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PREFACE

Historically, multipath problems have been handled on
an ad hoc basis requiring liberal portions of hind-sight,
engineering ingenuity and serendipity. However, as is often
the case, once the underlying principles are identified,
theoretical developments advance rapidly. Implementation of
the techniques suggested by the theory has proceeded more
slowly. Thus, many theoretical results remain unverified or
only partially substantiated by experiment. In this
handbook, we have collected theories and techniques which
have one or more of the following qualities: It has been in
frequent use by engineers; it has been shown to be accurate;
it can be applied to a wide variety of problems; it offers
an easily obtainable upper or lower bcund.

Most of the problems arising because of multipath
cannot be solved or described precisely, but instead involve
assumptions or approximations, the effects of which cannot
be quantified. The responsibility for the decision on which
approximation or assumption to use for a particular problem

is with the reader.
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Since the handbook is directed toward air traffic
control (ATC) frequencies, most of the material presented
is oriented toward frequencies above VHF, and toward line-
of-sight paths. Two special sections, one on Omega and
one on Loran are included. No information on HF propa-
gation or ionospheric scatter is included.

Finally, selection of the material in this handbook
has been heavily influenced by the systems presently used

by the FAA.
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AI. CLASSIFICATIONS OF MULTIPATH
AI-A. Introduction

Multipath as used here will ke interpreted to include
propagation over raths passing through different parts of
space, paths with different physical properties, paths which
are changing with time, or combinations of these (see
fig. 1). The purpose of this chapter is to develop methods
which permit a mathematical description or classification of
this multipath, which is independent of the signals
experiencing the multipath, but one which is useful for
describing the effects of this multipath on these signals.

Most analytical treatments of multipath problems are
either based on or can be formulated in terms of a linear,
time-variant, impulse resgonse function. The purpose of
this chapter is to describe such functions and
approximations to these functions in a variety of ways that
will facilitate identification with predicted or measured
quantities.

For system evaluation, it is necessary to have
additional information, not covered here, such as a
description of the signal, the additive noise, the signal

processing, etc. The full generality of the mathematical
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//ﬁ \bﬂ\ Noise

Figure AI-1. An example of assigning a system function to each path.
An alternate approach would assign a single system function.

formulation in section B below is seldom used for systems
evaluation, primarily because of insufficient information
for the description of the impulse response function, but
also because of mathematical difficulties associated with
the analytical representation of the signal. However, it is
useful for providing insight into the nature of multipath

problems.
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In the implementation of the approach to the channel as
a time-variant linear filter, the basic techniques employed
in this chapter are essential. The input signal is
considered to be made up of a sum of appropriately weighted
elementary components, such as impulse functions of time (a
pulse of infinitesimal duration) or frequency (a sinusoid of
infinitesimal line width). For a linear transmission
medium, the function of time or frequency (or both) that
describes the manner in which the medium modifies each
elementary component employed in the represéntation of the
input signal in order to vield the response embodies all of
the characteristics of the medium, and it may be called the
impulse response function or the transfer function of the
medium. The channel is thus represented by one of a set of
time-variant transfer functions, each defined as the
characteristic response to a specified elementary

excitation.
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AI-B. The Impulse Response Function

If the output of a channel is known for a sufficiently
large class of input signals then the channel
characteristics can, in theory, be completely specified.
Since the input signals of interest can be represented as
sums of weighted impulses, the response to an impulse will
be used as the primary characterization of the multipath.
Here, an impulse is defined as the Dirac delta function 0 (t)
(see e.g., Vander Pol and Bremmer [1959], and Schwartz
[ 1959]) . For multipath problems, we assume that the channel
is linear, i.e., if any two input signals x4 (t) and X, (t)
result in the two output y,(t) and y.(t), then the composite
input signal x,(t) + x,(t) results in the output signal
vi{t) + yo.(t). This assumption is reasonable for most
situations.

Finally, we aésume that the channel cannot have a
response before an input signal is applied.

Following the notation of Kailath [1961], we define the

impulse response h; (t,r) as the output measured at time t in
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response to a unit impulse applied at time T. Then, if x (t)

is the input signal, the output y(t) is given by

(- <4

y(t) = fx(T)hl(t,T)dT (1)

-0

Zadeh [ 1950 ] has also defined the system function

[ow)

. =j2my(t-T)
H(v,t) = /hl(t,r)e dr (2)

-0

which has the interpretation

Hl(jv Jt) = response of the .network to exp (j 27 v t) (3)
exp(j27m vt)

and the bifrequency function is

w O
' . j2mvr  -j2mput (4)
T(jvs ju) = hl(ta T)e e drdt.
The spectrum of x(t) is given by
-]
-jeamvt (5)
X (jv) :fx(t)ﬂ de .
-0
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Then, the output y(t), or its spectrum Y (ju) are given by

the formulas oo

v(t) = /Hl(jﬂv, ) X(jv) et ey | (6)

-0
and
© @ i
j2mvt -j2mut
Y (j u) = [ Hl(jv, t) X(jv) e e dv dt
- -0
o
=le[jw, ju -v)J X(jv) dv
-G
where
m .
-j2 Mt
Hl(jv» jr) = Hl(jv~,t) e dt
- O
or

Tijvs Jw) = Hy [ivs (k- w].

(7)

(8)

(9)

It is convenient to relate v to the input frequencies,

and pto the rate of variation caused by the multipath.
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AI-C. Time Invariant Transfer Functions

Because of the many interesting theorems and physical
interpretations that can ke obtained when time invariance is
assumed, this special case is singularly imgportant. The
definition of time invariance is: If the input x(t) yields
the output y(t), then the input x(t+r) yields the output
y(ttr).

With this assumption the impulse response function
becomes simply h(r), and the output y(t) correspondingly to

the input x(t) is given by#*

-]

x(t)h(t -71)dT ,

I

y(t)

- 0
-]

fX(t-T)h(T)dT . (10)

The spectra then are related by the formula

Y(jv) =. X({v)HGY) (11)

*The restrictions that must be placed on x(t) and h(t) in
order for the following results to be true are important
mathematically but seldom are required for practical problems.
See Siebert (1961) for a precise statement of these conditions.
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or in the more familiar form

Y(w) = X(w)H(w) (12)
where ®
x(t) = -2-‘1? X{ w) eth dw . (13)

It is because of the form of (12) that multipath
disturbances are often called multiplicitive noise, although
it is clear from (6) that, for time varying systems,
multiplicative is not an accurate description.

If x(t) has a sufficiently broad spectrum X(w), and the
spectrum Y (w) can be determined, H(w) can be readily
determined using (12). Ideally, x(t) would be an impulse
with a constant spectrum extending over all frequencies.
However, in the practical situation where x(t) is band-
limited, i.e., X(w) = 0 for |@|>wg, H(w) can only be
approximately determined, and no information is available
for |w|>wg. This implies that h(t) will be ambiguous or
undetermined for small values of t.

Anticipating later requirements, a maximum delay spread
is defined as either

min to such that x(t) =0, for t>t R (14)

o
or

min
tO such that x(t)< e, for t>to . (15)
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depending on whether small components (<¢) are important or
not.

Practical applications of the time invariant case
include the system evaluation for slow-flat fading covered
in Chapter BI.

AI-D. Simple Doppler

The case of a single path which changes with time can
be treated within the framework of the impulse response
function theory only if the change is linear with time, or
if it can be modeled as piece-wise linear. This assumption
is also necessary for the statistical development in sec AI-
F.

For the single path case, the impulse response is given
by 8(At-+) where A is the appropriate doppler factor. For
the non-relativistic case A = 1 - v/c, where v is the radial
velocity between the transmitter and receiver, negative in
the outgoing direction, and ¢ is the speed of light.

Then, the output y(t) is given by

y(t) = X (At), with spectrum
Y(w) = _X ( Aw../A)_ '
which shows that both the width and the amplitude of the

spectrum are changed. However, A is usually close to 1, and
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the amplitude change is negligible, and the spectral change
can frequently be approximated by a simple shift, neglecting
the spread change. That is, if wg is the center frequency of
the narrow band signal X (w).,

Y{w) = Xlo,twy)
wherewy = v/C w,.

Chapter DI contains methods for calculating Doppler and

the effects of Doppler whenever this approximation is valid.

AI-E. Discrete Multipath
One of the most useful models of multipath for line-of-

sight paths is the discrete model,
N

h(t,7) = -
(t,7) 'Eo: a; §(t-1.) (16)
1=
where the a, and T, may vary with time, subject to the

restriction mentioned in the last section, that the T, are

piece-wise linear functions of t at least to a close

approximation. However, utilizing this impulse response
jwgt

function with the input signal x(t) = x(t)! . we obtain
the output N jwo(t"ﬁ)
y(t) = 3T a x (t-1)4 (17)
i=0

and we may dispense with the restriction on T utilizing
this form (17). For most lineé-of-sight paths, we may use

the specialized form
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N
y(e) = A x(t =7 )) + ) a x (t=7;) (18)

where the first term on the righéfﬁand side represents the
direct path, where slight perturbations on the amplitude
(for example attenuation caused by absorption) and phase
(for example path length changes due to changes in the
refractive index along the path) are possible. For many

problems of interest it is reasonable to assume Ay = 1 and

The special case N=1, the two-path model, is treated in
detail from the physical viewpoint in Chapter CI, and is
illustrated from a system performance evaluation point of
view in Chapter BIII. Many line-of-sight paths such as paths
over a calm ocean and paths experiencing specular reflection
from a smooth atmospheric layer, fit a two-path model where
the differential path delays vary slowly.

Figure 2(a) shows a graphical representation of a
single (time invariant) path, and fiqure 2(b) shows a two-
path model. Figure 3 shows the power spectrum of a white
noise signal of bandwidth 2(B)f. where B is given as a
fraction (0.1) of the carrier frequency f., for different
differential delays between two paths corresponding to a

ground-to—air path discussed in Chapter CII. In this
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Doppler
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a) Flat-Flat Fading b) Two-Path Model

Figure AI-2. (a) A representation of a system function for a

time invariant single path. (b) A representation for a
time invariant two path model.
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Figure AI-3. The effect of two path multipath on a signal of bandwidth
(2 fc) (0.1) = 20 percent of the carrier frequency and a
flat spectrum. These represent points along a ground -
air path described in Chapter CII. (a) shows the first
five spectra shown in the composite (b).



figure, the frequency dependence of the fading is obvious.
Figure 4 shows the same physical paths, for signal of

smaller bandwidth (B=10_5

), and the frequency dependence of
the fading is hardly noticeable. The total range of each of
the figures 3 and 4 is 43 dB.

Returning to (17), if N is very large, and the a; and
mi=a6Ti are appropriately distributed so that the central limit
theorem applies [ see Rice (1944), Beckmann (1967), pp. 118 £f)],
ther both the real and imaginary part of the sum in eq (18)
are normally distributed with mean zero, and variance 02. In
addition, the amplitude of the sum is Rayleigh distributed.
Thus, the amplitude of the total signal | y(t)| has a Nakagami-
Rice distribution. If flat fading can be assumed, and it
appears from the following discussion that such an assumption
is not compatible with the derivation of the distribution,
then the methods of Chapter BI can be applied, and the
Nakagami-Rice, flat-fading case is discussed there.

However, if the summation is independent of, or at
least uncorrelated with the specular term, the summation may
be treated as additive noise, and the methods of Chapter BII
apply.

Distributions for various assumptions for which the
central limit theorem does not apply are given in Beckmann

[1967], pp. 128 ff, and in chapter BII.
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Figure AI-5. A general tap delay line model with variable delays Di
and gains gi.

AI-F. Sampling Theorems and Tap Delay Line Models
The form of (17) suggests that a physical model of the
imrulse response function might be constructed as in
figure 5, where the delays DL; may vary with time.
However, it is difficult to obtain variable delays, and
irplementation of the model has involved various types of

arproximations.
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One such approximation that is widely used is based on
the sampling theorem, or other forms of interpolating
functions (see Temes et al. [1973]). A familiar form of the
sampling theorem is as follows. let xg(t) be a low pass

signal with spectrum band-limited to (-wg,wg), i-e.,

x{w) = 0 for |w|dwg. Then
o0
x _(t-7) = Z x (t-kr ) sinc (r/7_-k) (19)
1 k==
where T =
o Zwo
and sin cx = ———TX (20)
%

This implies that a band-limited signal can be completely
reconstructed from samples taken at appropriate, equally

spaced interxrvals. The received signal can be written in the

form * iw (t-7)
y(t):Re[xo (t-T7) e ¢ hl(t,t-’r)dt

(21)

Then a sampled version of y(t) would be given by combining

(19) and (21) to obtain
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8
oed

Y(t) " Re Zxo(t-kTO) /Sinc(T/To"k) lec(t-T)

ke A byt -r)ar

>

= Re b (t) x (t -k
k ) 22
k=m0 ° ° (22) (22)
where
iw (t -T1)

b = si C
k in C(T/TO - k) £ hl (t,t - T) dr

- (23)
is the tap gain function. If only a finite numker of terms
of the series (22) is used, an approximation is obtained.

A second approximaticn that is used when average delays
are known is to construct a tapped delay line with these
average delays, and approximate the changes in delay by
imposing a phase modulation on each tap together with an
appropriate amplitude modulation.

In most simulation apprlications the tap gain functions
are generated as random time variables with statistical
parameters chosen to match the physical situation to be

simulated. BAn example of a simulator is given in section H.
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AI-G. Statistical Models*.

Often, the information available for the specification
of the impulse response function or the system function of
section B is either inadequate, or too complicated to be
useful in this form. For these cases, statistical methods
have been developed.

It is convenient here to define h, (r,t) as the resgonse
measured at time t+r to a unit impulse applied at time t,

and the corresponding time-varying frequency response

H.Z (f,t) = fhz (1.t) exp (-j2mir)dr
~e (24)

Then

-]

y (t) =[h2(7,t) x(t-7)dr

(25)
We now assume that H, (f,t) is a stationary random
process which can be completely described by its first and
second moments. In particular, we assume E[H, (f,t) ] = 0
where E denotes expected value. Although the theory can be

described in terms of expected values, it is convenient to

*The material in sections AI-G and AI-H was reproduced with
the permission of C. C. Watterson, J. R. Juroshek and W. D.
Bensema LSee Watterson et al. (1969)].

AI-19



assume ergodicity so that time averages can also be used to
facilitate comparison with measurements. For this model,

the channel correlation function can be defined as

R(Af, At) = HZF(f,t) Ho(f + Af, t + At) , (26)

where the long bar indicates an average in the frequency-
time plane, and the asterisk indicates the complex conjugate
of the function. The function R (Af,At) is not one of
frequency, f, or time, t, when H (f,t) is stationary in
these variakles, but depends only upon the frequency and
time displacements, Af and At.

Since fewer independent measurements can ke made over
the band of interest at one time than can be made in time at
any one frequency, it is convenient to define R(Af,At) more

explicitly as an integral in the time domain,

1i 1 tl/z
R f, t) = 1m 2 b3
(af, at) . S Hy (f,t) H(f + af, t+ at) dt . (27)
-t, /2

The channel scatter function then is defined as the

double Fourier transform on Af and At of R(Af,At),

s(T,v) = S‘jwf“Af,Aﬂ exp(j2nTAf - j2rruAt) daf dat . (28)

-0 =
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At this point, it is convenient to consider dimension.
A continuing signal expressed as a real function of time has
the dimensions of voltage or current. When it is
autocorrelated to obtain a correlation function (with unit
resistance assumed), and the result is Fourier transformed
tc obtain a spectrum, the correlation function has the
dimensions of power and the spectrum has the dimensions of
power per unit frequency (power density). In the preceding
equations, H,(f,t) is not a signal, but a dimensionless
ratio of two amplitude spectra; consequently, R(Af,At) is
dimensionless. It is convenient, however, to think of it as
a power ratio. The channel scatter function, s(r,0), is
also dimensionless, but it is useful to think of it as a
power ratio per unit time per unit frequency. It is the
ratio of the channel output power per unit time delay, 7,
rer unit frequency offset, b, to the channel input power.
If the channel scatter function in (28) is integrated over

its domain, it is easy to show that

@w

§55(7,U)dT dv = R(0, 0) , (29)

-0 ~-0

~and R(0,0) is thus the ratio of the channel output power to

the channel input power.
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If the ratio of the channel output power to the channel
input power is set equal to one, to define normalized
funcitons, then the normalized channel correlation function

is R(af, at) = R{af, at)/R(0,0) , (30)

and the normalized channel scatter function is
s(r,v) = s{r,v)/R{0,0) . (31)
In addition to the previous functions that have been

discussed by other authors, some additional functions
describing stationary time varying channels are also useful.

LCefine the channel time-scatter function as

() = Ssh,u) dv . (32)

-

When (28) is substituted in (32), the latter becomes

o« [ee) @
u(T) :fff R(Af, At) exp(j2TTAf-] 2vAt) dAf dAt dv . (33)
-® oo Jo

Equation {(33) can be integrated with respect to L and At, in

turn, to obtain

©

u(T) ='/' R(2f, 0) exp(i2TTAf) dAf (34)

e}

Then

(1) = F;; [R(Af, 0)] , (35)
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where E\y! means the inverse Fourier transform on Af. The
channel time-scatter function, u(r), has the dimension of
frequency or inverse time and can be viewed as a power ratio
per unit time. It is the ratio of the channel output power
per unit time delay, r, to the channel input power.

From (31) and (32), the normalized channel time-scatter
function is

w

H(T) =f§('r, v) dv = u(T) “R(0,0) . (36)

-0

Define the channel frequency-scatter function as

-]

v{V) =J/;(T,v)d1' . (37)

-0

Tc evaluate (37) for any stationary time-varying channel,

substitute (28) in (37) to obtain

@ o

v(Vv) =fff R(Af, At) exp(~j2TVAt+i2TTAf) dAt AASf AT (38)

- & ™

Now integrate (38) with respect to ATand Af, in turn, to

oktain

v(v) =fR(O,At) exp(-j2mvAt) dAt (39)

~®
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consequently,

v(v) = F,. [R(, at)} . (40)

The channel frequency-scatter function, v (v), has the
dimension of time or inverse frequency and can be viewed as
a power ratio per unit frequency, i.e., it is the ratio of
the channel output power per unit frequency offset,v , to
the channel input power.

From (31) and (37), the normalized channel frequency-
scatter function is

[=e]

V(v) = S‘E(T,\O dTt = v(v)/R(0, 0) . (41)

-0

Now define the channel time delay as the first moment

of the normalized channel time-scatter function,
@
T o= S}T W(T) 4T, (42)

which has the dimension of time and is a measure of the
average time delay in the channel. To relate the channel
time delay to the channel correlation function, substitute
(35) in (36) to obtain

F L [R(af,0)] = R(0, 0) §(T) . (43)
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Then (43) can be written as the direct Fourier transform

o0}

R(Af, 0) = R(O, 0) SE(T) exp(- j2TALT) dT . (44)
Now substitute (44) in (30) with At = 0 and differentiate
result with respect to Af to obtain

dR(Af, 0) . — .
i -j2m 5 T G(T) exp(-j2mALT) AT , (45)
-0

If (45) is evaluated at Af = 0 and combined with (42),

s _'L[diimf, 0) ] (46)

21 dAf Af:O‘
Now define

JR(Af, 0) = tan {Im[f{mf, 0)] /Re[ R(af, 0)] } ) (47)
It can be shown that Re[R(Af,0) ] is an even function with a
derivative of zero at Af = 0, providing u(r), the inverse
Fourier transform of R(Af,0), decreases at a rate greater
than 1/|r|2 as |r|—®. Under this condition, and since
Im[ﬁ(Af,O)] is an odd function with a zero value at Af = 0

and R(0,0) = 1, (47) can be djfferentiated with respect to

Af and evaluated at Af = 0 to obtain

d4R (A, 0) . [ dR(Af, 0)
dIR(21,0) - .y [ GRL0) . (48)
daf JM:O L daf ]M:O
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Substitute (48) in (46) then to obtain

~ _ -1 [39R(0,0) J (49)
21 oAf )

In a similar way, define the channel frequency shift as

the first moment of the normalized channel frequency-scatter

function,
(o]

V= gvV(v) dv , (50)

-0

which has the dimension of frequency and is a measure of the
average frequency offset in the channel. Relate the channel
frequency shift to the channel correiation function, in a
manner analogous to the development of equations (42)

through (49), to obtain

~ _ 1 r33R(0,0)
V= om [ X ] ' (51)

Define the channel time spread as two times the square

rcot of the second central moment of the normalized channel

time-scatter function.

~ 1
2p =2 [ ‘g (T -T)° (1) dT]z , (52)
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which has the dimension of time and is a single-number

measure of the time-scatter on the channel. To relate it to

the channel correlation function, differentiate (45) with

respect to Af and evaluate at Af = 0 to obtain

[ d°R (Af, 0)

dnf? = -4m° STe G(r) dr . (53)
A=0

-0

Now square (52), expand the integrand tc¢ three terms,

and substitute (42), (46), and (53) in the result to obtain

(54)

(20) = — { d°R(Af, 0) | dﬁ(Af,O)]e}
. i '
) ant ant p£=0

It can be shown however that the second derivative of the

magnitude of R(Af,0) with respect to Af, at Af =

= 0, is

e R(Af, 0) ] ] _ [ d®R(A£,0) [ dR(Af, 0) f} (55)
< - 2 = N

L dAaf Af=0 dAf daf - A£=0

We can then combine (55) with (54) to obtain

25 :g_[ 3° |R(0, 0) ]é

Y
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Similarly, define the channel frequency spread as twice

the square root of the second central moment of the

normalized channel frequency-scatter function,
[ee]
- 1
20 = 2 [S (V=0) T (V) dv:’z , (57)
- QO

which has the dimension of frequency and is a single-number
measure of the frequency-scatter on the channel. Relate it
to the channel correlation function, in a manner that is

analogous to the development of equations (52) through (56),

to obtain

20 = (- O [R(0,0)] T3 (58)

|
T 3Ate J
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Al-H. Statistical Tapped Delay Line Model
AI-H.1l. General
The complex time-varying frequency response of a
stationary

tapped-delay-line model is (see fig. 6)

n

Hz(f,t) = ? G, (t) exp(-j2mT, 1), (59)
i=1

where i is an integer that numbers the tap or path, T is

the time delay on the i-th path, and n is the total number
of paths. Each exponential furiction defines the time delay
of a path and is a function of frequency only, since it does

not change with time. Each tap-gain function G; (t) is a

complex function that is constant in frequency but varies in
time; i.e., each tap-gain function varies the amplitude and
rhase of each spectral component of the delayed signal at

its tap by the same amount continuously with time.
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Figure Al-6. Block diagram of channel model.

Equation (59) can be substituted in (27) to obtain the
channel correlation function for the general stationary

model of figure 6,

t1/2 n n
R(Af, At) = T tll S Z ch(t)c (t+At)exp[JZTT(T ST ) - j2rT, Af:ldt.

The order of integration and summation can ke changed to

give
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n n ty /2

L 1. 1 ”
R(Af, At) = Zexp(-jZﬂTiAf)Zexp[jZﬂ(Tl— 8] T S GHE) Gt +t) dt
1 1
i=1 £=1 -ty /2 (61)

Now assume that the cross correlations between all pairs of
tap-gain functions are zero. For the terms where i ={ , the
exponential function preceding the integral kecomes one.

Then (61) becomes

n ty /2
\ i 1 ' Sk
R(Af, At) = Z exp(-j21T, Af) th_,w o § G (t) Gy (t+At) dt . (62)
' 1 1
i=1 -t /2

Because of its form, the integral in (62) is

conveniently defined as the tap-gain correlation function

ty /2
13 - 3%
Culot) = 0 = E GH(t) G, (t+at) dt, (63)
1
_tl /2

which differs from the one given by Gallager (1964). The
latter function is the single Fourier transform on Af of
R{af,At) and a continuous function of r and At. It is
applicable to a model with a large number of equally spaced

taps as the number of taps argproaches infinity. The
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definition in (63) is more useful for models with a finite
number cf spaced taps.

Like R(af,At), C; (At) is dimensionless, but it can also
be viewed as a power ratio with Ci(O) the ratio of the i-th
path output power to the channel input power. The
normalized tap—-gailn correlation function is defined as

C;(At) = C,(At)/C,(0) . (64)

To continue with R(Af,At), when (63) is substituted in

(44), the channel correlation function for the general

stationary model of figure 6 becomes

15

R(Af, At) = exp(-j27T, Af) C, (At) . (65)

1l
[

i

The normalized channel correlation function R(Af,At), can be
obtained by substituting (65) into (30).

The tap~gain spectrum for the i-th path is defined as

the Fourier transform of the tap-gain correlation function
for the i-th path,

oo}

vy(v) = S‘ C; (At) exp(-j2TTVAt) dAt . (66)

-0
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The function v; () has the dimension of time or inverse
frequency and can be viewed as a power ratio per unit
frequency. It is the ratio of the i-th path output power
per unit frequency offset, v, to the channel input power.
The normalized tap-gain spectrum, corresponding to the
normalized tap-gain correlation function, is

Ti(v) = v (V)/C,(0) . (67)

To obtain the channel scatter function for the general

stationary channel model of figure 6, substitute (65) in

(28) to obtain

n o ©
s{T, V) :Z g dAf exp [j2m(T - T, )Af] S dat C; (At) exp(-j2muat) . (68)
i=1 - -

Equation (66) can be substituted in (68) and the remaining
integration performed to obtain

n

s(T, V) Z BT -T,) vy (V) . (69)

i=1

The normalized channel scatter function, s(r,V), can be

oktained by substituting (69) in (31).
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The channel time-scatter function is obtained when
(65), with At =0, is substituted in (34) and integrated to

give
n

Mﬂ=ZCMm6U”ﬂ- (70)
i=1

The normalized channel time-scatter function is oktained by
substituting (70) in (36).

The channel frequency-scatter function is obtained
when, at Af =0, we substitute (65) in (39) and then (66)

into the result
n

ﬂw:ZwWL (71)
i-l

Substituting (71) in (41) yields the normalized channel
frequency-scatter function.

The channel time delay is given by

n
TS [URE0] ) G0 T, (72)
i=1
To specify the channel frequency shift, define for each

path the tap-gain frequency shift as the first moment of the

normalized tap-gain spectrum,

Vi = S‘v vi(v) dv, (73)
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which has the dimension of frequency and is a measure of the
average frequency offset on the path. For each path, the
tap-gain frequency shift is related to the tap-gain

correlation function by

~__1 rd¥c,(o)
' ZW[ dat ] (74)

It follows that the channel frequency shift is

n
N

v =[1/R(0,0)] /, Cil0) vy .
i=1

(75)

The channel time spread can be written directly as two

times the square root of the difference between the second
moment of the normalized channel time-scatter function, (70)
divided by R(0,0), and the square of its first moment, the

channel time delay,

(M

n
20 :2{[1/R(0,0)] [Z c, (0) Tf:l—'?e} . (76)
-~

=

To specify the channel frequency spread define for each

path the tap-gain frequency spread as twice the square root

of the second central moment of the normalized tap-gain

srectrum, 1

20, = 2 { g‘ (v =-v,)? 7, (V) dv} , 17y

-0
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which has the dimension of frequency and is a single-number
measure of the frequency scatter on the path. for each path,
we can relate the tap-gain frequency spread to the tap~-gain

correlation function by analogy to (57) and (58) to obtain
o= 1
2
20, :i[—l_z_l.'d ¢4 () ] (78)
T dAt

The channel frequency spread then can be written as twice
the square root of the difference between the second moment
of the normalized channel frequency-scatter function and the

square of its first moment,

2

n n .,
25 =2 {) [C(0V/R(0,0)] (v +57) [ teaorro 0 v, e
i=1 i=1

(79)
The first summation in (79) is the second moment of the
ncrmalized channel frequency-scatter function and is the sum
of the weighted second moments of the tap-gain spectra in
terms of their frequency shifts and frequency spreads. The

second summation in (79) is the corresponding first moment.
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AI-H.2. A Specific Tapped Delay Line Model

On the basis of experimental evidence the best choice
for tap-gain functions in the specific channel model are
independent baseband complex kivariate Gaussian random
functions with zero mean values and quadrature components
with equal rms (root mean square) values, so that signals on
each path in the model would have independent fading with a
Rayleigh amrlitude distribution and a uniform phase
distribution.

In addition to deciding that the tap-gain functions
would have a Rayleigh amplitude distribution and a uniform
phase distribution, the spectra of the tap-gain functions
had to be specified. Since the ionosphere can introduce
frequency shifts on signals, as well as fading that results
in frequency spreads, such shifts also had to ke included in
the tap-gain spectra. In addition, two magnetoionic
components of a mode can produce different frequency shifts,
and the difference of the two shifts can at times ke greater
than the frequency spreads of the magnetoionic components
(Davies, 1962). Therefore the tap-gain spectra in general
need two components--one for each magnetoioinic component.

It was also necessary to specify the shapes of the tap~gain
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spectrum for the two magnetoionic components, since it is
known that these shapes can have a consideratle influence on
the distortion characteristics of a channel.

We selected a Gaussian spectrum of the form exp(-£,;v2).
Tc be explicit, the channel model selected has independent

tap-gain functions, each of which is defined by
Ggi (t) = G, (t) exp(j2Tvg, t) + Gl (t) exp(j2rvgt) , (80)

where the s subscripts designate quantities for the
statistical channel model, the i subscripts denote the path
number, and the a and b subscripts identify the magnetoionic

' -
componentse. Gs1a

(t) and GEib(t) are sample functions of two
independent complex Gaussian stationary ergodic random
Frocesses, each with zero mean values and independent
quadrature components with equal rms values. Specifically,

if G* ;,(t) is defined in terms of its real and imaginary

ccmponents by

Géia (t) = g!sia (t) + J :g:;ia (t) ’ (81)

then g's]._aL and ggib have a joint probability density function

12 12

g. +tg

= sia =sia ] ’ (82)

1
e B o ep [
p gﬂla Sib) C51a(0)

e
MCapa (0) ©°F

[}ige}
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where Csia(O) is the autocorrelation function of
G'ga(t)exp(jZﬂ%ig) at zero displacement (At = 0) and
specifies the ratio of the channel output power delivered by
the magnetoionic component to the channel input power. With
a suitable change in the a subscripts, (81) and (82) also
apply to Ggia (t) .

To explain the exponential factors in (80) , consider

E[G';, *(t) G',, (t+At]. When this autocorrelation function

1
is computed in terms of the real and imaginary components in
(63) , the cross products will have zero averages because the
real and imaginary components are independent. The
resulting correlation function will be real and have even
symmetry about At = 0. Its Fourier transform, the spectrum
of Ggia(t)' must then have even symmetry akout v = 0. The
same 1is true for Ggib(t), and the primes in (80), (81, and
(64) indicate the functions have spectra with even symmetry
about LV = 0. Therefore, the exponential factors in (80)
were incorporated to provide the desired frequency shifts,

L . and L, for the magnetoionic components in the tap-

sia ib’

gain spectrum.
The tap-gain correlation function corresponding to (62)
is
Csia (O) exp[ - an Giia (At)2 + jzwvsia At]

Cq (AL) = (83)
+ Cyi5 (0) exp[ - 2m2 0%, (At)? + 32TV gqp At]
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and the tap-gain spectrum is

1 .
[ Cora (0)/(210%,,)2] expl - (v - Ve P /(20%1,)]

< ,::(\)) = ’ (84)

1
+ [ Cayp (O)/(Zﬂoiib 2] expl - (V- Vg ) /(Zoiib )]

where

C,i(0) = C,1, (0) + C,p (0) (85)
and Ogin and Oib are the standard deviaticns of the two
Gaussian components of the spectrum. A graphical
representation of a tap-gain spectrum is shown in figure 7a.
In general, the two Gaussian components in a tap-gain
spectrum have different power ratios, frequency shifts, and
frequency spreads. There are times, however, when the
shifts and spreads of the two magnetoionic components in an
ionospheric channel are approximately equal, when the two
components are effectively one. For these times, Csib(o)
kbecomes zero in (80) and (83) through (85) and the "a®
subscript is dropped, causing the tap-gain spectrum to

arpear as in figure 7b.
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Figure AI-7. Tap-gain spectra in chosen model.
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AI-I. A Flat Fading Model for Tropospheric
Line-of-Sight Paths

Many measurements have been made of amplitude and phase
fluctuations over tropospheric line-of-sight paths.
Statistical information from these data in the form of
amplitude distributions, spectra of phase fluctuations,
spectra of amplitude fluctuations and other parameters are
useful for system evaluation if (frequency) flat fading can
be assumed. Examples of these data are shown in figures 8, 9,
10and 11 [Janes et al., 1970]. Since the signal used to
oktain this type of measurement has typically been an

iwt
unmodulated carrier, e © . the output is given as

Alr)e ®E) 1%t gy

where A (t) then gives the amplitude and #(t) the phase
variation. For the flat fading assumption, using equations

(1) (2) and (3), we obtain

) X ® . ) i
A(t) elC‘p(t) e1w°t = S et T h,(t, 7} dv = H, (JJZ%?L’ t> elw°t . (87)

-0
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The flat fading assumption further implies that A (t)

and @ (t) are frequency independent and hence,

H, (B, )= m (%‘r’- t) (88

1 T’

o

for all w. Thus

h,(t, ) = 8(t - ) A(t) eico(t) , (89)

and for any input signal x(t), the output y(t) is given by

ip(t)

y(t) = x(t) [A(t) e P (90)
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AI-J. Other Definitions of Frequency Spread and Time Spread
The definiticns of "spread" used in section AI-G [ egs
{(52) and (57) ] are convenient because of the ease of
obtaining a physical integration for them. However, for
scme purposes, other definitions are desirable. A
discussion of some additional definitions is contained in
Lerner [ 1961]. One of these sets of definitions is utilized
below to derive conditions for making simplifying
assumptions for the scattering function s(r,v) of eq (31).

Using equation (41) we define doppler spread, B, as

B=/ fvz(u) du]’l . (91)

Using (36), we define the multipath spread, L, as

L= Cu_g(t) dt—\-l - (92)

The total spread S using eq (31) is

S = [ ii?(t,u) at duj-l. (93)

~Q0 — 0

We now wish to define the time duration T and bandwidth w of

a signal consistent with the above quantities.
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If x(t) is the complex envelope of a signal, the

following are found to be sufficient:
[=2]
2 -1
T=[§|X(t)| at| , (94)
-

and

W = [f | X(£)|* df]_l . (95)

With this background notation is it possible to charac-
terize certain types of channels and also to give some gross
estimates of system performance.

l. A non-dispersive channel is defined by

s(t,v} = s(t) 8(v)

and is sometimes called a flat-flat fading channel.
2. A time-dispersive channel is defined Ly
5(t,v) = slu)u(t)
and is called a time-flat fading, or a frequency-selective

fading channel. There is also the time-invariant channel of

eq 10.
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3. A frequency dispersive channel is defined by
s(t,v) = 8(t) v(v)

and is called either a time-selective fading or a frequency

flat fading channel.

4. A doubly dispersive channel is one which is disper-
Sive in both time and frequency.

These classifications have derived from the effects cf
the multipath on the signal. Note that the multipath itself
is the same, regardless of which method is used to name it.
Figure 12 shows several examples of scattering functions
with the appropriate nomenclature. Example a is a type of
scattering function that is frequently associated with HF
icnospheric propagation, discussed in connection with the
specific tap-delay line of AI-H. 2.

In practice, no channel has exactly impulsive response
characteristics in either time or frequency and many of the
problems encountered consist of determining when an impulse
function is a good approximation to the actual prokiem.

Thus, for one system it may be rossible to use a non-
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dispersive classification for the channel while for a
different system it would be necessary to classify the same
channel as one of the forms of a dispersive channel. For
the purposes of determining when an approximation can be
used, table 1 shows the relations between the channel

parameters B, L and S to the signal parameters T and W.
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B. EFFECTS OF MULTIPATH ON SYSTEMS

The transfer function approach given in A, is a very
general method of evaluating system performance, but because
of this great generality, it is usually the case that some
simplifying assumptions must be made. The first two
chapters in this section offer very attractive solutions to
the systems evaluations problems whenever the underlying
assumptions can be justified. Both of these chapters
utilize methods which derive the performance with multipath
from the performance curves under steady (without multipath)
conditions. Hence it is not necessary (for example) to have
detailed knowledge of the signal structure or the specific
receiver characteristics.

In contrast, the later chapters, where the
classifications of multipath are more complex, give only
examples of system evaluation with assumptions pertinent

only to specific systems.







BI. SYSTEMS EVALUATION FOR SLOW-FLAT FADING

BI-A. INTRODUCTION

In this section we will develop the simple technique to
determine the performance of a telecommunications system with
a slow-flat fading signal once a performance characteristic
is known for the constant signal. The "slow" in slow-flat
fading means the signal amplitude fades slowly enough in time
that the signal can be regarded as constant over some time
period of interest (such as the time of a signal element in
a digital system). The "flat" refers to the spectral behavior
of the fading, and implies that the entire signal spectrum
fades up and down uniformly so as not to distort the signal.

The physical processes that cause fading fall into two
broad catagories: (1) absorption and other large volume
effects, which result in a random signal normally called
scatter; (2) the other category is comprised of numerous
specular modes of propagation. The separation of the modes
may take place at sharp boundaries of charged particles or
reflections from isolated objects, etc. We have an assort-
ment of distinct paths that the wave fronts may take in
propagating from the transmitter to the receiver. This
phenomenon is commonly called multipath and each path may
contain some specular and scatter contributions. In any
case, the fading signal received at the receiver becomes
random and can be treated only in statistical terms.

In order to understand how a system's performance is
degraded by the slow-flat fading signal compared with the
performance for a constant signal of the same average power,
and how the degree of degradation can be easily calculated,
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we will first consider a simple, but practical example. This
will enable us not only to understand the technique, but also

to see why the technique will not work for other kinds of fading
signals (for example, frequency selective fading, leading to
signal distortion).

We will analyze the performance of a binary coherent
phase shift keying (CPSK) digital system first, when the
signal is constant, and then, from the probability of error
characteristic obtained for this constant signal, we will
obtain the system performance for slow-flat fading signals.
We will do this for all the types of slow-flat fading signals
generally considered, starting at the very beginning and
analyzing the system's performance using a geometrical
approach. This will enable us to picture what is going on
in the signal-receiving process.

BI-B. CONSTANT SIGNAL PERFORMANCE

To represent a digital system geometrically, we make use
of the following fact:

Any finite set of physical waveforms of duration T,

say 51(t), Sz(t), ce Sm(t), may be expressed as

a linear combination of k orthonormal waveforms
o2 (t),0a(t), ---¢k(t), where k < m.

That is, each signal, Si(t) can be written as

Si(t) = ai1¢](t)+ai2¢2(t)+...+a1k¢k(t) , (BI-1)

where the coefficients aij are given by
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Here the basic waveforms, ¢j(t), being orthonormal means that
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While the above representation looks similar to the
familiar Fourier expansion of a waveform, it is different in
two important respects. The waveforms ¢1(t) are not restricted
to sine and cosine waveforms, and (BI-1) is exact, even though
only k terms are used. '

Because of the above, our signaling waveforms, Si(t),
can be represented in the k-dimensional signal space, ¢j(t),
with coordinates given by the a, ;- For example, consider a
set of signals for which k = 2, then the signals, Si(t)’ are

given by vectors in the space ¢](t), ¢2(t) as in figure BI-1.

a
i2
(a512255)
-, (ayi,ay,)
11°7712
$,(t) |
S1(t) |
i1
S,(t) -
(ag7.a5,) 3 Si{t) =ajqgeq(t) +ag,0,(t)
S,(t) =a,,07(t) +ay,0,(t)
S-i(t) + a-i'l‘b'l(t) + a‘|2¢2(t)
Figure BI-1. Signals represented as vectors in a
signal space, k = 2.
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As we shall see, the above representation not only allows
visualization of what is actually going on in the receiving
process, but also allows the variable t, time, to be removed
from the problem. Our signals are now represented by simple
vectors in ordinary Cartesian coordinates. That is, each
signal is now represented by a point in the signal space with
coordinates aij' A11 the rules of ordinary geometry apply,
for example, the "distance" between signals is simply the
ordinary distance between the corresponding signal points.
Digital receivers, by various means, actually compute
the coordinates of a received signal and then make a decision
based on these coordinates. One obvious receiver implementa-
tion is shown in figure BI-2. The actual physical implementa-
tions of the digital receiver may be, as in figure BI-2, a
matched filter form, etc., but all these forms accomplish
precisely the same thing, 1i.e., compute the signal coordi-
nates, aij’ and then make a decision as to which signal was

sent, based on these aij'

e
o+
N
—A|—
S,
@] —
[o3]

i1

Figure BI-2. Product integrators used to calculate
the signal space coordinates of signal Si(t)'
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The additive noise, which interferes without signal and
causes the receiver to make errors when it tries to decide
which one of the m-signalling waveforms was transmitted, also
is represented by a point in the receiver's signal space. If
n(t) is the received random-noise waveform, then it (like the
signal) goes through the product integrators (or whatever),
with the result that, as far as the receiver is concerned, the
interfering noise is given by

n(t) = n]¢](t)+n2¢2(t)+...+nk¢k(t) . (BI-2)

Therefore, if the receiver received noise only, the noise would
also be represented by a point in the receiver's signal space,
the noise coordinates given by Nys Nos vves Ny

Each of our m signals is represented by a unique point 1in
the signal space. When signal plus noise is received, the
result is a point (signal-plus-noise point) that can be any-
where in the signal space, depending on the noise. If each
of our m signals is equally apt to have been sent, and are of
equal power, the receiver, in order to minimize the average
probability of error when it guesses what signal was trans-
mitted, simply guesses the signal whose "point" is closest to
the received signal-plus-noise point.

To take a specific example, consider coherent phase-
shift-keyed signals. QOur m signals are now, say

s.(t) =V cos (w t+2L1) , 0cteT
= 0 elsewhere (BI-3)
.i = ]32, ¢« » e 5 ms

where W 1is the power of S;(t) in Watts, and

w = 2w&/T, for some fixed integer 2.
0
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We can choose, then, for our basic waveforms

¢](t) = JE_cos wot
¢2(t) = /E_sin wot

Note that our signal space is two-dimensional (k = 2) no
matter what m is.
Consider m = 2, now

T
ajy = %:/FJZW cos (w0t+ﬂ)v[5_cos wot dt
0

=

T

-1 _ .
ayp = TJ/. 2W cos (w01+ﬂ)V[§_S1n wot dt
0

It
o

Likewise, a21 =/ W, Aso = 0. Therefore, the space and the
points representing the two signals are as shown in figure
BI-3. The point (nl, n2) corresponding to additive noise
alone is also shown on figure BI-3.

a

i2
(nysn,) ——n,
'\
s, l d
-Ju ™M J i1
Figure BI-3. The signal space and signal points

for binary CPSK, and the noise point (nl, n2).
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Let the interfering noise be zero mean, white Gaussian,
such as it would be if the noise were galactic or receiver
front-end noise. N, the noise amplitude after it goes through
the receiver and appears on the signal space (fig. BI-3),

is Rayleigh distributed. 1Its probability density function is

Ny _ Y ;
py(¥) N8 &P [ NoB] ., ¥>0 . (BI-4)

This says that the probability that the noise amplitude N has

a value in the range Y - dy/2 and y + dy/2 is given by pN(y)dy,
where No is the noise power spectral density {(Watts/Hz) and B
is the bandwidth (Hz), i.e., N,B is the noise power. The phase
angle 6 is uniformly distributed; i.e., its probability density
function is

p.(x) = 1 —m<X<T
6 21 ° L

and & has equal probability of being anything between -7
and m. The coordinate points are given by n, = N cos 6 and
n, = N sin 8. This results in the coordinate points, ny and
oo having zero mean normal distributions,

2
pn (X) = -—]é—— exp[- ﬁ_] , —00<X<00 . (BI'B)
o

0

Note that since our development led to the signal being
represented on the signal space by a vector of 1engthvﬁ[l
i.e., an rms voltage, the noise appears on the signal space in
similar terms. That is, N or the variable y in (BI-4) is the
instantaneous rms amplitude of the noise envelope.

Now let us consider the situation where 52 is sent and
we want to compute the probability that the receiver will
decide S], and thus make an error. The situation is shown in

BI
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figure BI-4. If the resultant signal-plus-noise point lies
in the shaded region (the region whose points are closest to
the S1 point), then the receiver will decide S], and make an
error. This will happen whenevervﬁz—+ ny is less than zero,
or p, = probability of error given that S2 is transmitted =
probability that /W + n,<0. The probability, or Tikelihood,

that vW + n]<0 depends on the probability distribution of ny-

a2
(¢W+n],n2)

<
*
(/)‘\1

N

S,

Vi 1

Figure BI-4. The signal-plus-noise point, given
that S5, was transmitted.
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In our case
Po = prob[v[ﬁ + n]<0] = prob [n1<- dﬁ{],

or, from (BI-5)

or

1
p S —

& Vr

2
j[ eV dy . (BI-6)
/e
NOB

The performance p_ is function of the signal-to-
noise ratio W/NOB. It is common to express the signal-to-
noise ratio (SNR) as signal energy E (Joules or Watt seconds)
to noise power spectral density No' For this system, the |
following are all identical expressions for the SNR:

E _ W E

No NoB NOBT

SNR =

The integral (BI-6) can be given in terms of the standard
tabulated function called the error function (erf) or

=1 B} E_ -
Pe = 3 1 erf\/;; , (BI-7)

where X

Let us look more closely at what the above result (BI-6)

.th

actually says. If we have in, say the i bit, the signal
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level represented by JWI, and the noise level (in this case
represented by n1), there will or will not be an error in

this ith bit, depending on the size of n,. The integral in
(BI-6) says that we are taking an average over an infinity of
such ith bits, weighted according to the probability or likli-
hood that ny is of proper size to cause an error. That is,

Pe in (Bi-6) represents an average probability of error given
that 82 is sent. If Pe is 10°°%, say, then out of m such bits,
with m being very, very large, essentially m x 10°2 of these
bits will be in error. O0f course, there is no way of telling
which bits will be in error, only the average number. We have
considered the above case in which only 32 was sent. If we
repeat for the signal S1, we obtain the same result. So the
probability of error, Pe (BI-6) is the average probability of
error for the system.

A11 digital systems can be put in the above framework and
their performance for a constant signal level and for arbitrary
additive noise calculated (although, perhaps not so easily as
above). Note that for the noise, we required knowledge of the
noise as seen by our receiver, how big it was, i.e., its

spectral density, No’ and the probability density of its
amplitude. Note also that the performance turned out to be
a function of the signal-to-noise ratio E/NO (or NHE)'

)

BI-C. FADING SIGNAL PERFORMANCE

We now consider the case where the signal is not constant
but fading. Suppose, however, that our signal is not distorted
by the fading and that the fading is slow enough that we can
consider the signal constant over an appropriate period of
time (T seconds in our example). For our example, we still
have the same "signal space" representation of the system,
but now our two signals are given by (see (BI-3))
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S1(t) = -J2Ws cos wit . o<t<T (BI-8)
Sz(t) = JZNj cos mot > 0<t<T

th pit.

where the subscript j denotes the signal level in the J
Note that the only change we have allowed is in the signal
amplitude and we require wj to be constant over the time period
occupied by bit j. Having pointed out what, precisely, the
"slow-flat" fading rules are, we generally now drop the sub-
script j, and simply say that the signal amplitude varies
according to some fading distribution. This says that now

the signal amplitude, Jjust -as the noise before, is random and
we can only specify the likelihood or probability of it having
particular values.

Previously (see fig. BI-3), as we went from bit to bit in
our bit stream, the signal points on the a1 axis remained
fixed, while the noise point of interest (the coordinate n])
moved randomly up and down the a1 axis. We computed the
average probability of error by averaging over many, many
situations (bits) taking into account the probability of n,
having values which would cause errors.

Now with the fading signal, the signal point also moves
randomly up and down the a4 axis as we go from bit to bit.
Figure BI-5 shows the situation for three successive bits, con-
sidering signal 32.

As before with the noise, to obtain the average proba-
bility of error, we must average over many such bits, taking
into account now, the variable signal point (i.e., the proba-
bility distribution of the signal amplitude) as well as the
variable noise point. This means that our average must now
consider both the signal distribution and the noise distri-
bution. Fortunately, this can be accomplished quite easily
using the following rule from probability theory:
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Figure BI-&§. Signal plus noise, signal fading.

(e <]

P[A] = J[ PLA|B=x] pB(x) dx ,
that is, the probability of event A is given by the proba-
bility of event A, given that B has the value x, averaged
over all values that B can have.

For our system, we have calculated the performance,
given a signal energy E (or power, W) namely, Po- The above
says that for fading signal, we need only multiply the
constant signal performance by the probability density function
of the fading signal energy and then average (integrate) over
all possible values of the signal energy. Therefore, from
(BI-7), we have
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Pe(fading signal) = Jf 1/2 1-erf‘/ﬁ— pE(x)dx s
0

0 (BI-9)

where, in order to keep the variables straight, we have used
a "dummy" variable of integration, and pE(x) denotes the
probability density function of E.

Equation (BI-9) gives the solution for the Pe for a
fading distribution of signal energy E. Quite often we have
given to us, instead, a fading distribution of signal power
W or signal amplitude S, where W = S2/2. Then, in terms of
power, (BI-9) becomes

pe(fading signal) = “/.%- 1-erf X pw(x)dx » (BI-10)
0

where pw(x) is the fading distribution of signal power W.
Note that, of course, (BI-9) and (BI-10) are identical in
form. For signal amplitude S,(B1-9) becomes

1- erf

(x)dx , (BI-11)

N —

Ps
ZNOB

Pe (fading signal) /
0
where ps(x) denotes the distribution of signal amplitude.
In (BI-10) the variable of integration x represents signal
power W, while in (BI-11), the variable of integration x
represents signal amplitude S (W = S2/2).

The question now becomes, what pw(x) or ps(x) should we
use? Let us first consider the case of a signal whose ampli-
tude fades according to the Rayleigh distribution: A

X -X2/2w°

pg(x) = W , (BI-12)
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where wo denotes the mean power of the signal; i.e., the mean
value of W. Of course, for constant signal, wo = W. We will
see later why the Rayleigh distribution is sometimes a good
one to use for multipath signals.

Equation (BI-11) now gives us

)
b, = % f 1-erf 2| X 7% /2o gy . (g1-13)
0

This integral is easily evaluated (especially with a
good table of integrals) to give the known result

1
Pe " 5|1 - —= (BI-14)

Again, our result came out in terms of the SNR. As discussed
previously, the signal power to noise power ratio, wo/NOB is
equal to the signal energy to noise power spectral density
ratio, EO/NO, (Eo = mean value of E) for this system.

What we have shown is that the performance of any system
with slow flat-fading signal can be calculatel using the system
performance characteristic in constant signal and the proba-
bility distribution of the fading signal. For example, if we
had available for an analog system (such as voice) some con-
stant signal performance characteristic (such as articulation
index) as a function of signal-to-noise ratio, then we could
compute the performance for fading signal as above. We would
need to be sure, however, that all the assumptions inherent
in "slow" and "flat" were met or were reasonable approxima-
tions to the actual physical situation.



In summary, if gC(W/NOB) denotes the performance for
constant signal, and if pw(x) denotes the probability density
of the signal power W, then the performance of the system in
fading signal, gf(wo/NoB), is given by the average over all
possible values of W,

: g (W /N B) = 9. (x/N_B)p,(x) dx . (BI-15)
' all W

If pS(x) is the probability density of the signal amplitude S,

F(Wo/N _B) = g (x?/2N B) pc(x) dx . (BI-16)
g 0 o ) S
all S

Consider now the cases where either the "slow" assumption,
or the "flat" assumption, or both, is not valid. OQur receiver
will still calculate a signal point no matter what kind of
distorted signal the receiver receives. Now, however, the
signal points will move randomly and rapidly all over the
signal space and the computations of the statistics of such
motion will be extremely difficult. Also, the signals are
usually spread in time (also frequency), resulting in the
received signals occupying more than their allotted (0,T)
time slot. The result is that, if we are looking at bit j,
for example, there is some signal from bit j-1 still going
on, causing interference, i.e., intersymbol interference.

This, as well as other problems, indicates why the straight-
forward approach given in (BI-15,16) cannot be used. For this
reason we like to use slow-flat fading approximations whenever
possible. The procedures required for system performance calcu-
lations in the case of "slow and flat" not being valid are
covered in subsequent sections.
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BI-D. FADING SIGNAL DISTRIBUTIONS

When the signal is propagated from the transmitter to the
receiver, it is modified by the propagation media. Quite
often the signal travels to the receiver via one, two, or any
number of separate paths. If the signal from each of these
multipaths is represented by a signal vector, then the receiver
sees the vector sum of these signal vectors. The phase angle ,i
between any two such vectors 1is generally, on the average,
uniformly distributed; i.e., the phase angle has equal chance
of being anything between -7 and 7 radians. We are interested
then in the probability distribution of the amplitude (or
power) of the received signal, i.e., the above vector sum.

As mentioned earlier, each path may have some specular and
scatter contributions. Scatter comes from large volume effects,
and means the signal is scattered into many, many small signal
vectors. That is, it is equivalent to multipath with many,
many paths such that none of these many, many received signal
vectors dominate the others (i.e., sticks out T1ike a "sore
thumb"). If we have such a sum of many more or less equal-
sized vectors with uniform phase between them, then the
amplitude of the vector sum has a Rayleigh distribution.

Figure BI-6 (from Nesenbergs, 1967) shows the probability-density
function of n equal-sized vectors for n =1, 2, 3, 4, and 6

along with the Rayleigh limit (n»x). We see that the "many

many" above need only be 5 or 6 before the Rayleigh distribu-
tion is a reasonable approximation. In other words, the
situation where we have, say 6 or more distinct paths, and

the signal components from these paths are essentially equal,
then the received signal amplitude is approximately Rayleigh
distributed.

Suppose, instead, that we have one specular path (due, for
example, to a direct line-of-sight path) and a scatter path,
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Y (1+k?)
W o}
= (BI-20)
NoB NoB

Experimental observations of received fading-signal ampli-
tudes over various communication circuits have shown that the
signal amplitude, when expressed in decibels, can sometimes be
approximated by a normal distribution. That is, the signal
amplitude has a log-normal distribution. If, for the signal
amplitude, S, we let Y = 20 log S, then

(LE) 2

1
py(y) = L ez © , me<y<e ,  (BI-21)

where p is the mean value of Y(dB) ard ¢ is the standard
deviation (dB). The signal distribution for use in (BI-16)
is then

_1(2010gx-1)*

2 o
PS(X) - 8.086 s 0<x<eo |

X ZTTOZ (81-22)

For Tog-normal fading signal, the ¢ is usually given in terms

of the "fading range". The fading range is the difference
(in dB) between the upper and lower decile values. The upper

decile 1s that value which is exceeded only 10 percent of the
time, and the lower decile is that value which is exceeded 90

percent of the time. In terms of the fading range, 2.54 ¢ =
fading range. The average received signal power is

{ - 100-1ut0.011502 (B1-23)
o

and the signal-to-noise ratio is wO/NOB.

The above distributions (BI-12, 17, 19, and 22) pretty well
cover all the signal distributions that are generally con-
sidered for slow-flat fading. Which one to use depends on the
particular kind of propagation path one is interested in. The
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above distributions of the fading signal say nothing as to

how "fast" the signal fades up and down. Therefore, considera-
tion must be given to more than the fading distribution when
trying to decide if a slow-flat assumption is valid.

BI-E. EXAMPLES AND REFERENCES

In this section we will give the results for our example
system (CPSK) for all of the fading distributions considered
above. An example for a voice system will also be given.

Figure BI-7 shows the results for the binary CPSK system
for constant signal {BI-7), Rayleigh fading signal (BI-14),
Nakagami-Rice fading (BI-17) with the power of the constant
vector 10 dB above the average power of the Rayleigh vector,
Nakagami-Rice fading with the power of the constant vector
equal to the average power of the Rayleigh vector, and log-
normal fading (BI-22), using a 13.4 dB fading range. Note
that Rayleigh fading also has a 13.4 dB fading range.

Figure BI-8 shows the results for the binary CPSK system
for the case of constant signal vector plus reflected signal
vector. Results are given for constant signal (k=0), and for
k = 0.2, 0.6, 0.8, and 0.9. We see from figures BI-7 and
BI-8 that a very wide range of system performances can be
obtained depending on the particular kind of signal fading
present.

In order to show the results of using (BI-16) for a voice
system, figure BI-9 is included. It shows the performance of a
double-sideband AM system in white Gaussian noise and Rayleigh-
fading signal. The calculations, via (BI-16), are from the
performance in constant signal for a 5.2 kHz IF bandwidth
(Cunningham et al., 1947). The performance is given in terms
of the phonetically balanced word articulation index.
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For the nature of fading signals, extensive bibliographies
(Nupen, 1960; Salaman, 1962) are available. A historically
significant survey was performed by the National Bureau of
Standards (NBS, 1948). A number of good comprehensive texts
are also available (Davies, 1965, for example).

The representation of digital systems in geometric terms
is covered quite well by Arthers and Dym (1962).

Performance characteristics for systems in fading signal and

in nonGaussian impulsive noise (as well as Gaussian noise) are
available (Bello, 1965; Conda, 1965; Halton and Spaulding, 1966;
Akima et al., 1969; Akima, 1970; etc.

The following list of references includes additional refer-
ences not cited above. The list is hardly complete, but will
provide a great deal of additional information concerning the
characterization of the fading channel, and the performance
of a wide variety of systems with both constant and fading
signal.
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The noise is Gaussian.
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BII. SYSTEMS EVALUATION FOR NOISE~LIKE MULTIPATH
BII-A. INTRODUCTION
From the model for discrete multipath, chapter AI-E

equation AI (17),

N

Z oa, x (t-1.)
. i o i
i=0

y(t)
st N

a x (ﬂejuo + Z ax(t-T) e

o o =] Lo i

iwo(t-7.)

(1)

i

jwot

a xo(t) e + mf(t)

one can obtain a simple method for evaluating system
performance under certain conditions which permit the
summation in (1) to be treated as a random variable. Even
when these conditions are not satisfied, the simplicity of
the method makes it useful for obtaining gquick

approximations for bounds on performance.

BII-B. THE BASIC MODEL
In chapter BI, examples of system performance
evaluations were given for an undistorted signal in the
presence of white Gaussian noise n(t). If m(t) in eq (1)
satisfies the conditions: (a) the real and imaginary parts

are Gaussian, uncorrelated random variables with zero mean
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and equal s;andard deviations, and (b) m(t) is uncorrelated
with xo(t)elu%i then exactly the same techniques used in
chapter BI for noise only can be used to evaluate the
system performance. We may write (1), with the noise term
n (t) added, in the form

y(€8) = agxo(t)e ©° + m(t) + n(r) (2)

Then the real and imaginary parts, m(t) + n(t), are also
Gaussian random variables with zero means, and standard
deviations which are the sum of the standard deviations of
the real and imaginary parts of m(t) and n(t) [ Beckmann,
1967 ]. One important difference however, between m(t) and
n(t) is that the mean squared value of m(t) is proportional
to the power in the signal, while that of n(t) is fixed.
Expressed another way, with the above assumptions it is
possible to define a noise power spectral density Mg
corresponding to m(t) in the same way Ny is defined in
chapter BI, and E/Mg will be fixed while E/Ng varies. Thus,
the performance curves for this case can be calculated from
the non-fading curves of chapter BI, or from similar curves
obtained from back~to-back measurements by the following
method.:

If E/Ng and E/My are given as power ratios, calculate

1

1 1
( ) +(
E/No E/Mo

)



and read the appropriate curve at this point and plot at the
ordinate E/Ng.

If E/Ng and E/Mgy are given in dB, calculate
1

10 log

-E/lONo -E/10 M

10 + 10
read the value from the curve at this ordinate, and plot
this point at the ordinate E/Ng(dB). For a fixed E/Mg, it is
clear that, as E/N, increases, the best performance that can
be achieved is that obtained from the curve read at the
value E/Ng = E/Mg. Figures (1) and (2) show examples
corresponding to the constant signal curves cf figures BI-8
and BI-9, for two values of E/My, 5 dB and 10 d4B.

It is difficult to state precisely when conditions (a)
and (b) are valid, but guidelines are available. Condition
(t), stating that m(t) is uncorrelated with the signal is
met if the differential delays between the direct component
and the components of m(t) are large compared to the
correlation time of the signal. Although this is sufficient
to insure no correlation, it is not necessary, and for many.
practical situations, condition (b) will hold for shorter

delays.
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BII-C EXAMPLES FOR CONDITION (a) NOT SATISFIED

When the in-phase and quadrature components of m(t) are
correlated and have unequal variances, representing a
situation where the multirath component has a preferred
phase, one can use the methods of BII-B for a coherent
binary phase shift key system. However, other systems are
not, in general, amenable to these simplified methods.

Let the in-phase and quadrature components of m(t) be

u; (t) and v, {t) respectively, and of n(t) be u,(t) and v, (t)

respectively.
Let the variance of x(t) = ug(t) + u,(t) be s;, and of
y(t) = vy(t) + v,(t) be s,, and the correlation between x

and y be p. Note that p comes from correlation between u;
and v, since it is still assumed that the noise components
are uncorrelated with equal variances.

The probability density function for this case is

1 2y l[x2 2pxy Xi]
‘pxy(x’Y):‘ zﬂ,,\/slsz ,\/1 - s® exp {-[2(1 S )] [Sl ﬁ;ﬁ + S5

For the binary CPSk, we need

—_— 1 —
15 prob[x < -y/w ] + = prob[x > J/w]
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where W 1is the signal power in watts. Integrating over y,

we obtain

1 -x= /2
p (x) = 5,
X ) '\/ ZTTS]_ ¢ ’

so that the probability of error as derived in BI for this
case depends only on s;, and is independent of s, and p.
Therefore, we may use the curves of figure 1.

For other systems however, p, will depend on s;, s, and

p, and no convenient method of calculation is available.
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BIII. PHASE SHIFT KEY PERFORMANCE FOR NON-FLAT FADING

BIII-A. Introduction

wWwhen the methods of chapters BI and BII are not
applicable additional complications arise in the study cf
system performance estimation. This chapter illustrates
some of the methods used for coherent phase shift key
systems for three different classifications of multipath.

The first two cases are similar, both two path models,
one with a specular second path and the other with a time
spread second path. The statistics enter into these cases
through the probability that a particular delay will occur.
The third case involves a scattering function, dispersive in
time and frequency, under the assumption that the
statistical process is a zero-mean homogeneous Gaussian
process.

BITI-B. Two Path Specular Model

We consider first the simple case of two-path model

without spread. Under this condition, the system impulse

function may be written as

h(t) = 6(t) + Aé(t-Td) s 0<t< T, (1)
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where A and T4 are respectively the interference-to-signal-

voltage ratio (ISR) and the delay differential of the second

path. |
Assuming that the undistorted pulse transmitted in the

interval -kT< t <-kT + T takes the following form:

. )1/2

k(t) = (28 cos(wot+ Gk) , (2)

with S, wge, and ekis one of the values 2r¢j/m, 0<j<m-1
representing respectively the signal power, the angular
carrier frequency, and some phase associated with the pulse.
The pulse being transmitted may be identified with k=0, That

is
/2

so(t) = (25) cos'(wot+ 90) . (3)

The received signal observed in the same interval
0 <t<T assuming first that the differential delay is less

than a bit length, is given by

r(t) = h(t) *s (t) + nft) = rl(t) +r

0 (t) + I'3(t)+ n(t) (4)

2

where

r(t) = (2)2

1 cos (wot + 90) in 0<t<T

is the direct-path response of the present pulse,

by

t) = A(ZS)I/2 cos [w (t -T )+GO], in TditET

2( 0 d
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is the delayed response of the present pulse due to the

second path,

/2

1
— . _ 1 <t<
r3(t) - A.(ZS) COs [U(t T l) + gl] in 0<t T ]

is the response of the second path due to the previous pulse
sent in -T<t<0, and n(t) is the additive noise, assumed to
be white gaussian with n(t)=0.

The receiver calculates the following:

T
o = (2)1/2 [ r(t) cos(w.t + 6, dt
0 0
T
2(5)1/2j‘ cos® (wt+6,) dt
0 0
T
+ ZA(S)l/Z[‘ cos(wt+ 6 )cos{w (t-7 )+ 6.7 dt
# 0 0 0 d 0
d
1/2 od
+ 2A(S) "L cos(wot + Go)cos[wo(t-'rd) +Gl] dt
T
+ (2)1/2jn(t) cos(w.t +6) dt
0 0 0
T-T T
1/2 d ‘
= S —_— ‘
(s)y""Tl1+ A coswo'rd+AT cos (wOTd—61+60)1
1/2 T
+ (2
(2) gn(ﬂ cos(abti-eo)dt . (5)
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The probabilities of 6; and 8,5 depend on the message

structure.

The ensemble average of the quantity a is given by

T-T T
172
)/T[1+A dcosw‘r +A-—dcos(w Td-91+90)1.

o= (S
( 0 d T 0

For the pinary case, m = 2, we have

1/

a, = al

g =9 = (5

2
T(l+Ac
170 i L

as the average value of a when 8,=64, and

T-2r1
v 1/2 d
=&l _o . =1 T[1+A( )
] 91_9 +7 T cos wOTd]
When 91=90+"-
The corresponding variances will then be

2
var o =(ry—ao)

0
T T
= Zg g n(tl) n(tz) cos (wo tl + 90) cos (wot2 + 60) dtl dt:2
= 1/2 N.T (9)
and 0"’
var o) = varg, = 1/2 N,T, (10)

where Ny is the noise power density in watts per hertz.
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The output signal-to-noise ratios for this case may be

defined as

2
o
0 E 2
= = 1+ A \ 11
(SNR)O > ont 3, NO ( cosw,T d) R (11)
- and and az
1 E T—ZTd> 2
- —_———— = e—— T 12
(SNR), = 527 o] N, [HA( <) cos wy Tyl (12)
where E = ST.

From (5), we see that the first two terms of a are
essentially deterministic when 64 and 6, are assumed. The
distribution of the random variable a« is, thus, basically
the same as that of the noise term. That is, « is gaussian
with the mean and variance given respectively by (7) or (8)
and (9) or (10). Thus, the probability of bit error when

0404 1is

1
7beO J2m var o,
mT var ao_

0 2
Ay 2
‘J‘ . (o Olo) /2 var % dor

-]

o
_ 0
= 1/2 erfc (—2—;’\/—7—;—;-.0‘) = 1/2 erfc [,,/ (SNR)O] » (13)
where
erfc(t) =—2 f -uz
= e du . (14)
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Similarly, the probability of bit error when 0,=04+r is
Pgy = 1/2 erfc[ (SNR)lJ . (15)

For the case wheref; and 6, have equal prokakilities and are

uncorrelated, the total error probability is

p,=1l/2 p o +1/2p = l/4[erfc V(SNR), + erfe A/(SNR)J . (16)

For illustrative purposes, we present in figures la and
1b (SNR), and (SNR), for E/Ng=100 (20 dB), A = 1 (0 dB), and
weT = 20 n. It is seen that maximum values of U(E/Ng) = 400
(26.02 dB) for (SNR)g occur at 7y = i(0.17),
i=0,1, «ce, 10, while minimum values of zero (-« dB) for

sz
the other hand, the places at which maximum and minimum
values for (SNR),; occur are rather more involved, depending

on whether 7, is less or greater than T/2 (See tables 1 and

2).
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Table 1. Maximum values of (SNR)1

Max (SNR)1 is

Approximately

Approximately at 7

That Occurs

d
2.02(E/N0) = 400 0
1.82(E/NO) = 324 0.1T
1. 62(E/N0) = 256 0.2 T
1.42(E/N0) =196 0.3 T
1. ZZ(E/NO) = 144 0.4 T
(l.OZ)Z(E/NO) = 0.48 T
1.12(E/N0) = 121 0.55T
1.32(E/N0) = 169 0.65 T
1.52(E/N0) = 225 0.75 T
1.72(E/NO) = 289 0.85 T
1.92(E/N0) = 361 0.95 T
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Table 2.

Minimum values of (SNR)

1

Min (SNR)l is

That Occurs

Approximately Approximately at T4
0.1 (E/NO =1 0.05 T
0.3 (E/NO =9 0.15 T
0.5 (E/NO = 25 0.25 T
0.7 (E/No = 49 0.35 T
0.9 (E/NO = 81 0.45 T
0.98 (E/N 0.52 T
O8(E/N)—64 0.60 T
0.6 (E/N = 36 0.70 T
O4(E/N)—16 0.80 T
0.2 (E/N 0.90 T
=0 T
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It is also clear that (SNR), = (SNR), = E/Ngy when

waTy = (2i-T)w/2, or v =(2i-1)T/40, i = 0, 1, ... .

Associated curves for pgo and pe; when E/No=100, A=1,
and woT=20mr are given in fiqure 2 for the range 0<v,<0.1T.
Figures 3 and # give p, as a function of E/Ng for
various values of T4 /T

Graphs of (SNR)g and (SNR),; similar to those of figure
1 with A=1/2 (-6 dB) are given in figures 5a and 5b, from
which we see that max (SNR)g=max (SNR); = 1.52(E/Ng) = 225
(23.52 dB), and that min(SNR)=min(SNR),; = 0.52(E/Ng) = 25
(13.98 dB). Thus, the worst probability of error which can
happen for this case is

max p, = 1/2 erfc(5) = 7.67 x 10-13,

From the forms of egs (11) and (12) it is seen that delays
73+ longer than T result in the same signal to noise ratios
as a function of the fractional part of T4/T and the only
change in the grobability of error comes from the
probabilities that (SNR)o and (SNR); occur.

Additionally, if a distribution of delays is known, the

average prokability of error can be obtained by averaging pe

of (16).
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BIII-C. Two Paths with Time Spread
For the more general case that includes a spread in the
second path, we replace the shifted impulse function 6(t—ni)

in the second term of (1) by the following function:

2 2
A At -Tg)

B - - t<t +7T (17)
h(t-T) "7 N ’ byt Tq= 0o T

where 2tg represents the spread width, and N is a

normalization constant defined as

to T t

0 'd 0 2
- - dt = 1 e du
N = tj+7' hot-T4y) J
0 'd —Xto
l-erf =
er C(Xto) erf(k,to). (18)

Note that N approaches unity as tg or A approaches infinity.

However, in reality, tg should be finite and satisfy the

following conditions:

- < .
tO-FTd > Oandt0-+Td_ T (19)
The parameter X\ in (17) may be considered as a measure

of closeness between h, (t-74) and 6(t—7d). In fact, as

A—"®, N—-1, and ha (t-74 ) 6(t~rd).
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Again, if the pulse sg(t) given in (3) is transmitted,
the part of the received signal corresponding to r, (t)

discussed previously becomes

ri(t) = A.ﬂfﬂ*hzﬁ - T4
totT4
= A J' so(t -T) hZ(T—Td)dT
“tgtT4

28 A\
N \ - + 8 ’
> Il cos [uo(t T i) 0]

where A has the same meaning as before, namely, the

interference-to-signal voltage ratio,

t -quz
Il = f cos ab ue du
_to
J7B "wg /0
FADY

BITI-16
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and

0 0 (22)
B = erf(kto - J—Zi-)— erf(—)\to - _]-é_;\. ) -

Combining (20), (21), and (22), we obtain

2 2
_w0/4)\
£y () = AB2s)% 2yt e cos Lw(t-T )+6,]. (23)

We note that r,'(t) is the same as r,(t) except for the

2
-1 e-uf;/ 4\

constant factor B (2N) and that r;'(t) reduces to

r,{t) as A 1is increased indefinitely, because under this

2, 2
- w0/4>\

—1.

condition, N—1, B—2, and
If the direct path represented by 0 (t) remains
unchanged, the total received signal in the interval 0<t<T

should then be

r(t) = (ZS)I/Z cos (wot + eo) + ré(t) + ré(t) + n(t), (24)

where n(t) is the additive noise, r,'(t) is given in (22),
and 2 2
1/2 IPRRCIA2N
ré(t) = AB(2S) (2N) e cos Ewo(t-rd) + 91]. (25)
With the receiver performing the same process as that

in (5), we have the corresponding statistical average of the

processed signal:

.wg/m\Z T-7

— AB
o = /S T %l+ﬁe [( ) cos wOTd
Ta
= - ] 26
+- cos uuon-+60 61] (26)
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This is the same as (6), if in (6) we replace A by

2, 2
AI:E e'wo/ﬂ .

N When 65=8,; for the binary case, we obtain

2 2

— AB "W/t
v = — . 27
oy S T [1+2N e cos word] (27)

Similarly, with 845 # 8,, we have

. AB ’wf)/ﬁz T-2o7y
all =JS T [1+=—= e ( T ) cos wo‘rd]. (28)

2N

Comparing (27) and (28) respectively with (7) and (8),
we conclude that the effect due to the path spread is

completely accounted for by the factor

2, 2
B _-wy/4) (29)
S ’

which will essentially be used to modify the actual
interference-to-signal voltage ratio A.

Before giving quantitative results for the factor in
{(29) , we need a further simplification for B in (22) since
it involves the error function with complex argument.
Fortunately, an expansion into separate real and imaginary

parts is available [Abramowitz and Stegun, p. 299, 1964]:

2
-3

erf(x+jy) = erf(x) + ;nx L(1 - cos 2xy) +j sin 2xy |

+—21? s Z —-E-Z————Z [fn (x,vy) +3 g, (x,y)1, (30)
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where
fn(x,y) = 2x - 2x cosh ny cos 2xy + n sinh ny sin 2xy, (31)

and
gn(x, y) = 2x cosh ny sin 2xy + n sinh ny cos 2xy, (32)

Noting that the real and imaginary parts of erf (x+jy) in

(30) are respectively odd and even functions of x, we obtain

.o .%o
B = erf()\to -ioy ) - erf(-)\to - Jﬁ)
“o
=2 Re[erf()\to - jE‘)T)l
2
=2 erf()\to) +7)'\—E6— (1 - cos wo to)
© A2
2 2 4 w
+-L-11-T— e A tonZI: ?ﬁ__‘})\Tt(z)_ fn()\to, -E)\i) ) (33)
where
f (At ,—io—o):Z)\t (1 -coshnw cos w.t.)
n 0 2 0 2 X 00
nw,
+ n sinh 23 sin @ ’t0 . (34)

Now we are ready to make an analysis for B in (33) with a

given value for \tg .
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On the one hand, when Aty is large and at the same time
tp is also a large fraction of T so that A is relatively
small [ representing a case for which hz(t-rd) deviates
substantially(from the shifted imrulse response function

5(t—rd)] and 2% 25y the hyperbolic sine and cosine

nab/ZX
functions in (34) may be approximately replaced by 5 e .
Thus,
w n w
0 0/2x
- — ) = R 35
fn(XtO, 7B )= Cp e (35)
where
n
= - — si 36
Gn )\to cos w0t0+2 51nw0t0 (36)
The infinite series in (33),
n e
1 2 12 70
© -4r1 wo ® 6—4 N
e
> = i (At -==) = 2. C , (37)
2 2 22
nl nfpanit 200 A n=1 n” +4x"t
0 0
will then be determined by a few dominating terms near
n = wg/A . (38)
Under this condition, we have
1 2
-—n 2 2
X e C w0/4k
) & |~ RV e > 1 . (39)
n=1 n +4Xxt 0 2.2
o 4
o 1 1(59) a2

BIII-20



Then

2
w
22
BN S B
Cn ax

Here we see clearly that the magnitude of (41)

guantity and its sign will oscillate depending on wgtg.

(40)

(41)

is a small

The

small magnitude implies that the intersymbol interference

has essentially no effect on the direct-path communication,

even when the interference-to-signal voltage ratio A is

significant.
Ate=2.5,
w
We now have
T = 5,
A wo

and

B
2N ©

As an example,

OT = (2m) X 100,andt0 =

/X = 40m, N = 0.9996, wt,
2 2

—w0/4k

= .0.6788 X 10’6

BITII-21
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which is indeed negligible.

On the other hand, when both Atg and X\ are large such

i)
that 5~ <1, corresponding to a case that hz(t- 73) is

much closer to 5(t—rd), the first few terms under the

summation sign in (33) would be sufficient tc represent the

22

infinite series. Furthermore, since the factor ™ tj

arpears at both the second and third term in (33), it is

apparent that erf (\ty) should constitute the dominant term.

Thus
B =2 erﬂkto) = 2N (43)
and
2 2
-w /AN -w2/4>\Z
B 0 0 2
N © = e =1- (wO/Z?\) . (44)

which is very close to unity, giving only a minor
modification to the actual interference-to-signal voltage
ratio A. This means that, under this condition, the
analysis considered previously for the ideal case of no path
spread still holds approximately true.
G

Detailed variations of B(2N)-1 ¢~ %, versus t, for

Atg=2.5 are presented in figure 6. For comparison purpose,

a similar example with Atg=1.0 is also included in figure 6.
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Figure BIII-6. The factor by which the amplitude of the second
path is reduced as a function of the spread. The expanded
scale for the oscillating portion of the curve is on the right.
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BIII-D A SCATTERING FUNCTION MODEL*
BIII-D.1 INTRODUCTION
We assume here a coherent quadriphase shift key system
with the form of the transmitted signal as in (2), with m=4.
The receiver processes the received waveform (fig. 7)

by deriving two quadrature quantities

T
a = \[_Z—J r(t) cos u>0t dt,
T
B = \]_Z—f r(t) sin uJOt dt.
0

As in the preceeding two cases, we assume a direct

(45)

ccmponent s (t), a multipath component i(t) and noise n(t),

. s0 that the received signal is given by
r(t) = s(t) + n(t) + i(t). (46)
The noise n({t) 1is assumed to be white Gaussian with
autocorrelation function
Eln(t) n (t+r)] = 1/72 Ng §(t) (47)
The interference term i (t) depends on the statistical

croperties of the scattering mechanism. In general, we can

*The remainder of this chapter is exerpted from M. T. Ma,
M. Nessenbergs, and R. H. Ott, Performance of Coherent
OPSK Modems Over Time-Varying Channels with Random Inter-
symbol Interference Due to Scatter, Office of Tele?omj
munications Technical Memorandum (1972), with permission
from the authors.
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say that it must be a superposition of the scattered

contributions of all preceeding digits,

i(t) = ‘[6 i (t), (48)
k:
where for all k=0, 1, 2, <.«
min (t + kT, T)

i () = NEENE s, (1= kT)h(t - 7+ KT, t)dr . (49)

0
The time-varying impulse response hjz(t-r,t) here

depends on two variables. The argument t is the present
time, while the argument t-r is the delay from the
occurrence of a unit impulse till present. Thus, v is the
time when the impulse occurs. It is postulated that h(t,r)
is a zero-mean homogeneous (i.e., wide-sense stationary in
both arquments t and r) Gaussian random process with
srecified scattering function S(92, r). When the scattering

function is normalized 4

-] @
f/ S(Q, 1) dQdT =1,

-® -~

the coefficient A represents the interference-to-signal

power ratio (ISR).
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Conditioned on a fixed (yet arbitrary) modulating sequence
8=(ee2s02,64,04) both a and B are random variables, with
distribution determined by statistics of random n{(t) and

h{t,r). We claim that:

(a) Ea = \/? T cos 90, (50a)

(b) EB = ,’ P T sineo, (50b)
~~F ~ 2

(c) vara = varB = & NOT + o, (50c)

{504)

(d) Eag = 0,

where 02 is to be determined. The proof of 50(a) and 5 0(b)

is easy. From (45) and (46):

T
a cos cos dt
B—\/STsin 8, * \ 2 /n(t) o Yot
' 0

T
+ ,[2 / i(t) :‘1’:’ w e de, (51)
)

and En(t)=Ei(t)=0 imply 50(a) and 50(b). Assertions 50{c)
and 50(d) appear quite plausible, yet their proofs are

lengthier and are omitted here. The remaining unknown in
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(50) is 02; the derivation of this quantity is essential
here--it is given in the next section.

From (50) we note that, being Gaussian, the random
variables « and p must be independent. The random vector
(z,8) is circularly symmetric in the (a,pB) -plane about its
mean (Ea,EB). This symmetry plus the use of symmetric
decision regions (fig. 8) implies that the decision problem

is identical for all four phase 6, values.

BIII-D.2 DERIVATION OF o2

The variance of the interference term i(t) ([see (50) ]

T T
02 = / du f dv E[i* (u) i (v)] coswo (u - v), (52)
0 0

where a series of repetitious substituions are next in

is

order. First from (48)

E[i* (u) i(v)] = ) ﬁz E[ ik* (u) 1£ ()], (53)
=0

then from (49)
E[ik (v) iﬂ(v)] =

min(utkT, T) min(v+£ T, T)
2\ P f du‘O/ dv' sk(u‘-kT) sy (vi- £T) E[h*(u,u—u’ﬂcT) h (v, v-v'+£T)], (54)
0
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and

E[h " (w, u-w'+KT) b (v, v-v'+£T)] = 8[(v-u) - (v'~u)+ (f-K)T]P (v-u, u-u'+kT),

where the bivariate function p(u,7) is merely an expedient

abbreviation for an oft repeated function

P, T) =/ S (&, 1) eiZﬂQ”dQ. (56)

—-

We note that p (u,r) is the non-impulsive part of one of the
channel autocorrelation functions.

The impulse term in (55) only contributes when its
argument vanishes. Since one always has |v-u-v'+u!|<2T, it
fcllows that |f£-k|<1 are the only contributors in the double
sum (53). When f=k, the limits of integration in (54) are
shortened to max (0, v-u)Svgmin(T+v—u, v+kT,T) and max(0,u-
v)<u'<min (T+u-v,u+kT,T), for v' and u', respectively. We

obtain for all k=0,1,2,«ea.
U

Eliy (W iy )] = 2”’/ el ) oy (v By o e o7
L

where the upper and lower limits are

U

min{u,v)+kT,

1]

L max(u,v,T-kT)+kT-T. (58)
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For QPSK waveforms, (57) vields
U

£l Wi ()] A scosw (- v) / P(v - u, %) dx, (59)
L

where U and L are the same (58). The factor cos awg(u-v)
appears for all k=0,1,2,... and, upon substitution in (52)
and (53) yields cos2wqg (u-v)=1/2 with an integral error term
cf the order of l/wg. Thus the total contribution to 02

from the diagonal (i.e., { =k) terms is

T T U
2 ~
gdi=—é—}\SZ /du/dv/dx P(v - u, x) (60)
k=03 0 L

where U and L in (58) are functions of k.

When £=k+1, a very similar approach works. Two
departures from (60) are readily noted: (a) the message
sequence {ek} does not cancel as it did in (59), (b) the
integration limits must be modified. The non-diagonal

contribution tog2 is

T T U'
2 1 = i i
ono di_?')‘sz cos(ek ek+]) fdu /dv /dx P(v -u, x) (61)
k=0 6 ¢ L

where

U

mas (u, v) + kT,
(62)

L min (u, v) + kT.
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The variance 02 is the sum of (60) and (61). In a form

valid for all scattering functions it can ke written as

a"=2x 8 Z [A(k) + B(k) cos (Bk - 9k+1)] (63)
k=0

where

T T U : )
Afk) =\ du | dv \ dx Plv - u,x) ,
o
(64)
T T U
B(k) =(du \dv \dx o(v -u, x) .
T

The common integrand p (u,r) is determined by the scattering
function S (Q,r), see (56). The variance 02 is conditioned
on a given sequence {q{}, and varies as different messages
are considered. 1In QPSK the four phases {0, »/2, », 3w/s}

can be assumed to occur independently with equal

prokcability, i.e., 1/4. We can then consider moments

™8

A(k) ?

E 1 =)\P
2 k=0

k

(65)

@
2.2\ 2
va.re oz=%X P z B (k)
k=0
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and define an average o2 as E:eo2 and an rms o 2 as

Ee(j2+J var 02 . Since both A(k) and B(k) are non-negative,
0

we always have the worst-case and best-case bounds

AP

ABT (A - B(k)]s0 < AP % [A(k) + B(K)] . (66)

0 Tk: 0

M8

The sum in the right-hand side of (66) is easily shown

to be
o, T T
Z [A(k) + B(k)]=g dug dv RH (v ~u, 0) (67)
k=0 )
0 0
T 2
=E21[S}ﬂuf)dt] } (68)
0

BIII-D.3. TRUNCATED GAUSSIAN SCATTERING FUNCTION

An example of the medium scattering function is

exp{ 2 /20% - (v -T ) [21} }

Ty =T » T = To
2mQ T, ¢ <_L;£>
d Ty
S(n,T) = (69)
(0] ’ T<T0
where ®(x) is defined as
2
X
3 (%) = == S e" /Zdt. (70)
2 T
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An "altitude chart" of S(Q,r) is shown in figure 9 for rg
finite and rq - . The standard deviation of S(f,r) along
the Doppler shift axis is 2 while the standard deviation
along the time delay axis is r, if 9=~ . The non-impulsive

part of the channel auto correlation function is from (56)

~

exp*L—ZTr2 QZ (u-v)? —(T-'Tl)z/Z'ng}

— Tl'TB
o (u-v,7) = /2 Tz@('r >

Since p (u-v,r) 1s symmetric in u and v, assume v>u. Then it

is not difficult to show from (6#4#) that

T v

72
A(k) = 2 g dv g du exp [—ZTT2 QZ (u-v)Z] fk {u, v) (72)
0 0
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(a)

Ty

(b)

Figure BIII-9.

The (a) truncated and (b) non-truncated scattering
functions with Gaussian profiles.
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T \% -
B(k) = ZS dvg du exp L-ZTT2 f;fl (u-v)z] g, (u, v) (73)
0 0

with

O » T>u .:
o I

u.T1 /TO_T
1) ‘

@( T )‘® \ ==
- z 0sST < 1
’ T ‘
'rl_'ro o Y (74) ‘
qs(“»r"-—> ‘
: :
fo(u,v):‘ |

u-T _Tl .
o )-@(—- ,
T T ’
2 2) T I
’ < 0 '
T T 0 |
( 1 o) |
$ - ‘

2

and for k=1,2,...
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f, (u, v) :4
1K

, VHKT =TS T utkT

2 2 N\
, T <« v+kT-T
T _To 0
L %)
k §< T
2
and for k=0, 1, 2, ...
( 0 , T0>V+kT
T T T -
° T - ¢ T
2 2
— . WHkT <7 S v+ kT
@( 1 O )
T2
gk(u, v) =
T -u-kT T -v=kT
q,/l ) ( 1 )
K TZ - @ TZ
, To< ut+kT
T T
(+2)
\ T
2
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In this example with a Gaussian scattering function we find
that (67) equals T2 and that the variance (66) has a simple
upper bound

gz < \prt

> . (77)

It is instructive to examine the behavior of the
coefficients A (k) and B(k) for small r,. As an example, let
23=0, 10=0, and 0<r,<<T. Then from (75) through (79), it

follows that

A(O) = (T’Tl)z + 722 + aee (78)
A(l) = 142 + 722 + ... (79)

with higher order coefficients exponential in 1/v,:

-2
=-T
Ak) =< e 2 ’ k

I
oo
W

-2
-T , (81)
B(k)°‘e 2 ’ k=19 2:"'
The variation of A(k) and B(k) for T = 5 x 10-9 and
0<r,<T is shown in figure 10.
The results in figure 10 confirm the small r, effects given

in (78), (79) and (80).
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A(k) and B (k)

=2
>

FTTTIIT

| L]

©

S [A(k) + B(k)] =72
B (0) k=0

x‘-(x\ A1)

M&?‘O\O\O

S
A
]‘ﬁ

| N\\ ]
B A(O)/ ‘\me
B b —R
48 o— "
1078 = o
— B()
i >/ v/ :/
1019 A(2) v?‘/
o

ol IIIIIII

- / A(3) /f
A ~ ©

B (2)

|0-20

T IIIHHI
®.
\
> \
s

1

] lllllll| ] lllllll| 1 llllll[)

(| lllllll

|0-2| e A o = —

= Q- -

L v ¢ 0 -

: . To = O —

T' = T/2 ]

02— d T =5x10°—3

B o i
1073 I i l i | ] | ] ] |
0 0.2 04 0.6 0.8 1.0

T2/T

Figure BIII-10. The components of variance for small T; .
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These results will be used in the calculation of the

output signal~to-noise ratio and probability of kit error.

BIII-D.4. OUTPUT SIGNAL-TO-NOISE RATIO
The output signal-to-noise ratio for the binary

decision is defined as

2
E
SNR = 4 ol (82)
2 var Q
Using (50) and E=ST this becomes
SNR = A > E/No
2 % T1+rNE/N (83)
] 4+ 20 °
N T
0

In figure 11 we show a plot of the ouput signal-to-
noise ratio in dB versus the input signal-to-noise ratio in
dBR for various values of the ISR ratio. There are three
salient features to observe in figure 11: 1) as the ISR
ratio A goes to zero the output signal-to-noise ratio,
approaches the straight line

lim SNR = E/N, (84)

A —0
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Figure BIII-11. The output SNR degradation duc to intersymbol interference.
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2) as the input signal-to-noise ratio E/Ngy becomes very

large, the output signal-to-noise ratio has the asymptotic

behavior
hm SNR ; Y [A(k) + B(K) (8. -9 . B
= {— ) cos (g, -
Ny =0 12 k20 k k“] ; (85)

which is independent of E/Ng and cannot be less than \—1; 3)
for a constant ISR ratio, the average output signal-to-noise
ratio is greater than the RMS output signal-to-noise ratio
which in turn is greater than the "worst" case. This is in
agreement with the results in (65) and (66).

The insert in figure 11 shows that the calculations
correspond to a non-truncated Gaussian scattering function,
i.e., 719g=-=». The three general features discussed above
would remain unchanged if vy were finite (truncated case).

BIII-D.5. ERROR PROBABILITY

From (50) the random vector (a,p) is circularly
symmetric about the mean (Ea,EB8). From figure 8 a four-
phase (i.e., two-bit) error will occur when the decision
boundary (cross~hatched regicn) is crossed. The distance
from the mean (Ea,0) to the decision boundary is Ea/y/2.

Thus, the probability of bit error is

2
p g -y/Zvarady, (86)

e /Zﬂvara
Ea/JZ
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which becomes [see (48) (50), (82), and (83) ]
P, = 1 - @(SNR) (87)
The three salient features mentioned under the heading

of output signal-to-noise ratio apply here equally well. 1In

particular lim P
E/Nj 5o ©
is a non-zero constant determined by (85) and (87).
The probability of kit error is plotted in figure 12 as
a function of the input signal-to-noise ratio, for various
values of the ISR ratio, A. Four parameters are constant
for the six cases; i.e., f4=1.5x1020 Hz, T=5.0x10-9 sec,

19=0, Qd=0 while r, and v, vary as

Tl/T Tz/T
0.5 0.0001
0.5 0.5
0.5 1.0

0 0.08
0.4 0.036
1.5 0.12

The results in figure 12 are basically

indistinguishable as the pair (r,, 7,) is varied.
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C. CAUSES OF MULTIPATH

This group of chapters pertains to the use of the
physical parameters for the prediction or estimation of the
types of multipath expected over nominal line-of-sight
paths. For some problems it is sufficient to consider only
simple geometric gquantities, while for others, it is
necessary to have knowledge of fine-scale structure which
might be associated with atmospheric variations, changing
sea state, detailed terrain structure, or combinations of
these.

Mechanisms contributing to multipath problems which are
considered here are reflections, scattering, refraction,
diffraction and absorption.

Methods are given for estimating path length
differences (relative delays), lobe modulation frequencies,
and time variabilities associated with atmospheric changes,

or other changes such as in sea state.







CHAPTER CI. SIMPLE TWO—-RAY MODELS
CI-A. Introduction
This chapter deals with simple two-ray models for
rultipath where one ray connects the transmitting antenna
with the receiving antenna via a direct path that is not
obstructed by objects or terrain, and is called the "direct
ray". The other ray is the "reflected ray" and it reaches
the receiving antenna via a single reflection where the
paths to and from the reflection surface are unaobstructed.
Specific limitations and conditions associated with
particular models are provided as part of the discussion
concerning them. Restrictions applicable to all models
described are as follows:
1. Only the direct and reflected rays are involved.
2. Ray paths are unobstructed except for the
reflecting surface which must obstruct (also
changes direction) the reflected ray only.
3. The path length difference between the direct and
reflected rays is sufficient to provide a
relative path length difference of 0.03 X wherel

is the wavelength (Rice et al., 1967, p. 5-6,
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where the 0.06X given should be changed to
0.03)) .

4. Antennas and reflecting surfaces must be
separated by distances sufficient to allow free
space antenna patterns to be used in determining
the relative strength of phasors associated with
the two rays.

Serarations may be considered sufficient to overcome
the last restriction if the reflecting surface and a point
along the direct ray are in the "far-field" of each antenna.
A commonly used formulation for the minimum far-field
distance, dff, associated with an antenna having a maximum
length,! , and operating at a wavelength, A, is (Jasik,

1961, p.34-14)

_ 2
d, = 2 /X (1

where all lengths are expressed in the same units. With ¢

expressed in feet, ﬂf . and X\ expressed using frequency in
t

megahertz, f, (1) becomes

-3 2 '
d, = 2x10780 1t (2)

Chapter topics include resultant signal representations

(sec. CI-B), path length difference (sec. CI-C), and
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effective reflection coefficient (sec. CI-D). A computer
program for calculating lobing over a spherical earth is
discussed in Chapter CII.

Except as specifically stated otherwise, units of
length, time and frequency will be in kilometers, seconds
and megahertz. This simplifies many of the formulations
provided, in that the number of factors connected with unit
conversions are greatly reduced. However, English units are
used with graphs and formulas where such usage seems more
ﬁkactical. For convenience, the relationship between
several units of measure are provided below:

1] ft = 3.048 x 10—-*km

1l smi= 5280 ft
lnmi= 1.852 km
l nmi = 6076 £t

1 rad = 57.295779510

CI-B. Resultant Signal Representations
Resultant received signal representations in terms of
phasors (sec. CI-B.1) and statistics (sec. CI-B.2) will be

considered.
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CI-B.1 Phasors

A two ray path is illustrated in figure 1 where x is
the direct ray path length in kilometers, r,, is the
reflected ray length in kilometers, Ip12 is the complex
voltage antenna gain (relative to isotropic) associated with
the direct ray at terminal one or two and gr; . is the
ccmplex voltage antenna gain (relative to isotropic)
associated with the reflected ray at terminal 1 or 2.
Antenna heights in kilometers above the reflection plane,
h;»., are also shown along with path distance, d, and grazing’
angle ¥ . Note that the angle of incidence is equal to the
angle of reflection (both are »/2 -Y¥ rad). If the
reflection surface is curved h,, are measured from a plane
tangent to the reflection point and would not necessarily
equal the antenna heights above the surface (see sec. CI-
C.2).

Let the phasor characterizing the transmitted signal be

et = m(t) exp (jut) V (3)
where

m(t) = complex modulation function in volts

exp (Jut) = &¥°, (4)

j o= V-1, (5)
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Ar = r]+r2-r = r]+r pum ~ 2h]h2/d

—

FﬁgureCH-l.FlaF air-less earth geometry. Note that the angle of
1nc1§ence equals the angle of reflection so that the
grazing angles, ¥, for ry, and r2 are equal.

angular radio frequency in radians

€
]

and

t time in seconds.
Then, the phasor characterizing the signal received via the

direct path may ke written as

D =<4"Xr)1DgD1gDzm(t‘r/C) exp [j(wt-pr)] V (6)
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4wt ) = freg space.voltage loss over direct ray path for
12 isotropic antennas,
ED = voltage losses associated with antennas to measure-
ment point coupling for direct ray
e = 2.997925 x 105 km/sec, propagation velocity (7)
8 = w/c = (2 x 106)f rads/km, proragation constant (8)
£ = radio frequency in megahertz

and all units of length are expressed in kilometers. The
phasor characterizing the signal received via the reflected

path may be written in a similar manner, i.e.,

A
- 2
°R <4er2> RER1ER2PRPFonF A s

m(t-rlz/c) exp [J(wt—ﬂrlz)] A% (9)
where
A
(4nr ) = free.space Yoltage loss over reflected ray path
) 12 for isotropic antennas,
R = voltage losses associated with antenna to measure-
ment point coupling for reflected ray,
R = Complex plane earth reflection coefficients
(sec. CI-D.8)
D = divergence factor (sec. CI-L.1).
Fon = surface roughness factor (sec. CI-D.7)
Fa = surface area factor (sec. CI-D.2},
and
Fg = surface shadow factor (sec. CI-C.6).

The resultant received voltage phasor,eZ ¢ is

e = e_+ e A% (10)

and normalization to ep yields
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& N = ez /eD (ll)
or
ey = 1+ R_expljgAT) (12)
where (t / ) o g
m - T C T
R = 12 } RIPR2\ opr g
e m(t - r/c) r12 gp18p2 o

(13)
is the complex effective reflection coefficient (sec. CI-D),

and

Ar = rl2 - T km (14)

is the path length difference (sec. CI-(C).
With R expressed in terms of its magnitude, |Re|, and
phase, # , the magnitude of ey squared can be expressed as
e
'2

2
le /= 14 [R_|I"- 2 |R_[cos(n-BAr +4) (15

N

orx

= 1+ IReIZ t+2|R_| cos(BAr +4 ) (16)
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where the phasor diagram shown in figure 2 and the law of
cosines is used to obtain (15).

Attenuation relative to free space propagation over the
direct ray path with isotropic antennas, A, in decibels is

obtained using

A = -10 log |enl2 dB (17)
where log = loglO {common logarithm) and (15) can be used to
express (l17) as

- 10 log [ 4 sin’(BAr/2) 7 if R_ = -1

A = dB (18)
2 .
~10log (1 + lRe' + ZIReI cos ﬂT ) otherwise

with ET‘ = BAr + qe rad. (19)

Maximum, ABA' and minimum, Arn, values for A are given by

-20 log | 1- |Re| | if [R | #1
A = © dB (20)
—® as lRel —- 1

and

A_ = -20 log (1+|Rel) dB . (21)

Figure CI-2. Phasor diagram, fixed phase.
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Note that an effective reflection coefficient of unity will
result in ANf’w and A = -6 dB. Curves that can be used to
estimate A when R, (sec. CI-D) and Ar (sec. CI-C) are known
are provided in the next section.

Transmission loss, L, is the ratio, expressed in
decibels, of the power radiated from the transmitting
antenna to the power available at the terminals of an ideal
(loss-less except for radiation resistance) receiving
antenna (Rice et al., 1967, sec. 2). It may be determined
using A from

L=1L, +A=-Gpy =~ Gp GaB (22)
where Lbf is the free space kasic (isotropic antennas)
transmission loss for the direct path, and Gpiz is the
decibel gain above isotropic in the direction of the direct
ray of an ideal (loss-less) antenna at terminal 1 or
terminal 2.

For lengths expressed in kilometers and frequency,

f MHz, L is given by (Rice et al., 1967, p. 2-7)

bf

4 1r
X

With r expressed in nautical miles, r ¢ (22) becomes
nm

): 32,45 + 20 log (fr)  dB-(23)

Lbf = 20 ;og(

Lbf = 37.8 + 20 log (frnm) dB ., (24)
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If the antenna gains used in (13) and (22) are for non-
ideal antennas, transmission loss should be called system
loss (Rice et al., 1967, sec. 2.1). However, since the
heating losses associated with many antennas of interest is
either not accurately known or negligible, the terminology
distinction will not be pursued beyond this mention of it.
Values of g ;, in (13) are related to those of G ;, in (22)
by

Gyrz = 20 1log |gyi2l ds (25)

and
(Gpa, 2/20)
= 10 (26)

19p, 21
CI-B.2 Statistics

Attenuation variations associated with flight through a
lobing pattern (see fig. 42, CII-5) formed by interference
between the two rays can often be characterized by a
cumulative distribution formulation that is very similar to
the phasor formulation for A given in (18), but is easier to
compute since the path length difference need not be

calculated. That is,

A(p) = -10 1og|1+|Re|202‘Re|cos(wp/100)| ds (27)
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where A(p) is the attenuation that is not exceeded during p
percent of the time.

Note that when a particular level of received power can
be associated with specific A(p) values for the flight path
section of interest, it would be exceeded p percent of the
time so that p could be refered to as the time availability
associated with the signal level. Values for A (p)
correspond to specific received power levels when (a) the
two ray model is valid (sec. CI-RA), (b) the power radiated
by the transmitter and losses associated with the receiving
antenna system remain constant, and (c) all terms in (22)
except A are essentially constant.

This formulation for A(p) is based on the conditions
that for each flight path section of interest (a) lRel is
essentially constant and (b) the relative phase angle, GT '
associated with the phasor addition in (18) is a random
variable with a uniform probability distribution over its 0
to 2r range, i.e., all angles occur with equal probability.
Figure 3 illustrates the phasor relationships involved shere
possible ]Rel phasor positions have a circular locus about
the unity phasor. Values of A associated with |Re| phasors

in the unshaded area are less than A(p). This area is p

CI-11




percent of the total area bounded by the ]Ré] phasor
rotation.

The median value of A(p) obtained from (27) with p =
50% is

A(50) = -10 log (1 + |Re|2) dB. (28)
Values for A(50) are shown in figure 4 as a function of [R_|

along with maximum, A _, and minimum values for Aniobtained

M
from (20) and (21). A relative phase angle @ of n/2 rad

(9002) in (18) results in the same attenuation level as

A (50) .

2
A(p) = -20 Togley(p)l = - 10 Tog [T+ R I “+2| R cos(mp/100)] dB

Figure CI-3. Phasor diagram, random phase. Values of l eNl
for the unshaded area are >| eN(p)] ; 1.e., A< A({p) in
unshaded area. The unshaded area is p percent of the
total area covered by the FRe phasor.
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Normalized values, AN(p), of A(p) are shown in

figure 5

as a function of p for several |Re| values. The
attenuations are related by
A(p) = BAy(p) + A(50) dB. (29)
-20
>
} ‘ 7
A = .20 Tog (1 + |R I} dB :::r/‘/’
m
-10 [ \\\\‘/”””‘4/’//A
SEER
= I
= Ay = -20 1og|1-|Re||qg_'
- if R AT
< 20
30 L
40
0.1 1 10

Figure CI-4.

EFFECTIVE REFLECTION COEFFICIENT MAGNITUDE lRel

Attenuation vs. reflection coefficient, maximum
phase opposition) and minimum (phase agreement)
values of attenuation are shown as A, and A _,
respectively. Median attenuation for a uniFform
distribution of phase is given by A(50).
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Each curve 1is applicable to two |Re| values which are
reciprocal to each other.
Figures 4 and 5 may be used with (29) to obtain values

of A that would result from (18) by using them for

p = 100 &./n % (30)
and taking the resulting A(p) as A. For example, HI‘: n/4
and ]Rel = 1 result in (a) p of 25% from (30), (b) A(50) of

-3 dB from figure 4, and APJZS) of -2.3 dB from figure 5.
These values used with (29) result in an A of -5.3 dB
(-2.3-3) .

When the geometry involved in a particular problem is
such that the path length difference is likely to be more
than a few wavelengths and the relative terminal locations
are not accurately known within a few wavelengths, then
these figures may be used to estimate the prcbability N

that a particular attenuation level will not be exceeded via

P, = p/100 (31)
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where p goes with the A(p) level of interest. For example’

[Re] = 1 and A(p) = 20 dB result in (a) A(50) = -3 dB from
figure 4, (b) AN(p) = A(p) - A(50) = 20 + 3 + 23 dB via a
rearrangement of (29), (c) p = 98% from figure 5, and (4d)

) Py = 0.98 from (31). Equations (31) and (27) can be combined

to provide a formulation for Pp i.e.,

(32)

a1 - { o tA/10T |Re|2 }
2 IR

CI-C PATH LENGTH DIFFERENCE

Relative attenuation associated with interference
between direct and reflected rays calculated via (18)
depends on Ar since (18) includes the rela;ive phase of the
two components.

Geometrical relationships involved in the calculation
of the path length difference Ar, are discussed in this
section for simple cases (sec. CI-C.1l) and the spherical
surface case (sec. CI-C.2). The concepts of Fresnel zone
clearance (sec. CI-C.3) and lobing frequency (sec. CI-C.4)

are also discussed since they are closely related to Ar.
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-30
9 -20
[¥N)
[=a]
S
w10
z IRe| =
e
" 0
2 .
& §:18
= 0.50
S 10 S — 0.60
. \ 0.70
= L 0.80
0l N
= My(p) = Ap) - A(50) N 0.90
- A(p) = - 10 1ogI1+IRel +2lReIcos(np/100)l dB ;:Tkw_;,
w30 A(50) = - 10 Tog (1 + [R_ 1% dB N 0.95
—
< _ -[A{p)/10 2 \V
% 40 Py, = p/100 = = Tcos™12 10 M 1 -iRl AN
S 2 IR, | N
= l I J l e 0.99
3 | |
0.01 0.1 1 10 50 % 95 99.5 99,99

PERCENT OF TIME, p, THAT ORDINATE VALUE IS NOT EXCEEDED

Figure CI-5. Normalized attenuation versus percent of time.
Attenuation not exceeded for p percent of the
time is given by A(p) = A{50) + AN(p) dB.

CI-C.1 Simple Geometries
Equation (14), Ar = ry, - r, can be used to calculate
Ar if r,, and r (see fig. 1) are known with sufficient

precision. However, it can involve the difference between

large numbers that are nearly equal since Ar is required to
a fraction of a wavelength; i.e., at 100 MHz accuracies on
the order of a foot (2 x 10-4 n mi) are required so that a

100 n mi path would require r,, and r to be known to seven

significant figures.
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A formulation for Ar that avoids this precision proklem

can be derived using the law of cosines with the triangle of

figqure 1. That is,

2 2 2 2
r = r +r, - Zrlr2 cos (M-2¥) km,
2 _ 2 2 . 2 2
ro= r tr, 4 Zrlr2 (1-2sin ¥) km,
2nd r2 = 2 4r i zzb k 2
o 1T, sin m,
2 2
(r -r)(r._+71) r._ - T
but Ar = 12 +12 = 12 km
(r12 r) (r12+r)
so that use of (35) in (36) yields
4r. r sinzlb
172
Ar = (r_ +71) km
127 "

(33)

(34)

(35)

(36)

(37)

Equation (37) is very useful since it not only avoids

the precision problem, but is exact.

It can be used to

derive alternate expressions for specific situations; e.g.,

h =
when rlZ r

2
2 i i <<
r.sin ¢ if T T,

1
Ar >~ { r sinz;b if =
1 17
2rlb 5
(1+5) sin ¢ if br1 = r2

(38)



where b is a positive constant.
Special cases where the reflecting point is known (sec.
CI-C.1.1), or the reflecting plane is fixed (sec. CI-C.1.2)

will be considered in the remainder of this section.

CI-C.1.1 Reflecting Point Known

Situations considered here are those where Ar can be
estimated from knowledge of rx,, ¥ and the relative size of
r, with respect to r;; i.e., ¥;,>r and r;<<r, or br; =r, so
that Ar can be calculated via (38).

The relative size of r, with respect tc r, and r are
assumed to be specified directly. Values for ¥ however,
may be specified directly or in terms of the angles B,, or

ﬂr shown in figure 1. These angles are related as follows

b = ("'ﬁr)/z rad, (39)

0.5 B1 if Ty << 'r2

ﬂ if r.=1r

1 2

b o= ! rad (40)
0.5 BZ if r, <1y

0. 5(51 + 52) otherwise

s:'Ln/B1 = bsin BZ. (41)
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As an example, suppose r;<<rp, ry; = 0.3048 km (1000

ft), B, = m/2 rad (900) then Ar is calculated using (40),

and (38) as follows:

b =0.58, =m/4 rad (45°),
2 .2 .
and Ar = 2r sin") = (2)(0.3048) sin (m/4) = 0.3048 km.,
If it is assumed that R, = -1, the simple formulation of

(18) can be used to estimate attenuation; e.g., for a

frequency of 100 MHz, (8) and (18) result in

B =uw/c = (27Tx108)/(2.9979x105) = 2095.9 rad/km

gAr/2 = (2.095.9)(0.3048) / 2 = 319.42 rad,
and

A = -10 1og[4sin2(5Ar/2)] = - 4,6dB.

CI-C.1.2 Reflecting Plane Fixed
For a fixed reflecting plane as shown previously in
figure 1 (37) can be expressed in terms of the antenna

heights in kilometers above the reflecting plane, h;, , i.e.

Ar

4h1h2/(r12+r) km . (42)

Similarly, when r,,=r, (38) can be written as



. . <<
Zhl siny if hl h2

h siny if h. =h
1
Ar = ! 2 km, (43)

Zhlb

(1+b) sin Yy if bhl = h2

When the path distance, d, in kilometers is much greater

than either antenna height (42) becomes
Ar = Zhlhz/d km . (44)

When R, = -1, maximum values of A or lobking nulls occur

when Ar has a value Ar given by

Arn = N\ km (45)

where N is a positive integer (zero included). Similarly,
lcbing peaks (A = -6 dB) occur when Ar has a value Arp given

by
Arp = MA/2 km (46)

where M is a positive non-zero integer. As imglied by (45),
the number of nulls, N , encountered for d increasing from
zero with fixed antenna heights would be the maximum value

of Axr, which occurs at d = 0, divided by A; i.e.,

Nrl = (2/A) lesser of {hl or hz} . (47)
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For r,, ~r and R, = -1, the grazing angles that
correspond to lobing nulls, $n, and lobing peaks,wp . can be

obtained using (43), (45) and (46). The resulting formulas

are
Sin "t D\N/(Zhl)] if hl<<h2
. =1 . _
y = Sin ()\N/hl) if h = h, rad (48)
n
. =1 AN(14b) } . _
Sin (————Zhlb ] if bh1 = h2
and

Sin'1 D\M/(4h1)] if h <<h,

o = Sin'l D\M/(Zhl)] if hl= h rad . (49)
by ’

. =1} AM(14+b) . _

Sin [——————4h 5 ] if bhl = h2 )

1

For ry,  r = d, fixed frequency and antenna heights
and Re = -1, (44), (45), and (46) can be used to determine

the distances 4, and d,, at which nulls or peaks occur. The

resulting formulas are

dn Zhlhz/N A km (50)

and

d e km.
> 4hlh2/Mx (51)
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Distance between nulls, Ad can be obtained by using (44)

for d and 4 + Ad; i.e.,

2h1h2 ) Zhlhz N . (52)
d d + Ad
or
Ad = xd®/(2hph)) km (53)
when Ad<<d.
For r,.=~r=d, fixed frequency, h, and 4, and R, = -1,

(44), (45), and (46) can be used to determine the values for
h, at which nulls, h;, , and peaks, th, occur. The

resulting formulas are

h. = Nxd/(2h) km (54)
2n -1

and

h. = Mxd/(4h) km |, (55)
2p 1

Height between nulls, Ah,, can be obtained by using (44) for
h,+Ah, and h,; i.e.,

2h1(h2 + Ahz) Zhlh2 (56)

d d
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or

Ah, > d\ /(2h)) km (57)

For r12== r ~d, fixed antenna heights and path
distance, and R, = -1, (44), (45), and (46) can be used to
determine the frequencies at which nulls, f . and the peaks,
fp, occur. The resulting formulas are

£ = 150 Nd/(h,hp) MHz (58)
and

fp > 75 Mds (hyh,) MHz. (59)
Frequency between nulls, Af, can be obtained by using (44)
such that the Ar at f + Af is one wavelength longer than the
Ar at f; i.e.,

1 = 2hgh, (f + Af - f)/(do) (60)
or

Af >~ 150 d/hgh,) MHz. (61)

Though the equations given here apply only to
restricted conditions, they can be used to provide insight
for situations where the required conditions are not

completely realized. The more complex case for reflection

from a spherical surface is discussed in section CI-C.2.
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CI-C.2 spherical Surface Geometry
Several methods are presented that can ke used to
determine Ar when reflection from a spherical surface is
involved. 1Included are a graphical method (sec. CI-C.2.1),
a Nomogram method (sec. CI-C.2.2) and computational methods

(sec. CI-C.2.3).

CI-C.2.1 Graphical Method

This method is based on the use of charts to provide
the relationships between antenna height grazing angle and
the antenna to reflection point distance. Such charts are
shown in figures 6 and 7 where figure 6 is agplicable to
antenna heights below 1000 ft and figure 7 is applicable to
antenna heights up to 100,000 ft. These charts were
produced by ray tracing through the continuous exronential
atmosphere (sec. CIII-A; Bean and Dutton, 1966, sec. 3.8)
that corresponds to a surface refractivity, N, of 301 N-
units. Use of N = 301 N-units in the effective earth radius
formulation of Rice, et al. (1967, sec. 4) results in an
effective earth radius that is 4/3 of the actual earth
radius.

Parameter values obtained from the charts are then

converted to Ar via fiqure 8. This figure provides Ar
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Figure CI-6. Height vs. distance to reflection point for low antennas.
The grazing angle, {§, is the complement to the angle
of incidence or reflection which are equal.

90

80

Sy
q
AN
AN
N

70

ATV e/ 4
vty 4
///wg
i // /——-—-01
Az 2
A ~
—— ‘

0 50 100 150 200 250 300 350 400
FACILITY TO REFLECTION POINT DISTANCE IN NAUTICAL MILES

[
™~

40

30

T
N
\

20

\

]
SRS

FACILITY ANTENNA HEIGHT IN THOUSANDS OF FEET

Figure CI-7. Height versus distance to reflection point for high
antennas. The grazing angle, {, is the complement
of the angle of incidence or reflection which are equal.

CI-25



8 v
/ /.
6 Ly 50 Za %
// (0.5°) /é /
) 2% ////

’ %
/) e e

(0.1°)

AN

o
o]

A
N
N

<
N

N
<
N

//// 050 ////

<\\\\\

\\\i

N
Yi\

o
—

PATH LENGTH DIFFERENCE Ar IN METERS

l/ rJ
0.08 — =
0.06 /. V4 »
A /
0.04 /  0.2° 4
//’
V-
)% /
0.02 //
0.1°

0.01 /// |

0.1 0.2 0.4 0.6 1 2 4 6 10

(10) (20) (40) (60) (100) (200) (400) (600) (1000)

DISTANCE RATIO Zr]rz/(r]2+r) IN NAUTICAL MILES

Figure CI-8. Path length difference versus distance ratio.
Values of ¥ in parenthesis go with distance
ratio values in parenthesis.
For ri, =1, 2r1r2/(r12+r) o rlrz/r. For hl<< h2,

- o
rlrz/r = r, = dl/cos P o= d1 when v < 10°. For
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versus the distance ratio 2r,r,/ (r,p+r) for the same
values provided on figures 6 and 7. The expression used to

calculate Ar is

r.r
1+2] sin’h km  (62)
127

M = (7.408)[

r

where the r's are in nautical miles. Except for the

constant introduced for units conversion this expression is
identical with (37). Alternate ways of expressing the ratio
are provided in the caption of figure 8.

Although these figures can be used in several ways, the
most straight-forward way is to start with antenna heights
and grazing angle. For example, with H,; = 100 f¢t,

H, = 30,000 ft, and ¥ = 50 use of fiqures 6 and 7 results in

d;= 0.15 n mi and d,= 52 n mi. Then figure 8 can be read

Zrlr2

using ~ d. so that Ar=0.004 km. Finally, the great

r12+r 1
circle distance, d, between antennas is determined using
d =dy, + 4, n mi (63)
which yields 52.15 n mi.
This approach is useful if Ar or attenuation, via (18),
versus distance curves are desired, but reguires use of

iteration or interpolation when values for a specific 4 are

needed. It is, of course, also limited to the special case



where N =301 N-units since figures 6 and 7 are based on this

value.

CI-C.2.2 Nomogram Method

G.A. Hufford, (OT/ITS) has developed a nomogram tﬁat is
useful in estimating r for reflection from a spherical
earth (Norton, Hufford, Dougherty and Wilkerson, 1965). It
was developed for situations where antenna heights H;, are
much greater than the great circle path length, d, the
effective earth radius, a, is much greater than 4, and the
parabolic approximation for the earth curvature is valid.
The parabolic approximation is often used to estimate radio
hcrizon distances (Bean and Dutton, 1966, p. 59).

The nomogram is given in figure 9. It provides

estimates of the parameter Dh from values of

H = (H2 - H)) / (H, + HZ) (64)
and
2
d
v/k = ( 65)
4a(H, + H,)



1
2

Figure CI-9. Nomogram for use in calculating path length difference.

3) Then calculate

H,-H 2
2 1 4, < H y . _ d
k 4a(H]+H2)
BEYOND HORIZON -
HORIZON LINE
0.8
“S. LINE OF SIGHT
. WHEN HORIZON
0.6 SGLINE NOT 0.6
N_ CROSSED
AN
AN
N 0.4
AN
\\
STRAIGHT LINE
0.2 FOR SAMPLE N 0.2
CALCULATIONS N
OF TABLE 2 .:
0 0 (k = =)

) Calculate and plot values for H and Y/k

) Connect plotted points with straight edge
and read off initial value of De of Dh‘
Substitute into

203 - H{k/Y)
2 .1 -
305 -1 -(k/Y)

Dh =

and in this way determine Dh iteratively to
the accuracy required.

r as follows:
d2 = d(Dh + 1)/2

1 = d-dy
[ - d2
Hy = My - d5,(2a)
¥ > 1an”! (n:
Tan (H2/d2)
. 2
2d.d,sin“ ¥
Ar = 1%
d
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where all lengths are expressed in the same units and H,<H,
(switch subscripts if H,2H;). After obtaining an initial

estimate De of throm the nomogram, substitute into

2D - H(k/y)
D, =~ —2 (66)

h 3Dz -1 - (k/y)

and use (66) iteratively until Dy is determined to the

required accuracy. Values of d;,, ¥ and Ar can be estimated

from Dy, i.e.,
d2 = d(D_ + 1y/2 , (67)

d = d-d, ( 63)

. 2
R, H, dz/(Za), (69)

v =~ Tan'l(H'Z/dz), (70)

and

Ar > Zdld2 sin24)/d (71)

When d,>>d,, dp=d, (71) becomes

Ar = Zd1 sin2 b. (72)
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The k in y/k is the effective earth radius factor and
is defined as the ratio of the effective earth radius a to

the actual earth radius ag, i.e.,

k = a/a, (73)
] and
6370 km
ag ={ 3960 s mi (74)
3440 n mi

Values for k can be estimated from surface refractivity
(Rice, et al., 1967, sec. 4) or refractivity gradient
(Dougherty, 1967, p. 6). A k value of 4/3 is frequently
used to characterize average refractivity conditions.

In addition, certain k values can result in paths that
are not line-of-sight. This condition is encountered when
the straight edge used in reading the nomogram crosses the
horizon line, and the results obtained from the noﬁogram
should not be used.

Table 1 summarizes the values obtained using the nomo-
gram for a sample problem with parameters sirilar to those

used in the section CI-C.2.1 example.
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Table 1. Example, Nomogram Use

Given Parameters

hl = 100 ft = 0.0348 km

h2 = 30,000 ft = 9,144 km

d = 53.2nmi = 92,6 km

a = 8493 km

Calculated Results

Equation Parameter Value
(63) H 0.993355
(64) Y/k 0.027099
(65) Dh 0.99 from nomogram
(65) Dy, 0.993972 1st iteration
(65) Dn 0.9929729 2nd iteration
(65) Dh 0.9929729 3rd iteration
(66) d2 92.227465 km
(67) dl 0.3253538 km
(68) Hé 8.642763 km
(69) ) 0.09339100 rad.
(70) Ar 0.005639 km
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Ci-C.2.3 Computational Methods

Geometry for reflection from a smooth earth is shown in
figure 10. Rays are assumed to be straight lines and the
earth spherical with effective radius a. Use of an
effective earth radius is a first-order compensation for
average ray bending associated with transmission through the
atmosphere (Bean and Dutton, 1966, sec. 3.6; Rice et al.,
1967, p. 6-14).

Given the effective earth radius a, antenna heights H,,
and the path length d, tne ray length difference (Ar)
between the reflected ray (r,2=r,+r,) and the direct ray r
may be calculated using (75) through (90) where all angles
are in radians, and all lengths are measured in identical

units, e.g., kilometers. The formulation is as follows

i} 75

Zl, 5 a + Hl, 5 km, (75)
P, = a/z1 2 (76)
g = d/a rad, (77)
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Figure CI-10. Spherical earth geometry. (not drawn to scale)
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2 2
pl + p2 + Zplp2 cos @

N
]

(p_‘l2 "Pg) sin 6
; rad
\-.(4—2)/3]37z

(1/3) Sin'IS

AN
1

= 4-z\ . 2 nm
*h=0,1,2 = ! (3 >Sm (@+3)

cosf - (Vi Jtoo- Wt
Tan) [ oy * 0)] rad

zb =
sin 8
-1
= - ad

61' > Cos (pl. , cos Y)-yY
D = :

1,2 Zl,Z 51n91'2 km

DO = D]. + ]:)2 km

1
H,2 = D, tand  km

o = Tan E(HIZ-Hi)/Do] rad

o]
1

Do/cos o km

rl2 = r1+ r2 = Do/cos 0 Kk

= 4H !

Ar H H) /(r12+ r) km.
D ] !

Ar ZHlHZ/r km

Ar =~ 2H'H!/d km

12
Ar = 4HH /(H+H + H_ - =
M 12/(1 ,THy - H) = 2H  km
ArAGﬁ' Zrlsinzz,b = ZHi sin ¥ km
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These expressions are an exact soluticn for the
geometry of figure 10 where a20 and d20. They were obtained
by combining the relationship between d and § developed by
L.E. Vogler (OTI/ITS, informal communication, 1971) with a
formulation previously given by Gierhart and Johnson (1969,
sec. A.1). However, they are an approximate sclution to the
rroblem since the use of an effective earth radius does not
provide an exact compensation for ray bending. Effective
heights (sec. 5, Rice, et al., 1967, fig. 6.7) could be used
to provide some correction. Additional compensation for ray
bending could be made by letting the effective heights and
radius approach actual values as Y approaches n/2 (sec. 5;
Gierhart and Johnson, 1973, sec. A.4.2). This method could
be used to obtain curves of Ar versus 4 by performing
calculations for various values of § and calculating d from

d = a® . (90)

Even with the aid of electronic computers it is fre-

quently difficult to obtain ry+r,=r;, and r with enough

precision to calculate Ar from its fundamental definition
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(or=r,,-r), since it represents the difference between large
and nearly equal parameters. The formula given in (89)
avoids this problem. It is an alternate formulation of
(37), and (89) is useful in developing approximate
expressions for Ar.

For example, when r;,=r

Ar =~ ZHiHé/r km (91)

with H,+H,<<d, r= d and (91) becomes
Ar = ZHiHé/d km , (92)

which is a frequently used formulation (Beckmann and
Spizzichino, 1963, p. 225; Rice et al., 1967, p. 5-5). Notg
that (a) H,;'=H; and H,'=H, when the reflecting surface ‘
between the antennas is flat, e.g., as a—« or when 4 is

very much less than the total smooth earth radio horizon

distance (d<</2aH, ++ 2aHp) and (b) maximum value Ar  of Ar |

occurs at 4 = 0 (=w/2, ry=H,, rz=H,) and is given by

Ar = 4H1H2/(H1+H

M +H,~H)) = 2H km (93)

2 1
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where H; is the smaller antenna height (H;<H,). For most

air/ground applications, r;<<r,, r,+r, r, r, and

A - L2, .
rAG Zrls1n Y = ZHi sind km , (94)

where H,' may be approximated by H; giving

ArL = ZH1 sin § = ArAG km (95)

or by

H'~H - dlz/Za =H, - le/(Za ta.nzzb) km (96)

1 1 1

which yields another approximate expression for aAr, i.e.,
2 .
ATg = 21—11[(1 —Hl/(Za tan §)] sin § < AT 55 km , (97)

These approximations are useful in placing bounds on

Ar since
AG

Ar <A km (98)

<
s rACr - ArL

and

>
H
!
>
H
f

2
L . H, cos(¥)/ (a tany) km {99)
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For the special case of equal antenna heights where

leHz, r1=r2=D1 secC U and r=2D1 so that

ArEH > d[sec (¥)-1] km (100)

or

pry, = *r, - 1= 2D lsectd)-1] km (101

when d= ZD1 -

A useful approximation for tan ¥ was developed (L.E.
Vogler, OT/ITS, informal communication, 1971) by expanding
(81) as a power series in (1/a), i.e.,

H.+H HZ+I—I2 2

12 12 d (102)

Bnd =g \Taa )
2(H1+H2)

For air/ground (H,<< H,) applications, (102) becomes

H
e 1_?_2__12_3-_‘1 (103)
ta’r“‘bA.('j d a 2a d 2a
and for equal antenna heights (H; =H,;) it becomes
t d) m_z.‘i{.g. ]__Eg‘_g_::‘_zf:[_%__é_ (104)
ANYEH  Ta a 4a d 4a -
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Table 2 summarizes values obtained using the equations
provided in this section for a sample problem with
parameters similar to those used in the section CI-C.2.1 and

section CI-C.2.2 (table 1) examples.

CI-C.3 Fresnel Zone Clearance
If rays are taken as straight lines, the locus of
pcints about the terminal locations with constant r would
form an ellipsoid. Figure 11 shows the ellipse associated
with the great circle plane. The largest ellipse that can
be drawn without intersecting terrain along the path has a
Ar of Arp which is used to determine the order of Fresnel

zone clearance, Cp, from
Cp = 2Ar /) (105)

where A is wavelength in the same units as Ar . First

Fresnel zone clearance, Cp21, or 0.6 of the first Fresnel
zone clearance, is often taken as sufficient to allow the
mean transmission loss to be estimated by its free space
value (ITT, 1970, p. 26-15). However, these criteria are

usually applied with the earths curvature exaggerated such
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Table 2. Example, Computational Methods (@)

Equation Parameter Value

(75) Z, 8493.630 km
(75) Z, 8502.744 km
(76) Py 0.9999964

(76) Py 0.9989246

(77) 8 0.01090233 rad
(78) yA 3.995566

(79) '} 1.412314 rad
(80) t, 0.9999707

(80) tg 0.9987279

(80) t, 0.9990846

(81) W 0.9328764 rad
(82) 0, 3.834837 x 10™° rad
(83) Dy 0.3257169 km
(83) D, 92.37181 km
(84) 8, 0.010864 rad
(84) D, 92.69753 km
(85) HY 0.03047381 km
(85) H) ' 8.642233 km
(86) o 9.263581 rad
(87) r 93.09669 km
(88) ri, 93.10235 km
(89) Ar 0.565764 m

(a) Given parameters are as in table 1.
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FRESNEL ELLIPSE (LOCUS OF CONSTANT aAr)

Figure CI-11. Fresnel zone ellipse.

as with an effective earth radius that is 2/3 of the actual
radius.

In selecting antenna heights (or sites) to meet a
Fresnel clearance requirement, it is convenient to use the
Fresnel ellipse semi-height, ﬁF. A useful arproximation for
this height can ke derived using (37) and (40) for the
special case where the path length is very much greater than
either antenna height; i.e., for h;,<<4d, r;, r=d, siny=y »

sin ﬁl,zzﬁl'z and rl,zaﬁl’z so that

4r1r2 sinzzb ZdIdeb2 106
A = = £ 0
T CFX/Z (rlz T 1) 3 rad ( )
B = sin™(H /x ~H_/d d
1, 2 F,2 9,2 T2 (107)
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and 2y = B, + B, from (40) can be combined to obtain

H, *\/dleCFX /d km, (108)
At mid-gath, HF' has a maximum value, %WF' given by

Hy g ™ o.sA/chx km . (109)

With height in feet, distance in nautical miles and

frequency, f, in megahertz (108) and (109) become

dl[n mi] dZ[:n mi] cF

~ 3y 110)
H 2.44 x 107) (
F ( * f/ d[n mi] f ft
and
Hy o (122 x 107) [ d(n mi] CF/f ft o, (111)

For example, the maximum first Fresnel zone clearance semi-

height for a 100 n mi path operating at 100 MHz is

Hy e = (l22x 103) ~ (100)(1)/(100) = 1,220 ft

CI-C.4 Lobing Frequency
Received signal level will vary with terminal location

because of interference between the two waves, e.g., an
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aircraft traveling toward a facility at constant altitude
will experience signal strength variation of a periodic
nature. The maximum number NL of cycles (or lobes)
associated with reflection from a smooth spherical earth
(fig. 11) as an aircraft traverses a constant altitude

radial path from a ground facility is given Ly

Ny, =1+0.5) lesser of {H; or H,)} (112)

where H;, and \ are in the same units. The +1 is included
in (112) as an allowance for the phase variation associated
with the reflection coefficient, e.g., this rhase changes by
about 7 rad for vertical polarization near the pseudo-
Brewster angle. The +1 was not included in (47) since R, =-1
(constant » phase shift at reflection) was assumed. Neither
(112), (47) nor equations presented here for lobing
frequency contain an allowance for signal level variations
associated with antenna patterns. In fact, (112) is the
only equation in this section that includes an allowance for
the phase shift change at the pseudo-Brewster angle (sec.
CI-D.8) .

Estimates of the distance lobing frequency fd can be

made using
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fd=*(1.716 x 10-3) Fyf[MHz }| V3 [ kts]| Hz (113)
where Fé is the distance lobing factor discussed below, and
Vg is the radial component of the aircraft velocity. In
terms of the geometry of figure 10, Ar may be expressed as

4H'H! 4H! H!

b = rlz'l”z ) :/;3+H'+H'+,\/]D 2+H'-H' o -
o 1 2 o 2 1
which can be used to obtain the approximatiocn for Fy given
by
> > DoAr
F, s‘ﬁmr) =|b—D:(Ar> e (115)

when H',, are considered constant. Since Ar -does not
include phase changes associated with the reflection
coefficients, }frfAr)in (115) is approximate. When

Dg=x,;=~r>d, (115) becomes

~ (11 6)
Fd Ar/Do .

Similarly, the height lobing frequency f;; associated
with vertical ascent at a fixed distance can be estimated

with

£11 ~(1.695 x 10-5) Ff[ MHz ]| %y( £€/min]| Hz (117)
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H

component of the aircraft velocity. Values of F}Imay be

where F_ . is the height lobing factor, and V}Iis the vertical

obtained using (115) from

Hl

o) 2
— - ]
l (Ar) bH’ (Ar)| = 4H 'CH' (r12+ r) ' (118)
or
Fd. E{i(r - rlz)i-I{é(r + rlZ) T
F B ~ T - H' (119)
H D ry 2
when Dy>1, > r>d
F
[ ._.Ei_ 1 2 2'
FH H.d ’(Hz) - d ] (120)
but r>~d implies d>>H,' so that
N Fdd
Fg & 4 - (121)
2
For rpaths where Hp,>>H; and H,' = Hp-d2/(2a) (121) can
be expressed as
- _ Fdd (
- ——— 122)
H H —dz/( 2a
2
or if leHz
' 2 123
H! =~=H1-d/(8a) km (123)
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and

d
Fd

n H, - dz/(8a) S
Note that (124) applies to the case where only one aircraft
is changing altitude. If both aircraft are changing
altitude at the same rate, the Frg from (120) should be
doubled.

The lobing frequency £, encountered by an aircraft is
dependent upon (1) the location of the aircraft relative to
the facility it is using, (2) the aircraft velocity, and (3)
the radio f:equency used. It is related to fd_and f}{by

£ <
0 < gty (125)

Here < is needed because of the magnitude bars used in (113)
through (120). It is possible for an aircraft to follow a
flight pattern such that the lobing with distance is
compensated for by lobing with height so that £,~0 and

£ +£,50, e.g., an aircraft flying the glide slcpe of a
conventional instrument landing system in which the lobing

structure is used to determine the desired flight path.
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An estimate of the maximum value %M‘Df fﬂ expected for
a particular height combination can be made by assuming that

fd>>fH when Fd is pear its maximum at a small d. From (37)

and (115) it follows that

. 2
4D0rlr2 sin ¥

Foo= (12¢)
d rer(rIZ + r)

and since Do/r£1

2
4r,r_ sin ¢
rlz(r12 t+r)

which has a maximum value at 4 = 0 such that

] <L
ZHl/HZ if Hl H,

: ~ (128)
F < 1 if H1 H2

-1 lesser of {H

2 (I—I1 + H or HZ} otherwise

2) 1

An estimate of an upper bound for the maximum value %M of f,

can be obtained directly from (128) and (113) since fd>>fH

is assumed; i.e.,

£ <(3.432 10'3) f{MHz] lVd[kts]l

HI/HZ if H<<H,
. 0.5 if HlkHZ Hz (129)

-1
(H1 + HZ) lesser of {Hl or HZ} otherwise
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Lobing frequency is also referred to as lobe modulation
frequency or Doppler beat modulation. Reed and Russell
(1964, ch. 10) develop formulas using both the lobe and
Doppler beat modulation and show that "... no fundamental
difference exists between the lobe modulation and the
Doppler-beat modulation concepts. They differ only in the
treatment of the independent variable."

Dougherty (1967, sec. 4, app. A) has extended Gerks
(1966) formulation of lobing frequency for air-to-air
propagation between aircraft with relative horizontal motion
to a more general formulation that considers vertical
aircraft motion as well as horizontal. However, the
formulation is based on equal aircraft altitudes and equal
ascent rates. Dougherty's (1967) formulation will be
summarized in the remainder of this section. Slight changes
in his notation have been made to provide consistancy or
avoid conflict with notation previously used here.

For aircraft with equal ascent rates, equal altitudes,
and no relative horizontal motion, the number of lobes per
second -- the number of variations from signal minimum to

maximum and back to minimum per second -- is given by

lobes/sec (130)

d
dt (Hl, 2)
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where f is frequency in megahertz H,, is the altitude of
aircraft 1 or 2 in kilometers which are equal in this case,
d is great circle path distance between aircraft in
kilometers, a, is an effective earth radius in kilometers
and g%‘(Hl’Z) is the ascent rate in kilometers/second for
aircraft 1 or 2 which are equal in this case. Figures 12
and 13 show nj versus aircraft altitude for
IH% (H1,2)|=0.0029 km/sec (~10 ftssec) and £=4500 MHz.
Figure 12 is applicable to aircraft separatiens, 4, of 100,
300 and 500 km (54, 162 and 270 n mi) while figure 13
provides curves for separations of 207 and 400 km (112 and
216 n mi) . Both figures are based on an expcnential
atmosphere above a smooth earth where the particular
exponential atmospheres are defined by the surface
refractivity, N , in N-units. The a, values used with (130)
to develop these curves were determined via ray tracing data
for an exponential atmosphere (Bean and Thayer, 1959).

For aircraft at equal altitudes and no vertical motion,

a
dt UH 2)=0, the number of lobes per second is given by

2 2
H 2 2
- 1.2] [ —4a \ af___4d g
n, = 26.7 f[ == 1+ 2 (8a = 3\ 5 = T (d) | lobes/sec.
e 1,2 e 1,2
(131)

CI-50



NUMBER OF LOBES PER SECOND, n, (FROM 130)

(0
I [ l |
/d=IOOkm

7 Aircraft
f = 4500MHz Separation

T

)! = 2.9 m/sec

~ 10 ft/sec
d = 300km

For An Exponential Atmosphere
Above A Smooth Spherical Earth

or —

03—

W@~

u f

W07 1

| 1 l |
00 | 2 3 4 5 G

AIRCRAFT ALTITUDE, H IN KILOMETERS

1,2°

Figure CI-12. Lobing frequency for vertical displacement
of both terminals, 4 = 100, 300, 500 km
(Dougherty, 1967, fig. 1l2a).
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7= { Et( ) l = 2.9 m/sec. = 10 ft/sec.

H1,2
f = 4500MHz

For An Exponentiai Atmosphere
Above A Smooth Spherical Earth

3.__

o | —Surtface Refractivity

Ng =450

400

NUMBER OF LOBES PER SECOND, Ny, (FROM 130)

0.7 — ]
0.5 F— —
03— —
- 7
0.2 — —
Ng =450/ 400 300 200
0.1
F— —
0.07 — .
| 2 3 4 5 6 7

AIRCRAFT ALTITUDE, IN KILOMETERS

Hy,2>

Figure CI-13. Lobing pattern for vertical displacement
of antennas. (Dougherty, 1967, fig.1l2b).
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The parameters and conditions for (131) are identical to
those for (130) except that only relative horizontal motion,
?%T(d), is allowed instead of vertical motion,‘é%‘(le).
Figures 14 and 15 show n4y versus the great circle separation
or distance, d, between aircraft for |?%7(d)l=0.1 km/sec
(~200 kts). Figure 14 is applicable to aircraft altitudes,
Hl,Z' of 1, 3.05 and 7 km (3.3, 10, and 23 thousand feet)
while figure 15 provides curves for altitudes of 2 and 5 km
(6.6 and 16 thousand feet).

Table 3 summarizes values obtained using the equations
provided in this section for sample problems. One has air-
to-ground parameters similar to those used in the section
CI-C.2.2 (table 1) example, and the others have air-to-air

parameters that allow the results to be compared with

figures 12 and 14.

CI-D EFFECTIVE REFLECTION COEFFICIENT
The complex effective reflection coefficient, Re,
defined in section CI-B.1 by (13) for specular reflection

may be written as

= 132
R, = DF,F F_F F F,R (132)
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AIRCRAFT SEPARATION, d, IN KILOMETERS

Figure CI-14. Lobing frequency for horizontal displacement

of terminals, H 5 = 1, 3.05, 7 xm
(Dougherty, 1967!%fig. 12c).
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Figure CI-15, Lobing frequency for horizontal displacement of

terminals, Hl 5 = 2, 5 km (Dougherty, 1967, fig. 12d).
'
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where

D = divergence factor,
Fpa = area factor,
Fg = complex antenna gain factor,
Fn = complex modulation factor,
Fr = ray length factor,
Fy = shadow factor,
E = surface roughness factor,
and oh
R = complex plane earth reflection coefficient.

This division of R, into factors is made for convenience.
It allows R, to be written in a compact form and the
component factors to be discussed separately.

Maximum, minimum and nominal values for these factors
are given in table 4 along with the section number in which
the factors are discussed in greater detail. Note that the
value of Re can range over the whole complex plane, but has

a nominal value of -1 for the conditions given with table 4.

Table 3. Example, Lobing Frequency

Given Parameters: Vd = 250 kts; VH = 1000 ft/min

Other parameters as in table 2.

Equation Parameter Value
(115) F 4 6.1 x 10°°
(112) £ 0.04 Hz
(120) Fy 6.5 x 10”4
(116) £y 0.02 Hz
(124) £, 0.06 Hz
(128) £y 4.6 Hz
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Table 4. Reflection Factor Values

Factor Maximum Minimum Nominal Section
(b)
D 1 0 1 CI-D.1
Fp 1 0 1 () CI-D.2
F{a) w —oo 1 () CI-D.3
F(a) o - 1(e) CI-D.4
F_ 1 0 15 CI-D.5
Fg 1 0 1 () CI-D.6
(c) _
Fop 1 0 1 CI-D.7
g (@) 1 -1 ~1(9) CI-D.8

(a)

(b)
(c)
(d)
(e)

(£)
(g)

These factors are complex and can affect
the phase of R _.

Normally 1 excgpt for near grazing paths.
Smooth spherical earth is assumed.
Non-directional antennas are assumed,
Modulation that is slow with respect to the
relative transit time is assumed.

Ray lengths assumed nearly equal.
Horizontal polarization with a grazing angle
(¢ of fig. 10) less than 6° is assumed.
Vertical polarization over average ground
with ¥ < 0.6° could also be assumed.
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For many practical problems involving aircraft it is

sufficient to use

~ _ 133
Re Fch (133)

Few problems will require the calculation of all factors.
A scaler effective reflection coefficient, R gqr for

diffuse reflection can be defined in a similar fashion;

i.e.,
= 4
R, DFAIFgIIFm| F F iFong (134)
where
Fsd = diffuse shadow factor.
Foha = diffuse roughness factor,

and magnitude bars are used around Fg

complex. Although Red ranges from 0 too, for many

and Fnisince Rogis not

practical problems involving aircraft it will have a maximum

value of 0.4 that occurs when |Re|<<Red and it is

sufficient to use

~ (135)
Red Fohd .

Phase associated with diffuse reflection is random so

that Re is treated as a scaler and the methcds involving

d

phasor combinations (sec. CI-B.1) should not be used with

R However, the statistical methods of section CI-B.2 can

ed”
be used with R ; by replacing |R,| with R 4 or a

combination, Réed' of R, and R,q made using

2 2
R = /
eced A ’Rel +'Red (136)
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Factors Fsd and Fcrhd are discussed with E (sec. CI-
D.6) and Foh (sec. CI-D.7), respectively. Decreasing values
of F;, or Fy, are often accompanied by increasing values of

Fsd or FO'hd.
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CI-D.1 Divergence Factor

The divergence factor, D, is used in (132) to allow for
the divergence of energy reflected from a curved surface in
the effective reflection coefficient formulation. It is
defined by Reed and Russell (1964, p. 103) "as the ratio of
the field strength obtained after reflection from a plane
surface, the radiated power, total axial distance, and type
of surface being the same in both cases, and the solid angle
being a small elemental angle approaching zero in
magnitude. "

Figure 16 illustrates the geometry for reflection from
a plane earth and a spherical earth where the relative
location of the source reflecting point and reference plane
are identical. It also shows the relative size of the ray
bundle on the reference plane for each case. The divergence
factor is related to the reference plane area associated
with the spherical earth reflection, As, and the plane earth
reflection, Ap, by

7
D= ,/A/A_ . (137
P S
Deviations of expressions for D in terms of the geometry

of figure 10 are beyond the scope of this text, but such

developments are provided by Beckmann and Spizzichino (1963,
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Reference Plane

Tanaent at 0
Tangent at B

Figure CI-16. Sketch illustrating diveraence.
Line length AR indicates ray bundle
size at the reference plane for
reflection from a plane surface and
AC corresponds to reflection from
the curved surface.

sec. 11.3), Kerr (1964, sec. 5.2), Reed and Russell (1964,
sec. 4.27), Riblet and Barker (1948), and Van der Pol and
Bremmer (1939). An exact expression for D that is very
similar to the formula provided by Beckmann and Spizzichino
(1963, p. 223) may be developed by extending Riblet and

Barker (1948, eq 13) to the special case where principal
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radii of curvature of the reflecting surface at the
reflection point are within, ap , and normal, a, o to the

rlane of incidence. This expression is

. -1/2
2r r 2r r_siny -1/2
_ 12 12
D = 1+ a (r.+r.) sind a (r. + (138)
p 1 "2 U IEPY
where the ray lengths r1 and r2 along with the grazing
angle ¥ are shown in figures 10 and 16.
For the spherical earth case (fig. 10) ap =a_ =a so that
(138) may be expressed as
5 -1/2
2R (1 4 sin” 3) 2R
D = |1+ - + (=
a sin w a (139)
where
rl if r2 >> rl
r./2 if r =r
R = 1 1 2 km . (140)
172
Z———+—) otherwise
1‘1 1‘2
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Values for ¢ may be obtained from (81), and r,, determined
using

o . — on®
1, 2 if ¢ =90

1,2 km, (141)

Dl 2/COS Y otherwise

When r, and r, are less than 650 km (350 n mi) the
third term of (139) can be neglected without altering D by

more than 1% (Riblet and Barker, 1948, eg 25) so that

2R (1 + sin‘2 L) -1/2
D~ |1+ —F

sin ¥

(142)

An antenna elevation of at least 240 km (80,000 ft) is
required for r, or r, to exceed 650 km.

Figure 17 shown R./r, versus ry/r, for r,> r,. Note
that Rr="rl (i.e., 0.99r, <R.< r,;) when r,/r;>100 (i.e.,
rzz rl). This figure can also be used for r;, < r; by
reversing the roles taken by the two variables; i.e., let r,
be the smaller ray length and r, the larger,.

Values for D are shown in figure 18 as a function of Rr

and ¥ . This fiqure is based on an a value in (139) of
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Figure CI-17. Curve showing Rr/rl versus r2/rl
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Figure CI-18. Divergence factor as a function of R_ and Y for
a 4/3 earth (a = 4586 n mi).

4586 n mi which corresponds to an effective earth radius
factor u4s/3 [see discussion following eq (74) J. However, it
can be used for other values of a by reading the abscissa
at an effective Rre value given by

(4586) R
R = r .
re 7 n mi (143)

since R_ in figure 18 is in nautical miles. For example,

.= 2.5, r,= 10, ¥ = 10, a = 45,86 nmi result in R. =2,

from figure 17, Rue = 200 nmi from (138) and D = 0.41 from

figure 18.
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CI-D.2 Area Factor

The area factor, EA'

adjustment for the size of the reflecting surface to be

as used in (132) allows an

made. It is used (i.e., #1) only when the reflecting area
is smallef than the first Fresnel zone associated with a
first terminal image to second terminal path so that rays
reaching the receiving antenna via the reflector are
essentially in phase. Figure 19 illustrates this Fresnel
zone for a plane reflector. First Fresnel zone dimensions
can be estimated using formulations such as those provided
by Beckmann and Spizzichino (1963, sec. 12A), Kerr (1964, p.
413), Norton and Omberg (1947), or Rice et al. (1967, p.
III-4), but such calculations are as complicated as the
calculation of F,.

Calculation of SA involves the area of the reflector, A

km2; wavelength A km from (7); grazing angle from (39),

(40), (70), (81) or (102); and the ray length product-sum

ratio of figure 17, 1r;r,/(r,+rp,) = R. km; i.e.,
t = :
F' (A sin P )/(\ R_) (144)
and
1 if FA.>1
Fa = . (145)

FA otherwise
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Figure CI-19. Fresnel zorne on reflectina surface.

For example, Rr =1 km, X\ = 0.001 km, A = 0.001 km2 and ¥ =
w/6 rad (309) result in Fy = 0.5.

Since this formulation is based on a plane reflector,
it should be used with caution when curved surfaces are

involved. 1In fact F' is given by

Fh = yp./p; (146)

where < is the power (watts) received via a passive
repeater path (perfect reflector that is smaller than first
Fresnel zone) and oF is the power that would be received

over a similar path in free space. Transmitter power, p
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watts, transmitting antenna voltage gain, 9 o effective
area of the receiving antenna, Ae km2, and the total path
r

length, r,+r, km are used to calculate P, via

2
- IDt gt Aer »
e am (e, + v )° " an
SIRFY

Similarly, p. can be expressed as

p, g, A g A
b= t ot e er W (148)
t R an o2

"lTrl >

where A  km2 is the effective cross-section of the reflector
with A that is perpendicular to r; (also xr,), and g is the

reflector voltage gain corresponding to A, ; i.e.,

. 2
Ae A sin ¥ km (149)

and

2

2
g amA N7 . (150)

The first factor of (148) may be taken as the power
intercepted and reflected by the repeater, and the second
factor represents transmission from the repeater to

receiver. Substitution of (149) and (150) into (148) giveé
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2

p. A g A sin
p = —L-_.er TN W (151)
r iam 12

which when used with (147) in (146) will yield (144).
Beckmann and Spizzichino (1963, eq 3, p. 381) provide a
formulation very similar to (1l44).

An expression for transmission loss, Lpr dB, across the
passive repeater path can be obtained by using (150) with an
expression for A in terms of the receiving antenna voltage

gain, g ; i.e.,
r

2 2
= 4
g nAer/x (152)
and
2
47 rlr2
= 1 = 1 —_— dB
Lor 0 log (p,/p,) 0 log g8 Asiny (153)

Note that the frequency sensitive factors in (153) are the
antenna gains so that Lpr is independent of frequency when

fixed antenna gains such as 1 (isotropic) are assumed.
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CI-D.3 Gain Factor

The complex antenna gain factor, Fg, is used in (132)
to allow for situations where the antenna gains effective
for the direct ray path differ from those for the reflected
ray path. Figure 1 illustrates the two-ray path and
indicates the gains involved. These are the complex voltage
antenna gains (relative to isotropic) associated with the
direct ray at terminal one or two, gpi2, and those
associated with the reflected ray, Jpia-

Since these gains are, in general, complex quantities
it is necessary that a common phase reference be used at
each antenna; e.g., gpp and 9r1 must have a common reference
so that they have the correct relative phase. In many
practical applications the direct and reflected rays will
leave (or arrive) at elevation angles where the relative
phase is either expected to be near zero or is unknown so that
the complex nature of these gains is largely academic.

These gains are called voltage gain since they have
dimensions of volt/volt and contain relative phase
information. Decibel gain values are related to these gain

as in (25) and (26) for 9pze Or as

GRry, 2 = 20 log IgRl,gl dB (154)

| =~ 10{GRy, 2/20)

lgm, 2 (155)
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for gry» The isotropic antennas to which the antenna gain
are referenced should be appropriately polarized with the
same reference used for both terminal antennas. For example,
the reference antenna should be circularly polarized when a
circuit with a circularly polarized and a linearly polarized antenna
is considered so that the gain of the linearly polarized
antenna would be about 3 dB below the value it would have if
a linearly polarized reference were used.
The formulation for Fg is simply the factor in (13)

that involves the antenna gains; i.e.,

1 for omnidirectional antennas
and/or circular polarization

g ) EriBr2 (156)

otherwise
Ep18p2

where omnidirectional implies that for the radiation angles

of interest gr; = gp; and grz = 9p2. As an example

_ . o - _an® _ . o
gp, = 1+i=42/45°, g, j=1/-90°, gp, = 1 and gDZ—l-J—\/EL:ALS

would result in:Fg:(J?/v?)Zﬁ5-9o+45 = 1[}300 = -1,
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The parameter F is similar to F except that E
Vg g Vg

involves gains gyriz, and gypiz that are measured with

respect to a linearly polarized antenna oriented in the

rlane of incidence (normally vertical polarization), i.e.,

1l for omnidirectional antennas

F, = (157)
V .
g ByrR18vR2
EyD18vD2
Also
1 for omnidirectional antennas
F, =
g €1r1 ®hR2 (158)

Enp1 EnD2

where the subscript h implies a linearly polarized
reference antenna oriented normal to the plane of incidence.
These parameters will be used later (sec. CI-D.8) in a

formulation for complex plane earth reflecticn coefficients

for circular polarization.
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CI-D.4 Modulation Factors

The complex modulation factor, Fn{ is used in (132)
since the time delay associated with the reflected ray path
can result in situations where the modulation received via
the direct ray signal differs significantly from that
received via the reflected ray signal. It is the factor in
(13) that involves the complex modulation function, m(t);
i.e.,

1 if the highest frequency in m(t) < ¢/ Ar

F = [m(t—rlz/c) (159)

—m] otherwise

where m(t-xr,;,/c) and m(t-r/c) are values for m(t) at times
t—rlzlc and t-rs/c. Values for ry,, r, ¢, and Ar may be
obtained from (87), (88), (7)., and (37), respectively. For
example, E =1 when the highest frequency in m(t) is 5 kc

provided that A§n<< c /75000 = 60 km = 2x10¢ ft.

CI-D.5 Ray Length Factor
The ray length factor, F is used in (132) to allow
for situations where the free space path loss associated
with the reflected ray may be significantly greater than
that associated with the direct ray. It is a factor in (13)

that involves the ray length ratio; i.e.,

F o= I (160)
r 1'12
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CI-D.6 Shadow Factor

Theoretical solutions to scattering from rough surfaces
frequently neglect shadowing (Beckmann and Sgizzichino,
1963, p. 28). Figure 20 illustrates a situation where some
portions of a reflecting surface are not illuminated by
incoming rays. In cases where significant portions of the
reflecting surface are not visible to both the receiving and
transmitting antenna the reflection coefficient should be
reduced to allow for shadowing. This reduction is
introduced into the effective reflection cocefficient
formulation of (132) by the shadow factor term, Fg. For a
smooth flat surface or normal incidence F,= 1, and F—~ 0 as
the angle of incidence (w/2-Yy) becomes large for either a
rough surface or a smooth earth, i.e., F — 0 as y— 0.
However, ray theory becomes invalid as p— 0 (sec. CI-A).

In the context of effective reflection coefficients,
the shadow factor can be taken as the probability that a
random point within the first Fresnel zone on the reflecting
surface will be illuminated. Equivalently, the shadow
factor represents the fraction of first Fresnel zone area
which is illuminated. Beckmann's (1965, eq 17) formulation

for the shadowing function can be used to exrress F_ in
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Figure CI-20. Shadowing of a reflecting surface.

terms of the grazing angle, ¢, and the variance of terrain
slopes, |B"(0) |, within the first Fresnel zone; i.e.,

F_ = exp{(-0.25 cotd) erfc [ (tan¥) / (V2|B" (0) |) J}. (161)
where the complementary error function, erfc [¥], is related
to the error function, erf [X], by

erfc[ X ] = 1 - erf[ X ] (162)
and values for erf [x] can be obtained from Abromowitz and
Stegun (1964, table 7.1). This formulation is based on a
stationary terrain process in which the terrain slope is a

normally distributed random variable with a zero-mean, and
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the assumption that interdiction by terrain of rays
reflected from illuminated portions of the terrain is
negligible.

Curves provided by Beckmann (1965, fig. 2) are helpful
in evaluvating (161). For example, P = 100 and
IB*(0) | =+2/5 result in F, = 0.73 when Beckmann (1965, fig.

2) is used; i.e.,

Beckmann's @ = angle of incidence = 900-)=800

Beckmann's k (v 2|B"(0)| 1t =5

and

Beckmann's S(6) = % = 0.73.

Calculation via (159) for the same parameters yields

Fm= 0.74; i.e.,

(tan )/ (/2 |B"(0)]) = 0.882

"

erf (0.88) 0.787

erfc (0.88) 1 - 0.787 = 0.213,
and (0.25 cot ¥) erfc (0.88) = 0.302

F, = exp (-0.302) = 0.74.

Because of the complexity associated with the
determination of F, and the frequent lack of sufficient
statistical information concerning the reflecting surface,

F, = 1 is frequently assumed and the surface roughness
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factor, K, (sec. CI-D.7) is taken as a sufficient factor to
allow for reflecting surface irregularities. When the
extent of the first Fresnel zone area that is visible from
both antennas can be determined from geometrical
considerations it can be taken as the A in (t44) and F
neglected (i.e., F, = 1) so that shadowing would be
considered as part of the area factor, EA (sec. CI-D.2).
More information concerning shadowing can ke obtained from

sources such as Beckmann (1965), Sancer (1969) and Smith

(1967) .
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CI-D.7 surface Roughness Factors

The surface roughness factors F& and F0 are used in

h hd
(132) and (134), respectively, to allow for roughness of the
reflecting surface in these effective reflection coefficient
formulations. Each is defined as the magnitude ratio of the
reflection coefficient for the rough surface with respect to
a smooth surface where, except for roughness, surface
characteristics that affect reflection are identical for
both surfaces. Specular components (deterministic phase) of
the reflections are used in defining Fope In defining Fond
the numerator is taken as the diffuse component of the
reflection coefficient for the rough surface case and the
denominator is the smooth surface specular component.

Relatively simple formulations for these factors can be
provided in terms of wavelength, A m, grazing angle, ¥ , and
the root-mean-square (rms) deviation of surface excursions
within the limits of the first Fresnel zone in the dominant
reflecting plane (Longley and Rice, 1968, fp. 3-23; Rice et
al., 1967, sec. 5.2.2). That is

F,..=exp (-276), (163)

chd

0.01 + 9.46 062 if &6 < 0.00325

6.158 if 0.00325 < 6 < 0.0739

0.45 + / 0.000843~(06-0.1026)2 if 0.0739 < 8 < 0.1237 (164)
0.601 - 1.0606 if 0.1237 < &6 < 0.3

0.01 + 0.875 exp (-3.88% ) otherwise

Fnd
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SURFACE ROUGHNESS FACTORS

and
) =0, sin (Y )/x (165)

where Uh and A are in the same units, i.e., meters. Figure

21 shows surface roughness factors versus § . Wavelength

can be obtained from frequency via (7) and methods for
estimating Y have been provided; e.g., (40), (48), (70),
(81) and (102). Estimates of 0, for various terrain types

h
and sea states are provided in tables 5 and 6.

\Fch = exp (-276)

™~
/

Fo from (164)

0.2 \\\
Z( \\\\\‘47 ™
T
\ \;
0 0.2 0.4 0.6 0.8 1
8 = o sin(¥)/X from (165)

CI-21. Surface roughness factors versus 6 .
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Table 5. Estimates ofch

for Terrain Types()

Terrain Type AhP) o, €€)?
meters meters
(feet) (feet)
Very smooth plains 0-5 0-1.8
(0-20) (0-6)
Smooth plains 5-20 1.8-5.4
(20~-70) (6-18)
Slightly rolling plains 20-40 5.4-8.9
(70-130) (18-29)
Rolling plains 40-80 8.9-14.0
(130-260) (29-46)
Hills 80-150 14.0-20.3
(260-490) (46-67)
Mountains 150-300 20.3-29.2
(490-980) (67-96)
Rugged mountains 300-700 29.2-41.7
(980-2300) (96-137)
Extremely rugged mountains >700 >41.7
(>2300) (>137)

(a) The values given here are based on longley and Rice

(1968) , table 1, egs. 3, 3.6a and 3.6b).

(b) Metric values were converted then rounded to the

nearest 10 ft or two significant figures.

(c) Metric values were calculated then rounded to the

nearest foot.

CIi-80




Table 6 Estimates of © for Sea States

h
Sea(®) Average Wave Hyy (B g )
State Height Range h
Code Descriptive Terms(2a) m (ft) m (ft) m (ft)
0 Calm (glassy) 0 0 0
(0) (0) (0)
1 Calm (rippled) 0 - 0.1 0.09 0.002
(0 - 0.33) (0. 3) (0.08)
2 Smooth (wavelets) 0.1-0.5 0.43 0.11
(0.33-1.6) (1. 4) (0. 35)
3 Slight 0.5-1.25 1 0.25
(1.6-4.0) (3.3) (0.82)
4 Moderate 1.25-2.5 1.9 0,46
(4 - 8) (6.1) (1.5)
5 Rough 2.5-4 3 0.76
(8-13) (10) (2.5)
6 Very Rough 4-6 4.6 1.2
(13-20) (15) (3.8)
7 High 6-9 7.9 2
(20-30) (26) (6.5)
8 Very high 9-14 12 3
(30-46) (40) (10)
9 Phenomenal >14 > 14 3.3
(>U6) (>45) (11)

(a) Based on international meteorological code (Naval
Weather Service, 1972, code 3700)

(b) Estimated significant wave heights (average of highest 1/3),
Hyg, data from Sheets and Boatwright (1970, Table 1).

(c) Estimated using a formulation provided by Moskowitz
(1964, eqg 1) with Hyb estimates.
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The ch values provided in takle 5 are based on a
relationship between the terrain parameter Ah and oL
developed by Longley and Rice (1968, eqgs. 3, 3.6a and 3.6b),
i.e.,

Ahy = h{ 1-0.8 exp (-0.02 4) ] m, {(166)
and
0.039 Ahy if ah 4 < 4

4 = m(167)
0.78 Ahy exp [-0.5(Ahy) ¥*4] otherwise
where d 1is path length in kilometers. In using (167) to
provide values for table 1, d was assumed to be large enough
that Ahy=Ah. Longley and Rice (1968, table 1) was used to
relate Ah to terrain types. Values for Ah can also be
obtained from path profile data (Longley and Rice, 1968,
annex 2). In accordance with Longley and Rice (1968, p. 3-
23) Ah and Ahy are defined as follows:

A h an asymptotic value of Ah which is

is used to characterize terrain.

A hg interdecile range of terrain heights

above and below a straight line
fitted to elevations above sea level.
In figures 22, 23 and 24 various Fsn formulations are

compared with each other and experimental data. In each

case the format was selected to provide easy comparison with

C1-82




SPECULAR ROUGHNESS FACTOR EXPRESSED IN POWER, ﬁfh

Figure CI-22,

(a»]
(@)
'j,//f{
—
L
a

]
/

N T

/

]
L~

P
=

TN

//{/ A
vz

0 0.2 0.4x 0.6x
M= ar b = 4mo sin(d)/

Comparison of Fg; formulations, Beckmann and

Spizzichino (1963, fig. 14.1) data. Formulations
are (a) exp (-1.268) from Rice et al. (1967, eq. 5.1);

{b) [sin(Acb)/Ad)]2 for uniformly distributed surface;
(c) (l-Agp/m) [sin(A¢)/A¢f for first Fresnel zone

of a uniformly distributed surface; (d) exp (—A¢f
for a normally distributed surface; (e) exp (—A¢%
from Longley and Rice (1968, eg. 3.5), also (F5p)” from
(163); and (f) a curve fit to data by Beard (1961,

fig. 2). Equations used for (b), (c) and (d) were
obtained from Beckmann and Spizzichino (1963, fig. 12.1).
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Figure CI-23. Comparison of K, formulations, Beard (1961, fig.
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SPECULAR ROUGHNESS FACTORS

1.05 m
exp[-o.lez] for
normally distributed
surface
1. v
+ ’ \l\'\ RE R .
0.95 e i*.‘ B ~ . ]
:o. R o | exp[-0.549] from (163)
0.90 — . )
0.85 .
exp[-0.5(5.7449)2]
0.80
0.75
0 0.02 0.04 0.06 0.08 0.10 0.12

Figure CI-24.

RAYLEIGH CRITERION, Ap = 4mb = 47 @, sin(¥)/2

Comparison of Foh formulations Montgomery (limited distribution
ESSA Tech. Memo. ERLTM-ITS 158, "A note on selected definitions
of effective antenna heights," Jan. 1969).



the data given in the source document. Figure 25 shows a

comparison of F& oktained using (164) with data presented

hd
by Beard (191, fig. 4) . Since (164) is largely based on a
curve fit to Beard's empirical curve the agreement shown in
the figure is as expected. From these figures it is obvious
that significant deviations from predicted values can occur.
Both roughness factors should be considered as estimated rms
values.

Values for 0, provided in table 6 were estimated using
significant wave height, H;3 m, estimates from Sheets and
Boatwright (1970, table 1) with a formulation given by
Moskowitz (1964, eg. 1); i.e.,

0, = 0.25 Hys m (168)
where Oh and Hys have the same units.

As an example, ¥, = 0.76 m (corresponding to slightly
rolling plains, table 5, or a rough sea, table 6) P = 59 and

A= 0.1847 m corresponding to 1600 MHz), when used in (165)

yield 6 = 0.353. Figure 21 gives F,p = 0.11 and

%ﬂui = 0.23, and (163) and (164) vyield th = 0.1 and
Fchd = 0.23, i.e.,

(2r) (0.353) = 2.22

Fgh = exp(-2.22) = 0.11

(~3.88) (0.353) = 1.37

exp (-1.37) = 0.254

Fohd = 0.01 + (0.875) (0.254) = 0.23
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CI-D.8 Plane Earth Reflection Coefficient
Values for the complex plane earth reflection

coefficient, R, used in (132) depend on the relative
dielectric constant, ¢ and conductivity, ¢ mho/m, along with
wavelength, X m, grazing angle, j , and polarization
(Beckmann and Spizzichino, 1963, p. 219; Kerr, 1964, p. 396;
Reed and Russell, 1964, p. 88, and Rice et al., 1967, sec.
I1I.1). For vertical polarization (electric field in the plane of
incidence) and horizontal (electric field normal to plane of

incidence) R is given by

€ sin(d)-Y
c

R = Rv exp -j(7 —cv) —E—C—S—lm (169)
and
_ . _ sin(¥) -Y
R = Rh exp=-j(7T -cn) = msin(zb)JrY (170)
respectively where
Y =fJ?C-’cosz¢ (171)

and the complex relative dielectric constant, ¢ , is defined
Cc

as
ec =€ =3 1.799 x 104 0 /£ (172)

For circular (or elliptical) polarization linear
polarization gain factors (sec. CI-D.3) and reflection

coefficients are combined, i.e.,
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R = R_ exp -3( 7 - cC ) (173a)

or
R = 0.5[ th Ry exp—j(ﬂ*qh) + FVngexp -j(ﬂ—cv) ] (173b)
where "+" is used for antennas witn the same polarization
. sense (e.g., both right-handed) and "-" is used otherwise.
Nominal values for dielectric constant, e, and
conductivity, 0 , mhos/m, are provided in table 7 along with
values for water of static dielectric constant, € v
relaxation time, T us and ionic conductivity,(ﬁ . Figures
26 through 29 show complex plane earth reflection
coefficients versus the tangent of the grazing angle, ¢ , for
| vertical polarization and figures 30 through 33 show similar
information for horizontal polarization.
For a perfect dielectric (0 =0 so that ec=¢) the
numerator of (169) will go to zero when ¥ =d&3whe£e
by = Sin-t EVITES (174)
so that R =0 for vertical polarization. This critical angle
is called the Brewster angle and a similar angle associated
with reflection from a surface that has non-zero
conductivity is called the pseudo Brewster angle (Rice et
al., 1967, sec. I1II.1), Equation (174) may be used to

estimate the pseudo Brewster angle when ¢ > 60X0. Figures
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Complex plane earth reflection coefficient,
R, exp j(ﬂ—Cv) for vertical polarization

over good ground.
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Complex plane earth reflection coefficient,
R, exp j(n—CV) for vertical polarization

over poor ground.
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26 through 29 clearly show the dip in the reflection
coefficient for vertical polarization associated with the
pseudo Brewster angle along with the abrupt change in phase
that occurs as |y goes through its critical value. This
change in phase, which does not occur for horizontal
polarization, will change the rotation sense of circularly
polarized waves that are reflected from the surface; i.e.,
when a circularly polarized wave is reflected its rotation
sense will remain unchanged only if the grazing angle is
less than the pseudo Brewster angle.

For water ¢ and 0 may be estimated from (Saxton and
Lane, 1952).

€ -¢€

s 0
€ =

+e (175)
1 +(2mit)> 0

and

o = f2aT(¢ ~€o)/2863 +0€ mho/m (176)
where € is the static dielectric constant, €¢g= 4.9 is the
dielectric constant representing the sum of electronic and
atomic polarizations, £ MHz is frequency, T ps is relaxation
time, and o, mho/m is the ionic conductivity. Values of eg,

T, and o, obtained using Saxton and Lane (1952) are provided

in table 7 for fresh water and sea water.
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Table 7. Surface Types and Nominal Constants

Surface Type € o mho/m

Poor Ground 4 0.001
Average Ground 15 0.005
Good Ground 25 0.02
Fresh Water 81 0.01
Sea Water 81 5
Concrete 5 0.01
Metal 1 10°
For Fresh Water
0°c 10°¢ 20°%¢
€s 88 5 84 -5 80 _
Tus 1.87 x 10 1.36 x 10 1.01 x 10
o; mho/m 0.01 0.01 0.01
For Sea Water
0°c 10°c 20°¢
€g 75 -5 72 -5 69 _
TLs 1.69 x 10 1.21 x 10 9.2 x 10
T, mho/m 3.0 4.1 5.4
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Figures 34 and 35 show ¢ and 0 for water versus
frequency, respectively. Reflection coefficients for water
are shown in figure 36 for vertical polarization and in
figure 37 for horizontal polarization.

Table 8 summarizes values obtained using the equations

provided in this section for a sample problem.
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Table 8. Example, Plane Earth Reflection Coefficient

Given:

Same sense isotropic circularly polarized antennas, a 10°C sea
water reflecting surface, f = 10 GHz and § = 11.31° (tan ¢ = 0.2)
define the conditions for these sample calculations of the plane
earth reflection coefficient are provided.

Determined: _5
From table 7: ¢_= 172, T =1.21 X 10 ~ us, and o, =4.1 mho/m.
From text near table 7: e, = 4.9, 1+ (21-rfT)2 = 1.578.

From (175): ¢ = [(72 -4.9)/1.5787] + 4.9 = 47.42,
sz(e e )= 1.21X107° X 108(47.42 -4.9) = 5. 145X 107
From (176): o = (5. 145><1o4/2863) +4.1=22.07 mho/m,
1.799><1o4 o/f = 1.799 X 104(22.07)/104 = 39,70
From (172): ¢_ =247.42 - j39.70,

e, - cos Yy =47.42 - j39.70 - 0.962 = 46.46 - j 39.70

=61.11 /-40.51°

From (171): Y =./61.11 /-40.51° = 7.817 /-20.26°

=7.333 - j2.707
¢ siny = (47.42 - j 39.70) (0.1961) = 9.299 - j 7.785
ecsin(w) -Y

9.299 -j7.785-7.333+j2.707=1.966 -j5.078

5.445 / -68.84°

9.299-j7.785+7.333 -j2.707=16.63 -j10.49

19.66 / -32.24°

[ecsin(q;)-Y]/[ecsin(¢)+Y]=(5.445/19.66)L—68.84° +32.24°
= 0.2770 / -36.6°

0.2770 / -36.6°

0.2770 exp -j(m - 2.503)

0.2224 - j 0.1651

eCSin(\h) +Y

From (169): Rvexp - - Cv)
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Table 8. (continued)

sin(¢) - Y = 0.1961 - 7.333 +j 2.707 = ~(7.137 -j 2.707)
= -7.633 /-20.77°
sin(§) + Y = 0.1961+7.333 -j 2.707 = 7.529 -j 2.707

8.001 /-19.78°
[sin(y) - Y]/[sin(y)+ Y] = (-7.633/8.001) / -20.77° +19.78°
= -0.9540 / -0.99°

From (170): R, exp -jm - ch) = -0.9540 / -0.99°

0.9540 exp -j{m - 0.01728)
-0.9539 +j 0.01648

Sl - + il -

thRh exp -j(m ch) FngV exp -j(m Cv)
= (1)(-0.9539 + j 0.01648) + (1)(0.2224 - j 0.1651)
= -0.7315 - j 0.1486

-0.7464 /11.48°

1l

From (173): R

(0.5)(-0.7464 /11.48°)
-0.3732 /11.48°

0.3732 exp -j(m - 0.2004)

Angle to exp -j{m - c) conversions are made as follows:
Vertical polarization:
_/_-36.6° => -136.6/180 rad = -(1m - Cv) =¢c -
c = m-36.6/180 + 1) = 2.503 rad
Horizontal polarization:
- /-0.99°= >m(1 - 0.99/180) = c -
c,, = 2m -(0.99/180)m
Drop the 2m.
¢, = ~(0.99/180)r = -0.01728 rad
Circular polarization:
-/ 11.48°= > n(1 + 11.48/180) =c_ -
c =2m+ (11.48/180)m
Drop 2.
e = 0.2004 rad
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CII COMPUTER PROGRAM "LOBING OVER SPHERICAL EARTH"
CII-A. INTRODUCTION

A propagation model for two-path multipath (direct and
reflected) over a spherical earth based on the formulations
previously described (secs. CI-B.1, CI-B.2, and CI-C) has been
incorporated into a computer program. This program is
written in FORTRAN for a digital computer (CDC 3800) at the
Department of Commerce Laboratories, Boulder, Colorado.
Since it utilizes the cathode ray tube microfilm plotting
capability at the Boulder facility, substantial modification
would have to be made for operation at any other facility.
Average running time is a few seconds per set of input
parameters. Information on input parameter requirements and
output produced is provided in sections CII-P and CII-C,
respectively.

The computer program, "LOBING," is similar to the rower
density program described by Gierhart and Johnson (1973).
Their program provides statistical information on
propagation for a wider variety of propagation paths in that
it is not limited to line-of-sight propagation over a

spherical earth. However, program LOBING provides more
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information relevant to the lobing structure associated with

two-path multipath over a spherical earth.

CII-B INPUT PARAMETERS

The computer program may be operated with nine or more
separate model parameters specified. Most parameters not
specifically specified as input will be set to initial
conditions incorporated into the program or estimated from
parameters that are specified. However, three primary
parameters must be specified by the user. These are
facility antenna height, frequency, and aircraft altitude.
Parameters that may be specified as input are summarized in
table 1 along with the acceptable value range (or options
available), and the value (or option) selected in lieu of a
specified parameter. For convenience, parameters are listed
in table 1 in the same order as the parameter sheet produced
by the computer (fig. 3). Graph format parameters (lower
portion of table 1) are not reproduced on the parameter
sheet. Sample graphs are provided in section CII-C.

Blank spaces are provided in table 1 so that copies of

it can be used to specify input requirements for program
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Table 1. Parameter Specification

(a)

€-IID

Parameter Range Value o
Primary Parameters,
Specification Required
Aircraft altitude above mean Elevation facility antenna
sea level {msl) and 300,000 ft-msl ft-msl
Facility antenna height above (msl) 1.5 ft and 2,000 ft-msl ft-msl
Frequency " 100 to 20,000 MHz MHz
Secondary Parameters, Assumed, Computed, Estimated, or Specified )
Absorption (at surface): Oxygen options Calculated* or specified dB/km
Water vapor options Calculated* or specified dB/km
Effective altitude correction factor Via ray tracing* or specified ft
options
Effective reflection surface elevation At msl* or specified
above msl <facility antenna elevation ft-msl
Facility antenna type options JTAC directive isotropic*, or
specified
: ; (b)
Main beam gain to 60 dB dB
Polarization options Horizontal* or vertical
Refractivity: (b) (b)
Effective earth's radius 4240 to 6070 n mi n mi
or minimum monthly mean (msl)(b) 250 to 400 N-units (301 N-units)* N-units
Spectral parameters:
Bandwidth as a fraction of carrier 0 to 0.2
frequency
Surface type options Poor, average* or good ground, fresh
or sea water, concrete, metal
Sea state(b) 0-Glassy*, l-rippled, 2-smooth, 3-slight,
' 4-moderate, 5-rough, 6~very rough,
7-high, 8-~very high, 9-phenomenal
or rms wave height(b) 0 to 50 m m
Temperature(b) 0, 10*, or 20°¢ C
0* or greater ft

Terrain Parameter, Ah
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Graph options (check graphs desired); Lobing ; Reflection coefficient ;

Path length difference ; Time delay ; Normalized distance lobing
frequency ; Normalized height lobing frequency ; Reflection point ;
Elevation angle ; Elevation angle difference ; Spectral point

Range of Parameters for Graph Formats

Ordinate Abscissa
Lower Upper Increment Units Left Side Right Side Increment Units
Lobing dB n mi
Reflection coefficient n mi
Path length difference m n mi
Time delay nsec’ n mi
Normalized lobing frequency
with distance Hz/THz-Kt n mi
Normalized lobing frequency
with height Hz/THz-ft/min n mi
Reflection point n mi n mi
Elevation angle deg n mi
Elevation angle difference deg n mi
Spectral plot lobe = to lobe _ , counting from the horizon
(a) Copies of this table may be used to provide data for computer runs by utilizing the blanks provided in the

value column. The units of measure following each blank will be assumed for the values placed in the
blanks if other units are not provided.

(b) Specification of this parameter is conditional, see text.

(*) Values or options that would be assumed when specific designations are not made are flagged by asterisks.



runs. The units of measure following each blank are the
units that will be assumed for values placed in the blanks
if other units are not provided. Where values (or options)
are not specified, the values (or options) marked by
asterisks will be used. Parameters listed in the table are
discussed below.

Aircraft Altitude

As shown in figure 1, this altitude is measured above
mean sea level. The propagation model is not valid for

antennas located below the surface, or if the aircraft

Aircraft altitude above msl

Facility antenna height above msl

Effective reflection surface elevation above msl

Mean sea level (msl)

Figure CII-1. Antenna heights and surface elevations.
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altitude is (a) less than the facility antenna elevation
above msl; (b) less than 1.5 ft where surface wave
contributions that are not included in the model could
become important; (c) less than the effective reflecting
surface elevation plus 500 ft, where the model may fail to
give proper consideration to the aircraft radio horizon; or
(d) greater than 300,000 ft, where ionospheric effects not
included in the model may become important. Use of such
aircraft heights may give incorrect results.

Facility Antenna Height

As shown in figure 1, this height is measured above
msl. The propagation model is not valid for antennas below
the effective reflection surface or if the height is (a)
less than 1.5 ft, for which surface wave contributions not
included in the model could become important, or (b) greater
than 9,000 ft, for which the model may include too much ray
bending.

Frequency

Caution should be used if the frequency is (a) less
than 100 MHz, when neglected ionospheric effects may become
important; (b) greater than 5 GHz, when neglected

attenuation and/or scattering from hydrometeors (rain, etc.)
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may become important; and (c) greater than 17 GHz, when the
estimates made for atmospheric absorption may be inaccurate.
For frequencies less than 200 MHz or greater than 100 GHz,
the program should be used with extreme caution.
Absorption (at surface) Oxygen and Water Vapor Options

The program will calculate surface oxygen and water
vapor absorption rates if values are not specified. These
calculations involve interpolation between values taken from
Rice et al. (1967, fig. 3.1). Metric units (dB/km) are used
for these parameters, since this allows values printed on
the parameter sheet to be checked directly against sources
of such information (Rice et al., 1967, fig. 3.1; Bean and
Dutton (1966), sec. 7.3; Kerr, 1964, ch. 8).

Effective Altitude Correction Factor Options

If not specified, this factor is calculated by ray
tracing through a continuous exponential atmosphere (sec.
CVI-G; Bean and Dutton, 1966). This factor is used in
correcting for the excessive bending associated with the
effective earth radius method of ray bending compensation
when high (>9,000 ft) antennas are used (fig. CIII-2; Rice

et al., 1967) . However, values provided by Rice et al.,
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(1967, fig. 6.7) are based on ray tracing through a three
part atmosphere (Bean and Dutton, 1966, sec. 3.7).

Effective Reflection Surface Elevation Above msl

As shown in figure 1, this elevation is measured above
msl. If not specified,it will be taken as msl. This factor
is used when the terrain from which reflection is expected
is not at msl.

Facility Antenna Type Options

These options involve the antenna gain pattern of the
facility antenna in the vertical plane. Patterns are
currently built into the program for isotropic and "JTAC
directive" [JTAC, 1970, p. 51; Gierhart and Johnson, 1973,
eq (67) ]« Program modifications can easily be made to
accommodate other patterns that are specified in terms of
gain versus elevation angle.

Antenna pattern data are used to provide information on
gain relative to the main beam only. The extent to which
the facility's main beam antenna gain exceeds that of an
isotropic antenna is included as input data.

Main Beam Gain

The facility antenna's main beam gain is specified in

decibels greater than isotropic. Since the isotropic
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pattern option selection (above) does not determine gain it
is possible to specify a uniform vertical pattern
("isotropic") with gain.

Polarization Options

The option selected for polarization (horizontal) when
a specific option is not selected will frequently result in
poorer propagation conditions for typical line-of-sight
air/ground links.

Refractivity

Values for the minimum monthly mean surface
refractivity referred to mean sea level, Ny, may be obtained
from figure 2. Specification of Ny outside the 250 to 400
N-unit range will result in Ng being set to 301. The
surface refractivity, NS, is calculated from Ng [Rice et
al., 1967, eg (4.3) ] and an effective earth radius
calculated [Rice et al., 1967, eq (4.4) ]J. An Ns of 301 N-
units corresponds to an effective earth radius factor of u4/3
(Rice et al., 1967, fig. 4.2). An option to input the
effective earth radius directly is available; the program

will then calculate NS and Ng.
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Spectral Parameters

Defining lobe 1 as the first maximum on the lobing
graph (fig. 5) and numbering consecutively toward the
origin, any five consecutive lobes can be selected, up to
lobe 10, to obtain plots of the effects of the fading on a
signal with a flat spectrum of bandwidth B, specified as a
fraction of the carrier frequency. Since, for the lobing
graph, four points are calculated to determine each lobe,
the spectra for these same four points are calculated for
the corresponding spectra.

surface Type Options

These options fix the conductivity and dielectric
constants associated with the effective reflecting surface.
Values associated with each option are given in table 1.
Sea State

If fresh or sea water is chosen, an allowance may be
made for water by specifying sea state or ch. Table CI-6
shows the relationship of sea state to oy

Values for och provided in table CI-6 were estimated
using significant wave height, H,s m, estimates from Sheets
and Boatwright (1970, table 1) with a formulation given Ly
Maskowitz [ 1964, eq (1) ]. However, Gh in meters may be

specified directly when it is desired.
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Temperature

The dielectric constants and the conductivity of water
vary with salinity and temperature (sec. CI-T.8). The
program allows specification of either fresh water or
average sea water (3.6% NaCl) along with a choice of three
temperatures; 00, 100, or 200cC.

Terrain Parameter ph

This parameter is used to characterize irregdlar
terrain. Values for it may be calculated from path profile
data (Longley and Rice, 1968, annex 2), or estimated using
table CI-5. This parameter is used only to obtain estimates
of the surface roughness factor (sec. CI-D.7).

Graph Options

Any combination of the graphs described in section CII-C
may be produced in a particular program run.

Graph Grid Scaling

Limits and scaling increments for the graphs of section
CII-C may be specified. For the spectral graph one must
specify the beginning and ending lobe, counting from the
radio horizon. Also for this graph one must specify the
bandwidth as a function of carrier frequency (sec. CII-

c.10).
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CII-C Output Generated

The computer produces a listing of parameters
associated with a particular run and microfilm plots of
computed parameter values versus the facility-to-aircraft
great circle distance. These outputs are provided for each
parameter set input to the computer and are tied to each
other by a run code which is the date and time at which
calculations for a particular set started. Cnly those
graphs desired are plotted and the program will bypass
portions of the output that aré not desired. This is
controlled by input codes.

A sample parameter sheet is shown in figure 3.

Graphs produced during the run are summarized on a
graph list (fig. 4) that is produced at the time of the run.
Items in this list may be used as figure captions. Although
the run made to produce figure 4 includes all current
graphic options, all graphs (as mentioned above) need not be
produced on each run. Samples of the various graphs will be
given along with a brief discussion of each in the sequence
implied on figure 4. Some additional examples are provided

in section CII-B.11.
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CII-C.1 Lobing Graph

Figure 5 shows a sample of the "LOBING" graph.
Transmission loss is plotted against path distance for (a)
lobing (so0lid curve) caused by interference ketween direct
and reflected rays for the first 10 lobes inside the radio
horizon, (b) limiting values associated with constructive
(low loss, upper curve with small dots) and destructive
(high loss, lower curve with small dots) interference, and
(c) free space (curve with large dots).

Antenna gains are included in transmission loss since
it is the difference (dB) between power radiated (dBW), and
the power available (dBW) at the terminals of an ideal
receiving antenna (no internal losses), but in the sample
run presented here, transmission loss is the same as basic
transmission loss because isotropic antennas were assumed.
Relative antenna gains, surface parameters (dielectric
constant, conductivity,and roughness), frequency and grazing
angle (y of fig. 10, sec. CI-D) are included in the
effective reflection coefficient formulation used in
interference calculations (CI«C). The reduction in spacing
between the limiting curves at about 10 n mi and at the far

distances is caused by a small reflection coefficient (CII-C.2).
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There is a test built into the program that limits

the maximum transmission loss to its free space value plus

40 4B.

CII-C.2 Reflection Coefficient Graph

Figure 6 shows a sample of the "REFLECTION COEFFICIENT"
graph. Effective reflection coefficient is plotted against
path distance.

Relative antenna gains, surface parameters (dielectric
constant, conductivity and roughness), frequency and grazing
angle (¢ of fig. 10, sec. CI-D) are included in the
calculation of effective reflection coefficient (sec. CI-D).
The drop in reflection coefficient at the near distances is
associated with the path length reduction factor (CI-D.5).
The drop in reflection coefficient at the far distances is

caused by the divergence factor (CI-D.1).

CII-C.3 Path lLength Difference Graph
Figure 7 shows a sample of the "PATH LENGTH DIFFERENCE"
graph. The extent by which the length of the reflected ray
exceeds that of the direct ray (Ar of sec. CI-C) is plotted

against path distance.
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CII-C.4 Time Delay Graph
Figure 8 shows a sample of the "TIME DELAY" graph. The
time delay of transmission via the surface reflection path
relative to the direct path is plotted against gath

distance.

CII-C.5 ©Normalized Distance Lobing Frequency Graph

Figure 9 shows a sample of the "NORMALIZED DISTANCE
LCBING" graph. Lobing frequency, fd Hz, for the parameters
of figure 1 and an aircraft traveling directly toward (or
away from) the facility may be determined from values of
normalized distance lobing frequency, NDLF Hz/THz-kt, read
from this graph, radio frequency, f THz (1 THz=106 MHz) and
the magnitude of its velocity |Vd| kts, i.e.,

£, = NCLF [Hz/THz-kts] £ [THz] |V, | [kts] Hz (1)
so that fd = 4.0 x 10-2 Hz when NDLF = 0.10 Hz/THz-kt (at a
distance of 50 nmiy, £ = 1.6 x 10-3 THz, and |Vd| = 250 kts
which may be compared with fd= 4.2 x 10-2 Hz obtained using

more approximate methods in table 3 (sec. CI-D).
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CII-C.6 Normalized Height Lobing Frequency Graph

Figure 10 “"NORMALIZED HEIGHT LOBING FRECUENCY" shows a
sample of the graph. Lobing frequency, fh Hz, for the
parameters of figure 3 and an aircraft in vertical ascent
(or descent may be determined from values of normalized
lobing frequency, DHLF Hz-min/THz-ft, read from this graph,
radio frequency, f THz, and the magnitude of the ascent rate
|Vh| Hz-min/THz~-ft, i.e.;

f = NHLF [Hz-min/THz-ft] f[THz]]VhI [ft/min] Hz (2)
so that fh = 1.8 x 102 when NHLF = 1.1 x 10-2 Hz-min/THz-ft
(at a distance of 50 nmi), £ = 1.6 x 10-3 THz, and thl =

103 ft/min which may be compared with fh = 1.8 x 10-2 Hz

oktained using more approximate methods in table 3.

CII-C.7 Reflection Point Graph
Figure 11 shows a sample of the "REFLECTION POINTY
graph. Distance (dy of fig. 9, sec. CI) from facility-to-

reflection point is plotted against path distance.

CII-C.8 Elevation Angle Graph
Figure 12 shows a sample of the "ELEVATION ANGLE"
graph. The elevation angle (eh of fig. 10, sec. CI) of the
direct ray at the facility in degrees above horizontal is

plotted against path distance.
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CII-C.9 Elevation Angle Difference Graph
Figure 13 shows a sample of the "ELEVATION ANGLE
DIFFERENCE" graph. The amount by which the elevation angle
at the facility of the direct ray exceeds that of the
reflected ray (elevation angle difference) is plotted

against path distance.

CII-C.10 Spectral Graph

Figure 14 shows one spectrum corresponding to each
point calculated for the lobing graph, figure 5, between the
lobes chosen, in this figure lobes 1-4 as labeled in figure
5. Each spectrum is of bandwidth 2Bf , where B is a
fraction of the carrier frequency. The scale along the
diagonal axis is proportional to the distance shown for that
point on the lobing graph, and maximum range is 43 dB, the

height of lobe #4 above the origin.

CII-C.11 BAadditional Examples
Several additional graphs are included in this section
to illustrate the effect of the divergence factor and the
pseudo Brewster angle.
The divergence factor (sec. CI-D.1) is used to allow

for the divergence of energy reflected from a curved surface
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in the effective reflection coefficient formulation [ sec.

CI-D, eq (132) ]. It decreases the effective reflection
coefficient so that lobing is less pronounced than it would

be otherwise. This is illustrated by a comrarison of figure

15 with figure 6, and of figure 16 with figure 5. These graphs
were all calculated for identical parameters (fig. 3), Lut |
divergence was neglected (taken as unity) in the

calculations for figures 15 and 16. Divergence has its most
pronounced effect at low grazing angles (near the radio
horizon) and becomes more important as antenna heights are
increased. However, it does not depend on frequency.

The plane earth reflection coefficient for vertical
polarization goes through a minimum and encounters a radical
phase shift as the grazing angle passes through a critical
value known as the pseudo Brewster angle [CI-D.8, eq (174),
figs. 26 through 29]. Figure 17 shows the dip in reflection
coefficient for calculations made for vertical polarization
and a facility antenna height of 10 ft where the other
parameters are as given in figure 3. Figure 18 shows the
corresponding lobing graph where the effect of the
reflection coefficient magnitude and phase change is clearly

visible.
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