADCASTING, licensed under a Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/QOMEX.2010.5517948
http://dx.doi.org/10.1109/TBC.2010.2086750
http://dx.doi.org/10.1109/QoMEX.2011.6065690
http://dx.doi.org/10.1109/ICIP.2016.7532325
http://dx.doi.org/10.1109/JSTSP.2016.2638681
http://dx.doi.org/10.1109/ICIP.2002.1038897
http://dx.doi.org/10.1109/QoMEX.2016.7498936
http://dx.doi.org/10.1109/ACCESS.2021.3127395


18

[19] A. M. Rohaly et al. “Final report from the video quality experts group on
the validation of objective models of video quality assessment.” Video
Quality Experts Group (VQEG). Mar. 2000. [Online]. Available: https://
vqeg.org/publications-and-software/publications/

[20] “FR-TV: Full-reference television phase II subjective test plan.” Video
Quality Experts Group (VQEG). Sep. 2002. [Online]. Available: https://
vqeg.org/publications-and-software/publications/

[21] P. Corriveau and A. Webster. “Final report from the video quality experts
group on the validation of objective models of video quality assess-
ment, phase II.” Video Quality Experts Group (VQEG). 2003. [Online].
Available: https://vqeg.org/publications-and-software/publications/

[22] A. Webster and F. Speranza. “Validation of reduced-reference and
no-reference objective models for standard-definition television, phase
I.” Video Quality Experts Group (VQEG). 2009. [Online]. Available:
https://vqeg.org/publications-and-software/publications/

[23] A. Webster and F. Speranza. “Report of the validation of video quality
models for high definition video content.” Video Quality Experts Group
(VQEG). Jun. 2010. [Online]. Available: https://vqeg.org/publications-
and-software/publications/

[24] C. Lee, S. Borer, and J. Berger. “Hybrid perceptual/bitstream val-
idation test final report.” Video Quality Experts Group (VQEG).
Jul. 2014. [Online]. Available: https://vqeg.org/publications-and-
software/publications/

[25] ITU-T Coded-Speech Database, Rec. ITU-T P.Sup23, Int. Telecommun.
Union, Geneva, Switzerland, Feb. 27, 1998. [Online]. Available: https://
www.itu.int/rec/T-REC-P.Sup23-199802-I

[26] A. Webster and F. Speranza. “Final report from the video qual-
ity experts group on the validation of objective models of
multimedia quality assessment, phase 1.” Video Quality Experts Group
(VQEG). Sep. 2008. [Online]. Available: https://vqeg.org/publications-
and-software/publications/

[27] M. H. Pinson, W. J. Ingram, and A. A. Webster, “Audiovisual quality
components: An analysis,” IEEE Signal Process. Mag., vol. 28, no. 6,
pp. 60–67, Nov. 2011.

[28] M. H. Pinson, A. A. Webster, and W. J. Ingram, “Preliminary inves-
tigation into the impact of audiovisual synchronization of impaired
audiovisual sequences,” NTIA, Washington, DC, USA, Technical Memo
TM-11-474, Mar. 2011. [Online]. Available: https://www.its.ntia.gov/
publications/2549.aspx

[29] M. H. Pinson, S. Wolf, and R. B. Stafford, “Video performance require-
ments for tactical video applications,” in Proc. IEEE Conf. Technol.
Homeland Security, May 2007, pp. 85–90.

[30] “Public safety #2 (PS2) video quality dataset,” CDVL. Accessed: Mar. 5,
2022. [Online]. Available: https://www.cdvl.org/members-section/view-
file/?id=3000

[31] Y. Zhu, L. Song, R. Xie, and W. Zhang, “SJTU 4K video subjective
quality dataset for content adaptive bit rate estimation without encod-
ing,” in Proc. IEEE Int. Symp. Broadband Multimedia Syst. Broadcast.
(BMSB), 2016, pp. 1–4, doi: 10.1109/BMSB.2016.7521936.

[32] S. Tavakoli, K. Brunnström, J. Gutiérrez, and N. García, “Quality of
experience of adaptive video streaming: Investigation in service param-
eters and subjective quality assessment methodology,” Signal Process.
Image Commun., vol. 39, pp. 432–443, Nov. 2015. [Online]. Available:
https://doi.org/10.1016/j.image.2015.05.001

[33] L. Janowski, L. Malfait, and M. Pinson, “Evaluating experiment design
with unrepeated scenes for video quality subjective assessment,” Qual.
User Exp., vol. 4, p. 2, Jun. 2019. [Online]. Available: https://doi.org/
10.1007/s41233-019-0026-4

[34] M. A. Saad et al., “Image quality of experience: A subjective test tar-
geting the consumer’s experience,” in Proc. Int. Symp. Electron. Imag.
Human Vis. Electron. Imag., Feb. 2016, pp. 1–6.

[35] J. Nawala, M. H. Pinson, M. Leszczuk, and L. Janowski, “Study of sub-
jective data integrity for image quality data sets with consumer camera
content,” J. Imag., vol. 6, no. 3, p. 7, 2020.

[36] M. H. Pinson, “ITS4S: A video quality dataset with four-second
unrepeated scenes,” NTIA, Washington, DC, USA, Technical Memo
TM-18-532, Feb. 2018. [Online]. Available: https://www.its.ntia.gov/
publications/3194.aspx

[37] M. H. Pinson, “ITS4S2: An image quality dataset with unrepeated
images from consumer cameras,” NTIA, Washington, DC, USA,
Technical Memo TM-19-537, Apr. 2019. [Online]. Available: https://
www.its.ntia.gov/publications/3219.aspx

[38] M. H. Pinson, “ITS4S3: A video quality dataset with unrepeated videos,
camera impairments, and public safety scenarios,” NTIA, Washington,
DC, USA, Technical Memo TM-19-538, Apr. 2019. [Online]. Available:
https://www.its.ntia.gov/publications/3220.aspx

[39] M. H. Pinson and S. Elting, “ITS4S4: A video quality study of cam-
era pans,” NTIA, Washington, DC, USA, Technical Memo TM-20-545,
Dec. 2019. [Online]. Available: https://www.its.ntia.gov/publications/
3233.aspx

[40] B. Naderi, T. Hoßfeld, M. Hirth, F. Metzger, S. Möller, and
R. Z. Jiménez, “Impact of the number of votes on the reliability and
validity of subjective speech quality assessment in the crowdsourcing
approach,” 2020, arXiv:2003.11300.

[41] L. Janowski and M. H. Pinson, “The accuracy of subjects in a qual-
ity experiment: A theoretical subject model,” IEEE Trans. Multimedia,
vol. 17, no. 12, pp. 2210–2224, Dec. 2015.

Margaret H. Pinson received the B.S. and M.S.
degrees in computer science from the University of
Colorado at Boulder, Boulder, CO, USA, in 1988
and 1990, respectively.

Since 1988, she has been with the
Institute for Telecommunication Sciences,
National Telecommunications and Information
Administration, Boulder. She is an Internationally
Recognized Expert with 33 years of experience
developing improved methods for assessing video
quality. Her research includes algorithm develop-

ment, human testing, and international standards. She contributed to eight
national and international efforts of ATIS and the Video Quality Experts
Group (VQEG) to independently validate video quality metrics. She led the
effort to create ITU-T Rec. P.913, which describes improved subjective test
methods for modern video systems. She has written 83 publications. Her
current research focuses on NR metrics that predict what people would say
is the quality of an image or video.

Ms. Pinson is a VQEG Co-Chair, administers the Consumer Digital
Video Library (CDVL), and makes all of her algorithms openly available.
She contributes to ITU Recommendations and has led several efforts to
independently validate video quality metrics, which is a necessary step of the
standards development process. She helped design and conduct four prize
challenges, including the 5G Challenge. Her prior IEEE TRANSACTIONS

ON BROADCASTING article shows that NR metrics must be trained on
significantly more data, if they are to accurate enough to be deployed by
industry.

U.S. Government work not protected by U.S. copyright. This article has been accepted for inclusion in a future issue of IEEE TRANSACTIONS ON 
BROADCASTING, licensed under a Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/BMSB.2016.7521936


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




