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Abstract
We develop two complementary advances for training no-

reference (NR) speech quality estimators with independent
datasets. Multi-dataset finetuning (MDF) pretrains an NR es-
timator on a single dataset and then finetunes it on multiple
datasets at once, including the dataset used for pretraining.
AlignNet uses an AudioNet to generate intermediate score esti-
mates before using the Aligner to map intermediate estimates to
the appropriate score range. AlignNet is agnostic to the choice
of AudioNet so any successful NR speech quality estimator can
benefit from its Aligner. The methods can be used in tandem,
and we use two studies to show that they improve on current so-
lutions: one study uses nine smaller datasets and the other uses
four larger datasets. AlignNet with MDF improves on other so-
lutions because it efficiently and effectively removes misalign-
ments that impair the learning process, and thus enables suc-
cessful training with larger amounts of more diverse data.
Index Terms: corpus effect, listening experiment, machine
learning, no-reference estimator, speech quality, subjective test

1. Background
Speech quality, naturalness, and related quantities can be mea-
sured in listening experiments or estimated by algorithms. Al-
gorithms can save much time and effort, but it is a significant
challenge to develop an algorithm that produces reliable esti-
mates across a wide range of conditions [1]. The most useful al-
gorithms are called “no-reference” (NR) because they measure
impaired speech directly and do not need a reference speech
signal for comparison. NR algorithms parallel absolute cate-
gory rating (ACR) listening experiments where listeners score
impaired speech without comparing to reference speech.

NR estimators originally used explicit models [2–5] but
moved to data-driven implicit modeling as machine learning
(ML) became more mature and practical. A few examples in-
clude [6–12]. The ML approach is powerful and effective, but
also highly dependent on the quantity and diversity of listening
experiment results that comprise the ground-truth training data.
This motivates us to combine the results of multiple listening
experiments to achieve the needed quantity and diversity.

1.1. The alignment problem
Despite the name, ACR results are not truly absolute. They
can depend on a variety of factors including characteristics of
individual listeners and the range of conditions included in an
experiment [13–16]. This is sometimes called the “corpus ef-
fect.” For example, in [15] a single fixed synthesized voice file
received quality scores ranging from 1.8 to 4.5 in five different
experiments, where the only difference between those experi-
ments was the range of conditions included in each. More gen-
erally, for one of the five experiments in [15] 41% of the speech

files move by more than 1.0 on the five-point MOS scale when
rated in one of the other four experiments. This behavior can be
attributed to the listeners’ desire to use the entire scale.

The corpus effect creates a problem when we seek to com-
bine results of multiple experiments. Naive combining can yield
inconsistent training data that harms training processes instead
of enhancing them. But if the results of each experiment can
be brought to a single common scale (“aligned”), they can then
work together to improve training of an NR estimator. This re-
quires finding a useful common scale and an optimal mapping
from each set of experiment results to that common scale. This
is the dataset alignment problem.

1.2. Prior work and our contributions
Several alignment techniques have been proposed and used.
When two listening experiments include common conditions,
results for these conditions may be used to develop alignment
functions. Historically many experiments included a standard-
ized adjustable reference condition called the modulated noise
reference unit (MNRU) [17] for exactly this purpose. This is
currently not common practice, likely because the impairments
produced by the MNRU sound very different from impairments
appearing in current experiments, thus limiting its usefulness as
a reference condition. Other standardized reference conditions
have been used in the past but devoting experiment conditions
to references always consumes precious resources.

An iterative approach that alternately optimizes alignment
functions and an estimation algorithm is given in [18]. An
updated iterative approach that leverages ML is given in [19].
Other approaches explore individual alignments for each lis-
tener in a listening test [20–22]. Aligning listeners can compen-
sate for their individual behaviors and can lead to better training
of NR estimators. But this cannot account for the primary por-
tion of the corpus effect, caused by the broader biases due to
each experiment’s context. Further, listener alignment is not
possible unless datasets label each listener’s scores.

In this paper we offer the following novel contributions:

• multi-dataset finetuning, a progressive training regimen that
advantageously leverages both larger and smaller datasets

• adding a small score alignment network and a dataset indica-
tor to an audio network

• combining these to learn embeddings for the dataset indica-
tor, alignment functions, and optimal audio network weights

• using an unprecedented 13 datasets covering 3 languages,
scores for 4 different speech attributes, and a very wide range
of measurement domains, totalling over 300 hours of speech

• demonstrating that these innovations allow previously incom-
patible datasets to collaborate during training, resulting in
better estimates across disparate measurement domains.
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2. No-reference speech quality estimators
for multiple datasets

Here we discuss issues with the conventional strategy for train-
ing a speech quality estimator using multiple datasets. We then
propose two innovations that enable learning meaningful rela-
tionships between audio and scores across multiple datasets,
even when inconsistent scores are present.

2.1. Conventional approach
The conventional approach to training an NR speech quality es-
timator with speech and scores from multiple distinct listening
experiments is to simply use all the datasets at once. However,
due to the corpus effect, there can be a misalignment between
speech and target scores from different experiments. When
identical or very similar speech files appear in multiple listen-
ing experiments, they almost certainly receive different scores
in each experiment. This means that while training, the network
must attempt to map identical or similar input files to multiple
conflicting output scores, and would likely estimate a score that
is roughly the average of all scores seen for the file. This is
reasonable to an extent, but these disparate scores for the same
input add additional noise for the network to sift through and
place inherent limitations on its estimates; it can never produce
a single estimate for this input that achieves low loss for all the
associated target scores.

2.2. Multi-dataset finetuning
In the conventional approach the network attempts to learn au-
dio relationships while dealing with misaligned target scores
from multiple experiments, which impedes the training process.
Previous work has demonstrated the benefits of pretraining a
network on one dataset and then switching to a different dataset
for finetuning [1, 23, 24]. The initial pretraining allows the net-
work to learn a basic and somewhat transferable relationship
between audio and scores. Here we propose multi-dataset fine-
tuning (MDF), where we first pretrain the network on a single
dataset before finetuning with all the datasets at once, includ-
ing the original dataset used for pretraining. Pretraining places
the network into a state where it already knows some meaning-
ful relationships between audio and scores, and can then bal-
ance the misaligned scores from the different listening experi-
ments. It has some of the same limitations as the conventional
approach, but pretraining on a single dataset enables much bet-
ter training and predictions when applied to multiple datasets.
We believe MDF is a novel approach to the problem.

2.3. Dataset alignment with AlignNet
We now introduce a novel architecture called AlignNet, which
allows any NR speech quality estimator to better benefit from
multiple datasets, with only a minimal increase in network com-
plexity. AlignNet is essentially two network components in se-
quence, which we call the AudioNet and the Aligner respec-
tively. AlignNet is intentionally designed to be agnostic to the
choice of the AudioNet, which maps audio or audio features
(depending on the choice of AudioNet) to intermediate score es-
timates. The Aligner uses a categorical dataset indicator to map
those intermediate score estimates to final scores for the appro-
priate dataset. The network architecture is outlined in Fig. 1.

It is necessary to select a reference dataset and force the
Aligner to apply the identity function to reference dataset re-
sults. This ensures that the outputs of AudioNet are grounded
in meaningful quality scores, and that AudioNet gives estimates
for all audio in the domain of the reference dataset scores. Fa-
vorable attributes for a reference dataset include trustworthy

Audio
Dataset

indicator

Feature extractor

AudioNet

Aligner Score estimates

Figure 1: AlignNet model diagram. The feature extractor is
optional depending on the choice of AudioNet.

scores and a wide range of conditions. This allows AudioNet
to produce outputs on a level playing field for comparisons
of speech files, without any corpus effect biases muddling the
rankings. Finally this ensures that the mappings learned by the
Aligner carry relevant information about the relationships be-
tween different experiments and are easily interpretable.

To build an intuition, again consider multiple listening ex-
periments where very different scores were reported for an iden-
tical condition and audio file. In AlignNet, the AudioNet would
give the same result for each occurrence of the audio file, and
then the Aligner could use the dataset indicator to successfully
map this single value to the appropriate, different scores. Thus
AlignNet is able to yield low loss for each occurrence of the
input, in spite of their different scores.

The Aligner is extremely light-weight and adds an insignif-
icant number of parameters to any effective AudioNet. It first
maps the dataset indicator to an N -dimensional embedding
and concatenates that embedding with the AudioNet estima-
tion. The network consists of a series of fully connected layers
of identical dimensions, separated by ReLU activations, and a
final fully connected layer that maps the data to a single score
estimate. The number of parameters in the Aligner is dependent
on the number of datasets used, and in our implementations it
has roughly 1100 parameters total. More in-depth implementa-
tion details are available with our source code1.

Successful training of AlignNet requires a clear division
of labor — the AudioNet should not attempt to make align-
ments and the Aligner should not attempt to measure audio.
This is achieved by MDF, the use of a reference dataset, and
freezing the AudioNet for one epoch at the start of finetun-
ing. The reference dataset is used for pretraining so AudioNet
is well-positioned at the beginning of training, at least for that
dataset. Continuing to train allows the AudioNet to better learn
the speech from the other datasets, while the Aligner learns how
to reconcile the scores across the different datasets.

2.4. Loss function
In conventional network training each individual piece of data
is given equal weight in the loss function. When training a net-
work with multiple datasets, we propose that each dataset be
given equal weight within the loss function using

L =
1

Nd

Nd∑
j=1

l(yj , ŷj), (1)

1https://github.com/NTIA/alignnet
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Table 1: Summary of 13 datasets used in this work. The first 9
have 8 to 24 votes per file, the final 4 have 4 or 5 votes per file
on average. Blizzard 2021 uses Spanish language, Tencent uses
Chinese, all others use English.

Dataset Abbr. Domain Number
of Files

Blizzard 2021 SS1 [25] B21 S1 Nat Synthesized &
natural speech 242

Blizzard 2021 SH1 [25] B21 H1 Nat same as above 338
Blizzard 2021 SS1 [25] B21 S1 Acc same as above 363
Blizzard 2008 News [26] B08 News same as above 802
Blizzard 2008 Novels [26] B08 Novel same as above 802
FFTnet [27] FFTnet Neural vocoders 1200
NOIZEUS [28] NOIZEUS Noise & suppression 1664
VoiceMOS
Challenge 2022 [29] VMC22 Speaker conversion &

synthesized speech 7106

Tencent [30] Tencent
Noise, suppression,
reverb, coding,
packet loss & concealment

11,563

NISQA SIM [31] NISQA Coding, packet loss,
noise, filtering & clipping 12,500

Voice Conversion
Challenge 2018 [32] VCC18 Voice conversion systems 20,580

Indiana U. MOS [33] IU MOS Noise & reverb 36,000

PSTN [34] PSTN PSTN to VoIP calls
plus noise 58,709

where Nd is the number of datasets used in training, yj are
all the targets for dataset j, ŷj are all the estimates for dataset
j, and l is mean-squared error loss. This allows a network to
achieve good results for each dataset, rather than letting larger
datasets dominate the learning.

3. Experiments and Results
We performed studies with two different groups of datasets: one
with nine smaller datasets that have more votes per file and one
with four larger datasets that have fewer votes per file. Key
properties are summarized in Table 1. Three languages are rep-
resented and the total duration of speech exceeds 300 hours. Di-
verse measurement domains include synthesized speech, voice
conversion, neural vocoders, conventional codecs, packet loss,
noise, reverb, enhancement, filtering, and more. The NOIZEUS
and PSTN datasets are narrowband (nominally 300 to 3600 Hz)
and the remaining datasets support wideband (nominally 50 to
7000 Hz) or fullband speech. Scores are for four different at-
tributes: “Acceptability” (B21 S1 Acc), “Naturalness” (remain-
ing 4 Blizzard datasets, VMC22, and VCC18), “Overall Qual-
ity” (NOIZEUS), and “Speech Quality” (remaining 5 datasets).
These attributes are related but not identical which further mo-
tivates dataset alignment.

In each study we explored different training regimens and
network architectures with multiple datasets in order to demon-
strate the performance of our two novel approaches compared
to existing methods. We used the NR speech quality estimator
MOSNet [35] for all experiments in both studies, either exclu-
sively or as the AudioNet in AlignNet. We chose MOSNet as
it is a sufficiently large network to have the capacity to achieve
good results for these studies, while being small enough to train
relatively quickly and be more usable in practice. Further it
has been successfully used as a baseline model in related re-
search on listener specific corrections [21, 22]. Unlike the orig-
inal MOSNet implementation, we did not opt to use frame level
loss, and instead averaged frames into a single value before the
loss function; otherwise our implementation exactly matches
the original paper. All audio was resampled to 16 kHz prior
to the STFT calculation. We randomly split each dataset into
80%, 10%, and 10% for the training, validation, and testing data
respectively. We use the same split across all tests to ensure a
fair comparison, and all reported results are from the unseen

test sets. We trained all networks with the loss function defined
in (1), except in the bias-aware loss comparison (BAL), which
uses the loss function defined in [19]. In the small dataset study
the Tencent dataset was selected as the reference dataset, which
means we also used it for MDF pretraining. In the large dataset
study the NISQA dataset filled this role.

We use “depth” to describe network performance for a sin-
gle dataset and “breadth” to describe performance across all
datasets of interest. Each AudioNet has its natural tradeoff be-
tween depth and breadth; at a certain point one cannot be im-
proved without harming the other. Adding dataset alignment
can mitigate this tradeoff and allow better simultaneous depth
and breadth. AlignNet’s Aligner generally improves depths
without reducing breadth.

We use two metrics to evaluate the depth and breadth per-
formance in our experiments: Pearson’s linear correlation co-
efficient (LCC) describes the networks ability to rank speech
attributes, and root mean-squared error (RMSE) describes the
distance of the network’s estimates from the true scores. The
small and large dataset study results are given in Tables 2 and
3, respectively. Each column gives results for the unseen test-
ing portion of a given dataset. Bold indicates the best and un-
derlining the second best performance for each column. The *
symbol denotes a statistically significant improvement over the
conventional regimen (“All” row), calculated using Zou’s confi-
dence interval for LCC [36] and bootstrapping for RMSE [37].
For the large dataset study full results are shown for training
on each dataset and the diagonal is shaded; off-diagonal results
show the lack of breadth. We did the same for the small dataset
study but for brevity the diagonal is compressed into the “Indi-
vidual” row, where each cell shows results for training and test-
ing (on unseen data) for a given dataset. No individually trained
model shows any meaningful breadth and none of the unshown
values were first or second place for any column. Note that it is
more difficult to achieve statistical significance for the datasets
with fewer than 500 files, as the test sets are very small.

3.1. Training regimens and network architectures
We demonstrate the improvements provided by MDF and
AlignNet through comparison with a series of baselines. The
first set of baselines trained MOSNet on each target dataset in-
dividually. We also trained MOSNet with the conventional ap-
proach discussed in Sec. 2.1, which is denoted as “All” in the
results tables. The MDF approach is denoted as “All (+ MDF).”

We also trained MOSNet using the bias-aware loss (BAL)
method defined in [19]. BAL seeks to address the corpus effect
in training by using least-squares to estimate a scale and shift
for each dataset after each training epoch. The scale and shift
are then used in the loss function to attempt to harmonize the
disparate experiment scores. BAL training relies on a hyper-
parameter rth. Scale and shift are not used in the loss calcula-
tion until training correlation exceeds rth. We selected a single
threshold of rth = 0.6 based on curves shown in [19]. We use
the same dataset as reference for AlignNet and BAL.

We implemented AlignNet with MOSNet as the AudioNet
and an Aligner that uses a 10-dimensional dataset embedding
and has 5 fully connected layers of dimension 16. MOSNet
has roughly 1.2 million parameters and the Aligner has roughly
1100, meaning the Aligner was less than 0.1% of the total net-
work size. To encourage the Aligner to focus only on dataset
alignment we froze the pretrained AudioNet for the first epoch.
In the tables AlignNet is denoted as “All (+ MDF + AlignNet)”.
Neither MDF nor AlignNet add measurable additional training
time. BAL increases training time by about 50%.
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Table 2: LCC (above) and RMSE (below) for all models on the small datasets.

Training Data B21 S1 Nat B21 H1 Nat B21 S1 Acc B08 Novel B08 News FFTNet NOIZEUS VMC22 Tencent All
Individual 0.45 0.65 0.23 0.66 0.67 0.81* 0.80* 0.51 0.94* NA

All 0.73 0.82 0.70 0.62 0.69 0.53 0.65 0.71 0.80 0.77
All (+ BAL) 0.83 0.77 0.65 0.56 0.55 0.69* 0.70 0.75* 0.91* 0.83*
All (+ MDF) 0.82 0.83 0.62 0.72 0.77 0.70* 0.71 0.74 0.89* 0.84*

All (+ MDF + AlignNet) 0.88 0.90 0.78 0.81* 0.82* 0.66* 0.76* 0.76* 0.92* 0.87*

Training Data B21 S1 Nat B21 H1 Nat B21 S1 Acc B08 Novel B08 News FFTNet NOIZEUS VMC22 Tencent All
Individual 1.15 1.19 0.95 0.88 0.87 0.66* 0.34* 0.95 0.41* NA

All 0.87 0.69 0.56 0.85 0.70 0.74 0.44 0.66 0.80 0.73
All (+ BAL) 0.65* 0.70 0.70 0.93 0.78 0.55* 0.40* 0.66 0.58* 0.62*
All (+ MDF) 0.79* 0.74 0.68 0.66* 0.57* 0.62* 0.35* 0.61* 0.55* 0.57*

All (+ MDF + AlignNet) 0.54* 0.46* 0.56 0.55* 0.51* 0.55* 0.33* 0.60* 0.46* 0.51*

Table 3: LCC (above) and RMSE (below) for all models on the
large datasets.

Training Data NISQA VCC18 IU PSTN All
NISQA 0.89* 0.48 0.69 0.74 0.39
VCC18 0.50 0.66* 0.42 0.53 0.07

IU 0.54 0.13 0.97* 0.58 0.50
PSTN 0.72 0.38 0.62 0.81* 0.37

All 0.80 0.60 0.86 0.75 0.88
All (+ BAL) 0.88* 0.62 0.96* 0.80* 0.94*
All (+ MDF) 0.91* 0.63* 0.96* 0.81* 0.94*

All (+ MDF + AlignNet) 0.91* 0.64* 0.97* 0.80* 0.94*

Training Data NISQA VCC18 IU PSTN All
NISQA 0.53* 1.15 3.50 0.92 2.02
VCC18 0.98 0.71* 4.19 0.99 2.36

IU 3.46 3.52 0.48* 2.65 2.54
PSTN 0.82 1.03 3.00 0.51* 1.70

All 0.82 0.85 1.14 0.92 0.97
All (+ BAL) 0.56* 0.73* 0.63* 0.53* 0.59*
All (+ MDF) 0.48* 0.76* 0.73* 0.52* 0.62*

All (+ MDF + AlignNet) 0.47* 0.75* 0.56* 0.53* 0.57*

3.2. Results
As expected, training on individual datasets gives reasonable
depth for some of the larger datasets, but almost no breadth.
Further, only datasets with over 1000 files demonstrate good
depth, and some of the particularly small datasets fail to train
meaningfully at all. The conventional approach (“All” row)
offers an improvement over individual training for the smaller
datasets — it gives better breadth as one would expect. How-
ever, outside of VMC22, for datasets with more than 1000 files
“All” is significantly worse than individual training. Individual
training is particularly successful for FFTNet and NOIZEUS
because those datasets contain very unique conditions.

MDF has no specific features to address dataset alignment
but it often outperforms or matches the BAL method, includ-
ing when RMSE and correlations are measured across all the
data in the small dataset study (“All” column in Table 2). The
combination of pretraining and a loss function that gives equal
weight to each dataset enables this network to reliably estimate
scores with no per-dataset side information.

AlignNet demonstrates the best performance of all the
training regimens and model architectures that are trained on
all the datasets, particularly in the small dataset study. There
it achieved the highest LCCs for every dataset but two and the
lowest RMSE for every dataset but one. It also achieved the
best performance in the “All” column for both metrics in both
studies. This demonstrates that AlignNet is a powerful tool for
reconciling different datasets. Remarkably, when compared to
training on individual datasets, AlignNet gives better or sim-
ilar results on all datasets at once. AlignNet is an estimator
that is capable of properly ranking a multitude of diverse au-
dio conditions, with an insignificant increase to overall model

Figure 2: Learned dataset score alignment functions. Left -
small dataset study. Right - large dataset study. Functions plot-
ted only over observed values in training data for each dataset.
complexity compared to only using the AudioNet. In addition
to better estimates, AlignNet offers a few other benefits over
BAL. AlignNet simultaneously updates the AudioNet and the
Aligner, which is far more efficient than the iterative approach
of BAL. Further, [19] states that BAL is very sensitive to the rth

parameter and requires optimization for each dataset, which be-
comes impractical with a large total number of files. AlignNet
has a similar hyperparameter which sets the duration that Au-
dioNet is frozen once MDF starts, but we consistently see best
performance with the fixed value of one epoch.

It is easy to visualize the learned alignments from AlignNet
by plotting the Aligner score estimates vs intermediate score
estimates from AudioNet, as seen in Fig. 2. Datasets with sim-
ilar properties give similar alignment functions, which can be
seen clearly in the alignment function plot for the small dataset
study. After they have been learned, these alignments could be
approximated by monotonic third-degree polynomials, as pre-
viously recommended by [14]. Finally, note that there can be
additional information carried in the range of the intermediate
scores of the non-reference datasets. These scores can extend
beyond the nominal range which may speak to the impairments
in those datasets relative to those in the reference dataset.

4. Conclusion
AlignNet with MDF can reconcile different rated speech at-
tributes such as naturalness, acceptability, and quality. In the
small dataset study four attributes were successfully harmo-
nized resulting in a more robust NR estimator and revealing
the relationships between the different attributes and experiment
contexts. This work demonstrates that disparate scores from
distinct listening experiments can be used harmoniously for NR
speech estimator training by adding a small alignment network
to an existing NR speech estimator. This type of work is always
limited by the data used. We argue our work is very strong in
this regard, but we nonetheless seek to do additional work with
even more and broader data. We also plan to experiment with
other choices for the AudioNet used inside of AlignNet and
to further interpret the learned relationships between datasets.
Finally, studying the performance of an AlignNet model with
MDF on unseen datasets could provide additional insights into
the practical use of such a model.
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“Bias-aware loss for training image and speech quality prediction
models from multiple datasets,” in Proc. Thirteenth International
Conference on Quality of Multimedia Experience, 2021, pp. 97–
102.

[20] N. Nessler, M. Cernak, P. Prandoni, and P. Mainar, “Non-intrusive
speech quality assessment with transfer learning and subject-
specific scaling,” in Proc. Interspeech, 2021, pp. 2406–2410.

[21] Y. Leng, X. Tan, S. Zhao, F. Soong, X.-Y. Li, and T. Qin, “MB-
NET: MOS prediction for synthesized speech with mean-bias
network,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing, 2021, pp. 391–395.

[22] W.-C. Huang, E. Cooper, J. Yamagishi, and T. Toda, “LDNet:
Unified listener dependent modeling in MOS prediction for syn-
thetic speech,” in Proc. IEEE International Conference on Acous-
tics, Speech and Signal Processing, 2022, pp. 896–900.

[23] W. C. Tseng, C. Y. Huang, W. T. Kao, Y. Y. Lin, and H. Y. Lee,
“Utilizing self-supervised representations for MOS prediction,” in
Proc. Interspeech, 2021, pp. 3521–3525.

[24] H. Becerra, A. Ragano, and A. Hines, “Exploring the influence of
fine-tuning data on wav2vec 2.0 model for blind speech quality
prediction,” in Proc. Interspeech, 2022, pp. 4088–4092.

[25] Z.-H. Ling, X. Zhou, and S. King, “The Blizzard challenge 2021,”
in Proc. Blizzard Challenge Workshop, 2021.

[26] V. Karaiskos, S. King, R. A. J. Clark, and C. Mayo, “The Blizzard
challenge 2008,” in Proc. Blizzard Challenge Workshop, 2008.

[27] Z. Jin, A. Finkelstein, G. J. Mysore, and J. Lu, “FFTNet: a real-
time speaker-dependent neural vocoder,” in Proc. IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing,
2018.

[28] Y. Hu and P. Loizou, “Subjective comparison of speech enhance-
ment algorithms,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing, 2006.

[29] W. C. Huang, E. Cooper, Y. Tsao, H.-M. Wang, T. Toda, and J. Ya-
magishi, “The VoiceMOS Challenge 2022,” in Proc. Interspeech
2022, 2022, pp. 4536–4540.

[30] G. Yi, W. Xiao, Y. Xiao, B. Naderi, S. Moller, W. Wardah, G. Mit-
tag, R. Cutler, Z. Zhang, D. S. Williamson, F. Chen, F. Yang, and
S. Shang, “ConferencingSpeech 2022 Challenge: Non-intrusive
objective speech quality assessment challenge for online confer-
encing applications,” in Proc. Interspeech, 2022, pp. 3308–3312.

[31] G. Mittag, B. Naderi, A. Chehadi, and S. Möller, “NISQA:
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