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PREFACE

This Report is the second (i.e. Part II) in a series of ongoing studies
[MiddTeton, 1974] of the general electromagnetic (EM) interference environ-
ment arising from man-made and natural EM noise sources, and is also part
of the continuing analytical and experimental effort whose general aims
are [Spaulding and Middleton, 1975]:

(1). to provide quantitative, statistical descriptions of man-made
and natural electromagnetic interference (as in this series);

(2). to indicate and to guide experiment, not only to obtain per-
tinent data for urban and other EM environments, but also to
generate standard procedures and techniques for assessing such
environments;

(3). to determine and predict system performance in these general
electromagnetic milieux, and to obtain and evaluate optimal
system structures therein, for

(a). the general purposes of spectrum management;

(b). the establishment of appropriate data bases thereto; and

(c). the analysis and evaluation of large-scale telecommunica-
tion systems.

With the aid of (1) and (2) one can predict the interference characteristics
of selected regions of the electromagnetic spectrum, and with the results of
(3), rational criteria of performance can be developed to predict the suc-
cessful or unsuccessful operation of telecommunication 1inks and systems in
various classes of interference. Thus, the combination of the results of
(1)-(3) provide specific, quantitative procedures for spectral management,
and a reliable technical base for the choice and implementation of policy
decisions thereto.

The man-made EM environment, and most natural EM noise sources as well,
are basically "impulsive", in the sense that the emitted waveforms have a
highly structured character, with significant probabilities of large
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interference levels. This is noticeably different from the usual normal
(gaussian) noise processes inherent in transmitting and receiving elements.
This highly structured character of the interference can drastically de-
grade performance of conventional systems, which are optimized, i.e.
designed to operate most effectively, against the customarily assumed
normal background noise processes. The present Report is devoted to the
problems of (1), (2) above, namely, to provide adequate statistical physical
models, verified by experiment, of these general "impulsive", highly non-
gaussian interference processes, which constitute a principal corpus of the
interference environment, and which are required in the successful pursuit
- of (3), as well. The principal new results here are:

(i). Canonical analytical models, experimentally corroberated, for the
first-order statistics of the envelope and phase of Class A and
Class B noise*;

(ii). Procedures for estimating the (canonical) model parameters,
calculation of moments, APD's (= exceedance probabilities,
P1&;>£b), etc.) and probability density functions (pdf's), and
a variety of other pertinent statistics; [see the Table of
Contents].

Finally, we emphasize, again, that it is the quantitative interplay
between the experimentally established, analytical model-building for the
electromagnetic environment, and the evaluation of system performance
therein, which provides essential tools for prediction and performance, for
the development of adequate, appropriate data bases, procedures for effec-
tive standardizations, and spectrum assessment, required for the effective
management of the spectral-use environment.

* (Class A and Class B noise are distinguished, qualitatively, by having
input bandwidths which are respectively narrower and broader than that
of the (linear) front-end stages of the typical (narrow-band) receiver
in use. More precise definitions are developed in the text following.
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STATISTICAL-PHYSICAL MODELS OF MAN-MADE AND NATURAL* RADIO NOISE
PART TI: FIRST ORDER PROBABILITY MODELS OF THE ENVELOPE AND PHASE

David Middleton**

Most man-made and natural electromagnetic interferences are
highly non-gaussian random processes, whose degrading effects on
system performance can be severe, particularly on most conven-
tional systems, which are designed for optimal or near optimal
performance against normal noise. 1In addition, the nature, ori-
gins, measurement and prediction of the general EM interference
environment are a major concern of an adequate spectral manage-
ment program. Accordingly, this second study in a continuing
series [cf. Middleton, 1974] is devoted to the development of
analytically tractable, experimentally verifiable, statistical-
physical models of such electromagnetic interference.

Here, classification into three major types of noise is made:
Class A (narrowband vis-a-vis the receiver), Class B (broadband
vis-3-vis the receiver), and Class C (=Class A+Class B). First-
order statistical models are constructed for the Class A and
Class B cases. In particular, the APD (a posteriori probability
distribution) or exceedance probability, PD, viz. P1E>E)n B>
and the associated probability densities, pdf's, wi(€)a s
of the envelope are obtained; [the phase is shown to be uni-
formly distributed in (0,2n)]. These results are canonical, i.e.,
their analytic forms are invariant of the particular noise source
and its quantifying parameter values, levels, etc, Class A inter-
ference is described by a 3-parameter model, Class B noise by a
6-parameter model. A1l parameters are deducible from measurement,
and 1ike the APD's and pdf's, are also canonical in form: their

. etructure is based on the general physics underlying the propaga-
tion and reception processes involved, and they, too, are invari-
ant with respect to form and occurrence of particular interference
sources.

The title of this and succeeding Reports in this series, is modified
s1ightly, to emphasize the scope of application, which includes natural
as well as man-made interference.

The author is under contract with the U.S. Department of Commerce,
0ffice of Telecommunications, Institute of Telecommunication Sciences
Boulder, Colorado, 80302.



Excellent agreement between theory and experiment is demon-
strated, for many types of EM noise, man-made and natural, as
shown by a broad spectrum of examples. Results for the moments of
these distributions are included, and more precise analytical con-
ditions for distinguishing between Class A,B, and C interference
are also given. Methods for estimating the canonical model para-
meters from experimental data (essentially embodied in the APD)
are outlined in some detail, and a program of possible next steps
in developing the theory of these highly nongaussian random pro-
cesses for application to general problems of spectrum management
is presented.

Key Words: Man-made radio noise, Radio noise models, Statistical
communication theory.



STATISTICAL-PHYSICAL MODELS OF MAN-MADE AND NATURAL* RADIO NOISE
PART II: FIRST-ORDER PROBABILITY MODELS OF THE ENVELOPE AND PHASE

by
David Middleton**
PART I: INTRODUCTION, RESULTS AND CONCLUSIONS

1. INTRODUCTION

As in previous studies (for example, [Middleton, 1972a, 1972b, 1973,
1974]) our central problem is to construct analytically tractable models
of man-made and natural radio noise. This is done for three principal
technical purposes:

(1). to provide realistic, guantitative descriptions of man-made
and natural electromagnetic (EM) interference environments;

(ii). to specify and guide experiments for measuring such inter-
ference environments; and,

(ii1). to determine the structure of optimal communication systems
and to evaluate and compare their performance with that of
specified, suboptimum systems, when operating in these general
classes of EM interference.

These three tasks, in turn, are critical elements in any adequate program
of spectrum management [for example, [Middleton, 1975a].

Qur aim here, then, as earlier in this series [cf. Part I, Middleton
1974] is to provide analytical models (1), which combine the appropriate
physical and statistical descriptions of general EM interference

* The title of this, and succeeding Reports in this series, is modified
slightly, to emphasize the scope of application, which includes natural
as well as man-made interference. Similar remarks apply to the initial
study in this series (Part I: OT Report 74-36, April, 1974).

** The author is under contract with the U.S. Department of Commerce, Office
of Telecommunications, Institute of Telecommunication Sciences, Boulder,
Colorado 80302. 3



environments; (2), which are analytically manageable; (3), which possess
general, canonical properties - i.e., are not specialized to individual
noise mechanisms, source distributions, and emission waveforms, for example;
and most important, (4), which are both experimentally verifiable and
predictive. In addition, the basic, or "generic" parameters of such
statistical-physical models must be measurable quantitites with specified
physical structure and interpretation. To achieve this is clearly a
nontrivial problem, mainly because of the inherent, highly nongaussian
nature of these random processes, a characteristic which at once predicates
complex descriptions, and resulting difficulties for the analysis of system
performance. That these difficulties can be effectively overcome for
model-building (i), and experimental verification (ii) will be evident from
the results and analyses in this report (also [Middleton, 1974]). For
receiver design and performance (iii), this has already been established by
recent work of Spaulding and Middleton [1975].

1.1 Classification of EM Interference:

General EM interference environments can be conveniently classified
into three broad categories of interference vis-a-vis any narrow-band*
receiver:

Class A Interference: This noise is typically narrower spectrally than

the receiver in question, and as such generates
ignorable transients in the receiver's front-end
(i.e., initial linear stages, viz. aperture-RF-IF)
when a source emission terminates;

Class B Interference: Here the bandwidth of the incoming noise is larger

than that of the receiver's front-end stages, so
that transient effects, both in the build-up and

* This can be broadened to include receivers of arbitrary bandwidth. How-
ever, for almost all EM applications narrow band receivers (i.e., those
for which the bandwidth of the initial, linear stages is much less than
the RF (and IF) central frequencies) are used exclusively. Henceforth
here we shall accordingly consider only narrowband receivers. (The IF-
stage is regarded as linear, as far as the narrow-band input is concerned,
i.e., heterodyning from RF to IF frequency is linear in the input wave.)

4



decay occur, with the latter predominating. The
receiver is to varying degrees "shock-excited",
particularly for inputs of very short duration, so
that the receiver is said to "ring".

Class C Interference: This is the sum of Class A and Class B interference,

which can occur either because of the presence of
sources of mixed types (producing Class A, Class

B emissions vis-a-vis the receiver), and/or be-
cause any received emission is itself strictly
Class C: there is always a build-up interval and a
decaying transient period in any receiver front-end
reaction to an incoming emission. Effective Class
C occurs, in this latter instance where the build-up
and decay times (at comparable levels) are them-
selves comparable.

For Class A noise the transient decay period is negligible vis-a-vis the
emission's duration, while for Class B interference it is highly dominant.
See, for example, Fig. (2.1), Part II, following. [More precise, quantitative
conditions specifying Class A, or Class B types, vis-a-vis Class C and each
other, are derived in Section 7, Part II.]

The above three categories for interference, as it impacts on a typical
(narrow-band) receiver, e.g., as (the 1inear, front-end of) that receiver
responds to the EM environment, provide a useful way of describing the
different effects which these different categories have on reception. This .
categorization is useful because receiver response is statistically dif-
ferent for each Class. As will be seen presently, these differences appear
most generally and explicitly (as far as first-order statistics are concerned
cerned) in the experimentally derived, and theoretically determined
exceedance probabilities (PD's) [also often called APD's (a posteriori pro-
bability distributions, cf. Spaulding, [1971])], such as P]EX>KE}, or
P1{€>ib}, which are the respective probabilities that the instantaneous
amplitude, or instantaneous envelope observed at the receiver's IF output
exceed some threshold KU. or Eﬁ, as these latter are allowed to assume



values in the interval (-=,=), or (o,=). Furthermore, this categorization
is recommended because the conditions governing the various Classes are
simple to distinguish, cf. remarks in Section 7 (II). The conditions
"spectrally broader than", and "spectrally narrower than", cf. Fig. (1.1},
are to be interpreted as "sufficiently broader or narrower", etc., where in
any case, care is taken to refer to the definitions of Class A,B, etc.,

in terms of the residual transients vs. the "on"-time of the Tnput emission
which appears at the output of the IF stage of the receiver in question.

It is instructive to extend our schema of classification further, in
order to distinguish between man-made and natural interference, and
between "intelligent" and "nonintelligent" emissions. Accordingly, we
define:

(i). "Intelligent" noise or interference as man-made and intended
to convey a message or nformation of some sort; whereas,

(i1). "MNonintelligent" noise or interference may be attributable

to natural phenomena, e.g., atmospheric noise or receiver noise,
for example, or may be man-made, but conveys no intended commu-
nication, such as automobile ignition, or radiation from power
lines, etc.

[We remark again [cf. Middleton, 1960, Sec. 1.3-5] that by definition,
"noise" or "interference" is any undesired "signal" at or in the receiver, re-
gardless of origin.] The importance of distinguishing man-made from natural
noise 1ies in the fact that the former is potentially controllable, some-
"times to the point of elimination, whereas the latter cannot be eliminated,
at the source, and is usually not subject to control: one can seek only
to investigate jits effects on the communication process. Moreover, the
distinction between "intelligent" and "nonintelligent" is always signifi-
cant with regard to information transfer: the taxonomy of the former
can have greatly different .implications and consequences from that of the
latter.

We can readily tabulate these different varieties of interference,
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Figure 1.1. Schema of the EM interference and desired signal environment vis-a-vis a typical narrow-
band receiver.



in a concise way as suggested in Table (1.1) below:

Table 1.1 Interference Categories* and Classes

Type "Intelligent” Class "Nonintelligent" Class
Man- 1). Compatible A 1). Automobile fgnition| B
Made
2). Incompatible A,B,C 2). Other EM emissions:| A,B,C
(Communication) power lines, elec-

tric tools, etc.
[3). Extra-terrestrial | A,B,C]

(Communication)
Natural 1). Atmospheric B
2). Extra-terrestrial [A],
solar, galactic, B.C
cosmic radiation,
etc.

* The 1isting here is not intended to be exhaustive.

We have included a further refinement through the term "compatible". By
definition, compatible interference here is one that is appropriately
matched spectrally to the receiver band ﬂFARI’ in the sense of being equi-
valent to Class A interference vis-a-vis the receiver and occupying a

spectral region in &fARI’ and such as to produce ignorable transients

in the ARI-stages. "Incompatible" may mean that af, > afy., (Class B), or
that only a portion of the incident emission is spectrally available to the
receiver: Class A again, e.q. ﬂfﬂ-effective < *fARI’ but now the inter-
ference is not wholly in the receiver band éfARI‘ Class C above in the
Table reminds us that combinations of Class A and B noise can occur, as

well.

1.2 Earlier Work:

For the most part, earlier efforts at modelling man-made and natural
hoise (principally atmospheric noise) have produced a wide variety of



analytical results, often with the virtue of mathematical simplicity, but
severely Timited in usefulness by lack of generality and physical insight,
and a concommitant dependence on local, empirical data and circumstances.
Two important exceptions to the above are the work of Furutsu and Ishida
[1960] on obtaining the APD's (and associated probability densities [pdf's])
of atmospheric noise under rather broad conditions, and the more recent
studies of Giordano [1970], and Giordano and Haber [1972], similarly di-
rected to atmospheric noise. Both sets of intestigations, however, are
(necessarily) constrained to Class B types of interference (cf. Sec. (1.1)
above), and neither attempts the canonical formulation, which is a key
feature of our current efforts [Middleton, 1972, 1973, 1974, and this
Report; see also comments, Sec. 5.3 (II)] following. This canonical formu-
lation allows us to apply the new.models formally by Class(A,B, etc.) to

all types of (EM) interference, unrestricted in general structure by the
particular physical mechanism invoelved. [These latter, of course, determine
the generic properties of the model parameters, and must be specifically
introduced into model building if the ad hoc and arbitrary empiricism of
much of the earlier work is to be avoided.] For a more detailed review

of earlier work vis-a-vis this newer approach, see Chapter 2 of Spaulding
and Middleton [1975], and references therein.

1.3 New Results:
The principal new results of this study may be briefly introduced here,

in contrast to our remarks above on previous work. Here we obtain canonical,
analytical, first-order statistical models of both Class A and Class B
interference, specifically for the envelope (E) and phase (y) of the narrow-
band output of the composite aperture-RF-IF stages of a typical receiver.

As noted above, these models are based on a general physical mechanism

(cf. Section 2, Middleton [1974], for example), providing, among other
things, insight into the parameter structure, as well as contributing,

in a broad way to the analytical form of the probability distribution (PD's)
and probability densities (pdf's) themselves, which are the principal
results here. In addition, the general method of approximating the
governing (1st-order) characteristic functions (c.f.'s) is described, which



enables us to obtain the requiréd canonical structures in tractable analy-
tic forms. These, in turn, give the resulting analytical models their broad
applicability, unrestricted by particular physical mechanisms, and, in
fact, controlled only by the underlying poissonian postulate of indepen-
dent source emissions in space and time [cf. Section (2.1) Part II].
Included, also, are specific procedures for determining the model
parameters from experimental data, analytical results for the first-order,
Class A and B moments of the envelope, and detailed, quantitative conditions
for specifying Class A or Class B interference. Excellent agreement with
experiment is found, and a variety of comparisons of theory with experi-
ment is included, involving many different physical types of radio inter-
ference, not only to illustrate this agreement, but to demonstrate the
canonical character of the approach as well, cf. Section (2.4). Finally,
the definition of Class A models, and their quantitative identification with
observed noise processes are new, although, of course, such interference
has been physically present for many years. Class B models are "classical”,
although not so designated until now, but here, again, our present approach
is to a large extent original, particularly with regard to canonical
results. '

1.4 Organization of the Report:
As one can see from the Table of Contents, this Repart is divided into
two principal units: Parts I and II. Part I contains introductory, back-

ground material (Section 1), and in Section 2 following an extensive summary
and discussion of the main results, as well as related matters and next
steps in our program of interference modelling. Part II, on the other hand,
is devoted to the detailed analytical development of the theory: Section
2(I1) describes the canonical approximations of the characteristic function
(c.f.) required for the Class A and B envelope distributions. Sections
3(II) and 4(II) are devoted to these distributions and distribution densi-
tees, while Section 5(II) contains results for the (first-order) moments.

In Section 6(II) the problem of determining model parameters from experi-
mental data is addressed, again for Class A and B interference. Section

10



7(I1) completes this study with the derivation of analytical conditions
which quantitatively determine when a Class A, or Class B model is ap-

propriate.
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2. RESULTS AND CONCLUSIONS

Let us now summarize in some detail the principal results of the analy-
sis in Part II of this Report. Accordingly, Section 2 here is organized
as follows: first, we briefly consider the first-order results for the
phase, ¥, of the narrow-band output of ARI-stages of a typical narrow-band
receiver immersed in the general EM interference environment under analy-
sis here [cf. Section (1.1) above]. Next, we present in Section (2.2)
various results for the envelope statistics of Class A interference, with
a similar presentation in Section (2.3) for the Class B cases. A number of
comparisons with experiment are given in Section (2.4), both to demonstrate
the canonical character of our models and to exhibit the excellent agree-
ment between theory and experiment which is obtainable by our present
analytical approach. Section (2.5) treats the estimation of the physically-
based model parameters; Section (2.6) reviews such other results as moments,
limiting forms, the existence of Hall models, conditions for the existence
of Class A, B, and C noise types, etc. We conclude with remarks in Section
(2.7) on uses, advantages, and limitations of these models and outline a
number of next steps for their continuing analytical and experimental
development.

2.1 Phase Statistics:

In the general case we may use (2.14), Part II, and the relation
Wy (¥) = Sowq (E,9)dE, to obtain the pdf, and the APD (= /7w, (v)dy, (Osy<2r)),
of the instantaneous phase ¥, which will not generally be uniform [on

(0,2w)]. However, in the truly narrow-band situation of Section (2.2)II,

we obtain the well-known uniform pdf [(2.21), Part II), e.qg. w1(w)=]f2w,
(0,2r)] as in the simpler, gaussian examples. [Higher-order statistics

of ¢, on the other hand, are nonuniform and analytically much more complex:
vide Section 9.1.2 of Middleton [1960] in the gaussian cases.] Because

of this first-order simplicity for the statistics of the phase we accor-
dingly concentrate our attention on the (first-order) statistics of the
associated envelope, which, as expected, departs radically from a gaussian
(i.e. rayleigh) behaviour, as our results following, and experiment as well,

12



amply demonstrate.

2.2 Envelope Statistics: The APD and pdf for Class A Interference:

Our principal analytical results here are: (i), the c.f.; (ii), the
PD, or exceedance probability P1(E>£5); and (iii), the associated pdf,
w1&3). These are respectively*

& A,
(€ ) F1('ia)\)A e A b e > a® = EZQZA(1+FA)]_I } ,
- cf. Eq. (3.3), Part II

(2.1)
with 2$$A==(m/AA+PA)/(1+FA), cf. (Eq. (3.5), Part II; and

Ay o AT —ngzaéA ‘
(PD):  P(E>E) nee I, w e » (0<€) <=), (2.2)
m:
cf. Egs. (3.7a,b), Part II; and
2orn e
A, = AT e—a /ZUmA
(pdf):  w€)yne N} A . (0<E<=), (2.3)
m=0 m! %A

cf. Eq. (4.2), Part II. Various curves of P],w] are given in Figs. (3.1),
(3.2), (4.1), (4.2), Part II, showing typical behaviour for selected values
of the (global) parameters (AA’TA)' Here 5,6:0 are normalized envelopes

£ =E [JI,ITR] 5 & =K, /,[2néﬁ(74?KY; (2.4)

cf. Eq. (3.1), Part II, where E, is some preselected threshold value of the
envelope E. (Note that our normalization introduces a third parameter QZA')

The parameters (AA,TA,Qzﬂ) which appear directly in our statistical
results for P,,w; we call "global" parameters. The physical significance
of these global parameters (AA,PA,QZA) is briefly stated:

* See the glossary of principal symbols, at the end of 'the Report.
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1Y

“ A

A

= the Impulsive Index (for Class A interference): this is defined

as the average number of emission "events" impinging on the
receiver in question times the mean duration of a typical inter-
fering source emission [cf. Eqs. (2.38), (2.39), Part Il and
associated discussion]. The smaller AA’ the fewer such events
and/or their duration, so that the noise properties are then
dominated by the waveform characteristics of a typical event.
Loosely speaking, we say that such noise is "impulsive", although
here the mean duration of events is sufficiently long to avoid
generating noticeable transients in the receiver, i.e. we have
Class A noise, as defined above, Section (1.1). As AA is made
large, one approaches gaussian (or in the case of the envelope
here), rayleigh statistics (cf. Sec. (2.4), Part II).

GS/QZA = the ratio of the intensity of the independent gaussian
component oG of the input interference including received
"front-end" noise, to the intensity 2op of the "impulsive",
non-gaussian (or rayleigh) component, cf. (3.1a), Part II. A
portion, UE, of this normal component [cf. Sec. (2.3.1), Part II]
arises from the cumulative effect of a large number of external
sources, none of which is so strong as to be considered part

of the "impulsive" interference, which is statistically the
dominating effect (for small and moderate Indexes, AA)‘

3). Qo = the intensity of the above-mentioned "impulsive" component, cf.

Eq. (3.1a), Part II.

[The rayleigh nature of P,, w, for large Indexes, i.e., when A, + =, is seen
1* M A

at once from (2.2), (2.3), as then FA + = also, so that 2&§A + 1, and

2 ;
€ 22

LoOPEE )y ve 0 5 w(€)y > 28T (0<E %), (2.5)

in normalized form; see Section (2.4), Part II, for the general case.]
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Characteristic behaviour of the APD Py_, vs. 8b, cf. Figs. (3.1), (3.2)
[and Wy_p VS. €], is exhibited by the "rayleigh" form [constant slope n = -2,
on the Tinear by-0/2)1og]0(-1oge[ ]) plots of P]—A] for the comparatively
small values of threshold £, i.e., large values of P](El> SO)A, followed
by a very steep rise, after which P]-A bends over and approaches some
asymptote with fixed slope n, 0 < n < 2, at Tlarge Eb (small PI—A) less than
that of the ray]ﬁigh behaviour for P]—A in the 0.1-1.0 region. Thus, we
have Py_, + e~3% , £y > = (0<n<2).

This 1imiting, finite, and bounded slope as €, becomes very large,
after the characteristic bend-over, reflects the physical condition that
the interference process has finite total average energy; accordingly, no
individual source, or finite collection of sources, can emit unbounded
energy over any finite period. Furthermore, if the number of sources is
finite, with finite power, e.g. no infinite instantaneous amplitudes (as
is the case ultimately in practice), then the 1imiting slope n becomes in-
finite at-some extremely large value of Eb‘ This effect can show up at
comparatively small values of threshold 80, for example, with a single,
finite source, of Timited peak emissions, whereas with multiple sources the
phenomenon will occur at larger Eb. In any case, these (below-)bounded slopes
(>0) insure, also, thatall (finite) moments of the envelope exist, as physically
required by the condition of finite average emission energy.

In our models, however, we assume that the number of potential
emitting noise sources is infinite, although the probability of even a large
number radiating at any giﬁen instant is very small, according to the
fundamental assumption of poissonian "events", e.g., emissions, postulated
here. In addition, we permit a distribution of emission levels (v amplitude)
per source, where infinite magnitudes are possible, similarly with vanishing
probabilities of occurrence. Thus, we may expect a nonzero limiting
slope for Py _p as £ ~ =: infinite amplitudes can occur, but with
vanishing probability*. In practice, however, although the Impulsive Index

*The poissonian "rare-event" dominates any "rare-event" from the gaussian
component. '
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(AA) may be small, there is always the possibility of the very large am-
plitude "rare event", i.e. € > 60(>>0db). But the practical upper limit
on €0 for such an occurrence is so high, i.e., PT_A<0(TO'8) or less,
usually, that deviation of the experimental results from those predicted
by the theoretical models at these levels has not been practically ob-
served. * For example, see Figs. (2.3)-(2.5) following.

2.3 Envelope Statistics: The APD and pdf for Class B Interference:
The Class B interference requires a more extensive analytical model.

This arises because two canonical characteristic functions (c.f.'s) are
needed to approximate the exact c.f. [vide Section 2.7, Part II], one for
small and intermediate values of the envelope (0 5_8’5358), the other
for the larger values (Eﬁ < &). The principal analytic results here,are,
accordingly:
. . -by Aga®r%-a0%a®2?/2
0 F1(1aA)B_I = e . (0_<_€_<_E,B) 5 (2.6a)

22
-~ . -A "'b d A fz
F](iaA)B_II = e Bexp[ABe 2 -ogaZAZ/ZJ, &TB<E<W),
' (2.6b)

from Eqs. (3.10a,b), Part IT, with a2 = [20,5(1+14)]"" now, cf. Eq. (3.3),
Part II, and

(PD): PT(£>EO)B E P'| (£>E'0)B-I ’ (0 ieo 5.68)
(2.7)

|e

Pr&E g 11 5 (€pg)

Here explicitly we have

* We remark, moreover, that our models can be analytically modified to ac-
count for a limited, maximum number of emissions at any given instant by
truncating the basic summation Teading to the usual form [(2.1), Part II]
of the characteristic function, cf. Section 2 of Middleton [1974] for
details. The functional complexity of the result is, as expected, greatly
increased, unless this maximum number is very small.
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{P1(€>5%)B—15 e (-1)"An

2 o an an,,. A2
PLE>E ) g 1 ~ 1-E nzo —— I (1+ 35) Fy (1+ =5525-87) (2.7a)
< m 2inn2
B - AB ""8 /20’ B
P, (E>E ) n & el & MR (2.7b)
1%""0’B-11 4a§ oo M1

m

with A = A /2%g, €, = (EN1)/265, where

0 <a<?2; cf. Eq. (2.82), Part II, et seq.; (2.7¢)
A2 iy 2 (] 1 Fi 2'—

2000 = (W/AgHr ')/ (14T), ABz(E:EJAB, cf. Eq. (3.16a),Part II; (2¢7q)

62=272(14r) 71 (372 + 1}), cf. Eq. (3.12b), Part I | (2.7¢)

The associated pdf's are (from Eqs. (4.3), (4.4), Part II):

A B =100 e no TR -
E](E)B_I}l 2E nZO -(_n?———Aa T(.H' ‘2"‘ )'|F'|(.|+n°£/2:'| =& )s 0 iE iEB’

Ew](éjBﬁI - (2.8a)
—AB o3 AE El ‘E. /ZUmB
e € < < o
B mB

with 1F1’ as usual, a confluent hypergeometric function [Middleton, 1960,
Appendix A.1.2], so that the w1(£)8 - w1(€)B-I for 0 < € < &, while
w](EE) = w1(€.)B_II when € > £,.  In Part II, Figures (3.6), (3.7) show
typical curves of the PD, (2.7), and Figures (4.3), (4.4) for the pdf
[(2.8a,b)], for selected parameter values. Again, &, €, are normalized
according to (3.2), Part II, e.g. like (2.4) above, with Qop replaced by
Qs etec.

There are now_iii global parameters for our model: (Aa,a,AB,F'B,QZB;NI),
cf. Section 6B (Part II). The subset (AB,ré,QZB) are, just for Class A
interference above, respectively, 1), the Impulsive Index; 2), the ratio
of the intensity of the independent gaussian component (oé) to the inten-
sity of the impulsive component; and 3), the intensity of the impulsive
component (QZB), itself. These have the physical significance described
above in Section 2.2. The additional parameters required here are:
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4).

a  TI(1+a/2

A — ZT I-G/Z
E / ; {2928(1+r'

(B3 )

B

A

18

= an "effective" Impulsive Index

proportional to the Impulsive
Index Ags cf. (2.38), (2.39), Part
II, which depends on the generic
parameter a. Here <égB> is the
a-moment of the basic envelope of
the output of the composite ARI
stages, cf. Fig. (1.1) above, and
Eq. (2.87d) Part II.

spatial density-propagation para-
meter, cf. (2.82), Part Il et seq..
Here u, y are respectively the

power law exponents associated
with the range dependence of the

density distribution of the pos-
sibly emitting sources, and their
propagation. (See Eq. (2.61) et
seq; Section 2.5.2, Eq. (2.63,
Part II). The parameter o pro-
vides an "effective" measure of
the average source density with
range. Thus, if we standardize,
for example, the propagation Taw
as y = 1 (the usual spherical
spreading), we have p = 2-a,
(0<a<2), for the source density
distribution csml'“=la"2,(ck=R=
distance from a typical source to
the receiver). Knowledge of a
accordingly gives us a direct mea-
sure of effective source density,
and if vy is known or measured,
separately, then u=2-ay gives us



the actual power law for g o3 8
(2.63), Part II. [We shall exploit
this relationship in detail in a
later study in this series.]

6). N = The scaling factor which insure that
Pi_1o%1o1 yields the correct mean
square envelope ZQZB(1+Té)(See Sec.

(3.2R).
E
7) s EB = B = the (normalized) "bend-over" point,
20,p{14Tg at which the two (approximate) forms

of PD (and pdf) are joined, accor-
ding to the procedures discussed in
Section 3.2, and Egs. (3.18)-(3.20),
cf. Fig. (3.5), Part II. This is

an empirically determined point, re-
presenting the point of inflexion
(for small Pl—B) at which the experi-
mentally determined PD, or excee-
dance probability P1 € >80)
bends, e.g. at which d"Py_, &
= 0. Examples of this are indicated
in the next Section, (2.4).

We note that without an (experimental) g We cannot predict the Timiting
form of the PD as €; + =; we can then only obtain the subset of global
parameters (Au,a ’FE’QEB’NI))’ cf. Section 6C (Part II), Examples of

this are the particular cases of atmospheric and automotive ignition noise
shown in Figs. (2.3), (2.4), and interference from a fluourescent 1ight,
Fig. (2.5).

The six parameters (Aa,a,AB,FB,ﬂéB,NI) are all physically specified and
measurable parameters in the analytical model (provided EB is determined).
Only 53 itself is an empirical parameter, without explicit quantitative
relationship to the underlying physical mechanisms involved. This is be-
cause the simplest canonical approximation to the exact c.f. [Eq. (2.87),
Part II] requires a two—parf c.f.,approximate for one to the small and
intermediate values of the envelope, and for the other, to the large values
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of the envelope. This second c.f., [and PD = P](Ef> Eb)B—II]’ provides the
needed "bending" of the APD curves for the rare events, as sketched in
Fig. (3.5), Part II, for instance, and shown in some of the experimental
examples of Section (2.4) following.

Generally, unlike the Class A cases, Class B interference exhibits
a much more gradual rise (as €, becomes larger), also with increasing a.
Similar upward displacement of the rayleigh sections (small Eb) of these
APD curves occurs for an increasing gaussian component (Fé), while increa-
sing the Impulsive Index AB(mAa) also acts to diminish the steepness of
these curves as £ is increased. The physical necessity for a suitable
"bend-over" at the larger values of Eb has already been discussed above in
Section (2.2) for the Class A noise: a fixed, asymptotic slope (n>0) is
required, to insure the existence of all moments, which in turn is demanded
by the condition of finite total average energy. Again, increasing the
Impulsive Index and/or increasing the independent gaussian component (cg)
eventually yields a wholly gaussian process (rayleigh, of course, in the
envelope), as expected.

2.4 Comparisons with Experiment:
In this subsection we include a variety of comparisons of our theore-

tical models with experiment, for both Class A and Class B interference,
cf. Figs. (2.1)-(2.8) following. Four significant features are at once
evident:

(1). The agreement between theory and experiment is excellent, i.e.,
the approximating forms are effective, analytical relations for
predicting the desired first-order statistics;

(2). The canonical nature of our models is demonstrated: the form of
the results [here APD's: P](E>EU),], is invariant of the speci-
fic source mechanism, whether ignition noise, atmospherics,
flourescent light, etc., man-made or natural, within the distinct
Class A, or B;

(3). Class A and Class B interference are observeably and quantita-
tively different noise types (vis-a-vis the narrow-band receiver
used).
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Figure 2.1. Comparison of measured envelope distribution, P,(€ > éﬁ)g, with

Class A model, cf. (2.2).
chinery [data from Adams et al (1974)].
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Figure 2.2. Comparison of measured envelope distribution, P,(&€ > éhjg, with
Class A model, cf. (2.2). Interference (probably) from nearby
powerline, produced by some kind of equipment fed by the line
[data from Bolton (1972)].
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Figure 2.5. Comparison of measured envelope distribution, 1?;(8 > éon)B of
man-made interference (fluorescent lights in mine shop office)
with Class B model, cf. (2.7a). [Data from Adams et al. (1974).]
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Class B model, cf. (2.7a,b). [Data from Bensema et al. (1974),
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(4). The governing, physically structured parameters of these PD's and
pdf's which are likewise also canonical, can be obtained from
approximate experimental data (usually expressed as an APD).

The importance of the canonical character of these models cannot be over-
stressed: with such models we avoid the very Timited and nonpredictive
quality of all ad hoc models, whose structure must be verified and whose
parameters provide Tittle or no physical insight into the underlying pro-
cess itself. Second, because these mode]snare derived from physical prin-
ciples, their parameters are physically defined, are consequently canonical,
and are quantifiable in specific instances from empirical data. Their
structure, however, is independent of any particular measurement.

Figures (2.1) and (2.2) show,APD's, e.qg. P1(€>E’,0)A vs. the normalized
envelope threshold 66, for Class A interference, respectively from ore-
crushing machining in a mine (data from Adams, Bensema, and Kanda [1974]), and
and from a powerline (from E.C. Bolton, [1972]). Observe the characteristic
very steep rise following the ray1eigh region (constant slope), followed
in turn by the expected bending over of the APD for the rarer "events", in
each case. [Similar examples of Class A interference, but from man-made,
intelligent sources, have also been observed; current experimental studies
at ITS, Boulder, are underway to obtain additional such data.]

Figures 2.3-2.5 show APD's of Class B interference, respectively for
(1), primarily urban automative ignition noise [Spaulding and Espeland,
1971]; (ii), atmospheric noise [Espeland and Spaulding, 1970]; (iii),
flourescent 1ights, in a mine shop office [Adams et al, 1974]. Observe
the more gradual departure from the straight-Tine rayleigh region, and the
continuing rise, with constantly increasing slope in the Figures (which 1is
equivalent to n - 0 for exp(—azég ), as g, «), [In these particular
examples the inevitable "bend over" points EB’ 1ie outside the range of
data taken, e.g. for P1_B<10'6, so that we are able to obtain all ‘the
global parameters, except for AB’ cf. Sec. 6C, Part II.] This is
not the case, however, for the Class B examples of Figs. (2.6)-(2.8),

e.g., respectively for (i), ignition noise from vehicles moving on a free-
way [Shephard, 1974]; (ii); atmospheric noise [Espeland and Spaulding, 1970];
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and (iii), machinery noise in a coal mine [Bensema, Kanda, and Adams, 1974].
Here the required bend-over of the APD's is exhibited, along with the in-
flexion points, Eg- In these cases we can obtain numerical estimates

all the six global (and hence all the generic) parameters charac-

teristic of each example of interference*, man-made or natural, by the
methods briefly cited below in Section 2.5, and in more technical detail

in Section 6, Part II.

Figures (2.1)-(2.8) are typical of Class A and Class B interference,
man-made and natural. They are not intended to be exhaustive. Extensive
additional APD data (mostly Class B) are available, for example in
Espeland and Spaulding [1970], and Bensema, Kanda and Adams [1974], for
example. [We have not included Class C APD data, although these appear
in the references cited, because we Timit our analysis and comparisons
here to the essentially "pure" Class A and Class B interference environ-
ment, some (analytical) conditions for which are examined in Sec. 7, Part
II.] Again, a striking feature of the preéent approach is its ability
to handle an unlimited variety of noise sources, as long as the dominating
Class is identified.

2.5 Remarks on the Estimation of Model Parameters:

We distinguish two sets of model parameters: (a), the so-called global
parameters, which appear explicitly in the analytical forms for the APD's,
etc. and (b) generic parameters, which are defined directly in terms of the

underlying canonical, statistical-physical model. To some extent, both
sets overlap. In any case, once the global parameters have been estimated
from the data, which usually requires the calculation of the (first-order)
APD, the generic parameters can be calculated from them.

The method for obtaining the global parameters is described in detail
in Section 6, Part II, and will not be repeated here. However, for con-
venience, we list the two sets of parameters for each interference CTass
These are [from Tables (6.1), (6.2), Part II]:

*See footnote added p. 37.
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Class A: Global: (AA’PA’QZA) s Generic: (AA,02,<E§A>) (2.9)

Class B:  Global: (A ,.Ag:ThaygiN;); Beneric: (Ag,a,02,(B2g)\(B50.N;)
(2.10)
where, in addition to those parameters described in Sections (2.2), (2.3)
above, <§§A>’<QEB> are the mean square envelopes of the basic waveforms
emitted from the ARI receiver stage, cf. Eqs. (2.64a,b), Part II. Class A
noise is described by a three-parameter model, while Class B interference
ié a six-parameter model globally, and similarly a five-parameter
model generically, since the inflexion point (EB) is empirical and not
deriveable here from the fundamental physical model itself. Again, we
stress the fact that (except for‘EB) all model parameters are physically
structured and hence are canonical in form; they are not ad hoc quantities,
of strictly limited application.*

Finally, from an examination of the Class B model parameters vis-a-vis
those of Class A, we note that (AA’AB)’ (PA,Fé), and (QZA’QZB) are each
identical types, of equivalent physical interpretation. The remaining
Class B parameters are (a,<§gB>), which provide additional information
about the emitting sources, e.g., source density, etc., basic waveshape.

Accordingly, it is suggested that to assess the interference environment

more fully, inaddition to Class A measurements, when possible ARI receiver
bandwidths also be selected, to produce Class B interference at the output
of the ARI-stage, so as to obtain o and <égB>’ in addition to (AB,oé,<é§B)),
which are analogous to the corresponding Class A set, cf. (2.9). [These

(AB,UE,<§§B>) are, of course, modified from these Class A counterparts by
this choice of ARI bandwidth.] In any case, the important new parameter,
o, is obtained, which gives us an estimate of an effective mean source
density with range, and the actual one (with range), if the governing pro-
pagation law (y) is also known, or measured, cf. comments following (2.8b)
above. Further information about source distributions may be obtained with
the help of steerable, directional beam patterns, cf. Section (2.5), Part
II. [We shall reserve these questions, in detail, to a succeeding study.]

* Ny is not fully dependent on the other generic parameters and is indepen-
dent of g- Hence it may be regarded as generic, cf. Sec. 6B, 6C.
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2.6 Some Additional Results:
A brief review of additional results obtained in this Report is now

presented. We consider:

(1). First-Order Moments,{EB): These are obtained analytically for both
Class A and B noise in Section 5 (Part II). They exist for all
(real,finite) g, although the (approximate) expressions for the

Class B cases are necessarily more complex then for Class A.
Alternative, exact, closed-form relations are also obtained for
the even integer moments (g=2,4,6,...), cf. Section 5.2 (Part
II). [See also the discussion in Section 5.3 (Part II).]

(2). Conditions for Class A,B,C Noise: More precise, analytical conditions
are derived in Section 7 (Part II) mutually to distinguish Class
A, B, and C interference, than those qualitatively discussed

in Section (1.1) above. In general, if the Impulsive Index of

one component (A or B) greatly exceeds that of the other (B or

A), then the former (A or B) dominates, and we have in practice
Class A, or B noise. When this is not the case, the result is’ the
the more general, Class C interference (which we shall treat

in a subsequent study).

(3). Approach to Rayleigh Statistics: This occurs when either, or both,
the Impulsive Index or the independent gaussian component be-
comes very large, cf. Section 2.4, Part II. (This is a con-
sequence of the Central Limit Theorem in probability [cf.
Section 7.7-3, Middleton, 1960].

(4). Hall Models: A primary empirical model, constructed earlier by

Hall [1966], is frequently used for ad hoc representations of
the interference environment. Our Class B results, upon dele-
tion of the additive gaussian component (both from the impulsive
and independent sources), can be shown to exhibit a Hall form,
with Hall parameter (eHa]1=2)' [See Section 3.2B, Part II;
also, Spaulding and Middleton [1975], Chapter 2.] Such models,
however, have a variety of draw-backs, among them being their

32



ad hoc character, with the parameter(s) entirely empirical, and
the non-existence of the second moment, in many instances, as
well as the non-existence of all moments <€B>, where 6, ,;-1.
Their principal advantage is analytic simplicity,-which, how-
ever, does not ultimately compete with the physical-statistical
models of the types developed here. These, though analytically
much more involved, are nonetheless still tractable for the
purposes of source and system analysis, cf. Spaulding and
Middleton [1975]. No Hall models are deriveable from Class A
models, however.

(5). Class A vs. Class B Interference: Some Summary Remarks: A concise
comparison of some of the salient properties of Class A and
Class B interference is presented in Table (2.1):
Table 2.1 Class A vs. Class B Interference
Class A . Class B
1. New Models and Results; "Classical"™ (20 Yrs. 01d), But New
Approach; New Results
2. 3 Global and 3 Generic Parameters | 6 %1oba1 and Gener}c Parameters
A ,0‘. A gI‘ ;ﬂ 5
(ApsThoRon): (RgsoBs (B2)) 5 o a; (é "
Aelg B UG 0B/ >\ PoB
C : empirical paramater of approx-
imation
3. ATl Moments {EB>, 0<p exist A11 moments <EB>, 0<p exist
4. Insensitive to Source Distribu- Sensitive to Source Distribution and
tion in Space and Propagation Law;| Propagation Law (a); Canonical
Canonical Forms; Forms;
5. Waveform in IF Qutput: "Gaps" in Waveform in IF Output: no "Gaps" 1in
Time [P](E=O)>O); Time [e.g. P(€=0)=0];
6. No Gaps in Time if Gaussian No Gaps in Time (cgzp);
Background
{x Gauss P.D. } as Apre; {x Gauss P.D. }as (A, Ag )=
€ Rayleigh P.D. and/or cé+w € Rayleigh P.D.J and/or cg+m
7. No Hall Models Exist; Hall Models for Special Values of a3

(Gauss Component Absent)
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2.7 General Comments; Next Steps:

In the preceeding sections we have summarized the principal results of
our present study of the (first-order) envelope and phase statistics of
man-made and natural electromagnetic interference, whatever its physical
origins and characteristics. These analytical models, of Class A and B
interference, are mathematically tractible and canonical in application:
the forms of the results, and the number, type, and general structure of
the associated parameters, are invariant of the particular source. Of
course, particular parameter values do depend on the specific properties
of the particular source involved. These are estimated in turn, by general
procedures outlined here., cf. Section 2.5 above, and Section 6, Part II
from experimental data, principally the APD [= exceedance probability
P1(£>EU)2 . The canonical character of these models and their parameters
is derived from the general underlying physical structure upon which the
models are based. This, in turn, is itself a general space-time model of
propagation, source distribution, and emission [Middleton, 1974, and Section
2, and principally Secs. 2.1,2,5, Part II here].

As expected, the resulting statistics of amplitude and envelope are
highly nongaussian (or nonrayleigh), as the analysis and examples in Part
II and the experimental results of Section (2.4) indicate. This neces-
sarily has a critical effect on conventional receiver and system operation,
which may be in conventional usage, (approximately) optimized, e.g.
"matched", to desired signals in gaussian noise (so-called correlation
receivers and their extensions), but which is radically suboptimum for
this kind of electromagnetic environment [Spauldihg and Middleton, 1975].

Here we are concerned with first-order interference statistics them-
selves, not only for purposes of system design, optimization, and comparison,
but also for the tasks of measuring and assessing the properties of EM
interference fields. Excellent agreement between model and observation has
been found, as the examples of Section 2.4 above demonstrate. In addition,
explicit numerical results are also obtained for the global and generic
parameters of the interference phenomenon in question, e.g., automotive
ignition noise, communications, atmospherics, machinery, power 1line
emissions and the 1ike. These parameter values, along with the basic
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physical structure, permit us to deduce general properties of the inter-
ference field, such as average source distribution in space (o), emission
density in time (Impulsive Index, A), mean intensity (92), the amount

of external gaussian noise (cé), etc., and, of course, the associated

APD, or exceedance probability P1Gi>£0), as well as various moments (<€)
of the interference process.

First-order statistics of these highly nongaussian EM noise environ-
ments as embodied in the APD, P,(€> Ea), P1(X>XO), for example are,
however, minimal for the proper treatment of the general class of communi-
cation systems operating in such environments. In many situations the
performance bounds established from these first-order statistics are quite
adequate [the independent sample cases of Spaulding and Middleton, 1975,
for example], where higher-order time structures are not significant.
However, when they are, one clearly needs appropriate extensions of the
present models. In addition, the joint statistics of signals and noise
are also required, of first- and higher-orders as well. Therefore, as
part of our continuing effort to'develop an applicable analytic description
of “the EM nongaussian interference environment, we present the following
program, in approximate order of undertaking:

I. Interference Models (present series):

1). Report, Part III: First-order statistics of the instantaneous
amplitude (X) for Class B noise, e.g., PI(X>X0)B’ w1(X>XO)B,
moments, parameter estimates, etc. (now underway).

2). Report, Part IV: First-order statistics of Class C noise,
envelope (E) and instantaneous amplitude (X), e.g. P](X>XO)C,
P1(€>£6)C’ etc., with experimental comparisons.

3). Report (possibly Part V) on measurements, parameter estimates,
and description of EM interference environments. This will include
evaluation of selected, earlier data [for example, Furutsu and
Ishida, 1960, Espeland and Spaulding, 1970; Shephard, 1974], and
comparisons with our models. This may also include recommenda-
tions for van usage and area coverage, etc.

4). Report, on simulation of EM environments, to establish robustness
and sensitivity of the various models to modifications in their
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7).

8).

structure.

Report, on various special problems and extensions of Part I-IV,
for example, to develop the analysis for Class B noise when

a = 0,e > 2, including other source distributions. Also, we

need to examine the case of a single source at known positions
[Shephard, 1974]. The role of the "corrections" [Middleton, 1974]
requires further clarification, etc.

Report on mean and variance of "zero-crossings" for Class A,B,C
interference. These statistics are useful adjuncts to the APD's
to provide some insight into the time-structure of the inter-
ference. |

Report on the first-order statistics (envelope, phase, and instan-
taneous amplitude) of Class A and B interference with a general,
additive signal present at the input to the typical narrowband
receiver.

Report on the development of higher-order (principally 2nd-order)
pdf's for Class A, B, C noise; possibly including signals as
well. '

II. Performance and Optimum Systems in General EM Interference Environ-

ments: (series with Spaulding and Middleton [1975]).

T):

2).
8J:

Report (Part II): Optimum reception with Class B interference;
this is now underway);

Report (Part III): extension of the above to Class C cases;
Report, on the analysis of other specific systems in Class A
and B noise; the improvement of performance bounds, the speci-
fication of LOBD receiver structures, and further extensions of

the evaluation process.

These Tists are not, of course, complete, nor will the program itself
necessarily be carried out in the order indicated, since some of these

topics may shift in priority as time goes on. In any case, however, the

general goal of developing an applicable analytical theory, tested by

experiment, for these general classes of man-made and natural, highly
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nongaussian, electromagnetic noise or interference processes, may be con-
sidered a major priority task for the future in the science and technology
of telecommunications.
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*Note that Pé = oé/ﬁzB, where UE is the independent gaussian component,
which is different from the total gauss component ﬂcg = oé + boyAg, cf., eq.
(2.88a). Thus, in Figs. 2.6, 2.8 we must calculate Qg from the data curve
and then obtain oé from Fé. From the other parameters in these figures all
the remaining generic parameters.are then readily found. On the other hand,
for Fig. 2.7 Qop occurs at 0 dB, by normalization. Since P1=0.36 determines
the total gauss component (Ac% for Class B, oé for Class A noise), from the
data of Fig. 2.7 we get ﬁc% = -17 dB (=2.10"2) and :.cé & Téﬂgg = 10 log;o
(8.107%) = -21 dB, which gives in turn byuAz = 0.012 (in units of Qpp).
Again, all remaining generic parameters are now obtainable, from this and
the other parameter data on Fig. 2.7 (also in units of Q,5 here).
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PART II. ANALYSIS

1. INTRODUCTION TO THE ANALYSIS

Part II of this Report is devoted to the analytical details of our sta-
tistical-physical interference models, where in particular we are concerned
with the first-order probability density functions (pdf's) w1(E),w1(8) and
exceedance probabilities (PD's) P1(E > EO), P](S > Eb) of the envelope of
the input noise process following the combined (linear) aperture - RF - IF
(or ARI) filtering stages of a typical narrow-band receiver. As we see
below, three principal classes of interference process are defined: Class
A noise, where (in qualitative language) the input noise is spectrally
narrower than the ARI-filter at the receiver's front-end; Class B inter-
ference, where the reverse is true - this input process is spectrally broad
vis-a-vis the ARI filter; and a general Class C noise, which consists of the
sum of Class A and Class B components.

For Part II the material is organized as follows: In Section 2 below
we develop the various forms of the first-order characteristic function
(c.f.) for the envelope after reception in the ARI filter of the typical
receiver. Included here are the Class A, B, and C noise types, with their
associated descriptive parameters, and the modifications introduced by the
geometrical effects of source distribution and propagation law. Section 3
is devoted to the determination of the envelope exceedance probabilities,
for Class A and B interference, and Section 4 gives the associated pdf's.

In Section 5 we determine the moments <€8>, 0 < 8, and the conditions

for their existence; Section 6 provides procedures for estimating the basic
parameters of the various noise models from empirical data; and finallly, in
Section 7, we give quantitative, practical conditions for the applicability
of our Class A or Class B models.
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2. FORMULATION: THE CHARACTERISTIC FUNCTION

In this section we obtain the general forms of the first-order charac-
teristic functions (c.f.'s) and probability densities (p.d.'s) and distri-
butions (P.D.'s) for the "impulsive" interference of the various man-made
and natural sources described in Part I above.

Our first step is to derive the desifed general forms of the charac-
teristic functions for the envelope of the received wave. The next step
is to take advantage of the various physical conditions of the model, fur-
ther to reduce our results to the particular expressions appropriate to
the Class A and Class B interference, which can then be put in forms suitable
for evaluation. A number of important parameters of these interference
processes appear in the analysis and have important physical implications,

"which we shall develop further in the subsequent sections.

2.1 The Basic Statistical Model:
We assume as before [Middleton, 1974] for our basic model that there
is an infinite number of potential sources in a source domain A, and that

while the basic waveforms emitted all have the same form, their scale,
durations, frequencies, etc., may be randomly distributed. Our fundamental
postulate of this basic interference model is that: (i), the locations

of the various possible emitting sources are poisson distributed in space;
(ii), the emission times of the possible sources are similarly poisson

distributed in time. Physically, this means that the sources are stati-
stically independent, both in location and emission. Thus, by a slight
generalization of earlier results [Middleton; 1967, 1972b, 1974], we can
write for the first-order characteristic function of the instantaneous
amplitude, X, of the received interference process

Felig)y = exp{(jn'ép(a,a) éigu(t"é’é"”)-1 >g~;\, dé) . (2.1)

0

i

Here ¢ is an epoch, indicating vis-a-vis the receiver's (i.e. observer's)
time t when a source may emit. The A = (x,8,4) are coordinates, or a

vector magnitude, appropriate to the geomtry of the source field, located

in the region A, and of the-receiver, with d} (= did¢) for a surface element;
(= dxded¢) for a volume element. The quantity p(),e) is the "process
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density" of this joint space-time poisson interference process, and is non-

negative, and can be regarded as proportional to a probability density

[cf. (2.28) below]. The < >Q denotes a statistical average, e.g.

I[e][ ]w](g)qg, over various random parameters (8) which may be pertinent

to our source model, such as doppler, source amplitude and duration, etc.
The U are the typical waveforms of the emitting sources, after recep-

tion by the (assumed linear) aperture - RF - IF stages of our "narrow-band"

receiver. The received process X is given by

X(t) =fz UG, (2.2)

(=4x8)

w

where the {dN} are a poisson point process (in A and €), such that
<X(t)> = _/; U(dN> = <ﬁ(g\g,€)u(t;5‘,§,g)q§ dé‘> s (2.3a)
i A 8

is the process mean (if any), and

(X(t7)X(t,)) i[{z U]U2<dN1dN2> = <.{;($,Q)U(t-] ;},,é,g)u(tz;g,é,g)%dé‘z

w

+ (X(t ) {X(t,)) | (2.3b)

is the general second-moment of X(t), under our basic poisson assumption
above of source location and emission.* Higher moments may be similarly
obtained.

Since we are interested here in the envelope of the received process X,
which is always narrow-band, in as much as the receiver is itself narrow-
band, we have to consider the new'random variables Xc’ XS, representing the
slowly-varying "in-phase" and "out-of-phase" components of X, viz.,

_ 1wot A iwot
Regxc—ﬂ(s)e }= Reé(oe
(2.4)

i(mot-¢)
Re{E e } ¥ (2.4a)

* For a general development of process statistics, not necessarily limited to
the poisson case of independent sources, see, for example, recent work
[Middleton,1974,1975b] in the development of generalized scattering models.

X(t) = Xc(t)cos w0#+xs(t)s1n w,t
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where now w0(=2wf0) is the central (angular) frequency of the final (=IF)
stage of the receiver, and

% -iw Y
xS sy = tanT (XX 5 ek = X-iXg = Ee  © (2.4b)

E = Yt 0

with

Xc = E cos ¢, Xs =E sin ¢.
Here E, ¢ are, respectively the envelope and phase of the narrow band re-
ceived process X. In functional form, cf. (2.2), we can write alternatively

; jw t
X(t) = Re{_/z‘[Uc(ﬂvZ\,)—iUS(tlgv)]e1 ° dN(;.L)} , or (2.5a)
jw_t-ig (t}Z)
= R t|z)e © 57 dN(Z)} , 2.5b
e{f;( 2)e z (2.5b)

in terms of an envelope and phase, where

= JiaiZ o p =]
e(t|Z) = YUHUS 5 ¢ = tan (U /UL, (2.5¢)

Comparing (2.5) and (2.4) we see at once that

(XosXS)= £(Uc=“s)dN(E) 3 (2.6a)
- -ip (t]Z
e By Jgé(t|g)e ! [“)dN(g) _ (2.6b)

wt

The characteristic function which we need now is for the random vari-
ables XC, XS, namely,

r 1EUC+1nUS >
Flesin), = e {{[ode A7 S (2.7)
1 ¥ X 5 a3
c*s A
which is the two-dimensional generalization of (2.1) required here. The
corresponding p.d. is

i o —iEXC-inXS 2
Wy (XeaX) «-ffF](IEnn)xc’Xs e dedn/(2m)° . (2.8)
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Also, we have, formally, the following expression for the joint first-
order density of envelope E and phase ¢, in terms of the in-phase and out-
of-phase components XC,XS of X.

2 (XeoXg)| ;
W-l (Esw) = w] (XC’XS) W = ENI(E cos ¢,E sin l{J), E > 0
0<y<2n
(2.9)

where w1,.(2.8), is now

H](E cos y,E sin y) =.15/%](ig,in) e_iE(E cos yn sin w)dEdn/(Zﬁ)z,
_ X X

| s (2.9)
with F] therein given by (2.7)
To proceed further, we make use of a number of results from our earlier
development of the physical model [Sec. 2.2, Middleton, 1974], to write for
the narrow-band basic waveform U (at the output of the receiver's IF)

U= Uy = By(taa[E.0)cosu b (tipleng)s  uy= T+ey, (2.10)
where B0 (>0) is an envelope, whose detailed structure we shall consider in
more detail Tater and where ¥ is a phase, which has the form

v 2 ug (t-0-2) - gl Loy (EA-8,8)480 (4. Hop (3,701 (2.10a)

in which s> ¢7s $p are respectively the tyeica1 source phase, and the
phase angles of the source (T) and receiver (R), complex beam patterns
[cf. Sec. 2.5 below]. [The quantity ed( ud-1) is the sum of the relative
dopplers between sources and the receiver, and is always sma11 0(10 =5, 6)
in our applications, viz: ey 2v/c = 0(10° ) for v = 0(10 mph) so that the
envelope B0 is independent of €4

From the fact that Unb = Uccos m0t+Ussin mot, we see at once from (2.10)
that

= Boces[¢;+pdwo(k+é)—edmot]; U = BOSTn£¢;*udw0(K+E)-edwot], (2.11)
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where ¢; = ¢S+¢T+¢R. We now use polar codrdinates

E=rcos¢ 3 n=rsin¢ ; [a(g,n)/3(r,9)| = (2.12a)

I
-

and transform from (£,n)-space to (r,¢)-space in (2.9a). Thus, we see that

dedn F1(1'E,'in)x P Fyirse)drde , 0 <r<w; 0<¢<2n. (2.12b)

The c.f. F1 is Fy (ir cos ¢,ir sin ¢)x £ (2.7), which with (2.11) now
reduces exp11c1t1y to

A ; R irB COS[@ +udw (A+E)-Edw t- ¢]
Fo(ir,9) = exp{ fp(}g,a)e dhde
A

(2.13)
The first-order p.d. for the envelope and phase (E,y), (2.9), with the help
of (2.12b), (2.9a), becomes

) = E i d d¢ F iEr cos (v=9¢)
w-l( ) j;rrj(; s )2 (ir,¢)e”

E>0,0<4¥ <2n .. (2.14)

This is as far as we can go without further appeal to the physical
model, in particular, to the statistics governing the locations (&&) of the
sources and the epoch (€) of interference emissions. We note, however, that
the p.d. for the envelope alone is readily found, e.g.* the integration
over ¥ (in 0,2m), is well-known [cf. (2.19) following)]:

2m ® 2m .,
() = [ wEwar = £ [Crerner [ RGreae. | @19)
‘ o ! 5 ¥ 0

As usual, functions of different arguments are different functions, e.g.
w](E)fw](w)#w1(xc,xs), etc., unless it is otherwise stated.
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In addition, we have respectively for the P.D., and exceedance probability,
or APD (a posterior probability here, that E exceeds a level EO(>0)) defined

as usual by

O ==
D, (E,) J; Wy (E)IE 5 Py (E>E,) fE Uy (E)dE = 1-D(E,), (2.16)
0]

the following results, where we have used

z
[ 220z = 20, (2), (2.162)
0 :
viz:
@ ZTTA
D1(E0) &= EOJ[; JT(rEO)dr A FT(1r,¢)d¢f2w, E, 20 (2.17a)
@ j'ZTrA :
P](Eg£0) = ]-EOJ; J](rEo)dr ’ F](1r,¢)d¢/2w ; (2.17b)

Our results (2.13)-(2.17) are generalizations of earlier results
[Furutsu and Ishida, 1960; Middleton, 1972b; Giordano, 1970], where our
basic assumptions, so far, postulate only poisson distributions of source
location and emissions, e.g. essentially independent sources. No restric-
tions on the specific character of the statistics of the source parameters
are as yet introduced. It is for this reason that the characteristic
function ﬁT depends on ¢, as well as on r.

2.2 First Reduction of the c.f. F]: The Narrow-Band Recejver Condition
At this point we invoke certain properties of the basic waveform
Bocos[¢;+udmo(h+€)-mosdt—¢]_which appears in the exponent in the integrand

of (2.13). We use the facts that (i), Bys ¢, are both slowly-varying
functions of x; and (ii), the process density p(i,é) is Tikewise slowly
varying, vis-a-vis cos Wk g s sin WoH gA- Employing the familiar expansion

in Bessel functions,
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In addition, we have respectively for the P.D., and exceedance probability,
or APD (a posterior probability here, that E exceeds a level EO(>0)) defined
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Our results (2.13)-(2.17) are generalizations of earlier results
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basic assumptions, so far, postulate only poisson distributions of source
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tions on the specific character of the statistics of the source parameters
are as yet introduced. It is for this reason that the characteristic
function ﬁT depends on ¢, as well as on r.

2.2 First Reduction of the c.f. F]: The Narrow-Band Recejver Condition
At this point we invoke certain properties of the basic waveform
Bocos[¢;+udmo(h+€)-mosdt—¢]_which appears in the exponent in the integrand

of (2.13). We use the facts that (i), Bys ¢, are both slowly-varying
functions of x; and (ii), the process density p(i,é) is Tikewise slowly
varying, vis-a-vis cos Wk g s sin WoH gA- Employing the familiar expansion

in Bessel functions,

44



exp[ia cos ¢] = ] 1memdm(a) cos m¢ , (2.18)
m=0

in (2.13), we see that only for m=0 does the integrand (containing the
exponent) contribute, as all the other terms are highly oscillatory in
regions where Bo' L and p are slowly changing with x. The result is the
important simplification of (2.13) to

?1(1r,¢) = exp{i;{;(&,E)[JO(rBo[t,5|§,g] -1]>2q5dé} = ﬁ](ir), (2.19)

which is valid, provided that Uﬂb_js truly narrow-band, e.q. ﬂfARI << fO:
the (composite) bandwidth of the (Tinear) aperture-RF-IF receiver stages is
much less than the (IF) central frequency T [The result (2.19) is now in
the same form as obtained in earlier work, but still somewhat more general
in detail.] _

The important analytic feature of (2.19) is that now, because of the
narrow-band receiver condition AfARI << fo’ the c.f. ?1 is independent of
¢. Accordingly, we see that (2.14), (2.15), (2.17) reduce at once to the
simpler forms (with the help of (2.18):

W (E,9) = o= j[;mrJO(rE)ET(ir)dr = Wy (E)Wy (¥) (2.20)
with

w1(E) = E J;mrdo(rE)ﬁ1(ir)dr 3 H1(¢) =1/2r , 0 <¢ < 2m, (2.21)
and

D(E,) = Eg J;} J](PEO)ET(ir)dr , (2.22a)

P(ESE,) = 1 - EOLWJ](rEO)ET(ir)dr . (2.22)
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Respeﬁtive1y for the PD and exceedance probability, P, for these

narrow-band interference waves (in the n.b. receiver), the first-order p.d.

of phase ¢ is seen to be uniform over an (IF) cycle (T0 = 1/f0). The
results (2.20)-(2.22b) are formally identical to those derived by Furutsu
and Ishida [1960, Egs. (2.9)-(2.11)], and by Giordano [1970], and, Giordano
and Haber [1972], for example. Furthermore, E](ir) is clearly a Hankel
transform of w1(E), from (2.21) and the fact that the inverse of (2.21) is

Fp(ir) = J:JO(I"E)N1(E)CIE = <]0(rE)>E ; (2.23)

[This relation is easily established with the help of

/EFJ:Jm(ax)Jm(bx)xdx - 6(b-a), (2.24)

cf. p. 943, Morse and Feshbach [1953], applied to (JO(rE]>E, with (2.21)
for w1(s).] An equivalent expression, now in terms of the average over E
and ¢, is obtained at once from the fact that

2T . 2T . ) :
‘Jo(rE) - f ewE cos ¢ giﬂ - f ewE cos “’w1(w)d¢ » éwE cos np>w,
0

0
(2.24a)

[cf. (2.2.)], and from the relation (2.23), viz:
Fi(ir) = @"E - “’>E’w ; ' (2.24b)

from which is seen the fact that ﬁ] here is also the joint c.f. of envelope
and phase, as expected. We shall use this result later in the calculation
of moments, (cf. Sec. 5.2).

Next, let us look at the process density p(i,é): we write
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( o()s€) pﬂ(&]g)vT(é): (av. no. of emitting sources (in A) per

: unit domain) and emitting at e, in the
interval de) x (av. no. of emissions,

(2.25) < : per source, per interval de) in the

observation interval T;

n

pA(&)vT(;): av. no. of emissions per unit domain (dA)
and per interval de in T. This last is on
the reasonable assumption that location
and emission are independent "events".

Then, we observe further that

0,(2) = o, ()13, () 5 [9,] = A for surfaces i}[Sec. 5583,
w - w 3 2 . i
= ¢ A"sin 6, for volumes, ) Middleton
(1974)1
(2.26)

in which 9y is the physical density of emitting sources in the source
domain A, We now define

( An = ‘/;A(&)qu av. no. of emitting sources in A; (2.27a)
Jp
< A 1= uT(E)dE: av. no. of emissions (per source) in the observa-
i tion period, T. ' (2.27b)
(Ap S ~/~ p(&,é)@}dé = AhAe,T: av. no. of emissions in the perijod T.
s (2.27¢)

Consequently, we can also define probability densities for source location
and emission by

on (M)A, 5 w(e)y = vy(e)/A, 1. (2.28)

]

W1 (A)

Now let us look at the integrand, I, of (2.19), and use (2.25)-(2.28)
to write
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<f M (l w-l(e)J (r'B [t-r- E,H,BJ) -1 dl\de> 5 (2.29)

where explicitly we have from earlier work [Middleton, 1972b, 1974] for the
received envelope B0 of a typical emission

= |aR(&’FO)QT(&’fU)}AOT(t-A-EI?")g(&)’ (2-30)
where

CQR,CET = (complex) beam patterns of receiver and typical )
interfering source;

AoT = (real) envelope of the source emission;

g(2) = a geometric factor, which describes the propagation Taw,
from source to receiver (which are assumed to be in each
other's far field). ' J

- (2.30a)

[For this receiver, although the aperture may be comparatively broad-band,
as may be that of the source, it is the narrowest filter, of the combination
(aperture x RF x IF) which is controlling. By assumption, one or more of
- these filters is very narrow vis-a-vis f,» cf. the comments following (2.19),
so that the effective aperture response here is determined essentially by
the response at (and about) £y cf. (2.30).]

Next we Tet

To = duration of a typical emission, at the IF output

(which may be 5 T); (2.31a)

S

this can generally be a random variable (one of the § in (2.29)). We now
let

t-x-e =z y = Tsz s (2.31b)

where Ts is the mean duration of an emission (at the IF output), and z
is dimensionless, to rewrite (2.29) as
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T /T
iT A E:,T s<f (t ST z) {J [r'B (513 g')]- 1}> A Medz (2.32)

ww

all (t eT).

-~

Here @' are any other random parameters in BO, e.qg. amp11tude of the basic

emission envelope B (in the receiver, at output of IF); 1tse1f is
Bo(ZTs’&;QI)‘ Further reduction is obtained by writing

AOT(Tsz]g)_= 0%y uo(z) ; (uo(z) =0, 2> TS/TS o Z% D) {2.33)
where
i A = (peak) amplitude of the received envelope (at output of the IF);
€y " a limiting "voltage" setting (in suitable dimensions), at which
j the receiver will respond to a test signal, above the receiver
noise,* at output of the IF;
q uo(t) = normalized envelope wave form at output of receiver IF.

(2.34)
Note from (2.33) that the generic waveform uo(z) is, of course, re-
quired to vanish outside the timé interval during which the typical
emission (oneoyuo) is "on", e.g. for TSzA> Ts’ Tsz % .
Finally, let us multiply and divide I by T, the observation period,

and write (2.32) as

A A ; TS/T
n_ hE -f __-ﬂ o I_
y = (—_T_l_) T5<0 {Twy (£-2-2T ) 2109, (B (2,2 18 i 8',A,T i
'\"-"’w’s
(2.34)

all (teT). Also, we see that

* The precise definition of can be determined by standard decision-
theoretical techniques of de%ect1on [Middleton, 1960; Chapters 18, 19],
with some appropriate choice of false alarm rate.
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av. no. of emissions per second, in the

observation period T, (2.35a)
Yt "density" of the process [cf. Sec. 11.2; Eq.

(11.74), Middleton, 1960]: (av. no. of emis-

sions per second)x(mean duration of an emis-

sion). (2.35b)

AAAe,D/T =

I
<
|

»
.C

vrls

Equation (2.34) is a generalization of earlier results, which permits the
treatment of nonstationary régimes.

At this point we restrict our attention to the most common situation
of "local stationérity", whereby it is assumed that there are no changes
in average source numbers and emission properties during the observation
period T, and that the emission probability wl(é) is uniform, e.g. Tw;_~ = 1,
for all allowed values of z. Thus, (2.34) reduces to the basic form

0

£ T /T
3 e e T S S 5 ]
[uniform p.d. of ¢]: IT(r) = “TT5<;I- [Jo(rao)_]]d£>&,Ts,g'

(2.36)
which is the one from which we develop our subsequent analysis (beginning
with (2.38)) in this Report. Furthermore, for the jdealized steady-state
situation where T » =, we write

I

lim - _ - 11
T-.;I-E UT = N (= Aﬁ T_lz (AE,T/T))

(2.37)

1im yr =¥

Yo B

and, accordingly, (2.36) becomes
[uniform p.d. of &]:
5 T ST ¥
I_(r) = &;{].s S[JO(rBo)-1]d%> o & BN RNl
o 31 B

(2.38)
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This Timiting form of (2.36) is the expression which we shall exploit in
the remainder of the study.
The quantity A_ appearing in (2.38) is

AW(=ym): impulsive index (of the present analysis)* (2.39)

As we have already noted in our earlier studies [Middleton, 1972b,1973,1974],
the Impulsive Index is a measure of the temporal "overlap" or "density", at
any instant, of the superposed interference waveforms at the receiver's IF
output. It is one of the key parameters of the interference model, in

that it critically influences the character of the p.d.'s and P.D.'s of the
interference, as observed at the output of the initial (linear) stages of a
typical narrow-band receiver. With small values of A_ the statistics of

the resultant output waveform are dominated by the overlapping of compara-
tively few, deterministic waﬁefcnms, of different levels and shapes, so that
the interference has an "impulsive', somewhat structured appearance. For
increasingly large values of A_ the resultant approaches a normal, or
gaussian process, as one would expect from the Central Limit Theorem
[Middleton, 1960, Sec. 7.7], as we shall see in more detail later [cf.

‘Sec. 2.4].

2.3 Interference Classes A, B, and C: The Role of Input and Receiver
Bandwidths:

We are now ready to examine the basic form, (2.38), of fm(r) [=1og EI(ir)].
The role of the duration TS of a typical emission (as perceived at the output
of the ARI (= aperture x RF x IF) stages of the narrow-band receiver) is
critical in determining the form of fm(r).

Let us consider first the important special case when the emission
duration T js fixed. From Egs. (2.63a,b), (2.70), (2.72a) of Middleton
[1960] we may write for the envelope Bo’ ef. {2.18), (2.30), (2.314), (2.33),

A (= A WA - vTT cf. (2.27¢),(2.35)) was designated "impulsive index", A,
1n the author s earlier treatments [Middleton, 1972b,1973,1974].
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the remainder of the study.
The quantity A_ appearing in (2.38) is

A_(=y_): impulsive index (of the present analysis)* (2.39)

=]

As we have already noted in our earlier studies [Middleton, 1972b,1973,1974],
the Impulsive Index is a measure of the temporal "overlap" or "density", at
any instant, of the superposed interference waveforms at the receiver's IF
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[Middleton, 1960, Sec. 7.7], as we shall see in more detail later [cf.

‘Sec. 2.4].

2.3 Interference Classes A, B, and C: The R6le of Input and Receiver
Bandwidths:

We are now ready to examine the basic form, (2.38), of fm(r) [=10g EI(ir)].
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AT( AA T vTT cf. (2.27¢),(2.35)) was designated "impulsive index", A,
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" | j‘w L R 5
By(z31.8") = ) Eo(r33.8" e ho (2T¢=7[A) pps
iy (2T ~1)+iugt
TH b dr
p (2.40)
fm 'fw'z?s
" o 1 T3 [ 1
=) Sin(f'32,8" )Y, (fw"52) ppre df
/

= AOEOYI QT(?},;fa)lg(é)Uotz) .

Here ho’ Y, are real, and hARI(t) = 2h0(t)ARI cos [mot-yo(t)] is the
weighting function of the composite ARI filter. The (narrow-band).system
function Y, is obtained from the fourier transform Y o, = thoe'jyo}
and wp [=wc-w0] measures the amount of "detuning" of the input signal
(at w., shifted to the IF region) from the (trial) central frequency (fo)
of the ARI stage.

With T, fixed, we have in general the situation shown in Fig. (2.1)1I
for the envelope of the narrow-band output of the ARI filter, produced
by a typical interference emission of finite duration, Tin’ The output
envelope (muo(z)) produced by a typical input interference envelope [shown as
a rectangular pulse in Fig.(2.1)II], always consists of two parts: a part
which we shall call Class A with normalized envelope qu(z), which is
k 0-1n)’ which is "on" during the interval
0<2z<Ty, (= Tep = TSA); and a part we shall term Class B, with normalized
envelope uoB(z—1) (#UOA(Z)), which represents the transient decay of the

produced by the input emission (nE

output of the ARI filter, following the termination of the input emission
[mEO(z)in]. The sum of Class A and Class B envelopes is called Class C,

e.qg. uoc(z) = qu(Z) + uoB(z-l), [cf. Fig. (2.1)I1, where, of course, uoB=0,
Z & iy Uop = 0; <0, 2> 1 1in our definition. Thus, all receiver outputs
are typically Class C, with variable amounts of Class A and Class B,
depending on the duration of the typical input interference waveform
vis-a-vis the response time of the ARI filter at the front-end of our
receiver. Equivalentiy, the relative extents of the Class A and B components
depend generally on the ratio of the bandwidth of the input (&fin) to the
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Figure 2.1 (II). Typical output envelope of ARI filter output in (narrowband) receiver, showing Class A
and Class B envelope components (positive halves only); Class C = Class A + Class B.



bandwidth ﬂfARI of the Tinear "front-end" of the receiver. With Afin >> ﬁfARI’
for example, the usual case of very wide band interference (automobile igni-
Eion, fluorescent lights, atmospheric noise), TSA is very small vis-a-vis

TsB: the build-up time (=T1n) is very brief for Class A, while the duration
of Class B depends on the decay time (v Af"ARI) of the ARI stage, which is
much Tonger than T1n On the other hand, with narrowband inputs of long
duration [éfARI >> af ] the transient at the termination of the typical
input is of neg]1g1b1e effect vis-a-vis the Class A component. For com-
parable bandwidths (&fARI N Af1n) both Class A and Class B make comparable
contributions, e.g. neither can be ignored vis-a-vis the other, so that we

have then genera11y the Class C waveform in the receiver. [In all cases

IO ok B( t) dt k > 0, are finite.]

From {2, 38 we see accordingly that I (r) can now be written as the
sum of the Class A and Class B components, viz: (T1n = s fixed for the
moment) :

I (r)

>
I
SC
f —n
W
=
s ) ]
~N
—
ST,
—
-
(ws)
—
\\/
o
N
+
—1
w
o
o )
8
/:—_.\\
—
o
oo
o
o
\/
N
N =

(2.41)
(2.47a)
on changing variable z' » z in u p(z'-1) > up(2), e.g.
B 2 (A,B) |
Bon,g = PoCoy | RT3l 9(2) (uga(2)supg(2)), (2.41b)

from (2.40). In terms of the characteristic function (2.19) we see at once
that

?](ir) = §1(1r)A'ﬁ](ir)B = E1(ir)c (2.42)

with the important result that Class C interference consists of the
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independent sum of Class A and Class B components, as defined above. Note,
also, that the 1imiting voltages e( ) & e(B), generally, as the receiver
responds to "narrow-band" inputs (A) d1fferent]y from "broad-band" (B).

Specifically, when we can ignore the Class B component [T (<w) << TsA’
e.g. sufficiently narrow-band input vis-a-vis the receiver¥], we have here,
from (2.42), (2.41), in (2.19),

exp{ f <J (rB A) ]>s ldz} (2.43a)

e =5A, exp{ th\O(rlam,_,‘> .} 3 (2.43b)

Fylir)e » ﬁ](ir)A

n

(Tsa™) Ao p > A, 55T g), (2.43b)
where the averages <'>z A.e' are explicitly
f% f '59£53[1dd -(2%)
= . adg' . .43c
< >z,;_\_,g’ 0 A8 ”
Similarly, when the Class A component is ignorable [f =T << T

sin sB
e.g. very broad-band inputs vis-a-vis the receiver's ARI stages*] we get

Fl(ir)C +—?](ir)8 = exp{%m’B _/nzyo(rﬁoB)"1>} e'd?} , (2.44)
0 wra

Aw,B>>Am,A’

with the averages g1ven by (2.43c), (w1thout the average over z). Note
that when r + o, F Y exp(-A_ A) while F.l B.C™ 0. This means, as we
shall see in detail in Section 3 1 Tater, that for Class A interference

* The precise conditions for effectively Class A or Class B interference
alone are developed in Sec. 7 later.
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there will be a non-zero probability of "gaps-in-time", i.e. finite (nonzefo)
intervals in the receiver's output when there is no waveform present, while
for Class B and C interference there is always a nonvanishing waveform

level and hence no "gaps-in-time". [Of course, physically there is always
some inherent system noise, which makes it strictly impossible to have a
true "gaps-in-time" situation.]

We remark, again, that Class A [and consequently Class C] interference
models are new. The earlier "classical" analyses [Rice (1945); Middleton
(1953); Furutsu and Ishida (1960); Giordano (1970; Giordano and Haber
(1972)], for example, all dealt with Class B interference, and for the most
part in much less general terms and by different modes of approximation.*

2.3.1 Some Extensions:
Usually, there is an accompanying gaussian background noise, which may

arise in a number of ways:

(" (i). as system noise in the receiver;
(i1). as external interference, which is the resultant of

< many independent sources, none of which is exceptionally
dominant with respect to the others (so that the Central
Limit Theorem applies);

\_ (iii). as a mixture of receiver noise and (independent) gaussian
external interference.
(2.45)

From (2.12b) and the gaussian counterpart of (2.7), viz.

5 g - (202052
Fyig,in)y ,X_:gauss  °© ’ (2.46)
(ol
we readily find that
2.2
‘ -gar /2
By e G 2 ey 2 2, 2
FI(1r’¢)gauss = @ = F](1r)G; og = Ogtor s (2.47)

* Technically, Giordano [1970] and Haber [1972] express their results in a
Class A format, whenever sample size (T) is finite, cf. remarks in
Section (5.3) following.
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cf. (2.13), where UE, aé are respectively the receiver and external noise
variances.

Applying (2.47) to (2.15), (2.17) shows directly that*

2

-] -FZGE/Z Ee‘-E UG :
Wy (E)n = Ef rJ (rE)e dr = = , E>0 (2.48a)
1 G 0 0 2 =

°G
so that

-E2/205 -E2/20%

Dy (Ey)g = 1-e s Pr(E>E) =e , (E;20) . (2.48b)

As expected, the p.d. and P.D. here are rayleigh.
Our results of Sec. 2.3 above are readily extended to include the

more general situation of interference inputs of random duration, e.g.
T & T TSA) generally. Only the Class A portion of I _(r), (2.41),
is modified. Letting z, = Tin/TsA’ we have at once, for the desired

extension of (2.43),
~ 'Am A ZU ~
F-[(ir)A & @ exp{: J; JO(rBOA) dz A e (2.49)
A8,
Combining (2.49) and (2.44) with (2.47) gives us the desired charac-

z
teristic functions with which we shall be concerned here, and subsequently,
in this report:

Class A Interference and Gauss:

Ao -cérz/Z—Am A z, .
F]('lr)A-;-G =€ eXp{Aw,A< 0 JG(PBOA)dZ>Z

Class B Interference and Gauss:
= -UEFZ/Z 5
F'[('ir)B+G = e exp{mm,B -[}ZEJO(rBOB)--I]>&,9|dZ} . (2'5])

* Use Eq. (A.1-49) [Middleton (1960)], for example.
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[We shall reserve the analysis for Class C interference and gauss noise, e.g.
based here on

z

8 s 2 Ol (v

F-[('lr‘)C+G = exp [-Uﬁr2f2+Am,A<;£ [JO(PBOﬂ)-1]d{> :
| 2o 2428,

+Am’8J;<[JO(rI§08)-1]>l L7 (2.52)

to a subsequent Report.]

2.4 Large Impulsive Indexes:

When the impulsive index, A_, is large, we expect asymptotically gaussian
statistics for the instantaneous amplitude X [Secs.3,p.26; 5,p. 39, Middleton,
19747, and rayleigh statistics here, cf. (2.48), for the instantaneous
envelope E. This latter is easily shown by developing fm(r), (2.41) or
(2.52), as a power series in r about r = 0, in the usual way.* Thus, the
ELT, (2.52)'f0r our general Class. C case, with gaussian background noise

in addition, becomes

r2 2 v ]}nrzn (A)n b(B)) ’

Frir)oeg = expé- 7= o) exp( 1 —oi——s (A, abo "+A, gbon
where
z, .
3 8 B s ; s 3
aq = (oprop)+v T I BS,dz +v T f <B dz, (2.53a)
0 R E sA 0 oA :>Zo’&’gl sB 0 oB &’El
z, .

b(A) -f 52N4 . b8 =f<éz"‘ dz . (2.53b)
2n 0 oA s et 2n 0 oB x.0"

O’w’w PRV (2.53C)

* Provided we consider for the moment finite observation intervals T(<=),
i.e. finite upper limits on the z-integrals in (2.51), (2.52), so that
these integrals are uniformly convergent, proper integrals, permitting
a series expansion of their integrands. Then, we ultimately have
S T . lim : b [§ { T
F1(1P)C+G' e F1(1r|T)C+G, where (F¥w) is invoked for each term of the

resulting expansions. See the comments in B, Sec. (5.2) below.
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Next, expanding the second exponential gives us

2.2
=g 2 4
o' 14

6 8 '
- = ™ P 2
Fy(ir) = e —1—3——- B +[? L B+ ——— 18B }+... 3

where now we write (2.54)
- (A) _ (B) -
By = A aPan’ = AsBP2n o (2.54a)

cf. (2.53b,c).

From the leading term of (2.54) applied to (2.21), (2.22) we see that
the result is indeed the expected rayleigh form, cf. (2.48a,b). Using the
Hankel exponential integral relation, for example (A.1-49), [Middleton
(1960)]1, viz.

e

® 2 v 2 .
: u-1_-b"z - a vty | .4, _ _a
.l; Jv(az)z e dz (57) 1F]( 5 S e ) , (2.55)

2bMr(y+1) 22 ab

Re(y+v) > 0; |arg b| < n/4,

we obtain the Edgeworth "correction" terms to w](E)C+G, PL(E > Eglcage
-2 e ; : -

e.g. terms O(Aw s A" etc.) vis-a-vis the leading, rayleigh term. The

first-order p.d. w1 of the envelope and the APD, P1, with correction terms,

are found to be explicitly:

aon
g o[ (By/cy) 2,2
W-I (E)C‘I'G 1‘_';'3' ]+ ?_2_!- 'iF'I (-2:1 :EO/ZUO)
6
(Be/op)
6“0 Ry
+ ; - W]F](‘3,I ,E0/200;)
2
18B
4 R
+ m 1F]("4,1,E0/2C}'0) RPN, (2.56)
¢
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where

6
2
JFy(-251568) = 1-2x%exas (R (313x8) = 12+ 3 )T - K
Fri(-8513%%) = 1-8x% + 6x7 - 2 x0 4 il ¢ (2.56a)
1F1(=4315 - ZX oF » etc., ;
with xz = EZ/ZGE here.
Similarly, we get for PI(E > Eo)C+G’ (2.22b), here
2 2
E -E~/20
N 0 o' o O 2
0
4
(By/0’)
4" "o a2
+ i (=1323E /2
ol L] o/ 29)
- 6
(35/0 )
0 2y
+ |- F,(=2;2;E-/20
[ 233! 1 1( 0/ o)
sty -
+ T -IF-I(-3;2;EO/2CFO) T (2.57)
with ’
[Fp(1525%%) = (&8 -1)/x% 5 [Eq. (A.1.19b), Middleton (1960)]
1F](—1;2;x2) =1 -x%2
(2.57a)
Fy-2:23x%) =1 - 2+ x6 s
TFI(-3;2;XZ) =1 - 3x2/2 - x4/2 - x6/24, etc.
The first two terms of (2.57) reduce to
-Eg/Zgg
PL(E>E ) pyg . @ ; (2.57b)
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as expected, for this cumulative rayleigh P.D., cf. (2.48b).

Finally, the above results apply also for the purely Class A or Class
B interference, whenever v, becomes very large (i.e. the impulsive index
is large). The variance cg, 2.53a), is then suitably modified, as is
(2.54a) for the correction terms. Since B, is 0(A.), wh11e 52 15 a1so
0(A,), it is c]ear that the correction coefficients B4(°o’ [BG/UO, (B4) ]
are 0(A_ -1 » A ), etc., showing the rate of fall-off of the correction

terms w1th increasing index A_.

2.5 Second Reduction of the c.f. F] The Role of Source Distribution and
Propagation Law:

Our major problem, as stated earlier in Part I, is to obtain
analytically tractable results, as well as a pertinent physical foundation

for our models of man-made (and natural) electromagnetic interference.
Technically, our central problem now is to evaluate the probability den-
sities and cumulative probabilities (2.21), (2.22), when the interference
is Class A or Class B, accompanied by gaussian noise, with the respective
characteristic functions (2.50), (2.51). [The detailed study of Class C
interference, with the more general c.f. (2.52), is reserved to Part IV
of this series of Reports. ] |

The desired evaluation may now be achieved by recalling (as in
Section 3 of Part I [Middleton, 1974]) that the general character of the
p.d. (and hence of the P.D.) of a random variable at Targe values is
controlled principally by the behavior of the associated characteristic
function at and near zero values of its drgument. Thus, the behaviour of
ﬁ1(1r) at, and in the vicinity of, r=0, is determined by the largest

r-dependent contribution which establishes the Targe-amplitude structure

of N1(E), P](E), etc., 1.e. as E = =, In fact, for these general classes
of non-gaussian noise this corresponds to the expected slower fall-off of
y](E), as E + =, than the rayleigh p.d. (2.48a), for example here. [See

also the discussion in Section (2.7)A following.]

Our preliminary procedure for obtaining the required development of the
¢ fs ?1 in the neighborhood of r=0 consists of: (i), expressing J0-1 as an
integral; (ii), using an explicit class of propagation law and source
distribution; (iii), reversing the order of integration in (i), (i)
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and observing the bounds imposed by the fact that UoA is of finite duration,
while uoB(z) # 0, O<z<=, cf. Fig. (2.1) above.* As we shall see below, it
is this latter condition (on Ugp VS- uoB) which critically affects the
explicit form of the needed development of F1.

We begin with the 1dentity -Jé(x) = J1(x), from which it follows by
integration that

Y
Jo(y) -1= -j(; J1(x)dx. (2.58)

Then, the exponents of the c.f.'s F]A g are (without the contributions, for
the moment, of the background normal noise) but with the help of (2.58),

f(zo,orm) X=r Bop,g -
“AW,A,B de J-[(x)clx e = IW(T‘)A B" (259)I
0" '

0 0

2.5.1 Propagation Law:

We now introduce the somewhat restrictive condition that the source
distribution and propagation law are expressible in the factored form:
a(rA)[b(¢) or b(6,6)]. The beam patterns are always independent of
distance (cr), e.qg.

- | 5 -. 1 i o |

| Qpr(as fo)l = 1Qpr(osf) [p1anes | Cor(@s¢5T8) [yotume, (2.60a)

e.qg.
IORT(Z&"F:)H = |QRT[(‘LT"1R)f(I)/C][ s (iR=",:,TsCf- Fig. (2-1)3
Middleton [1974]), (2.60b)

where specifically

* Qur procedure here is a generalization of that used by Giordano [1970],
who, however, considered what in the limit (T>=) is ultimately only Class
B interference, and only special choices of source distributions and
propagation law.
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.i

ip = 1ycos ¢psin epti sin ¢pcos ep-i,c0s 6p (2.60c)

Y
in which o1 is an azimuthal angle and 6; a polar angle, as sketched in
Fig.(2.2)II. Thus, for the propagation law, g(x) in (2.41b) we write

a()) = [og(e), gy(e,0)1/(4nen)Y , 0 <y (2.61)

where gg y are angular factors, ﬁsua]]y taken to be unity in the common
propagation models. In general, y > 0, and, in fact, y > 1/2: y = 1/2
corresponds to the "wave guide" modes often encountered in long-distance
propagation in the atmosphere, while y = 1 applies for the usual spherical
spreading of less distant sources. For practical applications, sources
and receiver in a common plane, Fig.(2a)II, is typical of most mobile land
transport communication environments, while the "volume" situation of Fig.
(2b)I1 is characteristic of ground/air, or ground/satellite, or ajr/air
environments. Also, for practical purposes, atmospheric noise may often
be regarded as essentially coplanar with the surface (and y : 1/2), unless
the principal discrete sources are comparatively near to the receiver, i.e.
ep(=07) is large, e.g. [>0(5-10°)]. '

2.5.2 Source Distributions:

For the moment we continue to assume that the source distributions
are factorable into the form o = a(x)b(6,¢), cf. remarks at the beginning
of Sec. (2.5.1) above. Then, the density w](l) required in the averages
{ >A in (2.59) is now from (2.26), (2.28)

US()\)CZXUSH;) :
wi(a) = A

ov(k)csxzsin 6 UV(B’¢)

-1

s,V (2.62)

for the surface and volume régimes, where the normalizing factors AS v

are given by
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Figure 2.2 (I1). Geometries of source and receiver beam patterns: (a), in a plane; (b)

, in a volume.



2 2
Ac = f o(A)oc(¢)cradrde =f déo (¢)f c“ro (A)dA
S grores S S
S-eff [6]-eff [r]-eff (2.62a)
Ay = f ay(r)oe(8 ¢)c3xzsin 8 daded¢
v v g
V-eff
” g 3.2
= '/. cv(e,¢)s1n 6 dede oz § cv(x)dx. (2.62b)
(8,¢)-eff [rx]-eff

The hogs aTE the effective domains of the possible interfering sources,
namely, those capable of registering at our receiver [OR, cf. Fig. (2.2)I11],
i.e. observeable in the receiver background noise. The receiver accordingly
has a Timiting range cx .. oy* cf. (2.34), e.qg.

A = Amax(eoy)' Several cases are distinguished, as shown in Fig.(2.3)II,

, which depends on e
max

[as far as dependence on » is concerned]: From Fig.(2.3)II it is clear
that the source domain to be used for Msorv) 18 A(sorv)-eff’ the domain
of sources perceivable by the receiver. This is determined by either
Xaff = Mpax OF A, [Cases I, II)], whichever is the lesser, or by a pair
of "84 8ils Ao A 2 Apays Case III, for such distributions. [Case IV,
not shown in Fig.(2.3)II, is a combinationof regions ("Aéax and A) which
partially overlap. Here we must consider the overlapping and pertinent
nonoverlapping regions separately, which will involve the angles ¢, or
(6,6) explicitly.] In our present applications, however, we shall assume

Case I, e.g. Agep = A < X, which is by far the more prevelant situa-

max
tion in practice: the potential source domain always exceeds that of the
receiver's acceptance region.

Finally, we shall, where necessary, postulate the following range

dependence of source density:
& u
cs’v(x) = 1/ s 0<pu , (2.63)

for both the volume and surface situations, in accordance with our remarks
at the beginning of Sec. 2.5.1.
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Figure 2.3 (II).

Several typical cases (A only) of source and receiver-domains.



2.5.3: Role of Input Signal Duration, T,

We begin by developing in fuller detail the structure of the: basic
received envelope ﬁoA,B’ cf. (2.41b). Using (2.60), (2.61) in (2.41b)
allows us to write

~

BOA,B - e((Ji,B)Aoqu,B(z)l QRT(d’;Or esq’lfé)lgs’v(q’;or es¢)(4“’c)_¥/)\Y

(2.643)
= Gop.8(ZRAgs80, | Qprpls ds0r 8,4)/07, ~ (2.64b)
with
= (A B) = .
GOA,B = A oUoA, B|CZR.[.|gS V(4ﬂC) (2.64c)

containing the (possibly) random parameters AO, €4 CZRT’ for both surface
and volume régimes and Class A and Class B interference. Next, we use
(2.62), (2.63) to write (2.59) expiicit1y as

z, CZKA“-]
I(r)y p="-A { dz d(e,¢) f da
a8 = “Asla,B J; oy A oys v ./[‘l] 302
x=r‘GO/AY
. f J (x)dx> ; (2.65)
0 e -

L]

with § = zD,Ao, etc., where the upper term applies for surface sources and
the Tower for those distributed in the volume.

Next, we implement the key step, (iii), in order to interchange the
order of integrations over x and x in (2.65). This permits us to develop
im explicitly as a function in r, to which we can then apply the approach
indicated at the beginning of Section 2.5, to obtain the controlling
term(s) at and near r = 0 for the characteristic function. Since from
(2.59)

- Yo s oa % Wy,=1/y . ; » Y
X = rGOIA £ o & (r,GO) X 3 and & X, rGo/Amax (2.66)

is the value of x corresponding to Aoss which establishes the domain of
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sources perceivable by the receiver [in the present Case I, cf.Fig.(2.3)II].
Now we use the fact that u,p is nonzero only for (0 <z 5_20), while

Uy # 0, (0 <z <=). Since GOA,B v Uop B cf. (2.64c), we see at once
that for

Class A: 0 <x=<x,,sinceu,=0,z>z;
(2.67a)
b & > 0, cf. Sec. (2.5.2).
Class B: 0<x<w,sinceup?#0,z<ew (uoB +0, 2+ o)}
(2.67b)

Apax 2 A 2 0, cf. Sec. {2.5.2)

Fig. (2.4)II shows the allowed domains of x and A for these two classes of
interference. [For Class C interference, we use (2:42), with the c.f.'s of
Class A and Class B determined separately, with the help of (2.67) and

the results of Section 2.6, 2.7 below. The details are reserved for a sub-
sequent Report.] In Sections (2.6), (2.7) following we obtain the desired
€.F.'s (= exp(iw)) for these two basic classes of interference, with the
help of (2.67) in (2.65) and the observations presented at the beginning of
Sec. 2.5.

2.6 The C.F. for Class A Interference:
With Case I conditions (cf. Fig. (2.3)II) on the source distribution
), and (2.67a) applicable here, we see

vis-a-vis the receiver range (lmax
that x - x, for the upper 1imit on the integrand (for x) in (2.65).
Accordingly, since AS,V is now precisely equivalent to the indicated inte-
gration over (A,68,¢) therein, we see that (2.65) becomes at once

74 X
5 0 0 o
- 5 = X —
I(r)y = -A, 4 f dzf J](x)d>> 3 xg =G /AT = rB,
0 0 Z,,8

L)

(2.68)
Next we use (2.58) to reexpress (2.68) as
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Z X
. 0 0 o
_— . _ ¥ g
I_(r), = Am’Af dzf J1(x)dz> 3 xg = TG /AT = rB,
0 0 Z 58

%

(2.68)
Next we use (2.58) to reexpress (2.68) as
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~ Zo . |
I(r)y = -A, a [1_<J{; Jo(xo)dz>g], (2.69)

since Eo = <Ts>/f5 = 1), and then empToy'the steepest descent method of Re-
port I [Middleton, 1974, Sec. 3, Eq. (3.10) et.seq; as mentioned earlier
[cf. Section 2.5)] it is the largest contribution to the exponent in the
neighborhood of r=0, which controls the behavior for E >> 0)] to obtain the
desired development in r in the neighborhood of r = 0. For this we use
the identity

- 252 N
-rS(Boa )4/ . r(BS,)/4
<J0(x0)>§. =e (Eon <Jo(rBOA)e <°A> >§’..'=A 3 8= (8'52))

[

0,etc.
A
to write
z 2<“2 > z 2<‘2 >
0 -r (BZ, /4 0 . r=(B-, /4
A oA
fJ(x )dz) = e 9 f<d (rB_,)) e dz
<0 .0 0 >9, <[J o' O0A g' z.
_ (2.71)
in (2.69). From (3.11), [Middleton, 1974] we have
2(2
ro(A%)/4 = a2y%.20 L
J A> =14+ § Ll [ F (-a31;8%7(A > 2.72
<0(r.)e 222 22£2!<11( 1{A%)) (2.72)

where TF](—R;];yz) is given explicitly by (2.56a). The result is that
(2.71) becomes

2 2
Zy —r2<B§A>/4 o <50A>gr :
f Jo(xo)dz> = e 1 “ }: —s—F ), (2.73)
0 8

2

in which

=3 5
_ -~ a2 A2 _
Fy Z\J; 'IFT('R';1 ;BoAf<BnA>e)dz>Z 3 <BoA>a=e',zo_ <Go“;ax>g,'
. 0 (2.73a)

Equation (2.73) in (2.69) now gives us the desired expansion of fm A

3

about r=0, which governs the p.d. (and P.D.) for large values of the
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envelope E. We have explicitly

252, 22 \g
. -r(B%, )/4 = (B°,)
I (r)y=-A ,+A ¢ 1PN (14 A v (2.782)
B el e {: 2 7, £ .
2/22
-r{B_, /4
2o, t A, e (Ean {1+0(r4)}, (2.74b)

this last if we neglect the correction terms [O(r4 in fm)]h
When we consider correction terms [in a later Report] it is convenient
to define, as we did in Report I [Middleton, 1974] a set of coefficients,

now extended to include the average over z,:

By & a!(-1)‘<i{; 1F1(-£;1;B§A/<B§A>)d%>z = (-1)*s! F, (2.75)
' 0

cf. (2.73a), which contain the 2%, 22-2,..., moments of the envelope éoA
at the output of the ARI stages of the receiver. Specifically, we have
here '

Cy = [{Boy) - ABEVINBE,Y 5 (€, =0) | (2.75a)
Co = [(BS,) - o(B2, XB2,) + 12(82, 1/, )* ; (2.75b)
Gy = LGB )- 1608802, ) + 72(88, X2, 2 - 7282 1/(R, s ete..
(2.75¢)
with

z Z _
lean’ . /J’ °<"2n > <f °< 2n 2yn > :
B = B .dZ = G |)\ dz . (2-?5(!)
\ 0A> \"0 0A/8' " /z, o ) oA/ max /z,
Thus, (2.74) becomes here, equivalently,

2/52 ~2
N T e

r (2.76)
4= 222(2!)2 28

im(r)A » —AQ,A * Am,A
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Combining (2.74), or (2.76), with the practical situation involving
an additive background gaussian component, cf. Sec. (2.3.1), we get finally
for the desired form of the c.f. for Class A interference

| iﬁ(r)A"‘G = _a§r2/2 + fm(‘"),q’

so that

~

232
-r2(8%, V4
F1(1r) g = exp{-ogr?/2-h_ 4#h, ne oh) [1+0(rM1) . (2.77)

where [1+O(r4)] in (2.77) is given explicitly by the expression { } in
(2.76). The final step in the reduction of these c.f.'s to the desired
technically manageable form, particularly for the smaller values O(fﬂﬂo)

of the impulsive index AW’A, (2.39), which are typical of this class of
interference, is now the following direct expansion of the terms containing
Aw'A in (2.76) or (2.77):

. A, mA2A~m@&/3%k%2
F](TP)A+G =a mzo =12

& A, alB e,y e‘r2<ﬁgﬁ>/4

1
43

. A, (823 e-r2<é§A>/4 .

(2.78
S(31)2 (2.78)

[Equation (2.78) is formally the same as our earlier result (3.16)
[Middleton, 1974], which is not surprising, since the c.f.'s have the same
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- form, cf. (2.50). The parameters differ somewhat in detail, of course.]

However, in approximating the exact (2.74a) c.f. by the approximate
forms (2.74b), (2.77), (2.78), we obtain ultimately (cf. Section 3
following) approximate P.D.'s, and pdf's (Section 4, ff), which may not be
proper1y“norma112ed, in the sense of yielding a mean square value, (E2>A"
of the envelope, different from the exact relation (EZ)A = ZQZA(]+FA)’ tf.
Eq. (5.12b), which is derived from the exact c.f. (5.10), or (5.10a).

Accordingly, we choose the c.f., here and subsequently the leading
term of (2.78), and from it determine the associated P.D. and pdf. Then,
from the pdf we determine

2 “ 2 E
3 =f Wy (£),6%d , € (2.78a)
En o I A 2, (THT

If WI(E)A is proper]y normalized, Q;Z)A should be unity. If not, and
<€?>A is bounded, such that <§2>A = Ni (<=,#1), then the properly normalized
pdf (.. PD, also) is given by

-2

W1 (€) peporm = W1 (E)aNa (2.78b)
so that
2 o -2:20 1 s
<€ >(A) "-/[; W-I (E)ANA £°de ‘j’o W-l (E)A—nor‘m‘c’ dE= 1 § (278C)
as required. From (5.3) following we have (cf. Sec. 5.1):
. A, g E /A, ptTh AL '
EYp=e ™ ARG e Bl (2.78d)

exactly, showing that wlig)n here is indeed suitably normalized (and

e NE = 1), as is the PD, P1(€_> EB)A, consequently. Accordingly, the Class
A cases discussed subsequently need no scale or other adjustments (unlike
the Class B model, where the approximating forms do require scale and

level adjustments, cf. remarks following Eq. (2.94), and the discussion in
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Section 3.2-A.

An interesting feature of our results here, for Class A interference,
is that the c.f., and hence the p.d., and P.D., are not explicitly de-
pendent on the interference source distribution [for the usual Case I, II,

and not so common Case III source-receiver conditions, cf. Fig. (2.3)II].
Furthermore, these statistics are insensitive to the propagation law

(n x'gx) involved, which merely affects scale, through the average

<§§Ag = <G0/xy>. The source distribution does appear, but in averaged
form and only in the impulsive index AM’A, [cf. (2.35), (2.38), (2.39),
in conjunction with (2.27)]. Physically, this is understandable, since
it is only the average number of emissions per second times the mean
duration of these finite emissions (in the receiver, cf. Fig. (2.1)II) to
which the receiver can respond. It has no way to distinguish where and in
what concentration, or by what propagation law, the sources may be acting
[for a given position of the receiver beam £2R, or for any position if
C?R is omnidirectional]. The only thing that counts here in determining
the (first-order) statistics of the received input is total input Tevel

and process "density', A As we shall see in Section (2.7), and in

A
later Sections, this insensitivity to source distribution and propagation
law is definitely not characteristic of Class B interference, and,-conse-
quently, Class C noise, to the extént that its Class B component is

significant.

2.7 The C.F. for Class B Interference:
Here we use (2.67b) for the exponent (2.65). The result is a term
1ike (2.68), plus an additional term for x, <X < =, with Amaxzﬁip’ viz:

. o *0™8/ Mnax |
Im(r)B = -AN,B{ki}; d{}; Jl(x)d%> N

v

=] _.[ (=]
d A. 0o ,)d(e, J, (x)d
<fc1 Z-K(e,w Vs ¥(0:0208 foo“%/ﬂ 1
0

2, u-1 max
f Vi 10 C3/A .5 dl> } ; (2.79)
x=(r ) VT e f i 6, :
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duration of these finite emissions (in the receiver, cf. Fig. (2.1)II) to
which the receiver can respond. It has no way to distinguish where and in
what concentration, or by what propagation law, the sources may be acting
[for a given position of the receiver beam £2R, or for any position if
C?R is omnidirectional]. The only thing that counts here in determining
the (first-order) statistics of the received input is total input Tevel

and process "density', A As we shall see in Section (2.7), and in

A
later Sections, this insensitivity to source distribution and propagation
law is definitely not characteristic of Class B interference, and,-conse-
quently, Class C noise, to the extént that its Class B component is

significant.

2.7 The C.F. for Class B Interference:
Here we use (2.67b) for the exponent (2.65). The result is a term
1ike (2.68), plus an additional term for x, <X < =, with Amaxzﬁip’ viz:

. o *0™8/ Mnax |
Im(r)B = -AN,B{ki}; d{}; Jl(x)d%> N

v

=] _.[ (=]
d A. 0o ,)d(e, J, (x)d
<fc1 Z-K(e,w Vs ¥(0:0208 foo“%/ﬂ 1
0

2, u-1 max
f Vi 10 C3/A .5 dl> } ; (2.79)
x=(r ) VT e f i 6, :
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where we have used (2.66) and reversed the order of integration, according
to the régime of (iii), Sec. 2.5, and Fig.2.411) above. Note, in particular,
the order of the Timits on the A-integration, which correspond té the vari-
ation in x, from X=X, to X+, cf. Fig.(2.4)II again. [The average over z,

is unity, as none of the arguments contain i also, §' = AO, eoY, etc., as
before.] The integrals I¢, Ie,¢ over ¢ (or 8,4), with Aglv, become
explicitly from (2.62a,b)*

= o (2=py  u~2
By " dglhg = ( CZ) Max » 0w <2
» (2.80)
= = (3=py p~3 '
Lo ™ 2yl = (“;gﬂ Mmax » 0 <w <3
where specifiba]]y here
2 3
. g wCo yeH . =k e 90
Ag = &g 77 ‘max (0 <u<2); by =8y 3 “max (0« y <3k

(2.80a)

so that A, 4 are respectively the integrals s csd¢, f oyded¢ in (2.79).
With the above we readily find for (2.79) the (exact) relation

I(r)g = -A, g {<J; dzJ[; d1(x)dx>gl-x0f0dzXOJ1(x)dx/x >§:} ,

(2.81)

with

= Y s
Xy = rGy/A rB

max 0,B (2.81a)

as before, and the new parameter

* For this Report we shall Timit the allowed values of u as shown in
(2.80); extension to other values (p>2,3) will be considered in a sub-
sequent study, as is the analysis for a>2.
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oz &1 or 3 . (2.82)
Y lsurface Y lyol.

This parameter o we call the spatial density-propagation parameter, since

it depends on the interacting spatial effects of source density and source
propagation law. _

The lower Timit on a is established by the present conditﬁon, s
upon the upper Tlimit on u (=2,0r 3), y > 0. Analytically, for the integral
over x in (2.81) to be convergent, we require that « > -1/2. There is,
however, no (finite) upper 1imit on o, so that we can write

-1/2 < a < @ . (2.82a)

For the purposes of the present Report we shall, however, further restrict o

to the range (0<a<2), which covers many of the practical cases encountered
in applications, at Teast down to quite small values of the exceedance pro-
babilities PTGS < EE). In a Tater Report we shall develop the analysis in
detail for (o > 2).

The first integral in (2.81) 1s'readi1y evaluated by expanding the
Bessel function, followed by termwise integration. We get

o ('])£<x§2+2>z,s'

I = E . (2'83)
T 020 a1 (e+1)122%  (2042)

For the second integration, over x in the second integral of (2.81), we
use a Barnes integral representative of J1(x) [cf. Middleton, 1960, Eq.
(13.10)]:

wi-C 2s+1
- r(-s X ds
J (x) —_j. ?%E?%T (5) T 5 €30, (2.84)

~oj=-C
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so that

. xaf'” J;(x) iy _ e f“’*'c r(-s)ds/2mi f“x25+1-adx> .
o Oy @ z,8' 0 J_wi-¢ r(s+2)2°5" X z,8'

w

(2.85a)

This becomes, on choosing ¢ = -5/4 (as a result of the condition a > -1/2)
and carrying out the x-integration

2s42-q | -x2STZ-o Re(2s+2-a) < 0, or
s =S (2.85b)
2s5+2-a Zsfz-a % we? %
xo S < T . .

The resulting integral Ia is now explicitly

_ei-c -r(—s)x§S+z-“ds/21ri
1= xof — , (2.85¢)
-mi-c T(s+2)2 (2s+2-a)/ z,8'

which has a simple pole at s = (a-2)/2 (>-5/4), and at s=0,1,2,3,...
(0 < a < 2). The residue at s = (a-2)/2 is —T(1—a/2)/2u—1T(1+a/2), while
those of r-function are (-I)zfal at s=¢ (=0,1,2,..). The result is

a 20+2
~I'(1-a/2 o -1
Rl S K s
2%t (1+a/2) 9=0 2! (g+1) 2% (2042-a)

The exponent fm of the c.f. for Class B interference thus becomes, on
combining I, (2.83), and I, (2.85d), in (2.81):

r(1-a/2){x3) , E (-1)£<3§2+2> [ _—y ]

I o(r) = -A_ -
~,B ,B 20‘--11,(-'_*_&{2) 2=0 E!(1+1)!222+1 (22+2)(2£+2.3)

(0<a<2), (2.86)
with (>= <>z,g' = <J':( )dz)e., etc.

With the additive,.accompanying gaussian background, cf. Sec. (2.3.1),
we have at Tast the desired c.f.:
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2 2
F](w)B+G = exp{}b]uAW’Br“— (oé+b2aAw’B)r 12

i IET('1)Rb(2s¢+2)J”*ao,e‘”mz_} (0 <0 < 2), (2.87)

which, 1ike (2.81), is also exact, so far. Here we have exp]iciny

é o
b = r(1-0/2) e \ -ay . __r(l-a/2) < 0,B ‘>(>0) —
Ta 2&—11.,(]+d/2) <0,B> max 2a/2-11,“+af2) (,2 ) (
= _ [4- <Bo B>
< Do = (2- ) 0 B> max (2—:) 2 (2.87b)
(43+4-0) %y
- 4o+4-q 0,B s _ ;
S b(2gr2)a T T {20+ 2=0) (2052) 20 (>0)5 (By g = Gy p/Afay)s

(2.87c)
since =0 < a < 2, and from (2.65) we write

(B)a o o\ /@ —ay [
0 B> < > <A0> <|62RT| > <gs,v>(4“0) Jﬁ u,(z)gdz (>0),
(2.87d)
and forma11y <§22 2> is given by (2.87d) on replacing « by 22+2, etc.

A. The Approximating C.F.'s for (0 < a < 2):

Unlike Class A interference [Sec. 2.6], where the c.f. is solely a
function of r2 [cf. (2.76)-(2.78)], and where a single "steepest-descent"
approximation [cf.(2.72)-(2.76)] provides a good fit for both large, small,
and intérmediate'va1ues of rz(and hence for Eo’E)’ Class B noise requires
a pair of approximating c.f.'s, one of which will at least insure suitably
bounded behaviour of the exceedance probability P, (E > Es ) as Ey =
including the existence of all finite moments of the enve1ope(EB)(0<B<m),
and the other of which will provide a satisfactory account of P] for small
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and intermediate values of E (>E0). It is the presence of the term
0(r*) in the (exponent of the) c.f. (2.87) for Class B interference, in
addition to the typical development in powers of r2 (analogous to that for
the Class A noise), which forces this double approximation for our canoni-
cal ©.f.%; and P.0.%s, P1(E>E0), pdf's, w1(E), here.

At this point we define the gaussian variance

pol = L+ boaln, = byohe 5145570y A, o) (2.88a)
= 53(1+réﬁ)), | (2.88b)
with
A e vph 5 1fPs oFjnll)ecplnde cues Interstty (2. 5ec)
" (%E%JQZB, cf. Eq. (3.2a)ff.
where Qég)1s the "impulsive" contribution to the gaussian component arising

from the Class B noise alone, and where oG(=cE og) are the (independent)

inherently gaussian contributions from potential external (gaussian) sources
and from the receiver noise (essentially all arising in the initial Tinear
input stages), cf.(2.47). (Note that ﬂgg,FéG)are also functions of o here.)
For the c.f. which is appropriate to the intermediate range of envelope
values, including the very small (E,E0+O), the controlling term in the

exponent of the (exact) c.f. (2.87) is the smallest power of r with negative

coefficient, e.g., —b{aAWHBr“ here, so that this approximate form remains

a proper c.f., e.g. 113 ?1 =1, 112 ?]+O. The form of the associated pdf.
and P.D. for small and moderate values of E, E0 is governed principally by
the behaviour of the c.f. as r becomes large. Thus, as a first approxima-

tion which ignores any gaussian contributions, we have from (2.87)

o . by A, g’ _
Pl te 1o . 0<a<2 (2.89)
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However, practically there is always at least an observeable gaussian sys-
tem noise component, and as noted above, cf. (2.87), (2.88a), an additional
gaussian term (mbzaﬂm’s) contributed by the "impulsive" Class B noise, so
that the more realistic intermediate c.f. here is now

A . by A, gri-acir?/2
FT(IF)(B+G)-I = e L ; (028 < 2); (2.90)

where the subscript (-I) indicates the c.f. for the range (0 < Ey: Eg 5-EB)
of enve10pe values. (The precise definition of EB will be given presently,
cf. Sec. 3.2).

For values of E, E0 > EB we require a c.f. approximating the exact
relation (2.87) where the largest (r-dependent) contribution to the
exponent about r = 0 and in the finite (nonzero) neighborhood of r=0 is
the controlling term. For this we seek again a "steepest descent" form
for the exponent of (2.87), exclusive of the term in r%, which as we shall
see below is always here smaller than the former (for 0 < r f_E) and thus
does not control the character of the c.f. at small r (and hence for large
Es Eo). Accordingly, as in the Class A cases, cf. Section 2.6 above, we
wish to represent the class B terms (exclusive of r*) in (2.87) by a series
of the form

P2

_ N
£+1 29+2 _ , -ar 2k
A, 5Dl 7 * I CIFA Py = he [1+ LB |
k=1 ™ (7.q1)

where the "steepest-descent" nature of the approximation is exhibited
not only by the exponential factor but by requiring the vanishing of the
BI -term in the r1ght hand series, where the nearest "correction" term
(k=2) is O(r ) and quite ignorable vis-a-vis unity. This condition and a
term by term comparison of (2.91) determine all the parameters A, a, B
(k > 2), which are readily found to be
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A=A B2 bo /2 3 (B1 = 0)
- 2
B, = §4 -b5 /8 (2.92)
b b b3
- 4o~ 20 20,
By = byt —7— *ag e
-ar? a -ar2 4
Clearly, A w,BS dominates -A_ Bbl ro, A 8¢ r', etc., at and in the

ne1ghborhood of r = 0, and this is the determ1n1ng element for this approxi-
mation to the exact c.f. (2.87).

Accordingly, we have finally for the c.f. appropriate at Teast to the
large values of E, Egs i.e. for the "rare events",

. L[ -A - b, r?/2
Fl(”)'(Bm)-II:{e ’BEXP[Am,Be “ -cérZIZJ}[1+0(r“.r4)],

(0 <a < 2).

(2.93)

Comparison with (2.77) shows at once that this approximate c.f. for
Class B interference has the same (approximate) form as that for Class A
noise, and thus will yjeld the same type of pdf's and P.D.'s, etc., cf. Sec.
(3.1 ). As we shall see later, in Section 4, this has the important con-
sequence of insuring that all (finite) moments of the envelope, <EB>,
exist, as required by the physics of the situation in all cases.

We note in passing that a more elaborate approximation to f] here may
be obtained by a combination of (2.89) and (2.93), viz:

a 2
_blaAm,Br -A -oGr /2 —bzar /2

F1(ir)(B+G)-III = e exp(Am,Be >
' (2.94)

which may be used for intermediate ranges of r for improved fits to the
corresponding intermediate ranges for the envelope. However, since the
resulting pdf's, and P.D.'s, are considerably more complex and since the
simpler forms of c.f. above, e.g. (2.90), (2.93), appear ultimately to
provide excellent agreement with observation, we shall not pursue the con-
sequences of using (2.94) further in the present Report.
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We remark that both approximating c.f.'s (2.90), (2.93) for the
true Class B c.f. are such as to give pdf's which are not properly
normalized; each pdf, w1(EJB_I,w(8)B_II, (4.3),(4.4) does not yield
<E?)B = 1. The former gives an infinite value, while the latter, although
Class A-type, cf. (2.78), yields 452)3_11 = 4G§ (#1), where Gy is given
by (3.12b). Thus, w](a)B-II,norm = (46%)'?w1(€)B_II, while the normali-
zation of w](E)B_I requires, instead, a change of scale for the argument
€ (and . 50
3.2-A.

Finally, it is important to observe that unlike the Class A interference
discussed in Section 2.6 above, the (first-order) statistics of Class B
noise are obviously sensitive to the combined effects of source distri-
bution (u) and propagation law (y), through the density-propagation param-
eter a, cf. (2.82). Physically, this may generally be explained by the
fact that now the receiver itself largely determines the waveform of its
response to the (relatively) short input excitations, unlike Class A noise,
where apart from amplification (for fixed aperture bearing) the receiver

in the associated PD). How this is done is described in Section

negligibly influences the structure of the received wave trains. The
composite sum of the "tails" of the transients in the receiver, generated
by the Class B input, depend on the (relative) times of arrival of indi-
vidual wave trains (vsource distribution) and on the level of the

various wavetrains (vsource distribution and propagation law). The
(relatively) Tonger time-pedestal provided by the transient decay of in-
dividual impulses provides a wider range of possible total amplitudes of
overlapping transients and hence a more gradual transition to given
thresholds (EO) of the exceedance probabilities P1(E > Eo)’ than that
occuring with Class A interference, as can be seen subsequently in Figs.(3.5,
3.6)IT vs. Figs.(3.1)II,(3.2)I1. [These effects accordingly influence

the instantaneous waveform in the receiver's ARI stage, and hence the
statistics of that waveform.] In any case, the sensitivity to « is

thus a receiver bandwidth phenomenon, which is illustrated by the
experimental and theoretical results shown in Part I of this Report.
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3. PROBABILITY DISTRIBUTIONS: P (S>£Z)A B> (0 < a <.2)

We are now ready to obtain the first-order exceedance probabilities

PI(E > Eo)’ cf. (2.22b), when an independent gaussian component is present,
so that Eqs. (2.78), and (2.90), (2.93) apply respectively for the charac-
teristic functions for Class A and B interference, to be used in (2.22b).

First, however, it is convenient to introduce the following nor-
malizations:

: - i = - E::
Class A: Eb = EO/\/EQZA11+TA) : 5/1/292A11+FA5 £3.1)
with
- o . ol . gauss intensity
o = Am,A<Bo,A>/2 s Tp = og/: "impulsive" intensity
(3.1a)
For Class B noise we use (5,14), viz., '
E
Class B: &, = 0 . B o= E i
2p +I‘B JZQZB +I'B
(3:2)
where, cf. (5.14a), we have
B
_ B< } _ 2 |
QZB = { Fé =G’G/QZB (3.2&)

which are directly analogous to the corresponding parameters above for
Class A noise. Then, writing '

8org : {?92(T+F'§'4/2, AorB, (3.3)

we see that £ = aE, &, = aE, in each case, and .. r = ax in (2.78), (2.90)
and (2.93), so that the desired exceedance probabilities now have the
generic form

83



PLE>E ) p = T"%J; 3y (N F (1ad), g, (3.4)

cf. (2.22b), where, of course, the specific parameter values in the normali-
zation factor a have different forms for the Class A and B interference.

3.1 Class A Ihterference:

Applying (3.1) - (3.3) to (2.78) and omitting the "correction terms"
allows us to write the Class A c.f. in the following desired approximate
form: '

Ay o= AN 022822
! ml €

g s 205 = (AT )/(4T))  (3.5)

F](iﬂl)A = e

cf. .Eq. (3.]7)*[Midd1et0n, 1974], and we henceforth abbreviate A_ , = A,,
etc. Applying (3.5) to (3.4) then gives us
e 22

Ay, o AT e ~05,a905/2
PLE>E), v 1 - Ee N mZO ﬁ’;‘-j[; I (Ep)e ™ dr (3.6)

which with the help of (2.25) and the relation 1F1(1;2;-x) = (1-e7%)/x,
[Eq. A.1-19b, Middleton, 1960], becomes™™

PLE>E ), 1-e-AA E A—E —ai F. (1325627252 (3.7a)
1-7%/A 2 neg M o2 1714 865750 g ‘

R o mA (3.7b)

*  Note that 25$A here is equal to °§A’ cf. Eq. (5.7), of Middleton (1974).

e This(PD i§ properly normalized for é32>A =1, cf. remarks following
Eq. (2:/8):

84



for the desired approximation* of P]-A' We observe at once that the Class A
exceedance probability P, is (primarily) a weighted sum of rayleigh pro-
bability distributions (P.D.'s), each with a variance which increases with

order (m). Note from (3.7) that

Py (EiO}A =1 P (E>80+m)A =0 ;

Ay = (14T)) A} |
soe w (A A " 2

and since each term of (3.7b) is positive and the exponential Tess than
unity, 0 < Py_p <1, also with P," » monotonically decreasing as £ + =,
all as required for a proper (exceedance) P.D. Furthermore, the expected
"rayleigh"-form of the P.D. is exhibited in (3.8) for small thresholds,
e.g.,

2
- -Bg .
P1(€>£',0)A = T—BAEg = e Ao : BAﬁg << 1, (3.9a)
where explicitly now
A e Am+'|
= A A 1
B, = (1+r})e ) Y s
A A m=g ™ (m+ApTp)

which depends, of course, on the Impulsive Index AA and on the intensity
ratio TA’ cf. (3:1a):

* The correction terms (containing C4,Cg, etc.) in the c.f., and hence in
the P.D., may become important for extremely large £o and very small
values of the Index Ap, although present experimental results, and theory,
indicate that the principal effects for large values of £ are satisfac-
torily accounted for by the approximation (3.7). We reserve to a later
study the investigation of these effects.
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Figs. 3.1IT and 3.2II, based on (3.7) show some typical distributions
Pip Vs. thresho]d.é%, with r, and A, respectively as parameters. As
expected, these PD's are highly nonrayleigh* for the rarer "events", e 0.
those which exceed the larger thresholds 6%, while the rayleigh forms appear
for the less rare events (66 small), also as expected, cf. (3.9). Thus
while the slope (dP]/d£b) is a constant -2 (Ee“xz) for the small amplitudes
on these log vs. Tog? probability scales, it is an (approximate) -1.2 for
' =107%, Ay = 107 for € >« i.e. a fall-off (ze-x(1-2)of P_p at
large €, somewhat faster than exponential, which latter is consistent
with the required existence of all moments, cf. Sec. 5. Different
values of AA’ rA lead to different lTimiting slopes as €, > =» but all are
dominated by the exponential type of fall-off. In addition, as the rela-
tive size of the gaussian component increases (increasing FA) so does the
threshold E.0 rise, above which the nonrayleigh effects appear. Similarly,
as the Impulsive Index AA increases, i.e. the envelope distribution ap-
proaches eventually the 1imiting rayleigh form (2.57b) [with (2.53a)] as
AA + =, the very steep "neck" of the curve becomes less extensive and
shifts to the larger probabilities (lower Eb), also as expected. In the
Timit AA +~ = this "neck" disappears entirely and the straight-line
(slope-2) rayleigh distribution appears, for all Eb. [Development of
these numerical results to a much more extensive and fine grid of param-
eter values is planned for a later Report.]

3.2 Class B Interference (0 < a<?2):
Applying the normalizations (3.2)-(3.3) to (2.90), (2.93) now, for the
two c.f.'s which approximate the Class B interference, we obtain explicit]y**

* For envelopes E here, e.g., equivalently nongaussian for the corresponding
instantaneous amplitudes X [Middleton, 1974].

** For compactness, we set A = Ap, henceforth, cf. (3.5) et seq. above .
m’B B
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Figure 3.1 (II). The envelope distribution [Prob(€ > €,)] calculated for
Class A interference for Ay = 0.1 and various Iy from
eq. (3.7b).
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Figure 3.2 (II). The envelope distribution iProb(é’> €,)] calculated for
Class A interference for 'y = 107" and various Ap from
eq. (3.7b).
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. . by Aga™r*-a05at?/2

Fi(iar)g ;= e ; (3.10a)
2.9

- ~Ag B FAVE 999

F](iaA)B_II = 8 -exp[ABe 7 ~ogd A /2]. (3.10b)

These, in turn are applied to (3.4) to give us Pl-I 11 respectively.
Starting with (3.10a), we expand the exponential in x® and use (2.55)
to get

2.2
= (by Aga®)" . A
B G
P](E ”%)B-I v 1-6 nzo -q-f"-ﬁ,—— £-1)" j; Anad.l(léio)e dx
(3.11a)
~ ~ A~ o = ("1 )nﬁtn ~
= € 2T T —rrlie gt (R &) -
With n=0 (3.11b)
- ; ¢ R s PN o i
&0 = (EONI)/ZGB’ 'ﬂ‘a = AO‘./z GB N [EO EQNI mn (3.113)], (3.]-1C) :
/B o
- HE A, _ A0 yqe/2_ 2r (1-a/2) ( 0,B >
Ay = 2bpgaAg = 27y Ag/[2055 (14T ) 7= 1) AB<3 e
2B B
and (3.12a)
N TR
Gg = 7{(1+Tp) (5 *Tg) » (3.12b)

cf. (2.88a,b,c), (3.3a), where N; is a scaling factor which scales P]-(B—I)’

. 25 o B2 . gl
Wy_(p-g) to insure that (E%)g = 1, cf. (2.94) ff, where aghog = 2Gg. The

quantity Aa is the Effective Class B Impulsive Index, which is proportional

to the Impulsive Index AB, for this Class B interference. In addition, it
depends spatially on the spatially sensitive parameter, o, and on the
relative gauss component ré, (3.2a).

With the help of Kummer's transformation [Middleton, 1960, Section
A.1.2, p. 1073, Eq. A.1-17] we can write (3.11b) alternatively as

A '/ég o 2 GO A
PEE g ne -8 T —r TR (-8 )
e " (3.13)

89



where we have used Eq. (A.1-19b) [Middleton, 1960]. For large E% we obtain
formally, with the help of the asymptotic relation [Middleton, 1960,
(A.1-16b), p. 1073],

1F7 (@385-x) E.rrs?u X [?+ alozptl) , afet])(o-g41)(a-g+2) +..-J

T1x ?
21x (3.14)
the following expression for P]:
w ANAIYT el
31@;%)3 . A 2’ ¢-na [H (1+an{§)(un) b,
T M Plp-2ly P 28
82 >> 1, (3.15)

0
This shows that é;fm P]-I > 0(5%“) + 0. However, as explained in A, Sec-
tion 2.7, for £, greater than some (large) value Eﬁ, which is determined
from Eq. (3.19e) below, we must use the second form of c.f., (3.10b).
Figs.3.311,3.4I1 here are based on (3.11b), (3.15), and are valid repre-
sentations, provided & is not too large, e.q. 86 5-88'

For the "rare events", or large &,» we apply (3.10b) to (3.4), as

discussed earlier (cf. A, Sec. 2.7), to obtain

62 a2x2/2

€ o8 -Ag = Ag e £ 1)e B ;
Pt >Gly 2 1-6e 7 1 gy ] Jy(Eple i (2518}
m=0. 0 :
with
~2 2L 2 gl aa i A = p (2o
207 = 2(mbyytog)ag = (EB #rg)/ (141g) »  Ag = Aglg=y) W

from (3.2a),(2.88c), cf.(3.5), (3.6): thus ;mB has the same form as o,
(3.6). Accordingly, we may use the result (3.7b), rewriting it here for
this large-magnitude approximation for Class B noise, as*

B m 255
B« A, -E£7 /20
foomn il B 8 miig © B 1@ wgy (3.17)

* This PD is now properly normalized [remarks after (2.94) and], cf. (i),
(3.17a,b), and discussion following.
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[Figures 3.1II, 3.2II for Class A interference illustrate the character of
(3.17), which, of course, is only applicable here, Class B, for the larger
values of € (>€B).]

A. The Composite Approximation:

The prob]em with the approximating results for P]-B in the Case B
model, cf. (3.11b) and (3.17),1is that these forms, stemming as they do from
approximate c.f.'s [cf. (3.10a,b)], are not properly scaled, or "normalized",
in the sense that each approximating form, P1—I’P1-II’ does not yield the
correct mean square value of {éz)B =1 or (EZ)B = 2928(1+Fé), cf. (5.14)
with (3.2), and the remarks following Eq. (2.94) above. The approximation
pT—I’ and its associated pdf, Wiipe (4.3), in fact, do not possess a finite
mean square on (0,=), cf. Sec. (5.3)ff., while Pi_11» the "Type A" form and
dts pdf., wy_pp, (4.4), yields €%, [ 7 1.

Accordingly, since the precise mean square is finite and is known to
be <E?>B =1, by calculation from the exact c.f. [cf. (5.10a), and Section
5.2-B], we must suitably scale (or "normalize") Wi_1s W11 (4.5) so that
(82>B, cf. (5.6c), exists and is equal to unity. This is done as follows:

(i). Let us consider first'w]_II, (4.4), and calculate QEZ)II on (0<f<x)
according to (5.1). The result is easily seen to be

A 4o
-A, = (m/ALtTY) A— 4T/
i@ _ Pp BB’ ,m _Z2a "'B _ ,.2
€11 = - Lymrowr fe T T - 4604, (3.17a)

where GS is given by (3.12b), so that here we require the normalization
i :

B
factor ?I = (4GB) 1, e.qg.

_ ] - 2
"1 Eg_11-norm = 2 "1 Eporr = N €y (3:17b)
B

(Henceforth in the text we write w](E)B_II,P1_II in normalized form,
which are then used for anlytical and numerical calculations in the
remaining sections of Part II here.)

(i1).The case of w]_I,(4.3),requires a different approach, sinceiﬁig)g_l on
(0<€<w) becomes infinite (0<a<2), cf. Section 5.3: [<é2>B-II on
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(0<656é<m), of course, is finite, cf. (5.6¢)]. Here we need to scale

By according to (3.11b) above: € =g NI (and .. é = (€ \ )/ZG Yo

The rationale for this is the observation that P] I (and Wi _ I) must
have the same values in the rayleigh region (E.<<1), where P1 3 ¥ 0.9,
or 0.99, etc., as does the precise d1str1but10n, 1-8° based on the
(intractable but) exact c.f. (2.87), hence (3.11b). The scaling factor,
NI, is to be determined by fitting the two approximate forms P1 I

1 I1 together by the procedure outlined below, which is based on the
canonical properties of the Class B model generally. Note, finally,
that the "Class A" form (II) is coupled to the Class B form (I)

through the Class B parameter «, and vice versa through the "Class A"

parameter FB’ appearing in GB, common to both approximations I,II.

To combine the suitably scaled P,_; and normalized P;_;, to form the
composite approximation for Class B interference which is valid for all
£ > 0 we now use the following desired properties of P

0
is sketched in Fig. 3.5II:

1-composite’ which

(i). P1—I - PI—iI in the rayleigh region, e.g. 0 ey small. Equality
of the two approximations in the rayleigh region is
required, since both must represent the same (small)
amplitude behaviour, characteristic of all these
PD's

G :EJ—I = dz;;II in the rayleigh region.

0

(ii1). Piog = P,_qp at the "bendover" or junction point EB of the two
approximations, cf. Fig.(3.5)II. This point, éﬁ,
is empirically determined from the data, e.g. from
the experimental APD or exceedance probability curve

(8 22 )exp , as described below, cf. (vi).
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Figure 3.5 (II). Schema of P _g» €9. (3.20), obtained by joining the two
approximating forms (3.11b, 3.17).
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( a9y .
(iv). T B € ) : the (finite) slopes of the approximating P1-I,II

EB are equal at EB: this insures a common tangent,

i.e., a smooth fit; moreover, we have

2 2
P11 _4Pn
o > ) (#0): this follows as a consequence of (iv),
de- & &
B

). |

and the continuity of the derivative at
€g» insuring that the associated pdf's

are continuous at the joining pointE:B.
However, note that.E% is not usually a

point of inflexion of PI—I,II‘

(vi). &,: this is the point of inflexion (dzP]/dﬁg = 0) of the actual
Py and is determined as such (by inspection, usually), of
the empirical exceedance probability P1-exp.’ Ef. F1Gs

(3.5)1L, (3.18)

Accordingly, from (3.11b), (3.15), (3.17) we have explicitly for (1)-(v)

above: i Aa n
2 9 =1 ) = a) 2 ~Ag .
E.N = 2E e L] A
5. =L 7 B r(1+9ny 2 0 ) B (52371,
are =0 n! 2 462 g MP T mB s
B B (3.19a)

[(ii). [Same as (3.19a), without the 265 factors common to both members
of the equation; however, (ii) is here implied by the form of
(1) and does not provide new information.] (3.19b)

A r(1+a/2) LNy Ao AM 2/,02
a B g 2,2 B /20
( ) 1405 [EgN 175€GNT) 1= = o/ ons,

i1).
=1 £
2GB 465 m=0 "

18

2%Ggr(1-0/2)
-A

A aT(1+a/2) (EBNI\‘“‘ ge "B = AT -£5/252

1
. - 3 E
() et g ] T EM BN R ) ghe

2 m! ’
4GB

(3.19d)
(v),(vi): €g cannot be determined analytically from either approxi-

mating form P;_; ;. It must be established as a point of
inflexion from the empirical PD, as noted above. (3.19)
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[In using (iii), (iv), we may need at least the next set of "correction"
terms in the asymptotic developments of Py 1 dp1-1/d€B‘] We note that
(given EB) these three relations [(i),(iii),(iv)] are sufficient to
determine in principle, any three of the six parameters NI’“’Aa’AB’QZB’Té
(cf. (3.16a)), when the other three are specified. Later, in Section 6,
we shall show how (3.18), (3.19) may be extended to permit us to obtain,
the six

from the experimental exceedance probability PI(E)éﬁ)xpt’ -
parameters NI’“’Aa’AB’Q2B’Té (or, more fundamentally, [u’AB’<Bg,B>’QZB’Pé]’
cf. (3.12)).

For the illustrative calculations of Figs. 3.6II, 3.7II, it is con-
venient to preset &;N;,a,A , and determine AgsTpspp from (i),(ii1),iiv).
Other possibilities are: Fix (SB;NI,a,Pé), determine (Au’QZB’AB); 1%
(8B;Aa,u,ré), determine (NI’AB’QZh); fix (EB;AB,Té,QZB), determine
(NI,a,Aa); fix &fB;NI,AB,Fé), determine (Au,u,ﬂza) etc. In any case,
we have now

Pr1og = Prop» 026 < €55 = Py_11s & 2 &> (3.20)

with Py_;, Py_17 9iven respectively by (3.11b) and (3.17). The curves of
Figs. 3.6II, 3.7II are equivalent to Figs. 3.1.1, 3.1.2 of Furutsu and
Ishida [1960], with ('\J/’G)F‘*.I + Ags (aOXU)F_!_I -+ (Té)_], and (R/U)F_I_I ol ¥
and exhibit the same kind of "elbow" in the transition region from the
rayleigh behaviour (f0r23§<<1), with a bend-over to a constant slope
(P1me'aE8, n>0), as for Class A noise, when & + = cf. Figs,.3. 11143.211,
38T T,

B. Remarks on Hall-Type Models:

Finally, we observe that a Hall model [Hall, 1966] may be obtained
formally from the P]—I form for therayleigh and intermediate region
(ngbgea), provided we neglect the gaussian contributions (e.q. ﬁcé + 0),
so that the c.f. (2.89) now applies. From (2.89) in (3.4) we accordingly
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Figure 3.6 (II). The (complete) envelope distribution P, (€ > é})B, eq.
(3.20), calculated for Class B interference for various

Ay» 9iven o egs. (3.11, 3.17, 3.19, 6.9, 6.10) .
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Figure 3.7 (II).

The (complete) envelope distribution P, (€ > € )5, eq.
(3.20), calculated for Class B interference for various
o, given A, (egs. 3.11, 3.17, 3.19, 6.9, 6.10).
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obtain*

aka

o -b1GABa
PlE>¢€ ) 1 o T-GOJ; Jy(E)e dx. (3.21)

This integral may be evaluated in several ways, convenient for small
or large 65. We start with the case convenient for the small values, and
employ the following transformations:

Ba i b1aABaa(=AO;E'_a); Baha ab I e (Z/BQ)T/Q (3'22)

dh = dz 2{1-%)/%yggl/a

so that (3.21) becomes now

* a5 1—0,

; & % o e . 1
PIEE )L 1~ 1- a—"j; J,(€,2 /), @ o724, , EF = soxaa/“ : (3.23)

Next, let us use the Barnes integral representation of J]:

8?25+1

/ey _ [ T(S)ES (2s+1)/a ds_ 3.24)
J](E’O"Z ) '/1".I'(S+2)2 s+ ¢ Ak (

cf. Eq. (13.106) and Fig. 13.22 of [Middleton, 1960], where T is the contour
(-=i+c, i=tc), with c(<0) chosen so that the integral over z in (3.23) is

convergent at z = 0, e.q.

f  (22s-a)la -2y, _ r(#E5) | Re(s) > -1, &-1<c <. (3.25)
0

* Equation (3.21) was obtained earlier by Giordano [1970, Eq. 3.66 therein;
Giordano and Haber, 1972, Eq. 24] but was not analytically evaluated.
Moreover, P I° here (as well as the earlier forms [Giordano, 1970], etc.)
is not scaTéa, e.g.,<52>3_1f1, as discussed at the beginning of A. above.
See comments at end of B here.
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Thus we find that (3.23) becomes

E* 24 (8* 25+] "
N 0 T'\-S S 0 S .
PylErlylp g 21 a_,/I,-I‘ sw2y TS5z ) 7ri (3.26%)
282 o (_-l )nr (2+2n)€2n
iy s < M (3.26b)
& o (2+2n)/a ? )

n=0 n!(n+1)!Aa

this last on evaluating (3.26a) at the simple poles s = n = 0,1,2,... and
using B, = Aaz'a, cf. (3.22). Equation (3.26b) exhibits the characteristic
rayleigh form (mEg), when E§<<1, as expected.

Next, for large values of Eb (or small values of Aa), we return to
(3.21) and use the Barnes integral representation for exp(-Buk“), viz:

e s,as ds
e = ‘/P-I‘(—S)Bal 5y (3.27)

to reéxpress (3.21) as

i -as ds [~
P-I(C;»EO)B_I N 1-£§0u T(-s) mf[} zaSJ](z)dz, -2 < Re(as) < 0,
Re(s) > -1.

(3.28)
To evaluate the z-integral we use [Watson, 1944,p. 391]:

fo Jv(t)t”"v"ldt = T(u/2)/7 (v-u/2+1)2V P Re(u)<Re(v+3/2) (3.29)

with v=1,u = s+2 here, and ... O<Re(as+2)<2<Re 5/2, as required. Equation
(3.28) becomes

. r(-s)r(1+ 23 %-as 4
p1(e>£0)8_111-j; T B, (3.30a)
r(1+ &) (-1)™a"
1:@1 r(1- $hnt g0 Y n R
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which shows how this approximation behaves as €, - =, viz. 0(6;“), e.g.:

2
r(1+a/2)A A _
g x———= - Hel o) L0 ca 2
I‘U"U/Z)EO 80 (3_3])

Now in the special case o« = 1, we may sum the series (3.26b) or (3.30b).
Choosing (3.26b) we get

o (=1)"r(2+2n)e2"
_'11_ 1‘262 2+20 ]
% n=0 n!(n+1)‘!A1 f

b (BENL 5 (3.32a)

and since (n+1)! = (2) , r(2+2n) = 22”(1)n(3/2)n [Middleton, 1960, (A.1-46b),
p. 1078], we find that
62
' 0 i, el x
PiE>g )p 1 » 1-2 ;E-EF](1,3IZ,2,-280/A1), (3.32b)
1

From [Middleton, 1960, Eq. (A.1-40c)], the (gaussian) hypergeometric func-
tion in (3.32b) is explicitly

oF1(1,3/252;5%) = (2/-x2)(1+x2)'”2{1-‘h+x2},

so that (3.32b) reduces explicitly to

€N L o ‘ , (=) , (3.33)

which is a special case of the Hall model (eHaTT = 2), for envelopes
[Spaulding and Middleton, 1975, Eq. (2.33)]. [Note that P! ~ €1, & =,
which checks with (3.31): in fact, both (3.31), (3.33) give P 3_A1/2£6,

as expected. Observe also that Pi(€3ﬁ5=0)é_l =1, as required: Pi is a
proper P.D., although it is an inappropriate approximate form when Aog

is at all comparable to (bTaA1a) fa, cf. (3.10a); it is also not applicable
for very large €y 3S explained earlier in A of Sec. 2.7 above. In any
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case, Hall-type pdf's and P.D.'s are not possible for Class A interference.]
Finally, we note that although the above PD's and pdf's, Eq. (3.26b),

(3.31), exhibit the correct behaviour as & + 0, , they are not sca1ed

(in E ) properly, to provide the finite mean square needed, e.g. (€ }

(cf. comments at the beginning of A above). Accordingly, as for P]-I

above generally, cf. (3.11b) et seq., we must replace Eb by 50Ni' where the

scaling factor Ni is determined, along with the four other parameters

(Aa,a,ré,QZB) of the distribution, by the procedure outlined in Section 6C

following. [For the Hall model, « = 1 here, and there are then only four

parameter values (N‘,Aa,ré,nza) to be established.]
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4. PROBABILITY DENSITIES: wq(€), o

It is now a simple matter to determine the probability densities (pdf's)
(pdf's) associated with the exceedance probabilities (PD's) derived in
Section 3 preceeding. Because the PD's are continuous, at Teast through
the second derivative (0 < € < =), and because

dP - .
W () = - "&'&l = J M, (AE)F, (far)dr, 0 < & < =, (4.1)
0 |E,TE
0 0 cf. (2.21)(3.1)(3.3)

we may apply this to (2.7), (3.11) and (3.17), etc., to obtain directly the
desired pdf's. We have first:

4,1 Class A Interference:
From (3.7b) and (4.1) we find that

2 n2
o Al ¢ -&/ZUmA

-A
W](E)AEE AmEU ﬁ—e—;'z— % 0__‘1_6 (42)
A mA

Thus, as expected from our earlier rh_;Tt(3.7b),w1(€JA (in its principal
contribution*) is the weighted sum of rayleigh pdf's, whose variances Uiﬂ

cf. (3.5), increase with order [»!. Figs.(4.1)II and (4.2)II show w,(E),
for various combinations of the controlling parameters AA’ FA. With AA
small the pdf's are seen to be highly nongaussian (e.g. nonrayleigh in &),

unless FA is very large, in which case the gaussian (e.g. rayleigh) com-

ponent (here) dominates. As the Impulsive Index AA gets larger, the pdf
approaches the purely rayleigh form, cf. (2.57b). Also, for PA > 0, the
pdf near £= 0 has finite width, shouldering off into a broad, rather
Tow Tevel (in w1) form as £ + =, which represents the strongly non-
rayleigh structure of this class of noise. The larger Fh, the wider and
less "peaked" is the "spike" at £ % 0, and the more "shoulder" there is
to the rest of the pdf.

When PA =0, e.q. “g = 0, i.e., when there is no independent,

* See the comments following Eq. (3.7b).
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additive gaussian component to the interference, Eq. (4.2) reduces to

Am+'I

[+ =]

....AA
W€y ve {6(5-0)+ !

m=1

2€e

-EZAAfm
= }, Bis £ <) (4.2a)

and the "spike" at €= 0 is truly a delta-function. The variance is now
m/AA. In this case we have an example of "holes in time": there fs a
nonzero probability that €= 0, an idealized Timiting case, since there
is always in practice some system noise, which means an additive gaussian
term, so that (4.2) applies, with w}(O)A = 0, of course.

4.2 Class B Interference:

As expected for our general canonical approximation [(3.11b) plus
(3.17)], cf. (3.20) , we have also two relations for w](E)B: WT(E)B~I
applies for small and intermediate values of &, while w](E)B_II is
appropriate for € > EZB. Again, SB is a point of inflexion, or the
"bend-over" point, where the Class A form, (3.17) applies, with, of course,
the appropriate Class B parameters (AB’Fé)’ as determined analytically by
the procedures described in (3.18), (3.19). Accordingly, we use (3.11b) in
(4.1), to obtain specifically:

e 2 n , ~
¥ (8).8-1 = 2Elnzo —(;:i—!)—AE r(1 + EZE)]F](HnafZ;'I;—-Cz),
€ = (EN[)/26y, A_ = A_/2%G, (0<€<&), (4.3)

and, formally, for large (but not too large) £; from (3.15):

Na
(_1)n+1 i r(1+ =) ~-na-1

S o & 2 (1+na/2) (1-ne/2)
W, (E) v 2o ) 1+ L +...
== n£1 nl @ TNy 11E2

(0 << € < &). . (4.3a)
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When £ > Eﬁ we obtain at once from (3.17) in (4.1)

2 ~
e AN o %m

m@gppr o L g Ees) (4.4)
465 m=0 o

analogous to (4.2) in the Class A cases. Observe from (ii),(iv) of (3.18),
and [(ii), (iv) of (3.19)], that w1(EJB, viz,:

W-I (E)B = W-I (E)B—-I s 0 f_E iEB .
. (4.5)
=wElgy » st

is continuous at € = EB, with continuous first derivative, so that w](E)B,
as well as P(€)B, has no break or "jump" at the bend-over point &g,

where the two approximations are joined. Furthermore, unlike the Class

A interference, when Fé = 0 there are no "gaps in time", cf. (4.2a) vs.
(4.3): there is always a non-zero probability (density) for € = 0.
Figs.(4.3)1I,(4.3)I1 show typical curves of w1(£)B, analogous to Figs.
(3.6)II, (3.7)II for the P.D.

108



L L 1L

| LR RL
Lol

L) TTllli
Lol

T T IIHIII

Lol

LI IIIItl

W (E),

=
T T IIII'IIP

€

[ Itlillt

Ll

- | ég

1 i]IlIIII
<
e
1l

=1
=]

I [Iil[”]
Pt

1l

€(dB)

Figure 4.3 (II). The (complete) pdf w,(€)g, eq. (4.5), of the envelope for
Class B interference, calculated from eqs. (4.3, 4.4) for
various Ay, given a [cf. (3.19)]. [See fig. 3.6_(II) for
the associated P, (€ > €,)g and parameter values. ]

109



N T TTT
Y
\'.:.‘.___.
nb

[T T T T T

W(6),

| oo o ool o

]

[

o
Y

v

@
@
mf“.l
LA LI

TTTI T TT T Ty T T
L Ll

Lol 1

10 | | | [PC| L | | [ ! L 1 |

=20 -10 0 10 20 30 4 50 60 10
€(dB)

oo
(=

Fiqure 4.4 (II). The (complete) pdf, w,(€)g, eq. (4.5), of the envelope
Class B interference ca]culated from eqs. (4.3, 4.4) for
various o, given Ay tcf (3.19)] . [See fig. 3.7 (II)
for the assoc1ated Pl(é‘ > &) B and parameter values ]
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5. MOMENTS

The general first-order moments (Eﬁ), (0 < B < =), are now easily
obtained from the results of the preceeding Section. Since

(EFY = _’:”1 (E)EPdE, O<p<w , (5.1)

(8 real and nonnegative), we may apply (4.2) for Class A interference, and
(4.5), with (4.3), (4.4), for Class B noise, respectively.

5.1 Existence and Direct Calculation (Approximate Forms):

For Class A interference we get directly

-A, @ .n B/2
e A ) (2°$A) rt% +1)Aﬂ/m!
m=0

e

()

-A o /m/A+T! \8/2 AT
=e "r(§+) 20(‘11?' A) 5 o 18:2)
m=

cf. (3.5). The sum in (5.2) is clearly finite, since by Stirling's
theorem (m! g.mme'mfiFﬁ) for sufficiently large m (>> AAFA) the summand
is dominated by Aﬂ/mmﬂ'B Accordingly, all (finite) moments* exist for
Class A interference, and are given by (5.2), approximately. [We recall
that we consider only the principal development of PipsWipe cf- (3.7),

(4.2) above.] Typical moments here are, from (5.2): °

<§P>A =1 , as required;

* Of the envelope, and of the instantaneous amplitude [cf. Middleton, 1974,
Section 4.5], by the same argument.
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(€ =a? T T (__,__T_ A
A Z by \TTRIY m!
(5.3)
: m
o o ,m/A atTa A .
<€ > A Z (—-ﬁ—&——)-’% =1, (as required).
For the Class B interference we have, from (4.3), (4.4) in (5.1):
B P il
<8 >B =_4r £ wl(E)B—IdE’+ £ w](E)B_IIdS (5.4a)
e:
=) n 6B
22 7 ﬂn,L— f\EI‘(Hna/Z)fg B .[F](1+naj2;'l;-€lz)d6
n=o : 0
-A m '
B « A o /20
B +1 “2 5.4b
*e—z"zm.fsﬁe "Cde/a 8B
4GB 0 EB

[The ihtegration of the hypergeometric function directly from its series
form yields

£ R+2k+2 2K+
N B ® (-1} (1+an/2),
_Lf B+1]F](]+na/2;1;-€2)d€ = ¥ £B (ZG ) (5.5a)

265 % € k=0 (k! )?(8+2k-2)(26,)%

which is probably the most direct and convenient form for numerical inte-
gration here.] In addition, the second integral in (5.4b) may be expressed

as an incomplete gamma function, I_, which is tabulated [K. Pearson, 1951],

e.g.

C

® -£%/20 .o B/2 %
J; Bty "Bde/a2y = (262;) @-Ictsgfzags;wsfq} . (5.5b)
B
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where IC is defined by

I (st = —(—-)-f _y ‘ydy (SSC)

Again, direct integration of the integral itself in (5.5b) is probably the
most conveniént numerical procedure.] Clearly, by the same argument used
above for the Class A noise [cf. (5.2) et seq.], all (finite) moments exist

for Class B interference, as well. Some typical moments here are, from
(ol }s

<€°>B =1, as required; (5.6a)

<E>B‘2 2 ) ‘L:%%'"— I'(1+na/2) J%?EI (1+na/2;1;-§?)d€

0‘.

n=o
M &L A 2, "2

gL N gty {1-1 [E%/20 ;3;2+s/2]} ; (5.6b)
4G§ n=0 “mB ml Ct 7B ""mB

2 2 (-1 an 8 2 a2
<g_ >B n 2 Eo —(—n|——AaI‘(]+na/2)_[}€8 .[F.[(1+n0./2;1;—€ )dE
n= J
-AB - m

+2— 1 (2 )B"z” {1 -1.E5/2 B,2+s/2]} ,  (5.6c)

4GB m=0

[For numerical calculation we may also evaluate the integrals (left member
of (5.5b)) directly, replacing B by B+1, B+2, respectively for the mean and
mean square, (5.6b), (5.6c).]

As required from physical considerations, e.g. finite energy in the
Class B (and A) interference; the second moment, in particular, is itself
finite. This is not the case if we use the approximate forms w](EJB—I’
or wi(E)B_I (=—dPi(B_I)/d€; cf. (3.21) et seq.), for all values of the
envelope. Then, we have, in effect

/88'/\ i-/o‘ et (@B_Id&%zylnaf b lye (5.7)

€p
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this Tast term from (3.31). The second term of (5.7) is finite only if

0 <8 <a (<2). Accordingly, no g8 moments exist for the Class (B-I)
distributions, unless B is less than the spatial density - propagation
parameter a. Thus, <€>>B £ in contradiction to the physical situations
we are attempting to model. In some cases (e.g. atmospheric noise)

Wg_1» PB I are quite satisfactory for even very large values of &, cf. Figs.
(3.3) II,7(3.4) II, but there is always some finite € beyond which a
suitable form of Wg_11> O PB I1 must be used, in keep1ng with the bounded
nature of all the moments.

5.2 Class A and B Moments: Exact Forms (Even Moments Only):

As we have seen above in Sec. (5.1) all (first-order) Class A and B
moments of the envelope (and hence of the instantaneous amplitude) exist
and are given, an approximate form, by Eqs. (5.2), (5.4). These results
are approximate, albeit good ones.

However, an alternative development is possible, which can provide
us with exact expressions, for the even-order moments.* For this we use
(2.24b) and take its [(—1’)k dedrk] derivative at r=0, to get

[{i)kZ—Ek F 1r] <E cos ¢>E’¢ <Ek><cos ¢> k = 0,1,2,.
(5 8)

this last, since N](E,¢) = w1(E)N](¢), cf. (2.20), (2.21), a result of

the narrow-band nature of the output from the (aperture x RF x IF) stages
of the receiver. Since N (w is uniform in (0,2n), all k-odd moments of the
phase vanish, e.q. (cos w) ; k =1,3,5,..., and only the k-even moments
remain. With the help of

(c0s®9), = 0/ 2 = (2k)1/2% (k)2 (5.9)

[Middleton, 1960, Eq. (5.26)] we accordingly obtain from (5.8) the general
relation

*  No such results are available for the odd-order cases; one must use the
approximate forms (5.2), (5.4).
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2,2k 2K
(%) = 7)2@,— [( ke " F](w):lr:O (5.10)

for the even moments, when they exist (as they do here, but see the com-
ments below in Section 5.3). In normalized form [with the aid of (3.3)]
we can write (5.10) equivalently as

2.2k 2k
2k kl)=2 k d e
(6 >:=£—T%QT— E-]) E:EE Flhahﬂl=o. (5.10a)

Our general result (5.10), (5.10a) is equivalent to the procedures‘used by
Furutsu and Ishida [1960, Section 6] and Giordano [1970, Appendix II, p. 175
et seq.], which is derived in our study by a different process.

A. Exact Class A Even Moments:

For Class A, even-order moments, including an independent gaussian
component, the exact form is now obtained by using (2.50) in (5.10) or
(5.10a), rather than from the approximate relations (2.77), (2.78). The
simplest procedure here is to expand the c.f. E1(iax)A as a power series
“in Az, which is permitted, since the integral (in the exponent) is a
definite integral, continuous in A%. The functional form of ﬁ](iak)A
is seen to be precisely that of the c.f. F](ig)A=P+G derived in the
earlier study for the statistics of the instantaneous amplitudes (Class A
noise), [Middleton, 1974, Section 4]. Accordingly, we use that expansion
of F; to write at once here (exactly) '

~ a2y2 aht (3 2
Fy(ian)y = 1= 351 an, (14130 27| 5 0404305, (141;)

6,6 '
ax |5 45 ' 3 113 8,8
_ET"'[E'96A+ 5 Q4A92A(1+TA)+T592A(1+TA)-}+0(a X7 ) l5.10a)

ST AT ol M S 1 s - S TSN
-2 ) 4' — or BB 3 ;w3 2 e
SQZA(1+TA) 1692(1+FA) 1692k(1+rA)
s (5.11b)
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where we have

= i L e2kNuak ) .
sz_A = AA<BOA>/2 s (Cf- (2-?5(1)) H A = G/QZA » cf. (3.1a),

z<f20()d » cf. (2.64c), (2.65), (2.75d)
<0 [8=20,A0,e a s2ky

oy’ “RTd for (B

with

Applying (5.11) to (5.10a) and observing that the expression in the square
brackets [ ] in (5. ]0a] 15 precisely the coefficient of (-1) (aA)ZK/(Zk)!
in (5.11a) [or of (- 1) A /(Zk)l in (5. 11b , we obtain

(€%,
€,
Y4

4\ _8 43 B o il
& >A =3 2 [7 305, (1410)°] = ——;
QZA(1+FA)

1] (as expected) ; (5.12a)

ZaZQZA(1+rA) = 1 (as expected) ; (5.12b)

+2 3 (5.12¢)

6 16a 45 |
(g >A [2 2nt 5 Up 2A(1+r }+159 A(I+PA) ]

Q %
= — OA . . 5+ 6 etc. (5.12d)
?  aZ )

(This is given in unnormalized form, e.g. with &/a = E, by (5.12) on
replacing € by E and deleting a therein.) These results (5.12) are to be
compared with the approximate (and sometimes exact) forms (5.3). For
example, observe that when PA’+ 0, E?> , as required, cf. (5.12b),
with similar equivalences for ( >, etc., from (5.2) vis-a-vis (5.12c),
(5.12d), etc. For intermediate values of AA’ PA, we may expect modest
departures from the exact values above. Finally, using (5.11c) in (5.12)
we can write alternatively
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-<£O>A SRR R

€

2 + (BL O /MCBE DR (14T)%;

9¢B > (88,

+ + s ate.
YAV e M e I 33
AA<50A> (141) AA<BOA> (141p)°

6

EN

(5.13)
which shows how the (normalized moments behave as the Impulsive Index AA+m,
or as the independent gaussian component becomes dominant (rﬁ+w).

For the odd moments of £(or E) our procedure above, of course, is not
applicable, and we must go directly to the calculation on the pdf, wT(eJA,
cf. (5.1), (5.2), for ¥=1,3.5,..

B. Exact Class B Even Moments:

The relations (5.10), (5.10a) apply here also, but the explicit
differentiation of FI(iaA)B, based on (2.51) cannot make direct use of a
power series expansion of the integrand in the exponential, because the
integral is now an improper integral (0,=) which is not uniformly conver-
gent (in A) over the entire domain of integration [Courant, 1936,I1 Sec. 4,
Chapter 4, p. 307 et seq.], so that term-wise expansion (in 1) of the

integrand, as for Class A interference above, is not permitted. However,
let us temporarily consider the case where (zo)max< » (e.g., output signals
of finite duration). Then, the term-wise expansion is permitted, as the
integral is now both proper and uniformly convergent; (in fact, the
resulting c.f. belongs formally to Class A). We proceed as in Class A
above and next apply 11m(zo)max&w to the c.f., e.g. F](iaA)B=
WM oF, (1A (20)...<=)ugn, and hence to each term of (5.11), (5.12),
(zo)max 1 max B ¥
etc., now specialized to the Class B parameters, AB, ré, BoB’ etc.

$ x s 1 i R
Thus, (5.11) applies again here, with Ip*Tgs AA+AB’.B0A+BOB' etc. We
obtain the analogue of (5.12), for example:
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689>B =1 | N
~ as expected;

'éi >B

G

E

where specifically,

22k :
Q - ﬁﬁgEEE; [g! = A Aodo = m( )d
k=B T T gk SB TP Sy T ¢ <,>gé “NJg' /e

Ly
5 | (5.14)

2 N2
Qqp/ g (1415)" + 23

3 2 N2 :
) +9Q4B/928(1+FB) +6; etc. ;

-

3 ;
Qp/ g (14T

cf. (2.87d) and éoB in (2.87¢c). Again, for the odd-moments (k=1,3,5,...)
we must use the approximate forms (5.4), (5.6), etc.

5.3 Remarks: ;

For Class B (and .. Class C) interference (0 < a < 2), when (2.89)
is used as an approximation for the c.f., it is clear that if we use (2.89)
in (5.10a), then GEZ> o> O(Aa'z)l=0f =: the second moment does not exist.
Of course, this divergence is simply the consequence of the inadequate

approximation, a behaviour which is alleviated by the alternative approach
using the results of Section 4, Eqs. (4.3)-(4.5) in (5.1), cf. (5.4)-(5.6).
Of perhaps greater interest is to note that, in terms of our general
classification [Sec. (2.3) and Sec.(2.5-3)], Giordano and Haber [1970,1972],
~in effect, postulate a finite period of observation (0,T) for each member
of the ensemble, e.g. Eq. (2.36) above is in force. This is equivalent to

Class A operation, since itamounts to an abrupt truncation of the basic

signal waveform uo(z) as emitted from the ARI stages of the typical narrow-
band receiver, cf. Fig.(2.1)II. This, in turn, means that the receiver
bandwidth is large enough vis-a-vis that of the input to pass it with
negligible transients, a defining characteristic of Class A noise. Then
all moments exist [cf. Sec. (5.1)] and the proper approximation for the
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PD is (3.7b). This Class A, or truncated case, goes over into a Class B
model as the observation period (0,T) becomes large vis-a-vis receiver band-
width, e.g., as TafARI>>1. The type of approximate c.f. employed is then
that given by (2.89), or more suitably, (2.90), which includes an indepen-
dent gaussian component. These, as we have seen [cf. Sec. (3.2)] yield
satisfactory approximations for small and intermediate ranges of envelope
€, or thresholds £ but fail at some point ("large" &, Eb) to give the
more rapid convergence needed to insure the physically required finite
moments of all (positive) orders, cf. Sec. (5.1). Thus, the results of
Giordano and Haber [1970,1972] (for suitably Targe TafARI), while prac-
tically useful as Tong as the statistics of very large values of the en-
velope are not demanded, are analytically incomplete as Class B models of
the full range of possible values of the random envelope £ and exceedance
probability P](E:> Eﬁ)B‘

On the other hand, the important analysis of Furutsu and Ishida [1960],
which represents a subclass of our Class B model in that a specific emit-

ted waveform [uo(z)B]is chosen, i.e. an exponential n~e %

, and several,
particular spatial distributions of sources with a given propagation Taw
(51/k) are assumed, along with an exponential distribution of input signal
amplitudes, does yield analytic forms of the PD and pdf which permit the
existence of all orders of envelope moments, and which conform closely to
the statistics of the atmospheric data studied therein. The approach

of Furutsu and Ishida [1960] is similar to ours in that approximate c.f.'s
are obtained, suitable for the small and large values of £(and 50), while
the intermediate ranges (of £) are evaluated by numerical techniques.

The canonical methods of our approach, however, are not invoked. Of course,
neither Furutsu and Ishida, nor Giordano, and others, consider or distin-
quish Class A interference, which is a new category, as far as its
statistical-physical description is concerned, considered originally by the
author [Middleton, 1973, 1974].
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6. DETERMINATION OF THE BASIC FIRST-ORDER PARAMETERS

In this section we outline procedures for determining the basic param-
eters of Class A and Class B interference models developed in the preceeding
sections. A variety of overlapping procedures is available. We shall
select what appears at this stage of the study to be the most direct and/or
convenient, (later efforts may suggest modifications, for particular
situations). '

We begin with:

A. Class A Interference:

The first-order PD (and pdf) are governed by three parameters. It is
convenient to distinguish two levels of parametric description: the first
level, which we shall call "Basic-I", consists of global parameters, which
appear directly in the expression for the P.D., cf. Eq. (3.7), and the
second, or "Basic-II" level, contains the associated generic parameters,

which are defined directly in terms of the underlying statistical-physical
model. The two groups, as we shall see, overlap to some extent. Table
6.1 below gives the global and generic parameters of Class A interference:

Table (6.1): Class A Parameters

Basic I: Global: (AA’PA’QZA) + {Practical Global: (AA’FA’KA)}

o . 2 /22
Basic II: Generic: (AA,UG,<BGA>)

(6.1)
The generic and global parameters are related by

ok = gty 3 ABL) = 205/8, . [Eq. (3.710)] . (6.2)

Furthermore, the intensity of the independent gaussian component is

ok = oSt , [Eqs. (2.47)], (6.3)
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where cg is the intensity of receiver noise (at the output of the initial
ARI-stages of the receiver) and UE is the intensity of the independent
external gaussian component, if any, 1ikewise observed at the output of
the ARI-stages of the receiver. By blocking the input to the receiver ,
(i.e., insuring that op = 0) one obtains °§= at the ARI output. Conse-
quently, as UE is found by actual reception in the (here) Class A noise
environment, one then at once determines UE from (6.3).

Because we do not a priori know the normalizations (3.1) by which the
thresho]d'EO and the envelope E are scaled, it is necessary to convert our
analytic expressions (3.7) for the PD, for example, into forms more
directly conformable to experimental evaluation. For this purpose we
write*

£/ 25 =€‘/QZA(1+1~A)/$§ = Efky: £ =&, /Ky (6.4a)

g o

11

with

m

[SE/QZA(T+TA)]1XZ_='[;E/(92A+cg)]1/2 . (6.4b)

the new conversion factor, between &' and €, where ég is an a priori de-
termined reference quantity, used to scale the Eabso]ute) values Eo’ By iBhe

To obtain the generic parameters (AA’ cé, B§A ) we first must deter-
mine the global parameters (AA’TA’QZA)‘ Practically, this means we must
initially find the "practical" global quantities (AA’FA’KA)’ cf. Table
(6.1) above, and then use (6.4b) to eliminate the conversion factor Ky
Three relations involving the practical global parameters are needed.
Perhaps the simplest are the first and second moments of &', and the PD
of £ in the rayleigh region &Sé<<1), where the slope (dP1A/dEB) is con-
stant, cf. Figs. (3.1,3.2)1I. Accordingly, from the exact expression
(5.12b) and (6.4a) we write

(€12, = CEPp/KE = 1/KE = q,, (1414)/3E (6.5)

F?jf? gives us KA and hence‘QZA(]+FA) in terms of the known &é and «Eﬁ)2>h,

* 0f course, one can always measure (EZ)p=2q,(1+T}) and- then normalize, so
A A
that KA=T.
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this last by measurement in practice. From~the approximate expression for
(a'/\A, viz. (5.3) with (6.4a), we obtain

(m/ Ay + ')”2@
== |

-A &
GHIER NN Ll P g ) (6.6)

and from (3.7b) specialized to the rayleigh region, e.g. (3.8), we have

" Ay @ (I"'F')Am '
Pie>€) Z1-|e A P il . W (&} A) . (6.7)
A m=0 (I’A-I-m/AA)m!

In practice, of course, <€')A, (e 2>A’ and P (£f>£') are estimated
from the experimentally derived data, i.e. ¢5>!X’ «EL >A’ and P (E':-EL‘)A
are respectively replaced by their estimates from the necessar11y finite

empirical data, so that (6.5)-(6.7) are three relations for joint estimation
of the "practical" global parameters (AA’FA’KA)’ a proceedure requiring

a modest amount of computational assistance, particularly when the expres-
sions in brackets [ ] have been programmed. With the help of (6.4b) for

KA involving Qp FA we next get directly the (estimates of the)lgﬁoba]
quantities (AA,FA,QZA). Then it is a simple matter to use (6.2) to

obtain finally the (estimates of the) desired generic parameters
(AA,cé,<§§A>). The desired estimates to be used in (6.5)-(6.7) are

<€1>A +'% ; 2

He~=1>=
—

s <8’2% E(E) ; PE?Q%)*P(ebe)Aenm1'

(6.8)
B. Class B Interference:

Here we have a six-parameter model for the Class B cases. Table (6.2)
summarizes the global and generic parameters involved:
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Table 6.2: Class B Parameters

Basic I: Global: (Aa,u,AB,Fé,QZB,NI)
+ [Practical Global: (Aa’“’AB’Pé’KB;NI)]

Basic II: Generic: (AB,a,cé,<égB>,<bgB>;NI)

The global and generic parameters are related by (6.9)

2 ™
ag = QZBPé’ [Eq. (3.2a)] 2

U§+UE : [Eq..(2.47)] :

2\ 2
<BOB> =2 AL, [Ee. (3.22)]

" gz T14/2A
<BoB>= (22,5 (141g) ) Zr(T-a72A, L Ea- (3.12)

and (6.10)

£ = KBEé’ [cf. (6.11) below] .
The common global and generic parameters are clearly (AB,u).

The fact that there are six generic parameters for our statistical-
physical model of Class B interference stems directly from our pair of ap-
proximations ET—I’E1-II’ Eqs. (2.90), (2.93), to the exact cf. (2.87):
(i), the Impulsive Index Ag [(2.38), (2.39) in (2.51); (ii), the spatial
density-propagation parameter o, (2.82); (iii), the independent gaussian
component cg, [(2.47), (2;88c)]; (iv). the c-moment of the generic, fil-
tered envelope waveform <BgB>’ cf. (2.87a) , (2.87d); (v), the mean-square
of this generic waveform, <é§B>; and finally, (vi), the scaling factor
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NI(Aa’a’AB’QZB’Péféﬁ)’ cf. remarks in Sec. 3.2-A. This factor N; is
functionally involved with but not solely determined by the other global
(and generic parameters, through the APD form, and is independent of EB
[cf. remarks below in Sec. 6C]; hence it is regarded as a generic parameter
here also. The quantity N; ranges from 0(10db) to 0(50,60db) in practice.
For example, comparison of Fig (2.4) with Fig. 3.3(II) (Aa = Ty 6 = 1),
for the same P1 =0.9 gives N = -6-(-44) = 38db. The point of inflexion,
or "bendover" point &g, cf. F1g (3.5)II, at which the PD's (and

pdf's) corresponding to the two approximating c.f.'s, F1 I’ ]-II’ are
joined, to give us the desired composite PD (and pdf), is purely empirical
[(vi), (3.18)]. The conversion factor Kz is here

Kg = {?2/928(]+ré%}1/2 5 (6.11)

cf. (6.4b), where, again, Sé is a known (measured) gaussian noise reference
level. Also as before, we may obtain the components of oé as indicated
above, cf. (6.3) et seq. [See, also, footnote, Eq. (6.4a).]

Now to obtain the desired global parameters of our model from observed
data we need six convenient nonidentical relations involving these parameters
in various, sometimes simple ways. First, we use the exact expression for
the mean square envelope (5.14), with the renormalization (6.4), to write

NPy = EDgke? = 1/KZ = aup(14rp)/6k = 2od/aG (6.12)

cf. (6.5). Since the expressions for the Class B moments are analytically
quite involved, and because the PD contains all moment information here,
we use [(i), (ii1), (iv)] of (3.18), (3.19) where P,_g is empirically
determined from the data. Accordingly, we have the additional five rela-

tions:
2
(E1KaN )T e na
rayleigh region: P1(€'3fé)59 —11%%-1- ) (']3 A @ (4 20 )
[2 relations] 46g =0 W z
—A » AT
£y 'K 0 2 »
v OB Z_"' 623 (6.13a)



A I‘(‘H-E)IEB

large thresholds: P](E'iﬁﬁ)a "z ) [+ %11 )@ NI Ba.E.-Z 2)]
[2 relations] T(A ~/2) _

B m 2,22

e -] A =3 1

*aZ 1 e €5¥a)"/ 2emg (6.13b)
B =0 m:
at bend-over point:
-A /20
AaI‘(]+c¢/2) (2@ at] (1500 )] = Ege B ozo Arg €8/ “ms
1+0
r(1-a/2) 2 L m!
(EpN I)Ot 4Gz m=0

As noted from (3.18), (v),(vi), €g is the joining point (or point of contin-
uity (through the second derivative of PI-I 11° at least) for the approxi-
mations to Py . &p is the point of inflexion of Pi-B> obtained from

(Pi-B)expt. Here

4 T EOX\/ZGG . (6.14)

In practice, gé is available from inspection of the experimental* PD, PT-B,exp’
so that in addition to (6.12) only the five relations (6.13a,b,c ) are then
required for the remaining six global parameters. Once these have been ob-
tained, we may use (6.10) to determine the six u]timaté1y generic paraméters |
of the Class B interference under study. Of course, in practice, our

data are finite and P1—B is an empirical function;({E')z)B is an estimate,
cf. (6.8), based on sample values, and Eé is lTikewise an estimate by in-
spection, so that all parameters actually obtained are necessarily them-
selves estimates. We do not include EB in our 1ist above of global
parameters, and exclude it from the basic, or generic parameters, cf. (6.9),
since it is in'effect, an empirical quantity resulting from the procedure

of joining Py_;,Py_; in approximation to the true P, ., at &= Ep-

C. Degenerate Cases:
When EB (oréié) is not known -- i.e., is not evident from the empiri-

* However, see the 1mp0rtant’situat10n discussed in C following.
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cal PD, Py_p -- we can only work with the P,_, form of the PD, namely the
approximation suitable for small and intermediate values of & (and ES)

< EB(éé). This is the case, for example, of much of the atmospheric noise
data, cf. Fig. 2.4, where no bend-over point is at all evident. The model
now reduces from six to a five-parameter approximation, in (Aa,a,ré,QB,NI)
[or (Aa’a’ré’KB’NI)] for the global parameters and in (u,aé,NI) for the
generic parameters, cf. Table (6.2). Becauseé?B is not known, we are unable
to obtain Ay, and hence we-can determine only 2,5 = AB(§§B>12, A, ™ (égB>AB’
and not their individual factors <B§B>,<B§B>. For these five global para-
meters we need accordingly five equations. The conversion factor KB is
again given by (6.12), and for the four other parameters we use

Eq. (3.11b): rayleigh region:

Va2 2 (1 an -
Pr(€'26)p ¢ = (Z0BT1) | —r— r(1+ 57) = 0.99, say; (6.15a)
- 26y ) n=0 T

P]_I in the "bend-up" region, where P]—I departs from the "straight line"
rayleigh form, so that (3.11b) fully applies, and two points P, ;=P5.P,
with '

Eq. (3.15): 1argei§é (<E§li

AT (1+a/2) (EgKeN )™

PiE'>E
1€ 26)5.1 X 7 (265) "

where the PD's are empirically determined. Without the turnover point EB
we cannot join the large-threshold approximation P]-BII to P1—BI for
(EOSEE)’ a?d ?re.thus unable to determine the generic parameters, except for
a,qG,NI.Th1s indicates the importance of obtaining the "rare-event" data
@JE@), so that the fundamental (i.e., generic) parameters of the inter-
ference model may be estimated, as the fundamental descriptors of this

noise environment, as specified, of'course, by our statistical-physical
model in this case [cf. Section (2.1) et seq.].
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7. PRACTICAL CONDITIONS FOR CLASS A AND CLASS B INTERFERENCE

In our preceeding analyses we have postulated Timiting forms of inter-
ference which are strictly Class A or Class B, neglecting the very small
contributions of the associated other components (e.g. Class B where Class
A is said to occur, etc.). Here we shall establish quantitative conditions
which permit us to neglect these other-component effects and to assert that
our analytical forms may be applied to the corresponding physical situa-
tion, e.g., essentially only Class A, or Class B noise is present.

To do this we start with the relation (2.52) for the general Class C
interference and use the results [Eqs. (2.77), (2.78)] for Class A,

[Eqs. (2.90), (2.93)] for Class B, to write

Filir)eeg = Frlir)peeFi(irdg (7.1a)
m ) 2
) Ay = AA -(m/AA+rA)QZAr /2
=g < § Epe
m=0
2
-b-IGABT' -bzaABr /2 ) " .
e . (F-l__I) ’
5 (7.1b)
-A -b, r°/2 P

e B-exp(ABe e8 {1 (F1-II) s

where we include cé, (2.47), in the Class A form (mrA) here.

When Class A noise heavily predominates, we use the transformation
r=aAA, cf. (3.3) et seq., and expand the Class B components of the c.f.,
to get the pair of approximations

2.2
~[(m/Ap+T L )R+, Aglanrc/2
A AT2A T2a B-A {]'b'[uAaaEAa'Po()‘-u)}

(e
-A, = A"

F. (3 e AN,
Fq(iagh)y,q=e mzd“' and ) 5 -

—[(m/AA+rA)92A+b23AB]aAA /2 p aph

e T+b2 — t
aB 8
(7.2)
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For this to reduce to the principal form (3.5), we have at once the two
pairs of conditions

Class A:
A2 -\
b, A <B VA
20"B _ (4-a\ \CoB/"B 1
7 (Z—u) 5 (1+2%/m, (B2 0T << 1, (7.32)
oA A
with .
(" by A r(1-0/2){B%.)A
T T (a )<)EB>? o -
20, (147, 27 'T(1+a/2)[20, (141, |
" A B A for € < EB:
and <
2 SR
b, A 2 B A _
20 B 5 = (g::) <OB> B 5 1, for £ 58 N (7.3¢)
[20,(1+14)] [2a, (1+1})] .
A

From (2.37), (2.38), we also note that AA,B=was(A,B)' Equation (7.3a) is
usually the weaker condition and (7.3b,c) the stronger, with the Impulsive
Indexes AA B not too large. A useful, rough rule for considering the inter-
ference to be Class A only is, in effect, the condition AB¢<AA, or T B<<T X
the latter representing the fact that the amount of time, on the average,
that the Class A component is present, is much larger than that for the
Class B term, a not at all surprising condition from an intuitive viewpoint.
The cond1t1ons (<<1,T, ) in (7.3) are, of course, matters of judgment, usually
0(10” -2 o ) is suff1c1ent, unless we are concerned with the very rare
events, i.e., extremely large values of £. In general, we shall adopt the
stricter conditions (7.3b,c). (We shall pursue the detailed anatomy of
these and the Class B conditions further in a later study.)

When Class B noise is heavily dominant, on the other hand, we rewrite

(7.1b) to include the independent gaussian component embodied in FA with
F](iaBk)B, (2.90) and (2.93), so that we have now for the Class A contri-
bution
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-AAa§<§§A>x2/4+U(A4) ) HA<§§A>A2

= o . o 4
Accordingly, we get

Fy(iagh)g,e = [Egs. (2.90) and (2.93)] , (7.5)
provided the single condition
Class B:

-2 =2
MBon) 1 (2-a) (Bop s [1+02/2(4-_a) 52 A]']“ : -
8QZBH+PB 4 \d-a <B§B>AB G'"\2-a | "0B'B .

is obeyed. Again, the simple, intuitively obvious condition is that

AA << AB (or TsA(<?gB): the Class B interference is "on" for a much longer
period than the Class A component. The amount of Class A noise is
negligible vis-a-vis the Class B contribution. As expected, this condi-
tion is, not unexpectedly, just the reverse of that (roughly) required

for Class A dominance. [Note, too, that the more precise condition (7.6)

is a kind of inverse of conditions (7.3b,c) above for the Class A cases.]
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Glossary of Principal Symbols

Equation numbering in Part II does not contain a "II" suffix; when

equations from Part II are referred to in Part I, they are so
designated, e.g. Eq. (3.5), Part II, etc.
Figure numbering in Part II is similarly indicated by a "II" fol-

Towing the number.

Ao

ApshgsA A,

A

[+ 4

AR

ap,ap,a
APD
ARI

2. ¢

Bo’BoA’BoB

b]c’bZa’b

B

22+2|a

¢c. T

0
&

= ,B

peak amplitude of typical input signal

= Impulsive Indexes, (Class A,B interference)

effective Impulsive Index

normalizing factors

a posteriori probability; here 1-Distribution = P]
combined aperture-IF-IF receiver input stages
source, receiver beam patterns

spatial density-propagation parameter

generic or typical envelope of waveform from ARI
receiver stage

weighted moments of the generic envelope BOB
exponent of moment

characteristic function

probability distribution
delta (singular) function

instantaneous envelope
1imiting receiver voltage

normalized (instantaneous) envelopes; €0=enve10pe
threshold

"bend-over" point (Class B), empirical pt. of
inflexion in P, _p
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> > =

an exponent
impulse epoch
normalized doppler

characteristic functions
confluent hypergeometric function
noise, receiver bandwidths
frequency

a basic waveform
geometrical factor of received waveform

ratio of (intensity of) gaussian component to that
of the "impulsive", or nongaussian component

gamma function
exponent of propagation law, with range

exponent of characteristic function
incomplete r-function
unit vector

Bessel function, 1st-kind, (0,1 order).
jacobian

conversion factor, for arbitrary normalization
domain of integration
argument of the c.f.

(r,6,¢), coordinates

exponent of source density law with range
normalized doppler

narrow-band
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2on>28

Wy W

pdf
¥,9

¢T ’¢R

| Ao 2
U’UG’G’GmA,B’AUG’Gh’UR'UE

9.,V

Ts’Ts;A,B
t,t],tz,
8,6"

U’Unb

uo’qu,B

W-I ,W-I

mean intensity of the nongaussian component
angular frequencies (mO:carrier angular fr.)

APD or exceedance probability
probability density function
phase of narrow band wave
aperture phase

c.f. variable
poisson "density"

variances
source density

emission duration
times
sets of waveform parameters

basic waveforms out of ARI receiver stage
normalized envelope waveform at output of ARI

ARI stages
probability density function

instantaneous amplitude
a c.f. variable

=a normalized time
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