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interference levels. This is noticeably different from the usual normal 
(gaussian) noise processes inherent in transmitting and receiving elements. 
This highly structured character of the interference can drastically de­
grade performance of conventional systems, which are optimized, i.e. 
designed to operate most effectively, against the customarily assumed 
normal background noise processes. The present Report is devoted to the 
prob~ems ·of (1), (2) above, namely, to provide adequate statistical physical 
models, verified by experiment, of these general 11 impulsive 11

, highly non-
. gaussian interference processes, which constitute a principal corpus of the 
interference environment, and which are required in the successful pursuit 
of (3), as well . The principal new results here are: 

(i). Canonical analytical models, experimentally corroberated, for the 
first-order statistics of the envelope and phase of Class A and 
Class B noise*;_ 

(ii). Procedures for estimating the (canonical) model parameters, 
calculation of moments, APD 1 s (= exceedance probabilities , 

P1(DE
0
), e_tc . ) and probability density functions (pdf's), and 

a variety ·of other pertinent statistics; [see the Table of 
Contents]. 

~inally, we emphasize, again, that it is the quantitative interplay 
between the experimentally established, analytical model-building for the 
electromagnetic environment, and the evaluation of system performance 
therein, which provides essential tools for prediction and performance, for 
the development of adequate , appropriate data bases, procedures for effec­
tive standardizations, and spectrum assessment, required for the effective 
management of the spectral-use environment. 

* Class A and C1ass B noise are distinguished, qualitatively, by having 
input bandwidths which are respectively narrower and broader than that 
of the (linear) front-end stages of the typical (narrow-band) receiver 
in use. More precise definitions are developed in the text following. 
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decay occur, with the latter predominating . The 
receiver is to varying degrees "shock-excited", 
particularly for inputs of very short duration, so 
t ha t the receiver is said to ''ring ". 

Class C Interference: Thi s is the sum of Class A and Cl ass B interference, 
which can occur either because of the presence of 
sources of mixed types (producing Class A, Class 
B emissions vis-a-vis t he receiver), and/or be­
cause any received emission is itself strictly 
Class C: there is always a build-up interval and a 
decayi ng transient period in any recei ver front-end 
reac tion to an incoming emission . Effecti ve Class 
C occurs. in this latter instance where the bui ld-up 
and decay times (at comparabl e levels} are them­
selves comparable . 

For Class A noise the transient decay period is negl igible vis-a~vis the 
emission's duration, while for Cl ass B interference it is highly dominant. 
See, for exampl e, Fig. (2. 1) , Part JI, following. [More precise, quantitative 
conditions specifying Cl ass A, or Class B types, vis-a-vis Cl ass C and each 
other, are derived in Section 7, Part II. ] 

The above three categories for interference, as it impact s on a typical 
(narrow-band) receiver, e.g . , as (the l inear, front-end of) that receiver 
responds to the EM environment, provide a useful way of describing the 
di fferent effects which these different categories have on reception. This 
categorization is useful because receiver response i s statistically dif­
ferent for each Class. As will be seen presently, these differences appear 
most generally and explicitly (as far as f i rst-order statistics are concerned 
cerned) i n the experimentally derived, and theoretically determined 
exceedance probabilities (PD's) [al so often cal led APD ' s (a posteriori pro­
bability distri butions , cf . Spaul ding, [1971]) ] , such as P1(X>X

0
), or 

P1 (£'>[0 ), wh ich are the respective probabilit ies that the instantaneous 
ampl itude, or instantaneous envel ope observed at the receiver ' s IF output 
exceed some threshold \• or €

0
, as these l atter are allowed to assume 
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values in the interval (-~ ... ), or (o,""). Furthermore, this categorization 
is recommended because the conditions governing the various Classes are 
simple to distinguish, cf. remarks in Section 7 (II). The conditi ons 
"spectrally broader than ", and "spectrally narrower than", cf. Fig. (l.l), 
are to be interpreted as "sufficiently broader or narrower", etc., where in 
any case, care is taken to refer to the definitions of Class A,B, etc., 
in terms of the residual transi ents vs. the "on"-time of the input emission 
which appears at the output of the IF stage of the receiver in question. 

It is instructive to extend our schema of classification further, in 
order to distinguish between man-made and natural interference, and 
between "intelligent" and "nonintelligent" emissions. Accordingly, we 
def ine: 

( i). "Inte 11 i gent" noise or interference as man-made and intended 
to convey a message or information of some sort; whereas, 

(ii). "Nonintelligent" noise or interference may be attributable 
to natural Phenomena, e.g., atmospheric noise or receiver noise, 
for example, or may be man-made, but conveys no intended commu­
nication, such as automobile ignition, or radiation from power 
lines, etc . 

We remark again [cf. Middleton, 1960, Sec. 1.3-5] that by definition, 
"noise" or "interference" is any undesired "signal" at or in the receiver, re­
gardless of origin.] The importance of distinguishing man-made from natural 
noise lies in the fact that the former is potentially controllable, some-

. times to the point of elimination, whereas the latter cannot be eliminated, 
at the source, and is usually not subject to control: one can seek only 
to investigate its effects on the communication process. Moreover, the 
distinction beb1een "intelligent" and "nonintelligent" is always signifi­
cant with regard to information transfer: the taxonomy of the former 
can have greatly different .iinpl ications and consequences from that of the 
latter. 

We can readily tabu l ate these different varieties of interference, 
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in a concise way as suggested in Table (l.l) below: 

Table l . l Interference Categories* and Classes 

Type "Intelli gent" Class ''Nonintelligent'' Class 

Man- 1 ) • Compatible A l ) . Automobile ignition B 
Made 

2). Incompatible A,B,G 2). Other EM emissions: A,B,C 
(Communication} power lines, elec-

tric tools, etc . 
[3}. Extra-terrestrial A,B,C] 

( Communication) 

Natura 1 1 } • Atmospheric B 

2}. Extra-terrestrial .[A]• 
solar, galactic, B,C 
cosmic radiation, 
etc. 

* The listing here is not intended to be exhaustive. 

We have included a further refinement through the term "compatible". By 
definition, compatible interference here is one that is appropriately 
matched spectral ly to the receiver band t,. fARI' in the sense of being equi­
valent to Class A interference vis-a-vis the receiver and occupying a 
spectral region in t,.fARI' and such as to produce ignorable transients 
in the ARI -stages. "Incompatible" may mean that t,. fN > t,.fARI (Class B}, or 
that only a portion of the incident emission is spectrally available to the 

receiver: Class- A again, e.g. t,. fN-effective < ,:,fARI, but now the inter­
ference is not wholly in the receiver band t,.fARI" Class C above in the 
Table reminds us that combinations of Class A and B noise can occur, as 
well. 

1.2 Earlier Work: 
For the most part, earlier efforts at modelling man-made and natural 

noise. (principally atmospheric noise} have produced a wide variety of 
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analytical results, often wi th t he virtue of mathematical simplicity, but 
severely l imi ted i n usefulness by lack of generality and physical insight, 
and a concommitant dependence on local, empirical data and circumstances . 
Two important excepti ons to the above are t he work of Furutsu and Ishida 
[1960] on oDtaining t he APD's (and associated probability densities [pdf's]) 
of atmospheric noise under rather broad cond itions, and the more recent 
!,tudies of Giordano [1970]. and Giordano and Haber [1972), si milarly di­
rect ed to atmospheric no ise. Both sets of intestigations, however, are 
{necessarily) constrained to Cl ass B types of interference (cf . Sec. (1.1) 
above), and neither attempts the canonical formul ation, which is a key 
feature of our current efforts [Middl eton, 1972, 1973, 1974, and . this 
Report; see also comments, Sec . 5. 3 (JI)] followi ng. This canonical formu­
lat i on allows us to apply the new. model s formally by Class(A,B, etc.) to 
all types of (EM) interference, unrestr icted in general structure by t he 
parti cul ar physica l mechanism invol ved. [These latter, of course, determine 
the generic properties of the model parameters, and must be specificall y 
i ntroduced into model building if the ad hoc and arbitrary empirici sm of 
much of the earl ier work is to be avoided.] For a more detailed revie~, 
of earli er work vis-a-vis th is newer approach , see Chapter 2 of Spauldi ng 
and Middleton [1975], and references therein. 

1.3 New Results: 

The principal new results of thi s study may be briefly introduced here, 
in contrast to our remarks above on previous work. Here we obta in canonical, 
analytical , first-order statistical model s of both Class A and Class B 
interference, specifical ly for the envelope (E) and phase (~) of the narrow­
band outpu t of the compos ite aperture-RF-.I F stages of a typical receiver. 
As noted above , these models are based on a general physical mechanism 
{cf. Section 2, Middleton [1 974], for example), providing, among other 
things, insight into the parameter structure, as wel l as contributing , 
in a broad way to the analytical form of the probability distribution (PD's) 
and probability densi ti es {pdf ' s) themsel ves, which are the principa l 
resul ts here. In addit i on, the general method of approximating the 
governing {1st-order ) characteristic functions (c . f . 's) .is described, which 
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2. RESULTS AND CONCLUSIONS 

Let us now summari ze in some detail the principal results of the analy­
si s in Part II of this Report . Accordingly, Section 2 here is organized 
as follows: first, we briefly consider the first-order resu~ts for the 
phase, w, of the narrow- band output of ARI-stages of a typical narrow-band 
receiver immersed in the general EM interference environment under analy­
sis here [cf. Section (1 . 1) above]. Next, we present in Section (2 .2) 
various results for the envelope statistics of Class A interference, with 
a similar presentation in Section (2.3) for the Class B cases . A number of 
comparisons with experiment are given in Section (2.4), both to demonstrate 
the canonical character of our models and to exhibit the excellent agree­
ment between theory and experiment which is obtainable by our present 
analytical approach . Section (2.5) treats the estimation of the physically­
based model parameters; Section (2.6) reviews such other results as moments, 
limiting forms, the existence of Hall models, conditions for the existence 
of Class A, B, and C noise types, etc. We conclude with remarks in Section 
(2.7) on uses, advantages, and limitations of these models and outline a 
number of next steps for their continuing analytical and experimental 
development. 

2.1 Phase Statistics: 
In the general case we may use (2.14), Part II, and the relation 

w1(w) = J~w1 (E,w)dE, to obtain the pdf, and the APO(= 1;w,(w)dw, (0<~<2~)), 
of the i nstantaneous phase~, which will not generally be uniform [on 
(0,2~)]. However, in the truly narrow-band situation of Section (2.2)11, 
we obtain the will-known uniform pdf [(2 . 21), Part II), e.g. w1(w)=l/2~, 
(0,2~)] as in the simpler, gaussian examples. [Higher-order statistics 

of w, on the other hand, are nonuniform and analytically much more complex: 
vide Section 9. 1. 2 of Middleton [1960] in the gaussian cases . ] Because 
of this first-order simplicity for the statistics of the phase we accor­
dingly concentrate our attention on the (first-order) statistics of the 
associated envelope, which, as expected, departs radically from a gaussian 
(i.e. rayleigh) behaviour, as our results following, and experiment as well, 
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amp1y demonstrate. 

2.2 Enve1ope Statistics: The APO and pdf for C1ass A Interference: 
Our principal analytical results here are: (i), the c.f.; (ii), the 

PD, or exceedance probability P1(E>&
0

); and (iii), the associated pdf, 
w1(8). These are respective1y* 

(c.f.): , a2 = [2n2A(l+rfl.)f 1 } 

cf. Eq. (3.3), Part II , 

( 2.1) 

with 2;~ = (m/AA+r;...)/(l+rp,), cf. (Eq. (3.5), Part II; and 

(PD): 
Am -£212i 
A e o mA 

mT 

cf. Eqs. (3. ?a,b), Part II; and 

(pdf): 

(O<f:. <oo), 
- 0 

(2.2) 

(Q _2 £ < oo) ' (2.3) 

cf. Eq. (4.2), Part II. Various curves of P1 ,w1 are given in Figs. (3 . l), 
(3.2), (4 .1), (4.2), Part II, showing typical behaviour for selected values 
of the (global) parameters (AA,rA). Here c,E..

0 
are normalized envelopes 

(2.4) 

cf. Eq. (3.1 ), Part II, where E
0 

is some preselected threshold value of the 
envelope E. (Note that our normalization introduces a third parameter n2A.) 

The parameters (AA,rA,n2A) which appear directly in our statistical 
results for P1 ,w1 we ca 11 "global II parameters. The phys ica 1 significance 

of these global parameters (AA,rA,n2A) is briefly stated: 

* See.the glossary of principal symbols, at the end of ·the Report. 
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1). · AA = the Impulsive Index (for Class A interference) : this is defined 
as the average number of emission "events II impinging on the 
receiver in question times the mean duration of a typical inter­
fering source emission [cf. Eqs. (2.38), (2.39), Part II and . 

associated discussipn] . The small~r AA' the fewer such events 
and/or their duration, so that the noise properties are then 
dominated by the wavefonn characteristics of a typical event . 
Loosely speaking , we say that such noise is "impulsive", although 
here the mean duration of events is sufficiently long to avoid 
generating noticeable transients in the receiver, i .e . we have 
Class A noise, as defined above, Section (1.1) . As AA is made 
large, one approaches gatlssian (or in the case of the envelope 
here), rayleigh statistics (cf. Sec. (2.4), Part II). 

2). rA - cr~/ n2A = the ratio of the intensity of the independent gaussian 
component a~ of the input interference including received 
11 front-end 11 noise, to the intensity n2A of the 11 impulsive 11

, 

non-gaussian (or rayleigh) component, cf . (3.la), Part II. A 
portion, cr~, of this normal component [cf. Sec. (2.3.l), Part II] 
arises from the cumulative effect of a large number of external 
sources, none of which is so strong as to be considered part 
of the 11 impulsive 11 interference, which is statistically the 
dominating effect (for small and moderate Indexes, AA) . 

3). n2A = the intensity of the above-mentioned 11 impulsive 11 component, cf . 
Eq. (3.la), Part II. 

[The rayleigh nature of P1, w1 for large Ihdexes, i.e., when AA + 00 , is seen 
~2 

at once from (2.2), (2.3), as then rA + 00 also, so· that 2crmA + 1, and 

·2 
) 

-£ w1 (£ A + 2E.e (2.5) 

in normalized form; se~ Section (2.4), Part II, for the general case.] 
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Characteristic behaviour of the APO Pl-A vs . cS
0

, cf. Figs. (3.1), (3.2) 
[and w1_A vs. SJ, is exhibited by the 11 rayleigh 11 form [constant slope n = -2, 
on the linear _by~0/2)log10(-loge[ ]) plots of P1_AJ for the comparatively 
small values of threshold e

0
, i.e., large values of P1(S > e0 )A, followed 

by a very steep rise, after which Pl-A bends over and approaches some 
asymptote with fixed slope n, 0 < n < 2, at large S

0 
(small P1_A) less than 

that of the rayl~igh behaviour for Pl-A in the 0.1-1.0 region. Thus, we 
have Pl-A+ e-il£'o , £

0 
+ 00 , (O<n<2). 

This limiting, finite, and bounded slope as S
0 

becomes very large, 

after the characteristic bend-over, reflects the physical condition that 
the interference process has finite total average energy; accordingly, no 
individual source, or finite collection of sources, can emit unbounded 
energy over any finite period. Furthermore, if the number of sources is 
finite, with finite power, e.g. no infinite instantaneous amplitudes (as 
is the case ultimately in practice), then the limiting slope n becomes in-

.finite at some extremely large value of e
0

. This effect can show up at 
comparatively small values of threshold £

0
, for example, with a single, 

finite source, of limited peak emissions, whereas with multiple sources the 

phenomenon will occur at larger £
0

. In any case, these (below-)bounded slopes 
(>O) insure, also; that all (firtfte) moments of the envelope exist5 as physically 
required by the condition of finite average emission energy. 

In our models, however, w~ assume that the number of potential 
emitting noise sources is infinite, although the probability of even a large 
number radiating at any given instant is very small, according to the 
fundamental assumption of poissonian "events", e.g., emissions, postulated 
here . In addition, we permit a distribution of emission levels (~ amplitude) 
per ~ource, where infinite magnitudes are possible, similarly with vanishing 
probabilities of occurrence. Thus, w~ may expect a nonzero limiting 

slope for Pl-A as £
0 

+ 00 : infinite amplitudes can occur, but with 
vanishing probability*. In practice, however, although the Impulsive Index 

"'The poissonian 11 rare-event 11 dominates any "rare-event" from the gaussian 
component. 
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(2.7a) 

-A8 00 Am -£2/2;2 
pl (c.>e- )B-II ~ L-2 l -1f. e o mB (2.7b) 

0 4G m=O m. 
. B 

• A a a A 

with A = Aa/2 G8, €
0 

= (£
0
N1)/2G8, where 

{ 

0 <a< 2; cf. Eq . (2.82), Part II, et seq.; (2.7c) 
A2 A A 2-a 

2amB = (m/A8+r• 8)/(l+r8), A8=( 4_a)A8, cf. Eq. (3.16a),Part II; (2.7d) 

G~=2-2(1+r8)-l(t~ + r13 ), cf . Eq. (3.12b) 1 Part II . (2 .7e) 

The associated pdf 1 s are (from Eqs. (4.3), (4 .4), Part II): 

(£ B 2- [ < oo) , (2 .8b) 

with 1F1, as usual, a confluent hypergeometric function [Middleton, 1960, 
Appendix A.1.2], so that the w1 (£) 8 = w1 (£) 8_1 for O 2. E- 2. c:8 , while 

w1(£
8

) = w1(£.)B-II when e.~£ 8. In Rart II, Figures (3.6), (3.7) show 
typical curves of the PD, (2.7), and Figures (4 .3), (4.4) for the pdf 
[(2.8.a,b)], for selected parameter values. Again, E., C:

0 
are normalized 

according to (3.2), Part II, e.g. like (2.4) above, with n2A replaced by 
n28 , etc. 

There are now six global parameters for our model : (Aa,a,A8,r 1

8 ,n28 ;NI), 
cf. Section 68 (Part II). The subset (A8, r8,n28 ) are, just for Class A 
interference above, respectively, 1), the Impulsive Index; 2), the ratio 
of the intensity of the independent gaussian component (a~) to the inten­
sity of the impulsive component ; and 3), the intensity of the impulsive 
component (n28 ), itself . These have the physical significance described 
above in Section 2.2. The additional parameters required here are: 
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4). 

5). 

A = 2r 1-a/2 
a r l+a 2 

(s~B) A = 
{ 2n ( 1 + r ' ) } a/ 2 B 

ar. "effective" Impulsive Index 
proportional to the Impulsive 
Index A

8
, cf . (2 .38), (2.39), Part 

II, which depends on the generic 
parameter a. Here ( 13~8 ) is the 
a-moment of the basic envelope of 
the output of the composite ARI 
stages, cf . Fig . (1.1) above, and 
E q • ( 2 . 8 7 d ) Pa rt I I. 

2B B 

= 2-µ I 3-µ 
a Y surface; Y vol 
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= spatial density-propagation para­
meter, cf. (2 .82), Part I-I et seq . . 
Hereµ, y are respectively the 

power law exponents associated 
with the range dependence of the 

density distribution of the pos­
sibly emitting sources, and their 
propagation. (See Eq . (2.61) et · 
seq; Section 2.5.2, Eq. (2.63, 
Part II). The parameter a pro­
vides an "effective" measure of 
the average source density with 
range . Thus, if we standardize, 
for example, the propagation law 
as y = 1 (the usual spherical 
spreading), we haveµ= 2-a, 
(O<a<2), for the source density 

. . . - µ a-2 ( R d1str,but1on crs"'A =:\ , c11.= = 
distance from a typ ical source to 
the receiver). Knowledge of a 
accordingly gives us a direct mea­

sure of effecti ve source density, 
and if y is known or measured, 
separately , then µ=2-ay gives us 



 
 
 

= 

the actual power l aw for as, cf. 
(2 . 63), Part II. [We shall exploit 
this relationship in detail in a 
later study in this series.] 

The scaling factor which insure that 

pl - I'wl - I yields the correct mean 
square envelope 2n28 (l+r8)(See Sec. 

( 3. 2A). 

the (normalized) "bend-over" point, 
at which the two (approximate} forms 
of PD (and pdf) are joined, accor­
ding to the procedures discussed in 
Section 3.2, and Eqs. (3 .18)-(3.20), 
cf. Fig. (3.5), Part II. This is 
an empirically determined point, re­
presenting the point of inflexion 
(for small P1_8) at which the experi­
mentally determined PD, or excee­

dance probability P1(£;E-0 ) 8_expt.'
2 

bends, e.g. at which d Pl-exot./d£B 
= a. Examples of this are indicated 

in the next Section, (2 .4). 

We note that without an (experimental) £8 we cannot predict the limiting 
form of the PD as e0 + 00 ; we can then only .obtain the subset of global 
parameters (Aa,a; r8,n28 ,NI)), cf. Section 6C (Part II) . Examples of 
this are the particular cases of atmospheric and automotive ignition noise 

shown in Figs. (2.3), (2.4), and interference from a fluourescent light, 
Fig . (2.5). 

The si-x parameters (Aa,a,A8 ,r8,n28.,N1) are all physically specified and 
measurable parameters in the analytical model (provided £8 is determined). 
Only £8 itself is an empirical parameter, without explicit quantitative 
relationship to the underlying physical mechanisms involved. This is be­

cause the simplest canonical approximation to the exact c.f . [Eq. (2.87), 
Part II] requires a two-part c.f.,approximate for one to the small and 
intermediate values of the envelope, and for the other, to the large values 
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of the envelope . This second c.f . , [and PD= P1(( > £
0

) 8_I
1
J, provides the 

needed "bending" of the APO curves for the rare events, as sketched in 
Fig. (3.5), Part II, for instance, and shown in some of the experimental 
examples of Section (2.4) following . 

Generally, unlike the Class A cases, Class B interference exhibits 
a much more gradual rise (as £

0 
becomes larger), also with increasing a. 

Similar upward displacement of the rayleigh sections (small ~
0

) of these 
APO curves occurs for an increasing gaussian component (r8), while i ncrea­
sing the Impulsive Index A8(~Aa) also acts to diminish the steepness of 
these curves as ~o is increased. The physical necessity for a suitable 
11 bend-over 11 at the larger values of e

0 
has already been discussed above in 

Section (2.2) for the Class A noise: a fixed, asymptotic slope (n>O) is 
required, to insure the existence of all moments, which in turn is demanded 
by the condition of finite total average energy. Again, increasing the 
Impulsive· Index and/or increasing the independent gaussian component (a~) 

eventually yields a wholly gaussian process (rayleigh, of course, in the 
envelope), as expected. 

2.4 Comparisons with Experiment: 
In this subsection we include a variety of comparisons of our theore­

tical models with experiment, for both Class A and. Class B interference, 
cf. Figs. (2.1)-(2.8) following. Four significant features are at once 
evident: 

(1). The agreement between theory and experiment is excellent, i.e., 
the approximating forms are effective, analytical relations for 
predicting the desired f i rst-order statistics; 

(2). The caaonical nature of our models is demonstrated: the fonn of 
the results [here APD's: P1(E>E.

0
),J, is invariant of the speci­

fic source mechanism, whether ignition noise, atmospherics, 
flourescent light, etc., man-made or natural, within the distinct 
Class A, or B; 

(3) . Class A and Class B interference are observeably and quantita­
tively different noise types (vis-a-vis the narrow- band receiver 
used). 
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Figure 2.2. Comparison of measured envelope distribution, P1(e' > eo)A, with 
Class A model, cf. (2.2) . Interference (probably) from nearby 
~owerline, produced by some kind of equipment fed by the line 
[ data from Bo 1 ton ( 1972)] . 
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Figure 2.3 . Comparison of measured envelope distribution, P1 (€> e'o)s, of 
man-made interference (primarily automotiv·e ign.ition noise) with 
Class B model; cf. (2.7a). [Data from Spaulding and Espeland · 
(1971).] 
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Comparison of measured envelope distribution, P1 (€'> ~o)B, of 
atmospheric noise with Class B model, cf. (2.7a). [Data from 
Espeland and Spaulding (1970).J 
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Figure 2.5. Comparison of measured envelope distribution, P1 (8' > S'o)B of 
man-made interference (fluorescent lights in mine shop office) 
with Class B model, cf. (2.7a). [Data from Adams et al. (1974)J 
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Comparison of measured envelope distribution ·pi(§ > t\) s of at­
mospheric noise with full Class B model, cf. (2.7a,b). [Data 
f rom Esperland and Spaulding (1970), p. 42.] 
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(4). The governing, physically structured parameters of these PO's and 
pdf's which are likewise also canonical, can be obtained from 
approximate experimental data (usually expressed as an APO). 

The importance of the canonical character of these models cannot be over­
stressed: with such models we avoid the very limited and nonpredictive 
quality of all ad hoc models; whose structure must be verified and whose 
parameters provide little or no physical insight into the underlying pro-

'· 
cess itself. Second, because these models a're derived from physical prin-
ciples, their parameters are physically defined, are consequently canonical, 
and are quantifiable in specific instances from empirical data. Their 
structure, however, is independent of any particular meas~rement. 

Figures (2.1) and (2.2) show,APO's, e.g. P1(€>~)A vs. the normalized 
envelope threshold €

0
, for Class A interference, respectively from ore­

crushing machining in a mine (data from Adams, Bensema, and Kanda [1974]), and 
and from a powerline (from E.C. Bolton, [1972]). Observe the characteristic 
very steep rise following the rayleigh region (constant slope), followed 
in turn by the expected bending over of the APO for the rarer "events", in 
each case. [Similar examples of Class A interference, but from man-made, 
intelligent sources, have also been observed; current experimental studies 
at ITS, Boulder, are underway to obtain additional such data.] 

Figures 2.3-2 . 5 show APD's of Class B interference, respectively for 
(i), primarily urban automative ignition noise [Spaulding and Espeland, 
1971]; (ii), atmospheric noise [Espeland and Spaulding, 1970]; (iii), 
flourescent lights, in a mine shop office [Adams et al, ' 1974]. Observe 
the more gradual departure from the straight-line rayleigh region, a~d the 
continuing rise, with constantly increasing slope in the Figures (which is 
equivalent to n-+ 0 for exp(-a2c:;), as £

0
-+ 00 ) . [In these particular 

examples the inevitable "bend over" points eB, lie outside the range of 
data taken, e.g. for P1_B<10- 6 , so that we are ·ab.le to obtain all the 
gliobal parameters, except for A8 , cf. Sec. 6C, Part II.] This is 
not the case, however, for the Class B examples of Figs . (2.6)-(2.8), 
e.g., respectively for (i), ignition noise from vehicles moving on a free­
way [Shephard, 1974]; (ii); atmospheric noise [Espeland and Spaulding, 1970]; 
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and (iii), machinery noise in a coal mine [Bensema, Kanda, and Adams, 1974]. 
Here the required bend-over of the APD's is exhibited, along with the in­
flexion points, E8. In these cases we can obtain numerical estimates 
all the six global (and hence all the generic) parameters charac-
teristic of each example of interference*, man-:-rnade or natural, by the 

methods briefly cited below in Section 2.5, and in more technical detail 
in Section 6, Part II. 

Figures (2.1)-(2.8) are typical of Class A and Class B interference, 
man-made and natural. They are not intended to be exhaustive. Extensive 
additional APO data (mostly Class B) are available, for example in 

Espeland and Spaulding [1970], and Bensema, Kanda and Adams [1974], for 
example. [We nave not included Class CAPO data, although these appear 
in the references cited, because we limit our analysis and comparisons 
here to the essentially 11 pure" Class A and Class B interference environ­
ment, some (analytical) conditions for which are examined in Sec. 7, Part 
II.] Again, a striking feature of the present approach is its ability 
to handle an unlimited variety of noise sources, as long as the dominating 
Class is identified. 

2.5 Remarks on the Estimation of Model Parameters: 

We distinguish two sets of model parameters: (a), the so-called global 
parameters, which appear explicitly in the analytical forms for the APD's, 
etc. and (b) generic parameters, .which are defined directly in terms of the 
underlying canonical, statistical -physical model. To some extent, both 
sets overlap. In any case, once the global parameters have been estimated 
from the data, which usually requires the calculation of the (first-order) 
APO, the generic parameters can be calculated from them. 

The method for obtaining the global parameters is described in detail 
in Section 6, Part II, and will not be repeated here. However, for con­
venience, we list the two sets of parameters for each interference Class. 
These are [from Tables (6 . 1 ), (6.2), Part II]: 

*See footnote added Po 37. 
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Class A: Global: 

Class 8: Global : 

(2.9) 

2 (Aa \ /A2) (Aa,a,A8,r8,n28 ;NI); Generic: (A8,a,crG, 808 ;,,808 ,NI) 
(2.10) 

where , in addition to those parameters described in Sections (2.2), (2 .3) 
A2 A2 

above, (80A),(808) are the mean square envelopes of the basic waveforms 
emitted from the ARI receiver stage, cf . Eqs. (2.64a,b), Part II. Class A 
noise is described by a three- parameter model, while Class 8 interference 
is a six-parameter model globally, and similarly a fjve-parameter 
model generically, since the inflexion point (£8) i s empirical and not 
deriveable here from the fundamental physical model itself. Again, we 
stress the fact that (except for& 8) al l model parameters are physically 
structured and hence are canonical in form; they are not ad hoc quantities, 
of strictly limited application.* 

' Finally, from an examination of the Class B model parameters vis-a-vis 

those of Class A, w~ note that (AA,A8), (rA,ri/, and (n2A,n28 ) are each 
identical types, of equivalent physical interpretation. The remaining 
Class 8 parameters are (a,(§~8)), which provide additional .information 
about the emitting sources, e.g., source density, etc . ., basic waveshape . 
Accordingly, it is suggested that to assess the interference environment· 
more fully, in addition to Class A measurements, when possible ARI receiver 
bandwidths also be selected, to produce Class 8 interference at the output 

of the ARI - stage, so as to obtain a and (s~8), in addition to (As,cr~,(B~8)), 
which are analogous to the corresponding Class A set, cf. (2.9). [These 
(A8,cr~,(s~8)) are, of course, modified from these Class A counterparts by 
this choice of ARI bandwidth.] In any case, the important new parameter, 
a, is obtained, which gives us an ~stimate of an effective mean source 
density with range, and the actual one (with range), if the governing pro­
pagation law (y) is also known, or measured, cf. comments following (2.8b) 
above. Further information about source distributions may be obtained with 
the help of steerable, directional beam patterns, cf . Section (2.5), Part 
II. [We shall reserve these questions, in detail, to a succeeding study . ] 

* Nr is not fully dependent .on the other generic parameters and is indepen­
dent of £8. Hence it may be regarded as generic, cf . Sec . 68, 6C. 
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2. 6 Some Additional Results: 

A brief review of additional results obtained in this Report is now 
presented. We consider: 

(1 ) . First-Order Moments,<£e) : These are obtained analytically for both 
Class A and B noise in Section 5 (Part II). They exist for all 
(real,finite) e, although the (approximate) expressions for the 
Class B cases are necessarily more complex then for Class A. 
Al ternative, exact, closed- form relations are also obtained for 
the even integer moments (e=2,4,6, ... ), cf . Section 5.2 (Part 
II). [See also the discussion in Section 5.3 (Part II).] 

(2). Conditions for Class A,B,C Noise: More precise, analytical conditions 

are derived in Section 7 (Part II) mutually to distinguish Class 
A, B, and C interference, than those qualitatively discussed 
in Section (1. 1) above. In general, if the Impulsive Index of 
one component (A or B) greatly exceeds that of the other (B or 
A), then the former (A or B) dominates, and we have in practice 

Class A, or B noise. When this is not the case, the result is·the 
the more general, Class C interference (which we shall treat 
in a subsequent study). 

(3). Approach to Rayleigh Stati stics: This occurs when either, or both, 
the Impulsive Index or the independent gaussian component be­
comes very large, cf. Section 2.4, Part II. (This is a con­
sequence of the Central Limit Theorem in probability [cf. 
Section 7.7- 3, Middleton, 1960]. 

(4). Hall Models: A primary empirical model, constructed earlier by 
Hall [1966], is frequently used for ad hoc representations of 
the interference environment. Our Class B results, upon dele­
tion of the additive gaussian component (both from the impulsive 
and independent sources), can be shown to exhibit a Hall form, 

with Hall parameter (eHall=2) . [See Section 3.2B, Part II; 
al so, Spaulding and Middl eton [1975], Chapter 2.] Such models, 
however, have a variety of draw- backs, among them being their 
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ad hoc character, with the parameter(s) entirely empirical, and 
the non-existence of the second moment, in many instances, as 
well as the non-existence of all moments <te>, where e>eHal 1-l. 
Their principal advantage is analytic simplicity, ·which, how­
ever, does not .ultimately compete with the physical-statistical 
models of the types developed here . These, though analytically 
much more involved, are nonetheless still tractable for the 
purposes of source and system analysis, cf. Spaulding and 
Middleton [1975]. No Hall models are deriveable from Class A 
models, however. 

(5). Class A vs. Class B Interference: Some Summary Remarks: A ·concise 
comparison of some of the salient properties of Class A and 
Class B interference ~s presented in Table (2 .1): 

Table 2. 1 Class A vs . Class B Interference 

Class A Class B 

1. New Models and Results; 

3. A11 Moments (se), 02e exist 
4. Insensitive to Source Distribu­

tion in Space and Propagation Law, 
Canonical Forms; 

5. Waveform in IF Output: "Gaps" in 
Time [P1 (£=0)>0); 

6. No Gaps in Time if Gaussian 
Background 

f x Gauss P.O. ) as AA+00
; 

\.[ Rayleigh P. O. and/or a~+oo 

7. No Hall Models Exist; 
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"Classical 11 (20 Yrs. Old), But New 
Approach; New Results 
6 Global and Generic Parameters 

(Aa,a,AB2r13•rl._2A•Nr1 
(AB' at ,aG ,(B~B) .(soB) ,Nr) 

t 8: ~mpi~ical paramater of approx-
1mat1on 

All moments {se), 02S exist 
Sensitive to Source Distribution and 
Propagation Law (a); Canonical 
Forms; 
Waveform in IF Output: no "Gaps II in 
Time [e.g. P(e=O)=O]; 
No Gaps in Time (a~O); 

{ 
X Gauss P. D. ) as (Aa ,AB)+oo; 
[ Rayleigh P.O. and/or a~ 

Hall Models for Special Values of~; 
(Gauss Component Absent) 



 
 
 
 

2.7 General Comments; Next Steps: 

In the preceeding sections we have summarized the principal results of 
our present study of the (first-order) envelope and phase statistics of 
man-made and natural electromagnetic interference, whatever its physical 
origins and characteristics. These analytical models, of Class A and B 
interference, are mathematically tractible and canonical in application: 
the forms of the results, and the number, type, and general structure of 
the associated parameters, are invariant of the particular source. Of 
course, particular parameter values do depend on the specific properties 
of the particular source involved. These are estimated in turn, by general 
procedures outlined here., cf. Section 2.5 above, and Section 6, Part II 
from experimental data, principally the APD [= exceedance probability 

P1(£>c.
0
)2. The canonical character of these models and their parameters 

is derived from the general underlying physical structure upon which the 
models are based. This, in turn, is itself a general space-time model of 
propagation, source distribution, and emission [Middleton, 1974, and Section 
2, and principally Secs. 2.1,2,5, Part II here]. 

As expected, the resulting statistics of amplitude and envelope are 
highly nongaussian (or nonrayleigh), as the analysis and examples in Part 

II and the experimental results of Section (2.4) indicate. This neces­
sarily has a critical effect on conventional receiver and sy~tem operation, 
which may be in conventional usage, (approximately) optimized, e.g. 
11matched 11

, to desired signals in gaussian noise (so-called correlation 
receivers and their extensions), but which is radically suboptimum for 
this kind of electromagnetic environment [Spaulding and Middleton, 1975]. 

Here we are concerned with first-order interference statistics them­
selves, not only for purposes of system design, optimization, and comparison, 
but also for the tasks of measuring and assessing the properties of EM 
interference fields. Excellent agreement between model and observation has 
been found, as the examples of Section 2.4 above demonstrate. In addition, 
explicit ·numerical results are also obtained for the global and generic 
parameters of the interference phenomenon in question, e.g., automotive 
ignition noise, communications, atmospherics, machinery, power 1 ine 
emissions and the like. These parameter values, along with the basic 
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physical structure, permit us to deduce general properties of the inter­
ference field, such as average source distribution in space (a), emission 
density in time (Impulsive Index, A), mean intensity (n2L the amount 
of external gaussian noise (a~), etc., and, of course, the associated 
APO, or exceeda.nce probability P1(c..>t:

0
), as well as various moments ((£ 8>) 

of the interference process . 

First- order statistics of these highly nongaussian EM noise environ-
• 

ments as e~bodied in the APO, P1(E> £
0
), P1(X>X

0
), for example are, 

however, minimal for the prope·r treatment of the general class of communi­
cation systems operating in such environments. In many situations the 
performance bounds established from these first-order statistics are quite 
adequate [the independent sample cases of Spaulding and Middleton, 1975, 
for example], where higher-order time structures are not significant. 
However, when they are, one clearly needs appropriate extensions of the 
present models. In addition, the joint statistics of signals and noise 
are also required, of first- and higher-orders as well. Therefore, as 
part of our continuing effort to ·develop an applicable analytic description 
of --.the EM nongaussian interference environment, we present the following 
program, in approximate order of undertakfog: 

I. Interference Models (present series): 

1). Report, Part III: First-order statistics of the instantaneous 
amplitude (X) for Class B noise , e.g . , P1(X>X

0
)8, w1(X>X

0
)8, 

moments, parameter estimates, etc. (now underway). 
2). Report, Part IV : First-order statistics of Class C noise, 

envelope (E) and instantaneous amplitude (X), e.g . P1(X>X
0

)c, 
P1 (C>~)c, etc., with experimental comparisons . 

3). Report (possibly Part V) on measurements, parameter estimates, 
and description of EM interference environments. This will include 
evaluation of selected, earlier data [for example, Furutsu and 
Ishida, l .960~, Espeland and Spaulding, 1970; Shephard, 1974], and 

comparisons with our models. This may also include reconmenda­
tions for van usage and area coverage, etc. 

4). Report, on simulation of EM environments, to establish robustness 
and sensitivity of the various models to modifications in their 
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structure. 
5). Report, on various special problems and extensions of Part I-IV, 

for example, to develop the analysis for Class B noise when 
a= O,a ~ 2, including other source distributions. Also, we 
need to examine the case of a single source at known positions 
[Shephard, . 1974]. The role of the 11corrections 11 [Middleton, 1974] 

requires further clarification, etc. 
6). Report on mean and variance of 11 zero-crossings 11 for Class A,B,C 

interference. These statistics are useful adjuncts to the APD's 
to provide some insight into the time-structure of the inter­
ference. 

7) . Report on the first-order statistics (envelope, phase, and instan­
taneous amplitude) of Class A and B interference with a general, 
additive signal present at the input to the typical narrowba~d 
receiver. 

8). Report on the development of higher-order (principally 2nd-order) 
pdf's for Class A, B, C noise; possibly including signals as 
well. 

II. Performance and Optimum Systems in General EM Interference Environ­
ments: (series with Spaulding and Middleton [1975]). 

1). Report (Part II): Optimum reception with Class B interference; 
this is now underway); 

2). Report (Part III): extension of the above to Class C cases; 
3). Report, on the analysis of other specific systems in Class A 

and B noise; the improvement of performance bounds~ the speci­
fication of LOBO receiver structures, and further extensions of 

the evaluation process. 

These lists are not, of course, complete, nor will the program itself 
necessarily be carried out in the order indicated, since some of these 
topics may shift in priority as time goes on. In any case, however, the 
general goal of developing an applicable analytical theory, tested by 
experiment, for these general classes of man-made and natural, highly 
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nongaussian, electromagnetic . noise or interference processes, may be con­
sidered a major priority task for the future in the science and technology 
of telecorrmunications. 
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h I _ 2/ 2 *Note t at rs = oG n2B, where crG is the independent gaussi .an component, 
2 2 which is different from the total gauss component ~crG = crG + b2aAB, cf., eq. 

(2.88a). Thus, in Figs. 2.6, 2.8 we must calculate n28 from the data curve 
and then obtain cr~ from rs. From the other parameters in these figures all 

· the remaining generic parameters . are then readily found. On the other hand, 
for Fig . 2.7 n2B occurs at O dB, by normalization. Since P1=0 . 36 determines 
the total gauss component (~cr~ for Class B, cr~ for Class A noise), from the 
data of Fig. 2.7 we get ~a~; -17 dB (=2 . 10- 2 ) and ~a~= r~n2B = 10 10910 

(8.10- 3
); -21 dB, which gives in turn b2aA8 ; 0.012 (in units of n28 ) . 

Again, all remaining generic parameters are now obtainable, from this and 
the other parameter data on Fig. 2.7 (also in units of n28 here). 
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PART II. ANALYSIS 

l . INTRODUCTION TO THE ANALYSIS 

Part II of this Report is devoted to the analytical details of our sta­
tistical - physical interference models, where in particular we are concerned 
with the first-order probability density functions (pdf ' s) w1 (E) ,w1 (£) and 
exceedance probabilities (PD's) P1(E > E

0
), P1(t: > ~

0
) of the envelope of 

the input noise process following the combined .(linear) aperture - RF - IF 
(or ARI) filtering stages of a typical narrow- band receiver. As we see 
bel ow, three principa l classes of interference process are defined : Class 
A noise, where (in qualitative language) the input noise is spectrally 
narrower than the ARI-filter at the receiver's front-end; Class B inter­
ference, where the reverse is true - this input process is spectrally broad 
vis-a-vis the ARI filter; and a general Class C noise, which consists of the 
sum of Class A and Class B components. 

For Part II the material is organized as follows: In Section 2 below 
we develop the various forms of the first-order characteristic function 
(c . f.) for the envelope after reception in the ARI fi l ter of the typical 
receiver. Included here are the Class A, B, and C noise types, with their 
associated descriptive parameters, and the modifications introduced by the 
geometrical effects of source distribution and propagation law. Section 3 
is devoted to the determination of the envelope exceedance probabilities, 
for Class A and B interference, and Section 4 gives the associated pdf's. 
In Section 5 we determine the moments (c.13), O ~ s, and the conditions 
for their existence; Section 6 provides procedures for estimating the basic 
parameters of the various noise model s from empirical data; and finallly, in 
Section 7, we give quantitative, practical conditions for the applicability 
of our Class A or Class B models. 
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i. FORMULATION : THE CHARACTERISTIC FUNCTION 

In this section we obtain the general forms of the first-order charac­
teristic functions (c.f. 1 s) and probability densities (p.d . 's) and distri ­
butions (P . O. 1 s) for the "impulsive" interference of the various man-made 
and natural sources described in Part I above . 

Our first step is to derive the desired general forms of the charac­
teristic functions for the envelope of the received wave. The next step 
is to take advantage of the various physical conditions of the model, fur­
ther to reduce our resul ts to the particular expressions appropriate to 
the Class A and Class B interference, which can then be put in forms suitable 
for evaluation. A number of important parameters of these interference 
processes appear in the analysis and have important physical implications, 

· which we shall develop further in the subsequent sections. 

2.1 The Basic Statistical Model: 
We assume as before [Middleton, 1974] for our basic model that there 

is an infinite number of potential sources in a source domain A, and that 
while the basic waveforms emitted all have the same form, their scale, 
durations, frequencies, etc., may be randomly distributed . Our fundamental 
postulate of this basic interference model is that: (;-), the locations 
of the various possible emitting sources are poisson distributed in space; 
(ii), the emission times of the possible sources are similarly poisson 
distributed in time. Physically, this means that the sources are stati­
stically independent, both in location and emission. Thus, by a slight 
generalization of earlier results [Middleton ; 1967, 1972b, 197~], we can 
write for the first-order characteristic function of the instantaneous 
amplitude, X, of the received interference process 

f.'. isU(t;A,£, . .. ) l \e - ~ - ( 2. l ) 

Here e is an epoch, indicating vis-a-vis the receiver's (i.e. observer's) 
time t when a source may emit. The~= (;l.,6,4>) are coordinates, or a 
vector magnitude , appropriate to the geomtry of the source field, located 
in the region A, and of the -receiver, with d;l. (= dAd4>) for a surface element; ,.,,,., 

(= d;l.d6d4>) for a volume element. The quantity p(1 ,E) is the "process 
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density" of this joint space-time poisson interference process, and is non­
negative, and can be regarded as proportional to a probability density 
[cf. (2.28) below]. The< )(i denotes a statistical average, e.g. 

f[a][ Jw1 (~)~, over various random parameters(~) which may be pertinent 
to-our source model, such as doppler, source amplitude and duration, etc. 

The U are the typical waveforms of the emitting sources, after recep­

tion by the (assumed linear) aperture - RF - IF stages of our "narrow-band" 
receiver. The received process Xis given by 

X(t) = ~ U(tll)dN(I), 
Z(=Axe) ..,., ...., ... 

(2 .2) 

where the {dN} are a poisson point process (inland~), such that 

(X(t)) =;; U(dN) = (fa(~,i)U(t;~,i,~)<Jl df\ , 
- A ~ 

(2.3a) 

is the process mean (if any), and 

(2.3b) 

is the general second-moment of X(t), under our basic poisson assumption 
above of source location and emission.* Higher moments may be similarly 
obtained. 

Since we are interested here in the envelope of the received process X, 
which is always narrow-band, in as much as the receiver is itself narrow­
band, we have to consider the new random variables X , X , representing the 

· C S 
slowly-varying "in-phase" and 11 out-of-phase 11 components of X, viz., 

*Fora general development of process statistics, not necessarily limited to 
the poisson case of independent sources, see, for example, recent work 
[Middleton,1974,1975b] in the development of generalized scattering models. 
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where now w0 (=2rrf
0

) is the central (angular) frequency of the final (~IF) 
stage of the receiver, and 

(2.4b) 

with 

Xe = E cos iµ, \ = E sin iµ • 

Here E, iµ are, respectively the envelope and phase of the narrow band re­
ceived process X. In functiona l form, cf. (2 .2), we can write alternatively 

(2.5a) 

(2.5b) 

in terms of an envelope and phase, where 

(2.5c) 

Comparing (2.5) and (2.4) we see at once that 

(Xc·•Xs)= ~(Uc,Us)dN(?) (2.6a) 

"" 
- iiµ f -i~ (ti£) 

Ee s = e(tlZ)e s dN(Z) z - .,., 
"" 

(2 .6b) 

The characteristic function which we need now is for the random vari­
ables Xe, Xs, namely, 

which is the two-dimensional generalization of (2.1) required here. 
corresponding p.d .. is 

jj(( - i~Xc- inX 2 W1(Xc,Xs) = 1 F1(ie,in)X ,X e sd~dn/(2rrJ 
-~ C S 
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Also, we have, formally, the following expression for the joint first­
order density of envelope E and phase ljJ, in terms of th.e in-phase and out­
of-phase components Xc,Xs of X. 

E > 0 

(2.9) 
where w1 , . (2.8), is now 

(2.9a) 
with F1 therein given by (2.7) 

To proceed further, we make use of a number of results from our earlier 
development of the physical model [Sec. 2.2, Middleton, 1974], to write for 
the narrow-band basic waveform U (at the output of the receiver's IF) 

(2.10) 

where 8
0 

(>O) is an envelope, whose detai.led structure we shall consider in 
more detail later and where l is a phase, which has the form 

(2.lOa) 

in which ~S' ~T' ~Rare respectively the typical source phase, and the 
phase angles of the ~ource (T) and receiver (R), complex beam patterns 
[cf. Sec . 2.5 below]. [The quantity £d(=µd-l) is the sum of the relative 
dopplers between sources and the receiver, and is always small, 0(10-S,- 6), 

in our applications, · viz~ £ct= 2v/c = 0(10-6) for v = 0(105 mph) so that the 
envelope B

0 
is independent of £d. 

From the fact that U b = Uccos w
0

t+U sin wt, we see at once from (2.10) n s o · 
that 
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I 

where ~s = ~s+qiT+qiR . We now use polar coordinates 

1; = r cos qi n = r sin 4>; Ja(1; , n)/a(r,4>)J = r ( 2. 12a) 

and transform from {i; , n)-space to (r,4>)-space in (2.9a). Thus, we see that 

di;dn F1(il;,in)x X = r F1(i r,4>)drd4> , O < r < ~; O..::. qi< 2~. (2 .12b) 
C; S 

~ 

The c.f. F1 is F1(ir cos 4> ,ir sin t )x X , (2 .7), which with (2.11) now 
C ' S reduces expl icitly to 

(2.13) 
The first-order p.d. for the envelope and phase (E,~) , (2.9), with the help 
of (2.12b), . (2.9a), becomes 

E > 0, 0..::. ~ < 2~ . (2.14) 

This is as far as we can go without further appeal to the physical 
model, in particular, to the statistics governing the locations ('\,~) of the 
sources and the epoch (i) oi interference emissions. We note, however, that 
the p.d . for the envelope alone is readily found, e.g.* the integration 
over~ (in 0,2~), is well - known [cf. (2. 19) fo l lowing)] : 

(2 .15) 

-*-
As usual, functi ons of different arguments are different functions, e.g. 
w1(E)!W1(~)!W1(xc,Xs), et~ . , unless it is otherwise stated . 
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In addition, we have respectively for the P.O., and exceedance probability, 
or APO (a posterior probability here, that E exceeds a level E

0
(>0),) defined 

as usual by 

f
E

0 

o1(E
0

) = w1(E)dE 
0 

the following results, where we have used 

viz: 

E > 0 o-

(2. 16) 

( 2. 16a) 

(2.17a) 

(2.17b) 

Our results (2. 13)-(2.17) are generalizations of earlier results 
[Furutsu and Ishida, 1960; Middleton, 1972b; Giordano, 1970], where our 
basic assumptions, so far, postulate only poisson distributions of source 
location and emissions, e.g. essentially independent sources. No restric­
tions on the specific character of the statistics of the source parameters 
are as yet introduced. It is for this reason that the characteristic 

A 

function F1 depends on~, as wel l as on r . 

2. 2 First Reduction of the c.f. F1: The Narrow- Band Receiver Condition 
At this point we invoke certain properties of the basic waveform 

B0cos[~~+µdw0 (A+e)-w0 edt-~J .which appears in the exponent in the integrand 
of (2. 13). We use the facts that (i), B

0
, ~s' are both slowly-varying 

functions of A; and (ii), the process density p(A,E) is likewise slowly 
~ 

varying, vis-a-vis cos w0 µdA' sin w
0

µdA. Employing the familiar expansion 
in Bessel functions, 
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00 

exp[ia cos~]= l im~mJm(a) cos m~, 
m=O 

(2.18) 

in (2.13), we see that only for m=O does the integrand (containing the 
exponent') .. contribute, as all the other tenns are highly oscillatory in 
regions where 8

0
, ~s' and pare slowly changing with A, The result is the 

important simplification -0f (2.13) to 

F1(ir,o) = ex~~_,(°p(~.<)[J0 (r80[t,~1E,~J -1 ]>
0
djdE} = F1(ir), (2.19) 

"" 

which is valid, provided that Unb is truly narrow-band, e.g. 6fARI << f
0

: 

the (composite) bandwidth of the (linear) aperture-RF-IF receiver stages is 
much less than the (IF) central frequency f

0
. [The result (2.19) is now in 

the same form as obtained in earlier work, but still somewhat more .general 
in detail.] 

The important analytic feature of (2 .19) is that now, because of the 
~ 

narrow-band receiver condition 6fARI << f
0

, the c.f. F1 is independent of 
i=_ Accordingly, we see that (2.14), (2.15), (2. 17} reduce at once to the 
simpler forms (with the help of (2.18): 

(2.20) 

with 

(2. 21) 

and 

(2.22a) 

(2.22b) 
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• 
Respectively for the PD and exceedance probability,. P, for these 

narrow-band interference waves (in the n. b. receiver), the first-order .p .. d. 
of phase~ is seen to be uniform over an (IF) cycle (T

0 
= l/f

0
) . The 

results (2.20)-(2.22b) are formally identical to those derived by Furutsu 
and Ishida [1960, Eqs. (2.9)-(2. 11)], and by Giordano [1970], and, Giordano 

" and Haber [1972], for example. Furthermore, F1(ir) is clearly a Hankel 
transform of w1(E), from (2.21) and the fact that the inverse of (2.21) is 

(2 . 23) 

[This relation is easily established with the help of 

(2.24) 

cf. p. 943, Morse and Feshbach [1953], applied· to (J
0

(rE))E' with (2.21) 
for w1(E).] An equivalent expression, now in terms of the average over E 
and w, is obtained at once from the fact that 

[cf. (2.2.)], and from the relation (2.23), viz: 

(2.24b) 

" from which is seen· the fact that F1 here is also the joint c.f. of envelope 
and phase, as expected. We shall use this result later in the calculation 
of moments, (cf. Sec. 5.2). 

Next, let us look at the process density p(A,~): we write ,,.. 
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(2.29) 

where explicitly we have from earlier work [Middleton, 1972b, 1974] for the 
received envelope 8

0 
of a typical emission 

where 

C2R,c2T = (complex) beam patterns of receiver and typical 
interfering source; 

A
0
T = (real) envelope of the source emission; 

(2.30) 

g(A) = a geometric factor, which describes the propagation law, .,., 

from source to receiver (which are assumed to be in each 
other 1 s far field). 

· ( 2. 30a) 

[For this receiver, although the aperture may be comparatively broad-band, 
as may be that of the source, it is the narrowest filter, of the combination 
(aperture x RF x IF) which is controlling. By assumption, one or more of 

these filters is very narrow vis-a-vis f
0

, cf. the corrments following (2.19), 
so that the eff.ecti ve aperture response here is determined essentially by 
the response at (and about) f

0
, cf. (2.30).J 

Next we let 

T5 = duration of a typical emission, at the IF output 
(which may be ST); (2.31a) 

this can generally be a random variable (one of the a in (2.29)). We now 
"" 

1 et 

t-A-~; y = T sz , (2.31b) 

where Ts is the mean duration of an emission (at the IF output), and z 
is dimensionless, to rewrite (2.29) as 
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'(T /T ) 
IT= AAA<,TTs~o s swl(t-,-Tsz)e{Jo[rBO(z.~;~')]-l} Ts·~·~dz (2.32) 

all (t e T). 
,.. 

Here~· are' any other random parameters in B
0

, e.g. ampli~ude of the basic 
emission envelope B

0 
(in the receiver, at output of IF); B0 itself is 

B
0
(zTs,i;i' ). Further reduction is obtained by writing 

where 

(2 .33) 

A
0 

= (peak) amplitude of the received envelope (at output of the IF); 
e

0
Y = a limiting 11 voltage 11 setting (in suitable dimensions), at which 

the receiver will respond to a test signal, above the receiver 
noise,* at output of the IF; 

u
0
(t) = normalized envelope wave form at output of receiver IF. 

Note from (2.33) that the generic waveform u
0

(z) is, of course, re­
quired to vanish outside the tim~ interval during which the typical 
emission ("'A

0
e

0 
u

0
) is 11 on 11

, e.g. for T z > Ts, T z < 0. 

(2.34) 

y s ,.. s 
Finally, let us multiply and divide I by T, the observation period, 

and write (2.32) as 
T /T 

IT= (A~E,T) Ts/f
0 

s \Tw1(t-:>--zTs);}[J
0

(rB
0
(z,~lf ))-1]\, · T dz, 

\ 1;§, '~' s 

(2.34) 

all (t e T). Also, we _see that 

* The precise definition of e0 y can be determined by standard decision­
theoretical techniques of detection [Middleton, 1.960; Chapters 18, 19], 
with some appropriate c~oice of false alarm rate . 
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-vT: av. no. of emissions per second, in the 
observation period T, 
11 density 11 of the process [cf. Sec . 11 . 2; Eq. 
(11.74), Middleton, 1960]: (av. no. of emis­
sions per second)x(mean duration of an emis­
sion). 

(2. 35a) 

(2.35b) 

Equation (2 . 34) is a generalization of earlier results, which permi ts the 
treatment of nonstationary regimes . 

At this point we restrict our attention to the most corrrnon situation 
of "local stationarity", whereby it is assumed that there are no changes 
in average source numbers and emission properties during the observation 
period T, and that the emission prdbability w1(i) is uniform; e.g. Tw1_~ = 1, 
for all allowed values of z. Thus, (2.34) reduces to the basic form 

[uniform p.d . of i]: 

(2.36) 
which is the one from which we develop our subsequent analysis (beginning 
with (2.38)) in this Report. Furthermore, for the idealized steady-state 
si tuation where T +.., ,we write 

1 im 
T+<» 

-
\I = \I T .., A T+<» e:, T (= A lim (A /r)) } . 

and, accordingly, (2.36) becomes 

[uniform p.d. of e] : 
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This limiting form of (2.36) is the expression which we shall exploit in 
the remainder of the study. 

The quantity A appearing in (2.38) is co 

A {=y ): impulsive index (of the present analysis)* co co (2.39) 

As we have alr~ady noted in our earlier studies [Middleton, ·1972b,1973,1974], 
the Impulsive Index is a measure of the temporal "overlap" or "density", at 
any instant, of the superposed interference waveforms at the receiver's IF 
output. It is one of the key parameters of the interference model, in 
that it critically influences the character of the p.d.'s and P;O.'s of the 
interference, as observed at the output of. the initial (linear) stages of a 
typical narrow-band receiver. With small values of A the statistics of co 
the resultant output wavefonn are dominated by the overlapping of compara-
tively few, deterministic wavefonns, of different levels and shapes, so that 
the interference has an "impulsive", somewhat structured appearance. For 
increasingly large values of A the resultant approaches a normal, or co 
gaussian process, as one would expect from the Central Limit Theorem 
[Middleton, 1960, Sec. 7.7], as we shall see in more detail later [cf. 

Sec. 2.4]. 

2.3 Interference Classes A, B, and C: The R61~ of Input and Receiver 
Bandwidths: 

We are now ready to examine the basic form, (2.38), of Ico(r) [=log F1(ir)]. 
The role of the duration\ of a typical emission (as perceived at the output 
of the ARI (= aperture x RF x IF) stages of the narrow-band receiver) is 
critical in detennining the fonn of Ico(r). 

Let us consider first the important special case when the .emission 
duration\ is fixed. From Eqs. (2.63a,b), (2.70), (2.72a) of Middleton 
[1960] we may write for the envelope B

0
, cf . (2.10), (2.30), (2.31a), (2.33), 

* Ar(= AAA£,T=vTT, cf. (2.27c),(2.35)) was designated "impulsive index", A, 
in the author's earlier treatments [Middleton, 1972b,1973,l974]. 
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(2.40) 

Here h0 , y0 are real, and hARI(t) = 2h
0

(t)ARI cos [w0 t -y0 {t)J is the 
weighting function of the composite ARI fi lte·r. The (narrow-band) system 
function Y

0 
is obtained from the fourier transform Yo-ARI= J {h

0
e-iro} 

and w0 [,,;,wc-w
0

] measures the amount of "detuning" of the ~nput signal 

(at we' shifted to the IF region) from the (trial) central frequency (f
0

) 

of the ARI stage. 
With Ts fixed, we have in general the situation shown in Fig. (2 .l)II 

for the envelope of the narrow-band output of the ARI filter, produced 
by a typical interference emission of finite duration, Tin" The output 
envelope (~u

0
(z)) produced by a typical input interference envelope [shown as 

a rectangular pulse in Fig.(2 . l)II], always consists of two parts: a part 
which we shall call Class A with normalized enveJ ope u

0
A(z), which is 

produced by the input emission (~Eo- in), which is "on" during the interval 
0 ~ z ~Tin(= TsA = TsA); and a part we shall term Class B, with normalized 
envelope u

08
(z-l) (/u0 A(z)), which represents the transient decay of the 

output of the ARI f i lter, following the termination of the input emission 
[~E

0
(z)in]. The sum of Class A and Class B envelopes is cailed Class C, 

e.g . u
0
C(z) = u

0
A(z) + u

08
(z-1 ), [cf. Fig . (2 . l)II, where, of course, u

08
=o, 

z < l, u
0
A = O; z < 0, z > l in our definition . Thus, all receiver outputs 

are typically Class C, with variable amounts of Class A and Class B, 
depending on the duration of the typical input interference waveform 
vis- a- vis the response time of the ARI filter at the front-end of our 
receiver. Equivalent,~, the relative extents of the Class A and B components 
depend generally on the ratio of the bandwidth of the input (6f;n) to the 
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bandwidth tifARI of the linear 11 front-end 11 of the receiver. With tifin » tifARI' 
for example, the usual case of very wide band interference (automobile igni­

tion, fluorescent lights, atmospheric noise), TA is very small vis-a-vis 
- s 
Ts

8
: the build- up time (=Tin) is very brief for Class A, while the duration 

of Class B depends on the decay time(~ tif-}RI·) of the ARI stage, which is 
much longer than Tin' . On the other hand, with narrowband inputs of long 
duration [tifARI » tifin], the transient at _the termination of the typical 
input is ?f negligible effect vis-a-vis the Class A component. For com­
parable bandwidths (tifARI ~ tif.

1
n) both Class A and Class B make comparable 

contributions, e. g. neither can be ignored vis -a-vis the other, so that we 
have then generally the Class C waveform in the receiver. [In all cases 

J~uoA ,B(t)kdt, k > 0, are finite.] A 

From (2.38) we see accordingly that I~(r) can now be written as the 
sum of the Class A and Class B components, viz: (Tin= TsA fixed for the 

moment) : 

on changing variable z' + z in u08 (z'-l) + u08 (z), e.g. 

(2.41) 
(2.41a) 

(2.41b) 

from (2.40). In terms of .the characteristic function (2.19) we see at once 

that 

A A A 

Fl ( i r) = Fl ( i r) A• Fl { i r) B - Fl'( i r ) C (2.42) 

with the important result that Class C interference consists of the 
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independent sum of Class A and Class B components, as defined above. Note, 
also, that the limiting voltages e~~) f e~~), generally, as the receiver 
responds to "narrow-band" inputs (A) differently from "broad-band" (B). 

Specifically, when we can ignore the Class B component [is8 (<00 ) << TsA' 
e.g. sufficiently narrow-band input vis-a-vis the receiver~], we have here, 
from (2.42), (2 .41), in _(2.19), 

(2 .43a) 

(2.43b) 

(2.43b) 

where th·e averages < ) · 
z,)..,6 1 

"" "" 

are explicitly 

< ), AS' = fa\, t, ,\N,W t-' 

w1(e')p(;..) . 
_, ..., [ ] d).d6 I 

A~ - - (2.43c) 

Similarly, when the Class A component is ignorable [TsA = Tsin << T58 
e.g. very broad-band inputs vis-a-vis the receiver's ARI stages*] we get 

(2. 44) 

A B»A A' oo, oo, 

with the averages given by (2 .43c), (without the average over z). Note 

that when r-+ 00
, Fl-A+ exp(-A

00
,A), whi.le Fl-B,C-+ 0. This means, as we 

shall see in detail in Section 3.1 later, that for Class A interference 

* The precise conditions for effectively Class A or Class B interference 
alone are developed in Sec. 7 later. 
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there will bea non-zero probability of 11 gaps-in- time 11
, i .e. finite (nonzero) 

intervals in the receiver's output when there is no waveform present, while 
for Class Band C interference there is always a nonvanishing wavefonti 
level and hence no· 11 gaps-in- time 11

• [Of course, physically there is always 

some inherent system noise, which makes it st(ictly impossible to have a 
true 11 gaps-in-time 11 situation.] 

We remark, again, that Class A [and consequently tlass CJ interference 
models are new. The earlier "classical" analyses [Rice (1945); flHddleton 
(1953); Furutsu and Ishida (1960); Giordano (1970; Giordano and Haber 
(1972)], for example, all dealt with Class B interference, and for the most 
part in much less general terms and by different modes of approximation.* 

2.3.l Some Extensions: 
Usually, there is an accompanying gaussian background noise, which may 

arise in a number of ways: 

(i) . as system noise in the receiver; 
(ii). as external interference, which is the resultant of 

many independent sources, none of which is exceptionally 
dominant with respect to the others (so that the Central 
Limit Theorem applies); 

(iii). as a mixture of· receiver noise and (independent) gaussian 
external interference . 

From (2.12b) and the gaussian counterpart of (2.7), viz . 

-(~2+n2),r212 
Fl (i~,in)x X :·gauss= e G 

C' S 

we readily find that 

(2.45) 

(2.46) 

(2.47) 

* Technically~ Giordano [1970] and Haber [1972] express their results in a 
Class A format, whenever sample size (T) is finite, cf. remarks in 
Section (5.3) following. 
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cf. (2. 13), where a~, a~ are respectively the receiver and external noise 
variances. 

Applying (2.47) to (2.15), (2.17) shows directly that* 
2 2 -EUa2 

f
oo -r 0

6
/2 E ye. G 

w,(E)G = E rJO(rE)e · dr = ~ , E ~ O 
0 a6 

(2.48a) 

so that 

(2.48b) 

As expected, the· p.d. and P.O . here are rayleigh. 
Our results of Sec. 2.3 above are readily extended to include the 

more general situation of interference inputs -0f random duration, e.g. 
Tin= T5A (r TsA) generally. O~ly the Class A portion of f

00
(r), (2.41), 

is modified. Letting z0 = T;n/TsA' we have at once, for the desired 
extension of (2.43), 

Fl (ir)A = e-Aoo,A exp{(.Co Jo(rlloA) dz\ .) . . 
0 -~z

0
,~,~ 

(2.49) 

Combining (2.49) and (2 .44) with (2.47) gives us the desired charac­
teristic functions with which we shall be concerned here, and subsequently, 
in this report: 

Class A Interference and Gauss: 
2 2 

A -aGr /2-A A ~ < rz A > } F1(ir)A+G = e 
00

' exp A
00

,A J~ 0
J0 (rB0A)dZ 

1 0 z0 ,~,~ 

Class B Interference and Gauss: 
2 2 

F1(ir)B+G = .-aGr /2 exp~oo,8 ~\[Jo(rlloB)-ll)~.~·ctz) . 

* Use Eq. (A. l-49) [Middleton (1960)], for example. 
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[We shall reserve the analysis for Class C interference and gauss noise, e .g. 
based here on 

F1(ir\+G = .exp [-a~r2;2+A"",.A:(J.
20

[J0(r80A) - l]dz\ , 
O . ~z0 ,l,~ 

(2.52) 

to .a subsequent Report.] 

2.4 Large Impulsive Indexes: 
When the impulsive index, A"", is large, we expect asymptotically· gaussian 

statistics for the instantaneous amp.litude X [Secs.3,p.26; 5,p. 39, Middleton, 
1974], and rayleigh statistics · here·, cf. (2.4e), for the fnstantaneous ,.. 

envelope E. This latter is easily shown by developing I""(r), (2.41) or 
(2 . 52), as a power ieries in r about r = 0, in the usual way.* Thus, the 
c.f. (2.52) ·for our general Class. C case, with gaussian background noise 
in addition, becomes 

where 

b (B) = f ""! 132n) dz 
2n 0. \ oB A 6 • 

...., '.,., 

(2 . 53a) 

(2.53b) 
(2.53c) 

* Provided we consider for the moment finite observation intervals T(<""), 
i.e. finite upper limits on the z-integrals in (2.51), (2 . 52), so that 
these integrals are uniformly. convergent, proper integrals, permitting 
a series expansion of their integrands . Then, we ultimately have 

F1 (ir)C+G: +-1: F1(irlT)C+G' where (i.::) is invoked for each term of the 
resulting expansions . See the comments in B, Sec . (5.2) below. 
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where 

2 2 4 2 2 3 4 x6 

1F1(-2;1 ;x) = 1-2x +x /4; 1F1(-3;1 ;x ) = l-3x + 2 x - ~; 

2 2 4 2 6 x8 

1
F1(-4;1 ;x) = 1-4x + 6x - 3 x + 24 , etc., 

with x2 = E2/2a6 here. 

with 

Similarly, we get for P1(E > E
0

)C+G, (2.22b), here 

1F1(1 ;2;x2) = (ex
2
-l)/x2 

1F1(-l ;2;x2) = 1 - x2/2 

1F1(-2;2;x2) = 1 - x2 + x4/6 

[Eq. (A.l.19b), Middleton (1960)] 

1F1(-3;2;x2) = l - 3x2;2 + x4/2 - x6/24, etc . 

The first two terms of (2.57) reduce to 
2 2 -E/2cr

0 
Pl(E>Eo)C+G ~ e 
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as expected, for this cumulative rayleigh P.O., cf. (2.48b) . 
Finally, the above results apply also for the purely Cl ass A or Class 

B interference, whenever voo becomes very large (i.e. the impulsive index 
is large).. The variance cr~, (2.53a), is then s~itably modified, as is 
(2.54a) for the correction terms. Since B2n is O(A

00
), while cr~ is also 

O(A
00
), it is clear that the correction coefficients B4(cri, [B6/cr~, (Bi)cr~8

] 
are O(A-l, A- 2), etc., showing the rate of fall-off of the correction 

00 00 

terms with increasing index A. co 

" 2.5 Second Reduction of the c.f. F1: The Role of Source Distribution and 

Propagation Law: 
Our major problem, as stated earlier in Part I, is to obtain 

analytically tractable results, as well as a pertinent physical foundation 
for our models of man-made (and natural) electromagnetic interference. 
Technically, our central problem now is to evaluate the probability den­
sities and cumulative probabilities (2.21), (2.22), when the interference 
is Class A or Class B, accompanied by gaussian noise, with the respective 

characteristic functions (2.50), (2 . 51). [The detailed study of Class C 
interference, with the more general c.f. (2.52), is reserved to Part IV 

of this series of Reports.] 
The desired evaluation may now be achieved by recalling (as in 

Section 3 of Part I [Middleton, 1974]) that the general character of the 
p.d . (and hence of the P. O. ) of a random variable at large values is 
controlled principally by the behavior of the associated characteristic 
function at and near zero values of its argument. Thus, the behaviour of 
~ 

F1(ir) at, and in the vicinity of, r=O, is determined by the largest 
r-dependent contribution which establishes the large-amplitude structure 
of w1 (E), P1(E), etc., i .e. as E + 00 • In fact, for these general classes 
of non-gaussian noise this corresponds to the expected slower fall -off of 
~1(E), as E + c:o, than t~e rayleigh p.d. (2.48a), for e~ample here. [See 
also the discussion in Section (2.7)A following.] 

Our preliminary procedure for obtaining the required development of the 
/\ 

c.f. F1 in the neighborhood of r=O consists of: (i), expressing J 0 -l as an 
integral; (ii), using an ~xplicit class of propagation law and source 
distribution; (iii), reversing the order of integration in (i), (ii) 
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and observing the bounds imposed by the fact that u
0
A is of finite duration, 

while u
08

(z) f 0, O<z<00 , cf. Fig. (2.1) above.* As we shall see below, it 
is this latter condition (on u

0
A vs. u

08
) which critically affects the 

explicit form of the needed development of F1• 

We begin with the identity -J~(x) = J1(x), from which it follows by 
integration that 

(2.58) 

A 

Then, the exponents of the c.f. 's .FlA,B are (without the contributions, for 
the moment, of the background normal noise) but with the help of (2 .58), 

(2.59) 

2.5. l Propagation Law: 
We now introduce the somewhat restrictive condition that the source 

distribution and propagation law are expressible _in the factored form: 
a(A)[b(~) or b(e,~)J. The beam patterns are always independent of 
distance (CA), e.g. 

e.g. 

JORT(l;f~)I = 1aRT[(iT'iR)f~/c]I '(lR=-iT'cf . Fig. (2.1), 
Middleton [1974]), 

where specifically 

(2.60a) 

(2.60b) 

* Our procedure here is a generalization of that used by Giordano [1970], 
who, however, considered what in the limit (T+oo) is ultimately only Class 
B interference, and only special choices of source distributions and 
propagation law. 
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~ A ~ A 

iR = ixcos <PRsin aR+fysin <PRcos eR-izcos aR ( 2. 60c) 

in which <Pr is an azimuthal angle and aT a polar angle, as sketched in 
Fig.(2.2)II . Thus, for the propagation l aw, g(!) in (2.41b) we ~ri te 

(2 . 61) 

where g
5 

V are angular factors, usually taken to be unity in the conman 
' propagation models . In general, y > 0, and, in fact, y ~ 1/2: y = 1/2 

corresponds to the "wave guide" modes often encountered in long-distance 
propagation in the atmosphere, while y = 1 applies for the usual spherical 
spreading of less distant sources. For practical applications, sources 
and receiver in a corrrnon plane, Fig . (2a)II, is typical of most mobile land 
transport cormiunication environments, while the 11 volume11 situation of Fig. 
(2b)II is characteristic of ground/air, or ground/satel l ite, or air/air 
environments. Also, for practical purposes, atmospheric noise may .often 
be regarded as essentially coplanar with the surface (and y .; 1/2), unless 
the principal discrete sources are comparatively near to the receiver, i .e. 
aR(=ar) is · large, e.g. [>0(5-10°)]. 

2.5.2 Source Distributions: 
For the moment we continue to assume that the source distributions· 

are factorable into the form a = a(A)b(a,<P),' cf. remarks at the beginning 
of Sec. (2.5.1) above. Then, the density w1(A) required in the averages 
( )A in (2.59) is now from (2.26), (2.28) 

a5(A)C2Aos(<P) 
(2 .62) 

.. 
for the surface and volume regimes, where ·the normalizing factors As,V 

are given by 
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Figure 2. 2 (II) . Geometries of source and receiver beam patterns: (a), in a plane; (b), in a volume . 



 
 
 

Av= f oy(A)os(a,<p)c\2sin a dAdad<1> 
AV-eff 

(2.62b) 

The Aeff are the effective domains of the possible interfering sources, 
namely, those capable of registering at our receiver [OR, cf. Fig. (2.2)11], 
i.e. observeable in the receiver packground noise. The receiver accordingly 
has a limiting range CAmax' which depends on e01 , cf. (2.34), e.g. 
Amax= Amax(e

01
). Several cases are distinguished, as shown in Fig.(2.3)11, 

[as far as dependence on A is concerned]: From Fig.(2.3)II it is clear 

that the source domain to be used for A(SorV) is A(SorV)-eff: the domain 
of sources perceivable by the receiver. This is detennined by either 
Aeff = Amax or AA [Cases I, II)], whichever is the lesser, or by a pair 
of A1 S, e.g. Ao~ A~ Amax' Case III, for such distributions. [Case IV, 
not shown in Fig.(2.3)II, is a combination of regions (irA!ax and A) which 
partially overlap. Here we must consider the overlapping and pertinent 
nonoverlapping regions separately, which will involve the angles <I>, or 
(a,<1>) explicitly.] In our present applications, however, we shall assume 

Case I, e.g. Aeff = .Amax < AA' which is by far the more prevelant situa­
tion in practice: the potential source domain always exceeds that of the 

receiver's acceptance region. 
Finally, we shall, where necessary, postulate the following range 

dependence of source density: 

er (A) = 1/Aµ s,v 0 < µ (2.63) 

for both the volume and surface situations, in accordance with our remarks 

at the beginning of Sec. 2.5.1. 
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Figure 2.3 (II). Several typical cases (;\ only) of source and receiver -· domains. 



 
 
 

2.5.3: Role of In.put Signal Duration, T
5 

We begin by developing in fuller detail the structure of the: basic 
" received envelope B

0
A,B' cf. {2.41b). Using (2. 60), (2.61) in (2.41b) 

allows us to write 

" (A B) B
0

A,B = e
0

/ A
0
u0A,8(z)laRT(<1>;or e,<1>lf~)lgs,v(<1>;or e,4>)(4ircfY/xY 

· ( 2. 64a) 

= G
0

A,8(z,A
0

,e
0
y,I i2RTI; 4>,or e,4>)/xY, (2.64b) 

with 

GoA,B = e~~,B)AouoA,BIC2RTlgs,v(4irc)-y · (2. 64c) 

containing Ure (possibly) random parameters A , e , QRT' for both surface 0 Oy 
and volume r~gimes and Class A and Class B interference. Next, we use 
(2.62)~ (2.63) to write (2.59) explicitly as 

\ 

z0 ,CX) ~2/xµ-l 
I,Jr)A B = -ACX)IA B f dzf As\crs vd(e,4>)[ dX 

· ' ' o ~(6,4>) ' ' [X] c3/Xµ-2 

x=rG /xY · 

• ~ 0 
· J1 (x)dx)e , _ (2.65) 

... 

with i = z
0

,A
0

, etc . , where the upper term applies for surface sources and 
the lower for those distributed in the volume. 

Next, we implement the key step, (iii), in order to interchan·ge the 
order of integrations over x and x in (2.65). This permits us to develop 
" ICX) explicitly as a function in r, to which we can then apply the approach 
indicated at the beginning of Section 2.5, to obtain the controlling 
term(s) at and near r = 0 for the characteristic function. Since from 

(2~59) 

X = rG 1,Y., .·.' ~ (r,G )11Yx-l/y d G /'y o " " o ; an :. xo = r o "max (2.66) 

is the value of x corresponding to xmax' which establishes the domain of 
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sources perceivable by the receiver [in the present Case I, cf.Fig . (2.3)II]. 
Now we use the fact that u

0
A is nonzero only for (0.::. z.::. z

0
), while 

u08 f 0, (0.::. z < 00
). Since G0 A,B ~ u0A,B' cf. (2.64c), we see at once 

that for 

Class A: 

{ 

O < x < x0 , since u
0
A = 0, z > z

0
; 

Amax~ A~ 0, cf. Sec. (2.5.2). 

Class B: { 0.::. x < oo, since u08 ~ 0, z < oo (u08 + 0, z + oo); 
I 

Amax~;\~ 0, cf . Sec. (2.5.2). 

(2.67a) 

(2.67b) 

Fig. (2.4)II shows the allowed domains of x and A for these two classes of 
interference. [For Class C interference, we use (2.42), with the c.f. 's of 
Class A and Class B determine9 separately, with the help of (2.67) and 
the resu1ts of Section 2.6, 2.7 below. The details are reserved for a sub­
sequent Report.] In Sections (2.6), (2.7) following we obtain the desired 
c.f. 's (= exp{! )) for these two basic classes of interference, with the 

00 

help of (2.67) in (2.65) and the observations presented at the beginning of 
Sec. 2.5. 

2.6 The C.F. for Class A Interference: 
With Case I conditions (cf. Fig. (2 .3)11) on the source distribution 

vis-a-vis the receiver range (Amax), and (2.67a) applicable here, we see 
that x + x

0 
for the upper limit on the integrand (for x) in (2.65) . 

Accordingly, since As,v is now precisely equivalent to the indicated inte­
gration over (A,6,~) therein, we see that (2.65) becomes at once 

ioo(r)A = -Aoo,A/~zodz~xoJl(x)d~ ; xo = rGo/A~ax =· rBoA, \o o "/z
0
,i 

( ~- 68) 

Next we use (2.58) to reexpress (2.68) as 
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Figure 2.4 (II) . Schema of the (x ,A) -domains of intergration for I 00 , (2 .65) , for Class A,B interference. 



 
 
 

(2.69) 

sin~e z
0 

= (r5)/Ts = 1), and then employ· the steepest descent method of Re­
port I [Middleton, 1974, Sec. 3, Eq. (3.10) et. seq; as mentioned earlier 
[cf. Section 2.5)] it is the largest contribution to the exponent . in the 
neighborhood of r=O, which controls the behavior for E >> OD to obtain the 
desired development in r iri the neighborhood of r = 0. For this we use 
the identity 

in (2.69). From (3.11), [Middleton, 1974] we have 

) 
r2(A2)/4 (X) < 2 .e, 2.t \J0 (rA) e = 1 + l A~/ / 1F1(-t;l ;A2/\A2))) (2.72) 

t=2 2 t! \ 

(2.56a) . The result is that 

(2.73) 

in which 

" Equation (2.73) in (2.69) now gives us the desired expansion of r(X),A 
about r=O, which governs the p.d . (and P.O.) for large values of the 
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envelope E. We have explicitly 

(2 . 74a )' 

{2 .74b) 

this last if we neglect the correction terms [O(r4 in I..,)J .. 
When we consider correction tenns [in a later Report] it is convenient 

to define, as we did in Report I [Middleton , 1974] a set of coefficients, 
now extended to include the average over z

0
: 

c21 = 1!(-1 )1~~z
0
,F,(- i ; l;B~A/( B~A))dz\ = (- 1)

11! Fi, 
. ~o ~z0 

(2.75) 

A 

cf. (2.73a), which contain the 21, 21- 2, ... , moments of the envelope 8
0
A 

at the output of the ARI stages of the rece iver . Specificall y, we have 
here 

( 2. 75a) 

(2.75b) 

Ca= r (s~A ) - 16(B~A)(s~A ) + 72(B~A x s~A)2 - 72(s!A)
4
J; (s~A )

4
; etc., 

(2.75c) 

(2.75d) 

Thus, (2.74) becomes here, equivalently, 

A - r2(s~A );4~ .., ( s~A/ (-1 l A 2j 
I..,(r)A = -A.., A+ A.., Ae 1 + l 2 ~ c2 r . 

' ' 1=2 2 1(1! )~ 1 (2.76) 
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Combining (2.74), or (2.76), with the practical situation involving 
an additive background gaussian component, cf. Sec. (2.3.l), we get finally 
for the desired form of the c.f. for Class A interference 

so that 

(2.77) 

where [l+O(r4)J in (2.77) is given explicitly by the expression { } in 
(2.76). The final step in the reduction of these c.f.'s to the desired 
technically manageable form, particularly for the smaller values 0(~100) 

of the impulsive index A
00

,A, (2.39), which are typical of this class of 
interference, is now the following direct expansion of the t~rms conta·ining 

A
00

,A in (2.76) or (2 .77): 

.. .) (2.78) 

[Equation (2.78) is formally the same as our earlier result (3.16) 

[Middleton, 1974], which is n?t surprising, since the c.f.'s have the same 
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form, cf. (2.50) . The parameters differ somewhat in detail, of course.] 
However, in approximating the exact (2.74a) c:f. by the approximate 

forms (2.74b), (2.77), (2.78), we obtain ultimately (cf. Section 3 
following) approximate P.O. 's, and pdf's (Section 4, ff), which may .not be 
properly'··n.or_malized, in the sense of yielding a mean square value, (E2\, . 
of the envelope, different from the exact relation (E2)A = 2n2A(l+rA), cf. 
Eq. (5.12b), which is derived from the exact c. f. (5.10), or (5.10a). 

Accordingly, we choose the c.f., here and subsequently the leading 
term of (2.78), and from it detennine the associated P.O. and pdf. Then, 
from the pdf we determine 

E • (2.78a) 

If w1(E.)A is properly normalized, (£2\ should be unity. If not, and 

<£2
)A is bounded, such that {f-,2)A = N~ (<~,11), then the properly normalized 

pdf (:, PD, also) is given by 

(2.78b) 

so that 

2 r~ -2 2 r~ 2 
(£ )(A) = Jo wl ([) ANA E.; dS = ) 0 wl (E) A-norme de-= l , (2.78c) 

as required. From (5.3) following we have (cf. Sec. 5.1): 

(2 .78d) 

exactly, showing that w1 (E)A here is indeed suitably normalized (and 
:. N! = 1 ), as is the PD, P1 (E. > E:'

0
)A, consequently. Accordingly, the Class 

A cases discussed subsequently need no scale or other adjustments (unlike 
the Class B model, where the approximating forms do require scale and 
level adjustments, cf. remarks following Eq. (2 . 94), anu the discussion in 
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Section 3.2-A. 
An interesting feature of our results here, for Class A interference, 

is that the c.f., and hence the p.d . . , and P.O., are not explicitly de­
pendent on the interference source distribution [for the usual Case I, II, 
and not so common Case III source-receiver conditions, cf. Fig. (2.3)11] . 

Furthennore, these statistics are insensitive to the propagation law 
(~ \ - y) involved, which merely affects scale, thrdugh the average 

<s~A)a~ (G0/AY). The source distribution does appear, but in averaged 
form and only in the impulsive i ndex A

00
,A, [cf. (2.35), (2.38), (2.39) , 

in conjunction with (2 .27)] . Physically, this is understandable, since 
it is only the average number of emissions per second times the mean 
duration of these finite emissions (in the receiver, cf. Fig. (2 . l)II) to 
which the receiver can respond. It has no way to distinguish where and in 
what concentration, or by what propagation law, the sources may be acting 
[for a given position of the receiver beam c".2R' or for any position if 
QR is omnidirectional]. The only thing that counts here in determining 
the (first- order) statistics of the received input is total input level 
and process "density",A A" As we shall see in Section (2.7), and in m, 
later Sections, this insensitivity to source distribution and propagation 
law is definitely not characteristic of Class B interference, and, · conse­
quently, Class C noise, to the extent that its Class B component is 

significant. 

2.7 The C. F. for Class B Interference: 
Here we use (2.67b} for the exponent .(2.65) . The result is a tenn 

like (2.68), plus an additional term for x
0 

< x < 00 , with\ v>A>O, viz: ma,.- -

(2.79} 
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where we have used (2.66) and reversed the order of integration, according 
to the rigime of (iii) , Sec . 2. 5, and Fig.2 .411) above: Note, in particul ar, 
the order of the limits on the A-integration, which correspond to the vari­
ation in x , from x=x

0 
to X-+<», cf . Fig.(2.4)II again. [The average over z

0 

is unity, as none of the arguments contain z
0

; also, i ' = A0 , eoy' etc . , as 

before . ] The integrals I¢ ' l e ,¢ over~ (or 6,¢) , with As:v , become 
expli ci tly from (2 . 62a,b)* 

_ _ 2-µ) µ- 2 1¢ - 6s/As - (-2 Amax ' 
C 

I =A/A = (3-µ3) Aµ-3 
e ,¢ uv V max 

C 

where specifically here 

0 ~ µ < 23} 

, 0 ~ µ < 

(2.80) 

(0 < µ < 2); c3 3-µ 
Av= 6y 3-µ Amax (0 < µ < 3), 

(2 .80a) 

so that 65, 6y are respectively the integrals J a5d¢, J ayded~ in (2.79). 
With the above we readily find for (2 . 79) the (exact) relation 

with 

A 

XO= rGO/A~ax = rBo,B (2.81a) 

as before, and the new parameter 

* For this Report we shall limit the allowed values ofµ as shown in 
(2 .80}; extension to other values (µ>2,3) will be considered in a sub­
sequent study, as is t~e analysis for a>2. 
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- £:1!_1 Cl -

Y surface 
or 3-µ1 

y VO 1. 
(.2.82) 

This parameter a. we call the spatial density-propagation parameter, since 
it depends on the interacting spatial effects of source density and source 
propagation 1 aw·. 

The lower limit on a. is established by the present conditi,an, i.e., 
l 

upon the upper limit onµ (=2,or 3), y > 0. Analytically, for the integral 
over x in (2.81) to be convergent, we require that a.> -1/2. There is, 
however, no (finite) upper limit on a., so that we can write 

-l/2<a.<co ] (2 .82a) 

For the purposes of the present Report we shall, however, further restrict a. 

to the range (O<a.<2), which covers many of .the practical cases encountered 
in applications, at least down to quite small values of the exceedance pro­
babilities P1 (c < £

0
). In a later Report we shall develop the analysis in 

detail for (a.~ 2). 

The first integral in (2.81) is readily evaluated by expanding the 
Bessel function, followed by termwise integration . We get 

(2 .83) 

For the second integration, over x in the second integral of (2.81), we 
use a Barnes integral representative of J 1(x) [cf. Middleton, 1960, Eq. 
(13.10)]: 

C > 0 , (2.84) 
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so that 

I = a 
= ~a rmi -c r(-s)ds~2:i [x2s+l -adx\ • 

\( 0 J-mi - C r(s+2)2 S l x
0 

'/z,~' 

(2.85a) 

This becomes, on choosing c = -5/4 (as a result of the condition a> -1/2) 
and carrying out the x-i ntegration 

2s+2-a m 
X 
2s+2-a = 

XO 

2s+2-a -x 
0 

2s+2-a { 

Re(2s+2-a) 

a-2 
s < 2. 

The resulting integral I is now ~xplicitly a 

< 0, or 

m1 -C -r -S X S n1 

~ 
. ( ) 2s+2-ad 12 . ) 

10 = x~~~i-c r(s+2);2s+l(2s+2-a) z,~·' 

(2. 85b) 

(2 .85c) 

which has a simple pole at s = (a-2)/2 (>- 5/4), and at s=O,l ,2,3, . .. 
(0 <a< 2). The residue at s = (a-2)/2 is - r(l-a/2)/2°-1r(l+a/2), while 
those of r- function are (-l)i/t! at s=t (=0,1 ,2, .. ). The result is 

1 
= -r(l-a/2)(x~) ~ (-1) (x~1+2) 

a 2°-1r(l+a/2) - i~O t!(t+l) 22i+l(2t+2-a) · 
(2. 85d) 

A 

The exponent Im of the c.f. for Class B interference thus becomes, on 
combining I1, (2.83), and I

0
, (2.85d), in (2.81): 

A {r(l-a/2)<X~) m (- l)i<x~i+
2
) [ 4t+4-a l\ 

Im,B(r) = - Am,B 2a- lr(l+a/2) + i~O i! (t+l)! 22t+l (2t+2)(2t+2~a)~' 

(0 <a< 2) , (2.86) 

with <) -= () 8 , =(!~()dz\,, etc. z , ..... 
With the additive, .accompanying gaussian background, cf. Sec. (2 .3.1), 

we have at last the desired c.f.: 
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(2.87) 

which, like (2.81), is also exact, so far. Here we have explicitly 

_ r(l-a/2) /, a ) -ay _ r(l-a/2) li(8;
2

,B)~) (>O) (2.87a) 
bla = 2a-lr(l+a/2) \Go,B Amax - 2a/2-lr(l+a/2) \1 rL 

b _ (4-a) /G2 )A -2 = (4-a) \
13
~ ,B) (>O) 

2a 2-a ~o,B max 2-a 2 ' (2.87b) 

/1321+2) 
b _ (41+4-a) \ o,B ( O) (B G ; .,Y ) 

(21+2)a = 1!(1+1)!(21+2~a)(21+2) 
2

21+1 > ; o,B = o,B Amax ' 
(2.87c) 

since -0 <a< 2, and from (2.65) we write 

<G~,8) = <•!~la) (A~) (1 °iirl t ( g~,v)( 4,c )-ay { u
0 

(z)IJdz (,0), 

(2.87d) 
and formally \G~:;2) is given by (2.87d)·on replacing a by 21+2, etc. 

A. The Approximating C. F.'s for (0 <a< 2): 
Unlike Class A interference [Sec. 2.6], where the c .f. is solely a 

function of r 2 [cf. (2.76)-(2 .78)], and where a single ''steepest-descent" 
approximation [cf.(2 . 72)-(2.76)] provides a good fit for both large, small, 
and intermediate ·values of r2(and hence for E ,E), Class B noise requires 

0 
a pair of approximating c.f. 's, one of which will at least insure suitably 
bounded behaviour of the exceedance probability P1 (E > E

0
) as E

0 
+ ~, 

including the existence of all finite moments of the envelope (Es)(O<s<~), 
and the other of which will provide a satisfactory account of P1 for small 
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and intermediate values of E (>E ). It is the presence of the term 
0 

O(ra) in the (exponent of the) c.f. (2.87) for Class B interference, in 
addition to the typical development in powers of r2 (analogous to that for 
the Class A noise), which forces this double approximation for our canoni­
cal c.f.'s, and P.D . 's. P1(E>E

0
), pdf's, w1(E), here. 

with 

At this point we define the gaussian variance 

~o~ - a~+ b2aA~,B = b2aA~,B(l+o~/b2aAoo,B) 

- = n(G\1+r(G)) 
- 28 B ' 

(G) - . 
n2B = b2aA00 ,B 

. rCG) = a2;~(G)= indep. gauss intensity 
' B - G 28 . Rimpulsive 11 gauss Intensity 

(4-a) = 2_a n28 , cf . Eq. (3 . 2a)ff. 

(2.88a) 

(2.88b) 

(2.88c) 

where ~1i)is the "impulsive" contribution to the gaussian component arising 
from the Class B noise alone, and where o~(=o~+o~) are the (independent) 
inherently gaussian contributions from potential externa l (gaussian) sources 
and from the receiver noise (essentially al l arising in the initial linear 
input stages), cf.(2.47). ·(Note that n~~.r~G)are also functions of a here.) 

For the c.f . which is appropriate to the intermediate range of envelope 

values, including the very small (E,E
0
+0), the controlling term in the 

exponent of the (exact) c.f. (2.87) is the smallest power of r with negative 
coefficient, e.g., ~b1aA 8ra here, so that this approximate form remains 

1 im ~~ 1 im ,.. . 
a proper c. f., e.g. r+O F1 = 1, r-+oo F1+o. The form of the associated pdf. 
and P. O. for small and moderate values of E, E

0 
is governed principally by 

the behaviour of the c . f. is r becomes large. Thus, as a first approxima­
tion which ignores any gaussian contributions , we have from (2.87) 

- b
1 

A 
8
ra 

• e a °', 0 <a< 2. (2 .89) 
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However, practically there is always at least an observeable gaussian sys­
tem noise component, and as noted above, cf. (2.87), (2.88a), an additional 
gaussian term (""b2 A 8) contributed by the "impulsive" Class B noise, so CL a,, 
that the more realistic intermediate c.f. here is now 

, (0 < CL < 2), (2.90) 

where the subscript (-I) indicates the c.f. for the range (0..::.. E, . E
0

..::.. E8) 
of envelope values . (The precise definition of E8 will be given presently, 

cf. Sec . 3.2). 
For values of E, E

0 
> E8 we require a c.f. approximating the exact 

relation (2.87) where the largest (r-dependent) contribution to the 
exponent about r = 0 and in the finite (nonzero) neighborhood of r=O is 
the controlling term. For this we seek again a "steepest descent" form 
for the exponent of (2.87), exclusive of the term in rCL, which as we shall 
see below is always here smaller than the fonner (for O..::.. r..::.. €) and thus 
does not control the character of the c.f. at small r (and hence for large 
E, E

0
). Accordingly, as in the Class A cases, cf. Section 2.6 above, we 

wish to represent the class B tenns (exclusive of. rCL) in (2 .87) by a series 

of the fonn 

r2 "" t+l 2t+2 -ar2 r ; 2kJ 
A..,,B-b2CLA"",B "2 + I,(-1) A..,,Bb(2t+2)CLr = Ae Ll+k;lBkr ' 

t- .. ( . 91 ) 

where the "steepest-descent" nature of the approximation is exhibited 
not only by the exponential factor but by requiring the vanishing of the 
B1-term in the right hand series, where the nearest "correction" term 
(k=2) is O(r4) and quite ignorable vis-a-vis unity . This condition and a 
tenn by tenn comparison of (2.91) detennine all the parameters A, a, Bk 
(k ~ 2), which are r.eadily found to be 
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A = A QO ,B a = b2/2 ; (B1 = 0) 

- 2 B2 - b4a-b2/8 
···-- b b 

B = b + 4a 2a 
3 6a 2 

b3 
+ --1.£. t 48 , e c. 

(2 . 92) 

Clearly, A Be-ar
2 

dominates -A Bbl ra A Be-ar
2
r4, etc., at and in the QO' c,o, a QO' 

neighborhood of r = 0, and this is the determining element for this approxi-
mation to the exact c.f. (2.87). 

Accordingly, we have finally for the c.f . appropriate at least to the 
large values of E, E

0
, i.e. for the "rare events 11, 

• 2 . 
A • ( -A B Ii -b2 r /2 2 2· ~} 4 
F1(ir){B+G)- II = e QO' exp~QO,Be a -a6r /~ [l+O(ra,r )], 

(O<a<2). 

(2.93) 

Comparison with (2.77) shows at once that this approximate c . f. for 
Class B interference has the . same (approximate) form as that for Class A 
hoise, ant thus will yield the same type of pdf's and P.O. 's, etc., cf. Sec. 
(3.1 ). As we shall see later, in Section 4, this has the important con­
sequence of insuring th~t all (finite) moments of the envelope, (E~), 
exist, as required by the physics of the situation in all cases . 

A 

We note in passing that a more elaborate approximation 
be obtained by a combination of (2.89) and (2 .93), viz: 

to F1 here may 

A -b1 AQO 8ra-AQO 8-a~r
2 
/2 ( -b2 r

2 /2) 
Fl(ir)(B+G)- III = e a ' ' exp AQO,Be a , 

(2.94) 
which may be used for intermediate ranges of r for improved fits to the 
corresponding intermediate ranges for the envelope. However, since the 
resulting pdf's, and P. O. 's, are considerably more complex and since the 
simpler forms of c.f. above , e.g. (2 . 90), (2.93), appear ultimately to 
provide excellent agreem~nt with observation, we shall not pursue the con­
sequences of using (2.94) further in the present Report . 
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We remark . that both approximating c. f. 1 s (2. 90), (2.93) for the 
true Class B c.f. are such as to give pdf's which are not properly 
normalized; each pdf,. w1(c:.) 8_1 ,w(£) 8_1p (4.3),(4.4) does not yield 
(E..-2) 8 = 1. The former gives an infinite value, while the latter, although 

Class A-type, cf. (2.78), yi.elds (£2) 8_11 = 4G~ (.Fl), where G8 is given 

by (3.12b). Thus, w1(t:)B-II,norm = (4G~)-~w1(£) 8_11 , whil~ the normali­
zation of w1 (E)

8
_1 requires, instead, a change of scale for the argum·ent 

€...(and:. £
0 

in the associated PD). How this is done is described in Section 

3.2-A. 

Finally, it is important to observe that unlike the Class A interf~rence 
discussed in Section 2.6 above, the (first-order) statistics of Class~ 
noise are obviously sensitive to the combined effects of source distri­
bution (µ) and propagation law (y), through the density-propagation param­
eter a, cf. (2.82). Physically, this ·may generally be explained by the 
fact that now the receiver itself largely determine.s the waveform of its 

response to the (relatively) short input excitations, unlike Class A noise, 
where apart from amplification (for fixed aperture bearing) the receiver 
negligibly influences the structure of the received wave trains . The. 
composite sum of the "tails" of the transients in the receiver, generated 
by the Class B input, depend on the (relative) times of arrival of indi­
vidual wave trains (~source distribution) and on the level of the · 
various wavetrains (~source distribution and propagation law). The 
(relatively) longer time-pedestal provided by the transient decay of in- , 
dividual impulses provides a wider range of possible total amplitudes of 
overlapping transients and hence a.more gradual transition to given 
thresholds (E

0
) of the exceedance prob~bilities P1(E > E

0
), than that 

occuring with Class A interference, as can be seen subsequently in Figs . (3.5, 
3.6)II vs. Figs.(3.l)II,(3.2)II. [These effects accordingly influence 
the instantaneous waveform in the receiver's ARI stage, and hence the 
statistics of that waveform.] In any case, the sensitivity to a is 
thus a receiver bandwidth phenomenon, which is illustrated by the 
experimental and theoretical results shown in Part I of this Report. 
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Figure 3.1 (II). The envelope distribution [Prob(e' > t 0 )] calcul?ted for 
Class A interference for AA= 0. 1 and various rA from 
eq. (3. 7 b) . 
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Figure 3.2 (II). The envelope distribution [Prob(§ > €0 )] calculated for 
Class A interference for rA = 10-~ and various AA from 
eq . ( 3. 7 b) • 
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These, in turn are applied to (3 .4) to give us Pl-I , II respectively . 
Starting with (3.10a), we expand the exponential in Aa and use (2.55) 

to get 

A ~ ~ ~ oo (-1 )hAn 

( 3 .1 Oa) 

( 3. 1 Ob) 

= P,(£>£0) ~ 1-[2 I a r(l+ an) F (l+ an 2 {2) 
- o n=O n ! 2 1 1 2; ; - o ' 

with (3.llb) 

" 

AB<~ ,:~,B(l+r'))") 
28 8. 

and ( 3. 12a) 

G2 = l(l+r' f 1 (4-a +r ,) 
B 4 B 2-a B ' 

( 3. 12b) 

cf . (2.88a,b,c), (3 .3a), where NI is a scaling factor which scales Pl - (B-l)' 

wl-(B- I) !o insure that (£2)8 = 1, cf. (2.94) ff, where a~~cr~ = 2G~. The 
quantity A is the Effective Class 8 Impulsive Index, which is proportional a . 
to the Impulsive Index A

8
, for this Class B interference. In addition, it 

depends spatia l ly on the spatially sensitive parameter, a, and on the 

relative gauss component rs, (3 . 2a) . 
With the help of Kumrner's transformation [Middleton, 1960, Section 

A.l.2, p. 1073, Eq . A.1 - 17] we can write (3.llb) alternatively as 

_:t.2 oo (-l)nAn 
i,'l (t >~)B- I ~ e of,_t,2 l n! a r(l 1~n)1F1 (.l-a~;2;C~)) 

~ ,o n=l 
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where we have used Eq. (A. l -19b) [Middleton , 1960] . For large~ we obtain 
formally, with the help of the asymptotic re l ation [Middleton, 1960, 
(A . l -16b), p. 1073], 

F (a.·D ·-x) I\, ~r_(s_) x- a. [i+ a.(a.- s+l) a.(a.+l )(a.- 13+1 )(a.- 13+2) J 
1 l ,µ, -~ . l !x + 2 +. · · ' 

· 21 x (3.14) 

the following expression for P1: 

" /.::- . °" A~(-l)n+l 
pl(£\& )8- I ~ L --,--

0 n=l n. 

r(l~) A 

2 r - na. [1 + ( l+a.n/2) ( a.n) + J 
V A2 ••• ' 

r ( 1-a.2n) o 2£0 

c2 >> l e-o . (3.15) 

This shows that i::., P1_1 + O(~;a.) + 0. However, as explained in A, Sec­
tion 2.7, for £0 greater than some (large) value f:s, which is determined 
from Eq. (3 .19e) below, we must use the second form of c.f., (3 .. lOb). 
Figs.3.3II,3.4II here are based on (3 . llb), (3.15), and are valid repre­
sentations, provide.d % is not too large, e.g.~ 2 £8. 

For the "rare events", or large £.0, we apply (3.10b) to (3 . 4), as 
discussed earlier (cf. A, Sec. 2.7), to obtain 

.... -AB <» A~ [°" -a~Ba 
2

;x. 
2 
/2 

Pl ( S >6c,)v-:-II ~ l -£oe m~O. mt Jo Jl (C:o;>..)e d;>..., (3 . 16) 

with 

( 3. 16a) 

from (3.2a) , (2.88c), cf. (3.5), (3 . 6): thus omB has the same form as amA' 
(3.6) . Accordingly, we may use the result (3.7b), rewriting it here for 

this large-magnitude approximation for Class B noise, as* 

- A m 2 A2 
e B oo A8 -S/2omB 
-- I I e 
4G2 m=O m. 

B 

(3.17) 

* This PD is now properly normalized [remarks after (2 . 94) and], cf . (i), 
(3. 17a,b), and discussion following . 
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Figure 3.3 (II) . The envelope distribution [Prob(§ >§ 0 )] calc~lated for 
Class B i-nterference for a = 1.0 for various Aa from 
eqs. (3.llb, 3.15). 
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Figure 3.4 (II). The envelope distribution,JProb(e' > e0 )] calculated for 

Class B interference for Aa = 1.0 for various a from 
eqs . (3.llb, 3.15) . 
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[Figures 3.1II, 3. 2II for Class A interference i l'lustrate the character of 
(3.17), which, of course, i s only applicable here , Class B, for the larger 
values ·of t:

0 
(~8).] 

A. The GQmp?site Approximation : . 
The problem with the approximating results for P1_8 in the Case B 

model, cf. (3 . llb) and (3 . 17),is that these forms , stemming as they do from 
approximate c . f.'s [cf. (3 . lOa,b)], are not properly scaled , or "normalized", 

in the sense that each ~pproxim;ting form, P1_I,Pl-II' does not yjeld the 
correct mean square value of(€ ) 8 = l or (E2)8 = 2n28 (l+r8), cf. (5.14) 
with (3.2), and the remarks following Eq . (2.94) above . The approximation 

Pl-I' and its associated pdf, wl-I' (4.3), in fact, do not possess a finite 
mean square on (0,00

), cf. Sec. (5.3)ff., while Pl - II' the "Type A" form and 
.its pdf., wl-II' (4.4), yields (t:2)8_II fl . 

Accord i ngly, since the precise mean square is finite and is known to 
be (t3)8 = 1, by calculation from the exact c.f. [cf. . (5.lOa), and Section 

5. 2-8], we must suitably scale (or "normal i ze") w1_1 , wl-II (4. 5) so that 
(s2

) 8, cf. (5.6c), exists and is equal to unity. This i s done as follows : 

(i) . Let us consi.der first ·wl-II' (4.4), and calculate (£2) 11 on (O<S<00 ) 

according to (5 . 1). The result is easily seen to be 

A ( /AA I ) 4-a I 

2 - B "' m B+rB m 2-a +rB 2 
(S >s- rr = e m~o(l+r13)m! AB = l+rB = 4GB(;l)' (3.17a) 

where G~ is given by (3.12b), so that here we require the normalization 
2 ( 2) -1 factor NII = 4G8 , e.g. 

(3.17b) 

(Henceforth in the text we write w1(c:) 8_1I,Pl - II in normalized form, 
which are then used for anlytical and numerical calculations in the 
remaining sections of Part II here.) 

(ii).The case of w1_1,(4.3), requires a different approach, since (&2) 8_1 on 
(O<E<1i>) becomes infinite (0<a<2), cf . Section 5.3: [(e2\_ 11 on 
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(0<[<~<00 ), of course, is :finite, cf. (5.6c)]. Her: we need to scal1e 
e

0 
according to (3.llb) above: S

0 
+[

0
N
1 

(and:. [
0 

= (e
0
f~r)/2G8). 

The rationale for this is the observation that Pl-I (and w1_r) must 
have the same values in the rayleigh region (E..~<<l ), where P

1
_r ~ 0.9, 

or 0. 99, etc., as does the precise distribution, P1_8, based on the 
(intractable but) exact c.f . (2.87), hence (3.llb). The scaling factor, 

Nr, is to be determined by fitting the two approximate forms Pl-I' 
Pl-II together by the procedure outlined below, which is based on the 
canonical properties of the Class B model generally. Note, finally, 
that the 11 Cl ass A" form (I I) is coupled to the Cl ass B form (I) 

through the Class B parameter a, and vice versa through the "Class A11 

parameter r8, appearing in G8, common to both approximations I,II. 

To combine the suitably scaled Pl-I and normalized Pl-II to form the 
composite approximation for Class B interference which is valid for all 

E0 ~ 0 we now use the following desired pro~erties of Pl-composite' which 
is sketched in Fig. 3.5II: 

(i) . Pl-I= Pl-II in the rayleigh region, e . g. 0 .::_S
0 

small. Equality 

(ii). 

of the two approximatfons in the rayleigh region is . 
required, sjnce both must represent the same (small) 
amplitude behaviour, characteristic of all these 
PD' s. 

dPl-II 
in the rayleigh region. = --,---

dco 

(iii). Pl-I Pl-II at the "bendover" or junction point £ 8 of the two 
approximations, · cf. Fig.(3 . 5)II. This point, c8, 
is empirically determined from the data, e .g. from 
the experimental APO or exceedance probability curve 
P1 (€. >G ) , as described below, cf. (vi). o exp. 
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{ dPl-I -- dPl-II) 
(iv). \ 

de.. de- £ 
the (finite) slopes of the approximating Pl-I,II 
are equal at cS8: this insures a common tangent, 

i . e. , a smooth fit; moreover, we have 

( V) • 

. B 

d2P 
= 1211 ). (r.O): this follows as a consequence of (iv) , 

d~ c
8 

and the continuity of the derivative at 
£

8
, insuring that the associated pdf's 

are continuous at the joining pointC8. 

However, note thatt:'8 is not usually a 

point of inflexion of Pl-I,II' 

(vi). £ 8 : this is the point of inflexion (d
2P1/d£~ = 0) of the actual 

P and is determined as such (by inspection, usually), of 
1 ' . . 

the empirical exceedance probability Pl-exp.' cf. Fig. 

(3.5)11. (3.18) 

Accordingly, from (3.llb), (3.15), (3.17) we have explicitly for (i)-(v) 

above: 

( i ) . 

A n 
( - 1 ) n (-a-) A 

2a'G~ 2 - B m 
B Sae = AB "2 -1 

--n..,..!--=-- f (l+ ~n) . 2 l mi"" (2crmB) 
4G8 m=O · ( 3. 19a) 

[(ii). [Same as (3.19a), without the 2£:: factors common to both members 
0 

of the equation; however, (ii) is here implied by the form of 
(i) and do~s not provfde new information.] (3.19b) 
A r ( 1 + / 2 ) o N -a -A m 2 A 2 

a (e,B I_\ 2 2 B = A -~/2cr 
-2~-G-~r-(-1--a-/-2) ~ 1 +qi i d[£BN!r~£BNI) ]= ~: mlo m'I- e mB; 

A ar(l+a./2) (£ N )-a-1 E. e-As = Am -£2;2"2 
a BI [l O (r£ N]-ar ]3 B B B 

0
mB 

2o.Gar(l-a/2) 2GB +(iv)!.! B I LE.ON! )]~ 4G2· mrOrn! e ; 
B B -

(iii) . 

( i V) • 

( 3. 19d) 
(v),(vi): £8 cannot be determined analytically from either approxi­

mating form Pl-I,II' It must be established as a point of 
inflexion from the empirical PD, as noted above. (3.19e) 
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[In using (iii), (iv), w.e may need at least the next set of "correction" 
terms in the asymptotic developments of Pl-I' dP1_I/dE8.J We note that 
(given £ 8) these three relations [(i),(iii),(iv)] are sufficient to 
determine in principle, any three of the six parameters NI,a,Aa,A8,n28 ,r8 
(cf. (3.l6a)), when the other three are specified . Later, in Section 6, 
we shall show how (3.18), (3.19) may be extended to permit us to obtain, 

from the experimental exceedance probability P1(f>c0 )xpt' the~six 
parameters NI,a,Aa,A8,n28 ,r8 (or, more fundamentally, [a,A8,(B~,8),n28 ,r8J, 
cf. (3.12)). 

For the illustrative calculations of Figs. 3.6II, 3.7II, it is con­
venient to preset £8;N 1,a,Aa, and determine A8,r8,n28 from (i),(iii),iiv). 
Other possibilities are: Fix (c8 ;N 1,a,r8), determine (Aa,n28 ,A8); fix 
(£8;Aa,a,r8), determine (N 1 ,A8,n28 ); fix (e8;A8,r8,n28), determine 

(NI,a,Aa); fix (c8;N1,A8,r8), determine (Aa,a,n28 ) etc. In any case, 
we have now 

(3.20) 

with Pl-I' Pl-II given respectively by (3.llb) and (3. 17). The curves of 
Figs. 3.6II, 3.7II are equivalent to Figs. 3.1 .1, 3.1.2 of Furutsu and 

Ishida [1960], with (v/o:)F+I + A8, (a/a)F+I + (r8r 1, and (R/a)F+I + en 
and exhibit the same kind of "elbow" in the transition region from the 
rayleigh behaviour (for£;<<l), with a bend-over to a constant slope 
(P1'\,e-at:B, .n>O), as for Class A noise, when Co+ co, cf. Figs.3.lII ,3 .2II, 
3.5II. 

B. Remarks on Hall-Type Models: 

Finally, we observe that a Hall model [Hall, 1966] may be obtained 

formally from the Pl-I form for the rayleigh and intermediate region 
(O.::,~,::,c8), provided we neglect the gaussian contributions (e.g . ~a~+ O), 
so that the c.f. (2.89) now applies. From (2 .89) in (3.4) we accordingly 
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Figure 3. 6 ( II). The (complete) envelope distribution P1 (e > €0 )s , eq. 
(3.20 ), calculated for Class B interference for various 
Aa , given a eqs. (3 . 11, 3. 17 , 3.19, 6.9, 6. 10) 
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Figure 3.7 (II). The (compl~te) envelope distribution P1 (€ > e'o)B, eq. 
(3.20), calculated for Class B interference for various 
a , given Aa (eqs. 3.11, 3.17, 3.19, 6.9, 6.10). 
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obtain* 

(3.21) 

This integral may be evalu~ted in several ways, 
or large €0 . We start with the case convenient for 
employ the following transformations: 

convenient for small 
the small values, and 

B = bl ABa0 (=A [-a.); a. a. a. : . >.. = 

d>. = dz 

so that (3.21) becomes now 

£* 00 1-a. 
Pl (C:>l'o)B-I ~ 1- a.of Jl (f;~z 1/a)z a. e-zdz 

0 

C'* - C I Bl I a. 
' (...0 = co a. ' 

Next, let us use the Barnes integral representation of J 1: 

r ( )£*2s+l 
J (S*zl/a.) = j - s o 2 (2s+l)/a. ds. , 
1 o r r(s+2)22s+1 2~1 

(3.22) 

(3.23) 

(3 . 24) 

cf . Eq. (13.106) and Fig. 13. 22 of [Middleton, 1960], where r is the contour 
(-

00 i+c, ioo+c), with c(<O) chosen so that the integral over z in (3.23) is 
convergent at z = 0, e.g. 

(3.25) 

* Equation (3.21) was obtained earlier by Giordano [1970, Eq. 3.66 therein ; 
Giordano and Haber, 1972, Eq. 24] but was not analytically evaluated. 
Moreover, P1 1, here (as wel l as the earlier forms [Giordano , 1970], etc.) 
is not scalea, e. g. ,(£2)8- Irl, as discussed at the beginning of A. above. 
See comments at end of B nere . 
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Thus we find that (3.23) becomes 

" , £~ f r l-sl (2+2s) (~)Zs+ 
1 

ds 
Pl (c..>Eo)B-I ~ l- ~ ~ r -a- 2 2'1Ti 

r 
ZE2 <><> (- l tr ( 2+2n )£2n 

l o I a o 
~ - ~ n=O n!(n+l)!A(Z+Zn)/a 

Cl 

(3.26a) 

(3.26b) 

this last on evaluating (3.26a) at the simple poles s = n = 0,1 ,2, ... and 
using B = A 2-a, cf. (3.22). Equation (3.26b) exhibits the characteristic 

Cl Cl 

rayleigh form (~£~), when £~«1, as expected. 
Next, for large values of e

0 
(or small values of Aa), we return to 

(3.21) and use the Barnes integral representation for exp(-B Aa), viz: a 

to reexpress (3.21) as 

-2 < Re(as) 

Re(s) > -1. 

To evaluate the z-integral we use [Watson, 1944,p. 391]: 

f <><>J (t)tµ-v-ldt = r(µ/2)/r(v -µ/2+1 )2v-µ+l, Re(µ)<Re(v+3/2) 
Q V 

(3. 27} 

(3.28) 

(3 .29) 

with v=l ,µ = s+2 here, and :. O<Re(as+2)<2<Re 5/2, as required. Equation 
( 3. 28) becomes 

I r(-s)r(l+ ~s) *-as d 
pl (e>£o)B' -I ~ 1- 2as.eo _2s. 

r r(l - ~s) 1r, 
(3.30a) 

~ I 
n=l 

r ( l + ~) (-1 ) n+ 1 An 
2 a (3.30b) 
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which shows how this approximation behaves as [
0 

+ 00 , viz. O(c~a) , e.g.: 

r(l+a/2)A A2 
p (£>e )' '\, a - rl.J+aJ _ _£_+ 0(£-3a) '0 <a< 2. 

1 o B-I - r(l-a/2)£a
0 
~ £

0
20. o 

( 3. 31 ) 

Now in the special case o. = 1, we may sum the series (3.26b) or (3.30b). 
Choosing (3 .26b) we get 

oo (-1 )nr ( 2+2n )C:2n 
P,(E>£o)B1 I"' l-2c

2 l 2+2° (3.32a) 
- - 0 n=O n!(n+l)1A

1 
n 

and since (n+l)! = (2)n' r(2+2n) = 22n(l)n(3/2)n [Middleton, 1960, (A.l-46b), 
p. 1078], we find that 

2 
Ea 2 2 

P., (t.>E.o)B-I ~ 1-2 2 l1 (l ,3/2;2;-2e/A,) . (3.32b) 
Al 

From [Middleton, 1960, Eq. (A.l-40c)], the (gaussian) hypergeometric func­
tion in (3.32b) is explicitly 

h <1 ,3/2;2;-x2) = <21-x2)(1+x2)-112~ -P}. 
so that (3.32b) reduces explicitly to 

(3.33) 

which is a special case of the Hall model (eHall = 2), for envelopes 
[Spaulding and Middleton, 1975, Eq. (2.33)]. [Note that Pi~ £~1, £

0 
+ 00 , 

which checks with (3.31): in fact, both (3.31), (3.33) give Pi~ A1/2c.
0

, 

as expected. Observe also that P1(c~£
0

=0)8_1 = 1, as required: P1 is a 
proper P.O., although it is an inappropriate approximate form when ~crG 

is at all comparable to (b1o.Ala)l/a, cf. (3.10a); it is also not applicable 
for very large e

0
, as explained earlier in A of Sec. 2.7 above. In any 
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case, Hall -type pdf1 s and P.O. 's are not possible for Class A interference.] 
Finally, we note that although the above PD's and pdf's, Eq . (3.26b), 

(3.31), exhibit the .correct behaviour as t~ ~ 0, , they are not scaled 
(in €

0
) properly, to provide the finite mean square needed, e .g. <E 2> = l, 

(cf. comments at the beginning of A above). Accordingly, as for P1_1 
above generall y, cf. (3 . llb) et seq . , we must replace c

0 
by [

0
N1, where the 

scaling factor N1 is determined, along wi th the four other parameters 
(A

0
,a , r8,n28 ) of the distribution, by the procedure outlined in Section 6C 

following. [For the Hall model, a= ·1 here, and there are then only four 
parameter values (N1,A

0
,r8,n28 ) to be established.] 
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4. PROBABILITY DENSITIES: w1(e)A,B 

It is now a simple matter to determine the probability densities (pdf's) 
(pdf's) associated with the exceedance probabilities (PD's) derived in 
Section 3 preceeding. Because the PD's are continuous, at least through 
the second derivative (0.::. E:, <~),and because 

we may apply this to (2.7), (3 . 11) and (3.17), etc., to obtain directly the 
desired pdf's. We have first: 

4. 1 Class A Interference: 
From (3.7b) and (4.1) we find that 

o < C. (4.2) 

Thus, as expected from our earlier r ~ . .:lt(3.7b),w1(~)A (in its principal 
contribution*) is the weighted sum of rayleigh pdf's, whose variances~~ 
cf. (3.5). increase with order (r~:_l. Figs.(4.l)II and (4.2)II show w1(&)A 
for various combinations of the controlling parameters AA, rA. With AA 
small the pdf's are seen to be highly nongaussian (e.g. nonrayleigh in C:), 

unless rA is very large, in which case the gaussian (e.g. rayleigh) com­
ponent (here) dominates . As the Impulsive Index AA gets larger, the pdf 
approaches the purely rayleigh form, cf. (2.57b) . Also, for rA > 0, the 
pdf near£.= 0 has finite width, shouldering off into a broad, rather 
low level (in w1) form as C+ ~, which represents the strongly non­
rayleigh structure of this class of noise. The larger rA, the wider and 
less "peaked" is the "sptke" at£.% 0, and the more "shoulder" there is 
to the rest of the pdf. 

2 When rA = 0, e.g. crG = 0, i .e., when there is no independent, 

* See the conments following Eq . (3.7b). 
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When S > £,8 we obtain at once from (3.17) in {4 .1) 

-A Am -ff /2~
2
8 e B °" B £e m 

W1 (£)8-II ~ -2- l m! ~2 • (£8 ~ £, < oo) • 
4G8 m=O cr mB 

(4 .4) 

analogous to (4.2) in the Class A cases. Observe from (ii),(iv) of (3 .18), 
and [(ii), (iv~ of (3.19)], that w1(£)8, viz,: 

( 4. 5) 

is continuous at£ = £8, with continuous first derivative , so that w1(£) 8, 
as well as P(€)8, has no break or "jump" at the bend-over point £-8, 
where the two approximations are joined. Furthermore, unlike the Class 
A interference, when r

13 
= 0 there are no "gaps in time", cf. (4.2a) vs. 

(4 . 3): there is always a non-zero probability (density) for£= 0. 
Figs . {4.3)II,(4.3)II show typical curves of w1(e) 8, analogous to Figs. 
(3.6)II, {3.7)II for the P. O. 
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5. MOMENTS 

The general first-order moments (£.a), (0 ~a<=) , are now easily 
obtained from the results of the preceeding Section. S~nce 

( 5. 1 ) 

(a real and nonnegative), we may apply (4.2) for Cla~s A interference, and 
(4 .5), with (4.3), (4.4), for Class B noise, respectively. 

5.1 Existence and Direct Calculation (Approximate Forms): 

For Class A interference we get directly 

-A ~ A2 S/2 a m (f!) ~ e A I (2amA) r(-2 +l)AA/m! 
A m=O 

(5.2) 

cf. (3 .5) . The sum in (5 .2 ) is clearly finite, since by Stirling's 
theorem (m·! ~ mme-ml21rm) for sufficiently large m (» AAr~_) the summand 
is dominated by A~/mm+l- a. Accordingly , all (finite) moments* exist for 
Class A interference, and are given by (5.2), approximately. [We recall 
that we consider only the principal development of P1A,wlA' cf. (3.7) , 
(4.2) above.] Typical moments here are, from (5.2) : · 

(~°)A= 1 , as required; 

* Of the envelope, and of the instantaneous amplitude [cf. Middleton, 1974, 
Section 4.5], by the same argument. 
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(5.3) 

= 1, (as required). 

For the Class B interference we have, from (4.3), (4.4) in (5.1): 

~ 2 (X) (-l)n 
l n! n=o 

( 5.4a) 

(5.4b) 

[The integration of the hypergeometric function directly from its series 
form yields 

N 1£.B (X) (- l ltB+2k+2(1 +an/2) (N2k+ 1 
l [e+l F (l+na/2;1 ;-°t2)dE = I . 8 k 1 ) (5.5a) 
2GB O l l k=O (kl )2(e+2k-2)(2G

8
)2k 2GB 

which is probably the most direct and convenient form for numerical inte­
gration here.] In addition, the second integral in (5.4b) may be expressed 
as an incomplete gamma function, Ic, which is tabulated [K. Pearson, 1951], 
e.g. 

(5.5b) 
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where Ic is defined by 

. _ 1 y-1 -y lx 
IC ( x , y ) = rfvT O y e dy . (5.5c) 

Again, direct integration of the integral itself in (5.5b) is probably the 
most convenient numerical procedure.] Clearly, by the same argument used 
above for the Class A noise [cf. (5.2) et seq.], all (finite) moments exist 
for Class B interference, as well. Some typical moments here are, from 

(5.4): 

(£0
) 8 = 1, as required; (5.6a) 

(5.6b) 

(5.6c) 

[For numerical calculation we may also ~valuate the integrals (left member 
of (5.5b)) directly, replacing 8 by 8+1, $+2, respectively for the mean and 

mean square, (5.6b), (5.6c).] 
As required from physical considerations, e.g. finite energy in the 

Class B (and A) interference; the second moment, in particular, is itself 
finite. This is not the case if we use the approximate forms w1([)8_1, 

or w1(£)8_1 (=-dPl(B-I)/d8, cf. (3.21) et seq.), for all values of the 
envelope. Then, we have, in effect 

€s 
(cf) ::..fa e~,(Ds_roc:+ 2r l+a/2 A i 00

£J3-a-ld0 r -a/2 a ' £s 
(5.7) 
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this last tenn from (3.31). The second term of (5.7) is finite only if 
0.::. S < a (<2). Accordingly, no S moments exist for the Class (B-I) 
distributions, unless sis less than the spatial density - propagation 

parameter a. Thus, (S,2>B-I +~,in contradiction ~o the physical situations 
we are attempting to model. In some cases (e . g. atmospheric noise) 

wB-I' PB-I are quite satisfactory for even very large values oft:, cf. Figs. 
(~.3) II, : (3.4) It, but there is always some finite €8 beyond which a 

suitable form of wB-II' or PB-II must be used, in keeping with the ·bounded 
nature of all the moments. 

5.2 Clas~ A and B Moments: Exact Forms (Even Moments O~ly): 
As we have seen above in Sec . (5.1) all (first-order) Class A and B 

moments of the envelope (and hence of the instantaneous amplitude) exist 
and are given, an approximate form, by Eqs . (5.2), (5 .4). These results 
are approximate, albeit good ones. 

However, an alternative development is possible, which can provide 
us with exact expressions, for the even-order moments.* For this we use 
(2.24b) and take its [(-i)k dk/drkj derfvative at r=O, to get 

l(i)k d\ F1(ir0 = (Ekco/i/J>E .,: = <Ek)(co/1"), k = 0,1,2, ... , L dr ~r=O >o/ 

(5.8) 
this last, since w1(E,i/J) = w1(E)W1(wL cf. (2.20), (2 . 21), a result of 

the narrow-band nature of the output from the (aperture x RF x IF) stages 
of the receiver. Since w1 (i/l) is uniform in (0,2n), all k-odd moments of the 
phase vanish, e.g. (cosk1"') = O; k = 1,3,5, ... , and only the k-even moments 
remain. With the help of 

< 
2k) 2k 2k 2 cos i/J 1/J = 2kck/2 = (2k)!/2 (k!) (5.9) 

[Middleton, 1960, Eq. (5.26)] we accordingly obtain from (5.8) the general 
relation 

* No such results are available for the odd-order cases; one must use the 
approximate forms (5 .2), (.5.4) . 
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(E2k) = (k_! )'"2~r- (-1 / _d - F (ir) 2 2k ~ 2k A ~ 
\2kJ! dr2k 1 r=O 

(5.10) 

for the even moments, when they exist (as they do here, but see the com­
ments below in Section 5.3). In normalized form [with the aid of (3.3)] 
we can write (5.10) equivalently as 

( 5. 1 Oa) 

Our general result (5.10), (5.10a) is equivalent to the procedures used by 
Furutsu and Ishida [1960, S~ction 6] and Giordano [1970, Appendix II, p. 175 
et seq.], which is derived in our study by a different process. 

A. Exact Class A Even Moments : 

For Class A, even-order moments, including an independent gaussian 
component, the exact fonn is now obtained by us i ng (2 .50) in (5 .10) or 
(5 . lOa), rather than from the approximate relations (2 .77), (2.78). The 

A 

simplest procedure here is to expand the c.f . F1(ia\)A as a power series 
in \

2
, which is pennitted, since the integral (in the exponent) is a 

definite integral, continuous in \ 2. The functional form of F1(ia\~A 
is seen to be precisely that of the c.f. F1(i~)A=P+G derived in the 
earlier study for the statistics of the instantaneous amplitudes (C~ass A 
noise), [Middleton, 1974, Section 4]. Accordingly, we use that expansion 
of F1 to write at once here (exactly) 



 
 
 
 

where we have 

(
A2k\ k 

n2k-A = AA BoA//2, (cf. (2.75d)) 

with 
() 

Applying (5.11) to (5.lOa) and observing that the expression in the square 
brackets [Jin (5.10a) is precisely the coefficient of (-l)k(aA) 2k/(2k)! 
in (5 . lla) [or of (-llA

2
k/(2k)! in (5.llb)], we obtain 

[(E..0)A = 1] (as expected) ( 5 .. 12a) 

(5.12b) 

(5.12c) 

n 9n 
= 6A + 4A + 6 

n3 (l+r' )3 n2 (l+r')2 · 2A A 2A A 
etc. ( 5. 12d) 

(This is given in .!:!!!.normalized form, e.g. with £/a= E, by (5.12) on 
replacing[,. by E and deleting a therein.) These results (5.12) are to be 
compared with the approximate (and sometimes exact) forms (5.3). For 
example, observe that when rA-+- 0, ~, (02) = 1, as required, cf. (5.12b), 
with similar equivalences for (e4), etc., from (5 . 2) vis-a-vis (5.12c), 
(5.12d), etc. For intermediate values of AA, rA, we may expect modest 
departures from the exact values above. Finally, using (5.llc) in (5 . 12) 
we can write alternatively 
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ls4) = 2 + (84 >/A (82 )2(l+r' )2· 
~ A oA A oA A ' 

(5.13) 
which shows how the (normalized moments behave as th~ Impulsive Index AA-+a>' 
or as the independent gaussian component becomes dominant (rA-+«>). 

For the odd moments of £(or E) our procedure above, of course, is not 
applicable, and we must go directly to the calculation on the pdf, w1.(£.)A, 
cf . ( 5. 1 ) , ( 5. 2) , far k= 1 , 3, 5, . . . . 

B. Exact Class 8 Even Moments: 
The r.elations (5 .1 0) , (5 . 10a) apply here also, but the explicit 

differentiation of F1(iaA)8, based on (2 .51) cannot make direct use of a 
power series expansion of the integrand in the exponential, because the 
integral is now an improper integral (0,00 ) which is not uniformly conver­
gent (in A) over the entire domain of integration [Courant·, 1936,II Sec. 4, 
Chapter 4, p. 307 et seq.], so that term-wise expansion (in A) of the 
integrand, as for Class A interference above, is not permitted. However, 
let us temporarily consider the case where (z0 )max< 00 (e.g., output signals 
of finite duration). Then, the term-wise expansion is permitted, as the 
integral is now both p·roper and uniformly convergent; (in fact, the 
resulting c.f. belongs formally to Class A). We proceed as in Class A 
a~ove and next apply lim(z

0
)max-+a> to the c .f., e.g. F1(iaA)8= 

g:)max-+ooF1(iaA l(z0 )max<00 )11 8,., and hence to each term of ~5.11), (5.12), 
etc., now specialized to the Class B parameters, A8 , Ar8, AB08 , etc. 
Thus, (5.11) applies again here, with rA+r8, AA+A8 , .B

0
A+B08 , etc. We 

obtain the analogue of (5 .12) , for example : 
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(E.o)B = 1;} 
as 

I. 2) .. 
. \8 B = 1 , 

expected; 

(s4)B = n4s/n~B(l+rB)2 + 2; 

(s.6) 8 = n68;n~8 (l+r8)3+9n48;n~8 (l+r8)2+6; etc. 

where specifically, 

A <s2k> . 
- B oB [e• - A Q2k-B = k wB - ·o' 

2 

A 

)d~e• /wB , 

(5.14) 

( 5. 14a) 

cf. (2.87d) and B08 in (2.87c) . Again, for the odd-moments (k=l ,3,5 , ... ) 
we must use the approximate fonns (5.4), (5.6), etc. 

5.3 Remarks: 

For Class B (and~ Class C) interference (0 <a< 2), when (2 .89) 
is used as an approximation for the c.f., it is clear that if we use (2.89) 
in (5.10a), then (£2) + 0(Aa- 2)A=O~ 00 : the second moment does not exist. 
Of course, this divergence is simply the consequence of the inadequate 
approximation, a behaviour which is alleviated by the alternative approach 
using the results of Section 4, Eqs. (4.3)-(4.5) in (5.1), cf. (5.4) - (5·.6). 

Of perhaps greater interest is to note that, in terms of our general 
classification [Sec . (2 .3) and Sec.(2.5-3)], Giordano and· Haber [1970,1972], 
in effect, postulate a f i nite period of observation (O,T) for each member 
of the ensemble, e.g. Eq. (2.36) above is in force. This is equivalent to 
Class A operation, since itamounts to an abrupt truncation of the basic 
signal wavefonn u0 (z) as emitted from the ARI stages of the typical narrow­
band receiver, cf . Fig.(2 . l)II. This , in turn, means that the receiver 
bandwidth is large enough vis-a-vis that of the input to pass it with 
negligible transients, a defining characteristic of Class A noise . Then 
all moments exist [cf. Sec . (5 . 1)] and the proper approximation for the 
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PD is (3.7b) . This Class A, or truncated case, goes over into a Class B 
model as the observation period (0,T) becomes large ~is-a-vis receiver band­
width, e.g., as T6fARI>>l. The type of approximate c . f. employed is then 
that given by (2.89), or more suitably, (2.90), which includes an indepen­
dent gaussian component. These,as we have seen [cf. Sec . (3.2)] yield 
satisfactory approximations for small and intermediate ranges of envelope 
€, or thresholds &

0
, but fail at some point ("large"€, &

0
) to give the 

more rapid convergence needed to insure the physically required finite 
moments of all (positive) orders, cf. Sec. (5.1). Thus, the results of 

Giordano and Haber [1970,1972] (for suitably large T6fARI), while prac­
tically useful as long as the statistics of very large values of the en­
velope are not demanded, are analytically incomplete as Class B models of 
the full range of possible values of the random envelope e and exceedance 

probability P1(C > S.
0

) 8. 
On the other hand, the important analysis of Furutsu and Ishida [1960], 

which represents a subclass of our Class B model in that a specific emit­
ted wavefonn [u

0
(z)8] is chosen, i.e. an exponential ~e-az, and several, 

particular spatial distributions of sources with a given propagation law 
(~1/A) are assumed, along with an exponential distribution of input signal 
amplitudes, does yield analytic forms of the PD and pdf which permit the 
existence of all orders of envelope moments, and which confonn closely to 

the statistics of the atmospheric data studied therein . The approach 
of Furutsu and Ishida [1960] is similar to ours in that approximate c.f. 's 
are obtained, suitable for the small and large values of [(and ~0 ), while 
the intermediate ranges (of£) are evaluated by numerical techniques . 
The canonical methods of our approach, however, are not invoked . Of course, 
neither Furutsu and Ishida, nor Giordano, and others, consider or distin­

guish Class A interference, which is a new category, as far as its 
statistical-physical description is concerned, considered originally by the 

author [Middleton, 1973, 1974]. 

119 



 
 
 
 

6. DETERMINATION OF THE BASIC FIRST-ORDER PARAMETERS 

In this section we outline procedures for determining the basic param­
eters of Class A and Class B interference models developed in the preceeding 
sections. A variety of overlapping procedures is available. We shall 
select what appears at this stage of the study to be ~he most direct and/or 
convenient, (later efforts may suggest modifications, for .particular 
situati ans). 

We begin with: 

A. Class A Interference: 
The first-order PD (and pdf) are governed by three parameters. It is 

convenient to distinguish two levels of parametric description: the first 
level, which we shall call 11 Basic-I 11

, consists of global parameters, which 
appear directly in the expression for the P.O., cf. Eq. (3.7), and the 
second, or "Basic-II" level, contains the associated generic parameters, 
which are defined directly in tenns of the underlying statistical-physical 
model. The two groups, as we shall see, overlap to some extent. Table 
6.1 below gives the global and generic parameters of Class A interference~ 

Table (6.1): Class A Parameters 

Basic I: Global: (AA,rA,n2A)-+ {Practical Global: 

(6.1) 
The generic and global parameters are related by 

(6.2) 

Furthermore, the intensity of the independent gaussian component is 

2 2 2 aG = crR+aE , [Eqs. (2.47)], (6.3) 
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where o~ is the intensity of receiver noise (at the output of the initial 
ARI-stages of the receiver) and o~ is the intensity of the independent 
external gaussian component, if any, likewise observed at the output of 
the ARI-stages of the receiver. By blocking the input to the receiver, 
(i.e., insuring that o~ = 0) one obtains o~, at the ARI output. Conse­
quently; as o~ is found by actual reception in the (here) Class A noise 
environment, one then at once determines o~ from (6.3). 

Because we do not a priori know the normalizations (3.1) by which the 
threshold E

0 
and the envelope E are scaled, it is necessary to convert our 

analytic expressions (3.7) for the PD, for example, into forms more 
directly conformable to experimental evaluation. For this purpose we 
write* 

(6.4a) 

with 

(6 .4b) 

the new conversion factor, between c:,' and[, where;~ is an a priori de­
termined reference quantity, used to scale the (absolute) values E , E, etc. 

To obtain the generic parameters (AA, o~, s;A) we first must
0
deter­

mine the global parameters (AA,rA,n2A). Practically, this means we must 
initially find the "practical" global quantities (AA,rA,KA), cf. Table 
(6 .1) above, and then use (6.4b) to eliminate the conversion factor KA. 
Three relations involving the practical global parameters are needed. 
Perhaps the simplest are the first and second moments of£', and the PD 
of£' in the rayleigh region (c~<<l), where the slope (dP1A/dc~) is con­
stant, cf. Figs. (3.l,3.2)II. Accordingly, from the exact expression 
(5.12b) and (6.4a) we write 

(6.5) 

which gives us KA and hence _n2A(l+r11.) in terms of the known;~ and ((s•}2\, 
*-o:rcourse, one can always measure (E2)A=2n~l+r}i.) and. then normalize, so 

that KA =l. 
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this last by measurement in practice. From~the approximate expression for 
(£/A' viz . (5.3) with (6.4a), we obtain 

' "' -1 [-AA ;; °' (m/AA+r Ji) 1 /2 A; J 
(s) A = (c.)A/KA = KA e T L l/2 mi"" ' 

m=O (l+rA) · 
(6.6) 

and from (3.7b) specialized to the rayleigh region, e.g. (3 .8), we have 

[ 
-A °' ( 1 + r ' ) Am J 

p (£ ' >[') ~ 1- e A L A A (['K )2 
1 o A m=O (rA+m/AA)m! o A 

(6. 7) 

In practice, of course, (£') A' ((£' )2)A' and P1 (l.'>l~) are estimated 
from the experimentally derived data, i.e. (E-')A' ((£ ' )2)A' and P1(C'>£~)A 
are respectively replaced by thei:r estimates from the necessarily finite 
empirical data, so that (6 . 5)- (6.7) are three relations for joint estimation 
of the 11 practical 11 global parameters (AA,rA,KA), a proceedure requiring 
a modest amount of computational assistance, particularly when the expres­
sions in brackets [ J have been programmed. With the help of (6,4b) for 
KA involving n2A' rA we next get directly the (estimates of the) gaobal 
quantities (AA,rA,n2A). Then it is a simple matter to use (6 . 2) to 
obtain finally the (estimates of the) desired generic parameters 

2 (A2) • (AA,oG, B
0
A ). The desired estimates to be used ,n (6 . 5)-(6.7) are 

l n n 
(c) +-Is~; 

A n i=l , 
((8)2) +l 'i' (£'. )2 ; P(C £') P (c.' l') A n i;l 1 > o A+ 1 > o A-expt 1 1· 

(6.8) 

B. Class B Interference : 
Here we have a six- parameter model for the Class B cases. Table (6.2) 

su1T111arizes the global and generic parameters involved: 
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Table 6. 2: Class B Parameters 

The global and generic parameters are related by 

2 - r• aG - n2B B' 

and 

[Eq. ( 3. 2a)] } 

[Eq . (2 . 47)] 

, [Eq. (3.2a)J 

[ E q • ( 3 . 1 2a ) ] 

The common global and generi c paramete rs are clearly (A8,a). 

(6.9) 

(6.10) 

The fact that there are six generic parameters for our statistical ­
phys ical model of Cl ass B interference stems di rectly from our pair of ap-

A A 

proximations F1_I,Fl - II' E'qs . (2 . 90), (2 . 93) , to the exact cf. (2.87): 
(i) , the Impu l sive Index A8 [(2.38), (2.39) in (2.51); (ii), the _spatial 
density-propagation parameter a , (2 .82) ; (iii), the independent gaussian 

component a~, [(2 .47) , (2.88c)]; (iv). the a-moment of the generic , fil-

(
~a. 

tered envelope waveform 808), _cf. (2 .87a), (2 .87d); (v), the mean- square 

of this generic wave_form, (s~8) ; and finally, (vi), the scaling factor 
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N
1

(Aa,a,A8 ,n28 ,r8/E8), cf . remarks in Sec. 3.2-A. This factor N1 is 
functionally involved with but not solely determined by the other global 
(and generic parameters, through the APO form, and is independent of s8 
[cf. remarks below in Sec. 6C]; hence it is regarded as a generic parameter 
here also. The quantity N1 ranges from O(lOdb) to 0(50,60db) in practice. 
For example, comparison of Fig. (2.4) with Fig. 3.3(II) (A ; 1, a~ 1), a 
for the same P1=0. 9 gives N1 ; -6-(-44); 38db. The point of inflexion, 
or 11 bendover 11 point[8 , cf. Fig. (3.5)II, ~t which the PO's (and 
pdf's) corresponding to the two approximating c.f . 's, F1_1, Fl-II' are 
joined, to give us the desired composite PO (and pdf), is purely empirical 
[(~i), (3.18)]. The conversion factor Ks is here 

(6.11) 

cf. (6.4b), where, again,;~ is a known (measured) gaussian noise reference 
level. Also as before, we may obtain the components of cr~ as indicated 
above, cf. (6.3) et seq. [See, also, footnote, Eq. (6.4a).J 

Now to obtain the desired global parameters of our model from observed 
data we need six convenient nonidentical relations involving these parameters 
in various, sometimes simple ways. First, we use the exact expression for 
the mean square envelope (5.14), with the renormalization (6.4), to write 

<( , )2) _ (c2'> K-2 _ l/ 2 _ (l , )/"2 _ 21--2 £ B - L 'B B - KB - n2B +rB 0 G - AcrG 0 G ' (6.12) 

cf. (6.5). Since the expressions for the Class B moments are analytically 
quite involved, and because the PD contains all moment infonnation here, 
we use [(i), (iii), (iv)] of (3.18), (3.19) where P1_8 is empirically 
determined from the data. Accordingly, we have the additional five rela­

ti ans: 

rayleigh region: 
[2 relations] 

(£ I K N )2 00 

p (£' >[') ~ 0 8 I L 
l - o B 4G2 n-Q B -

(-1) nA 
___ a r(l+ an ) 

n! 2 

-AB oo Am 
~ fc'K )2 e \' _Q_ ( 2;2 )- 1 

'C.o B 462 m~O m! mB ; 
B 

124 

( 6. 13a) 



 
 
 
 

large thresholds: 
[2 relations] 

at bend-over point: 

A ar(l+a/2) (2G )a+l 
a B 
r (l-a/2) ~ )a+ l 

(c.BN I 

[l+O( ) ] 

As noted from (3.18), (v) ,(vi), c:8 is the joining point (or point of contin­
uity (through the second derivative of Pl-I,II' at least) for the approxi­
mations to P1_

8
• €

8 
is the point of inflexion of P

1
_

8
, obtained from 

(Pl-B)expt. Here 

(6.14) 

In practice, s 8• is available from inspection of·the experimental* PO, P1 8 
, - ,exp 

so that in addition to (6 .12) only the five relations (6.l3a·,1b,c) are then 
required for. the remaining si~ global parameters. Once these have been ob­
tained, we may use (6.10) to determine the six ultimately generic parameters 
of the Class B interference under study. Of course, in practice, our 
data are finite and P1_8 is an empirical function;({£' )2)8 is an estimate, 
cf. (6.8), based on sample values, and c8 is likewise an estimate by in­
spection, so that all parameters actually obtained are necessarily them­
selves estimates. We do not include €8 in our list above of global 
parameters, and exclude it from the basic, or generic parameters, cf. (6.9), 
since it is in ·effect, an empirical quantity resulting from the procedure 
of joining P1_1 ,P1_11 in approximation to the true P1_8, at l = c8. 

C. Degenerate Cases: 
When E8 (or £.i3) is not known -- i.e., is not evident from the empfri-

* However, see the important situation discussed in C following. 
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cal PD, Pl-B -- we can only work with the Pl-I form of the PD, namely the 
approximation suitable for small and intermediate values of ~o (and S~) 
< f'B(£8)~ This is the case, for example, of much of the atmospheric noise 
data, cf. Fig. 2.4, where no bend-over point is at all evident~ The model 
now reduces from six to. a five-parameter approximation, in (ACL,CL,r13 ,n8 ,N 1) 

[or (Aa,a,r8,K
8

,NI)] for the global parameters and in (CL,cr~,N 1 ) for the 
generic parameters, cf. Table (6.2). BecauseEB is not known, we are unable 

<
A2) (ACL) to obtain AB' and hence we-can det:rmineAonly n2B = AB B0 B /2, ACL ~ 80B AB, 

and not their individual factors (B~
8
),(s;8). For these five global para­

meters we need accordingly five equations. The conversion factor K8 is 
again given by (6.12), and for the four other parameters we use 

Eg. (3.llb): rayleigh region: 

2 (-l)nAn 
P,(f'>f')s I~ (£.~KB~1r) r I CL r(l+ a2n) = 0.99, say; 

- 0 - 2G n=O n. 
B 

( 6. l 5a) 

and 
Pl-I in the "bend-up" region, where P1_1 departs from the "straight line" 
rayleigh fon11, so that (3.llb) fully applies, and two points P1_I=P3,P 4 
with 

Eg. (3.15): large{~ (<£13 1..:_ 

A 

A r(l+a/2)(£B'KBNirCL 
p (€.I>£' ) ~ CL ( 1 +O ] = p p 

l - o B- I - r ( l -a/2) ( 2GB )-a (iii) 3' 4 ( 6. 1 5b) 

where the PD's are empirically determined. Without the turnover point €8 
we cannot join the large-threshold approximation Pl-BI! to Pl-BI for 
(E 0 <£B), and are thus unable to deten11ine the generic parameters, except for 
a,cr~,NI. This indicates the importance of obtaining the 11 rare-event 11 data 
(E.>c8) , so tha.t the fundamenta 1 ( i . e. , generic) parameters of the inter­
ference model may be estimated, as the fundamental descriptors of this 
noise environment, as specif.ied, of course, by our statistical-physical 
model in this case [cf . Section (2.1 ) et seq.] . 
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7. PRACTICAL CONDITIONS FOR CLASS A AND CLASS B INTERFERENCE 

In our preceeding analyses we have postulated limiting forms of inter­
ference which are strictly Class A or Class 8, neglecting the very small 
contributions of the associated other components (e.g. Class B where Class 
A is said to occur, etc.). Here we shall establish quantitative conditions 
which permit us to neglect these other-component effects and to assert that 
our analytical forms may be applied to the corresponding physical situa­
tion, e.g., essentially only Class A, or Class B noise is present. 

To do this we $tart with the relation (2.52) for the general Class C 
interference and use the results [Eqs. (2.77), (2.78)] for Class A, 
[ E q s . ( 2 . 9 0) , ( 2 . 9 3 ) J for C 1 ass B , to wr i te 

~ A ~ 

F1(ir )C+G = F1(ir)A+GF1(ir)8 (7.la) 

(7.lb) 

where we include er~, (-2 .47), in the Class A form ('\,rft.) here . 
When Class A noise heavily predominates, we use the transformation 

r=aAA' cf. (3.3) et seq . , and expand the Class B components of the c.f., 
to get the pair of approximations 

and 
I 2 2 4 4 

-[(m/AA+rA)n2A+b2aA8]aAA /2{ 2 aAA } 
e 1 +b2aAB -8- + ... 

(7.2) 
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For this to reduce to the principal form (3.5), we have ·at once the two 

pairs of conditions 

Class A: 

b A ) <s2 
)A A 2a B = (4-a. AoB B (1+2i;A <s2 \)-1 , 

n2A 2-a. I 
8

2 \A G A oAI « r A' 
\ oAI A 

( 7. 3a) 

with 

(7.3b) 

and 

(
4-a. )2 
2-a. « 1 , for [ > ls (7.3c°) 

-
From (2.37), (2.38), we also note that AA,B=y~Ts(A,B)· Equation (7.3a) is 
usually the weaker condition and (7.3b,c) the stronger, with the Impulsive 

Indexes AA,B not too large. A useful, rough rule for considering t~e in:er­
ference to be Class A only is, in effect, the condition A8<<AA' or Ts8<<TsA' 
the latter representing the fact that the amount of time, on the average, 
that the Class A component is present, is much larger than that for the 
Class B term, a not at all surprising condition from an intuitive viewpoint. 
The conditions (<<1 ,rA) in (7.3) are, of course, matters of judgment, usually 
0(10-2,10-3) is sufficient, unless we are concerned with the v~ry rare 
events, i.e., extremely large values of E. In general, we shall adopt the 
stricter conditions (7.3b,c). (We shall pursue the detailed anatomy of 
these and the Class B conditions further in a later study.) 

When Class B noise is heavily dominant, on the other hand, we rewrite 
fl.lb) to include the independent gaussian component embodied in rA with 
F1(ia8\)8, (2.90) and (2.93), so that we have now for the Class A contri­

bution 
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Accordingly, we get 

F1 (ia8;>..)B+G ; [Eqs. (2.90) and (2.93)] , (7.5) 

provided the single condition 

Class B: 

(7.6) 

is obeyed. A~ain,_ the simple, intuitively obvious condition is that 
AA « A8 (or \A <<T~B): the Cl ass B interference is 11 on 11 for a much 1 onger 
period than the Class A component. The amount of Class A noise is 

negligible vis-a-vis the Class B contribution. As expected, this condi­
tion is, not unexpectedly, just the reverse of that (roughly) required 
for Class A dominance. [Note, too, that the more precise condition (7.6) 
is a kind of inverse of conditions (7.3b,c) above for the Class A cases.] 
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Glossary of Principal Symbols 

Equation numbering in Part II does not contain a 11 II 11 suffix; when 
equations from Part II are referred to in Part I, they are so 
designated, e.g . Eq. (3.5), Part II, etc. 

Figure numbering in Part II is similarly indicated by a 11 II 11 fol ­
lowing the number. 

A. A
0 

= peak amplitude of typical input signal 
AA,A8,A ,A A'A 8 = Impulsive Indexes, (Class A,8 interference) 

co or:>, co, 

A = effective Impulsive Index 
a 

aA,a8 ,a = normalizing factors 
APO = a posteriori probability; here 1-0istribution = P1 

a 

bla'b2a'b2t+2 la 
B 

C. c.f . 

E. E ,E
0 

e 
Oy A 

E ,[o '~ ,£.~ ,E.o 

= combined aperture-IF-IF receiver input stages 
= source, receiver beam patterns 
= spatial density-propagation parameter 

= generic or typical envelope of waveform from ARI 
receiver stage 

= weighted moments of the generic envelope 808 
= exponent of moment 

= characteristic function 

= probability distribution 
= delta (singular) function 

= instantaneous envelope 
= limiting receiver voltage 
= normalized (instantaneous) envelopes; £

0
=envelope 

threshold 
= 11 bend-over 11 point (Class B), empirical pt . of 

inflexion in P1_8 
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n 

A 

F. F1 ,F1 

H. 

l Fl 
t.fwt.f ARI 
f 

r(x) 
y 

L. I\ 

A 

A 
""' 

N. n. b. 

= an exponent 
= impulse epoch 
= normalized doppler 

= characteristic functions 
= confluent hypergeometric function 
= noise, receiver bandwidths 
= frequency 

= a basic waveform 
= geometrical factor of received wavefonn 
= rati.o of (intensity of) gaussian component to that 

of the 11 impulsive 11
, or nongaussian component 

= ga1T111a function 

= exponent of propagation law, with range 

= exponent of characteristic function 
= incomplete r-function 
= unit vector 

= Bessel function, 1st- kind, (0,1 order) . 
= jacobian 

= conversion factor, for arbitrary normalization 

= domain of integration 
= argument of the c.f. 
= (A,6,~), coordinates 

= exponent of source density law with range 
= normalized doppler 

= narrow-band 

131 



 
 
 
 

 

0. 

P. 

Q. 

R. 

s. 

T. 

u. 

V. 

w. 

X. 

Y. 

z. 

n2A ' n2B 
w,wo 

pl 
pdf 

'I' ' 4> 

4>r ,<PR 

r 
p 

= mean intensity of the nongaussian component 
= angular frequencies (w

0
=carrier angular fr . } 

= APO or exceedance probability 
= probability density function 
= phase of narrow band wave 
= aperture phase 

= c.f. variable 
= poisson "density" 

A A 2 2 2 
cr,crG ,cr,crmA,B'6crG,crA,crR,crE = variances 
crs,v = source density 

-
T s'Ts;A,B 
t, tl , t2, 
e,e • 

U,Unb 

uo,uoA,B 

wl ,w, 

X 

XO 

zo 

= emi ssion duration 
= times 
= sets of waveform parameters 

= basic waveforms out of ARI receiver stage 
= normalized envelope waveform at output of ARI 

ARI stages 

= probability density function 

= instantaneous amplitude 
= a c.f. variable 

= a normalized tim·e 
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associated probability densities, pdf's, W1(e)A B, of the envelope are ob­
tained; [the phase is shown to be uniformly distributed (0,2rr)J. These re­
sults are canonical, i.e., their analytic forms are invariant of the par­
ticular noise source and its quantifying parameter values, levels, etc. 
Class A interference is described by a 3- parameter model, Class B noise 
by a 6-parameter model. All parameters are deducible from measurement, 
and like the APO's and pdf's, are also canonical in form: their struc­
ture is based on the general physics underlying the propagation and re­
ception processes involved, and they, too, are invariant with respect to 
form and occurrence of particular interference sources. 

Excellent agreement between theory and experiment is demonstrated, 
for many types of EM noise, man-made and natural, as shown by a broad 
spectrum of examples. Results for the moments of these distribution are 
included, and more precise analytical conditions for distinguishing be­
tween Class A,B, and C interference are also given. Methods for esti­
mating the canonical model parameters from experimental data (essentially 
embodied in the APO) are outlined in some detail, and a program of pos­
sible next steps in developing the theory of these highly nongaussian 
random processes for application to general problems of spectrum manage­
ment is presented. 
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