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PREFACE

This Report is the fourth (i.e., Part IV) in a series of ongoing studies
[Middleton, 1974, 1976, 1978] of the general electromagnetic (EM) interference
environment arising from man-made and natural EM noise sources, and is also
part of the continuing analytical and experimental effort whose general aims
are [Spaulding and Middleton, 1975, 1979]:

(1). to provide quantitative, statistical descriptions of man-made
and natural electromagnetic interference (as in this series);

(2). to indicate and to guide experiment, not only to obtain per-
tinent data for urban and other EM environments, but also to
generate standard procedures and techniques for assessing such
environments;

(3). to determine and predict system performance in these general
electromagnetic milieux, and to obtain and evaluate optimal
system structures therein, for

(a). the general purposes of spectrum management;

(b). the establishment of appropriate data bases thereto;
and

(c). the analysis and evaluation of large-scale telecommunica-
tion systems.

With the aid of (1) and (2) one can predict the interference characteri-
stics of selected regions of tne electromagnetic spectrum, and with the re-
sults of (3), rational criteria of performance can be developed to predict
the successful or unsuccessful operation of telecommunication 1inks and
systems in various classes of interference. Thus, the combination of the
results of (1)-(3) provide specific, quantitative procedures for spectral
management, and a reliable technical base for the choice and implementation
of policy decisions thereto.

The man-made EM environment, and most natural EM noise sources as well,
are basically "impulsive", in the sense that the emitted waveforms have a
highly structured character, with significant probabilities of Targe
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interference levels. This is noticeably different from the usual normal
(gaussian) noise processes inherent in transmitting and receiving elements.
This highly structured character of the interference can drastically de-
grade performance of conventional systems, which are optimized, i.e.,
designed to operate most effectively, against the customarily assumed
normal background noise processes. The present Report is devoted to the
problems of (1), (2) above, namely, to provide adequate statistical physical
models, verified by experiment, of these general "impulsive", highly non-
gaussian interference processes, which constitute a principal corpus of the
interference environment, and which are required in the successful pursuit
of (3), as well. The principal new results here are:

(i). Analytical and empirical methods for determining the (first-order)
parameters of both the approximate and exact Class A and B noise
models;*

(i1). Procedures for measuring the accuracy of the sample estimates of
these model parameters.

Finally, we emphasize, again,that it is the quantitative interplay
between the experimentally established,** analytical model-building for the
electromagnetic environment, and the evaluation of system performance
therein, which provides essential tools for prediction and performance, for
the development of adequate, appropriate data bases, procedures for effec-
tive standardizations, and spectrum assessment, required for the effective
management of the spectral-use environment.

* Class A and Class B noise are distinguished, qualitatively, by having
input bandwidths which are respectively narrower and broader than that
of the (linear) front-end stages of the typical (narrow-band) receiver
in use. More precise definitions are developed in the text following.

**  Excellent experimental corroboration has been achieved, on the basis of
envelope data for both the Class A and B interference processes [cf.
Middleton, 1976, Sec. 2.4]. An equivalent corroboration for the cor-
responding amplitude data is accordingly inferred.
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STATISTICAL-PHYSICAL MODELS OF MAN-MADE AND
NATURAL RADIO NOISE

Part IV: Determination of the First-Order Parameters
of Class A and B Interference*

by

David Middleton**

ABSTRACT

Methods of determining the first-order parameters of both the approxi-
mate and exact Class A and B noise models are derived, for both the ideal
case of infinite sample data and the practical cases of finite data samples.
It is shown that all (first-order) parameters of these models can, in prin-
ciple, be obtained. exactly or approximately, from the ideal or practical
measurements. [A11 first-order parameters of Class A but only the (first-
order) even moments of the Class B models are exactly obtainable in the
ideal case.] Procedures for establishing meaningful measures of the ac-
curacy of the parameter estimates in the practical cases are identified:
suitably adjusted, non parametric, small-sample tests of '"goodness-of-fit"
(such as Kolmogorov-Smirnov tests) provide the principal techniques for
establishing accuracy, at an appropriately selected significance level (ao).
The roles of robustness and stability of the parameters and their estima-
tors are also discussed.

*  This work is based on material prepared for the National Telecommunications
and Information Administration (NTIA), U.S. Department of Commerce.

**. The author is a Contractor to the Institute of Telecommunication Sciences,
NTIA, U.S. Department of Commerce, Boulder, Colorado; (212-831-8565).



STATISTICAL-PHYSICAL MODELS OF MAN-MADE AND
NATURAL RADIO NOISE

Part IV: Determination._of the First-Order Parameters
of Class A and B Interference

Section 1. Introduction:

In various recent [Middleton,[1]-[3]; 1977,1976,1974] and ongoing studies
[Middleton,[4],1978,[5],1978; Spaulding and Middleton, 1977] statistical-physical
models of man-made and natural electromagnetic (EM) interference have been
developed which are both analytically tractable and in excellent agreement
with experiment for a broad range of practical examples. The specific sta-

tistics obtained so far are first-order probability distributions (PD's) and
densities (pdf's), associated moments, and the pertinent parameters needed

to specify the approximating forms of these PD's and pdf's. The principal
interference models are the so-called Class A and Class B types [Middleton,[1],
1977] respectively distinguished by input spectral bandwidths (AfN) smaller
than or larger than the bandwidth (AfARI)
front-end stages. The approximating Class A noise models are described by a
single first-order characteristic function (c.f.)with three parameters, whereas

of a typical receiver's (linear)

the Class B types require two, suitably connected, c.f.'s (or corresponding
pdf's or PD's) and six parameters. [We stress that these parameters are not
at all ad hoc, but are derived from the underlying physical model, and are
themselves experimental observables, as noted earlier [Middleton, 1977, 1976],
and as discussed further below. ]

Basic problems in applying Class A and B models to experimental obser-
vation are determining parameter values, and additionally in Class B cases,
effecting a suitable " joining" of the approximating pdf's (or PD's).
Accordingly, the purpose of this Report is threefold: (i), to indicate an
improved method (vis-a-vis Sec. 3.2.1 of [Middleton,[1], 1977]) of achieving
the "joining" of the approximating pdf's (or PD's) for Ciass B models; (ii),
to outline effective formal procedures for determining not only the model
parameters for the (first-order) approximate forms, but all the parameters
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associated with the corresponding exact first-order characteristic functions
(pdf's, etc.); and (iii1), to indicate in preliminary fashion useful and
necessary procedures for estimating these parameter values for the Timited
data samples available in practice. 1In this purely analytic report our
interest is to initiate a technical basis for subsequent practical applica-
tions to both experimental model studies and the measurement of EM interference
environments generally. In addition, of course, these models play a critical
role in determining the performance of optimum and suboptimum receiving sys-
tems in such realistic environments [Spaulding and Middleton, 1975,1977,1979].
Finally, this study is organized as follows: Section 2 describes the
new, exact "joining" process generally and in some analytic detail for Class
B noise; Sections 3 and 4 present formal determinations of Class A and B
model parameters, respectively; while Section 5 is devoted to identifying
procedures for determining the accuracy of the parameter estimates when
finite samples are used. Section 5 also surveys some of the empirical
statistical considerations imposed by the finite data sample sizes available
and the possibility of instabilities in the underlying mechanisms generating
the data themselves. [Only the pertinent envelope statistics are consi-
dered here (for the most part), since it is envelope data which are con-
veniently obtained, and since the parameters of the envelope and corres-
ponding instantaneous amplitude distributions are necessarily the same. ]
The paper concludes with a short summary of results and some important next
steps in extending theory and applications.[Section 6].

Section 2. Remarks on the Joining Procedure for Class B Noise Models:
Because the exact characteristic function (c.f.) for Class B inter-

ference [cf. (2.38), [Middleton [1], 1977]; (2.87), [Middleton, 1976]] must

be approximated, with two distinct c.f.'s, Fy_,F;_; [cf. Sec. 2.6.1, [Mid-

dleton [1], 1977]], it is essential that the resulting two pdf's, Wi_,11°
be suitably connected or joined, at some appropriate (normalized') envelope

1. It is convenient analytically to use the normalized forms of the envelope
E: € = Ea(p), Eag, where ap, ag are given respectively in (3.2b), (4.1a).
Thus, a]so,éb =Eqapn,B €g=Egag, etc., in the following; cf. Section III,
[Middleton, 1977].



value, iB’ as shown in Fig. 2.1. This value, in turn, is determined by the
conditions placed upon these pdf's at EB’ as we show in the following:

- The conditions on W]-I,II at £ = EB [and correspondingly upon the PD's,
P]-I,II]’ which we choose are:*

(i). No "mass-points" or delta functions in w;_; pp at €= &B;

viz., Py_; = Py_;p = Py are continuous at £ =&
(2.1) (ii).  The pdf's are continuous at €p3 viz., Wy_p = Wy_qp = Wqps OF
dP]_I/dt'B = dP]-II/dEB (=dP]/dEé):the derivatives of
the PD's are continuous at EB;
(iii). The pdf's are "smooth" at &£,, viz. dw]-1/d&, = dw /dé€
3 . > ¥ 4482 o e 2B ~21-II B
(-dw]/dtg, ord P]_I/déB =d P1_II/d6B (=d P1/dtB): the ”
second derivatives of the PD)s are likewise continuous at té.

In fact, 6B is the "turning point" or point of inflexion (d2P1/df§ = 0)
of the exact PD, P1, and is always estimated from the empirical PD, or excee-
dance probability P1-expt'1.’ cf. Fig. 3.5 (II), [Middleton, 1976, 1977], and
as shown in Fig. 2.2 here. Condition (i), (2.1), insures that the approximating
PD is P]-I for €5ﬁB and P]-II for EzﬁB. Conditions (ii), (iii) insure the mutual
continuity and smoothness of the associated pdf's at the joining point EB' Contin-
uity and smoothness of the approximating pdf's, Wio1,11° elsewhere, is insured by
their respective characteristic functions [c.f. Secs. 3, 4, below. [Conditions
(i)-(iii) alse provide six analytic relations* which may be used in deter-
mining the six global (or generic) parameters of the approximating PD's (and
pdf's and c.f.'s)scf. Sec. 4 ff.]

The stated consequences of Condition (i) are easily demonstrated: let

us consider some threshold (0 < €01 §_£B) and calculate P, using the approxi-
mate pdf's. From Fig. 2.1 it is at once evident that

" -
P](t>é'o1) = f w1(s)Idf:“ +[ w](t)ud&’ , (2.2)
o1 tB

* See,(howgger, Eq. (4.15), and the discussion Teading to (4.12)-(4.15); also
Eq. (4.18).
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Figure 2.1 Schema of Condition(s) (i)-(iii), Eq. (2.1), for joining the approximating pdf's Wi_p.17° @c-

cording to Eqs. (2.4), (2.5), for the Class B noise model.
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for which the right member is equivalently written
&E [e9) j‘ o
[ w]_Id‘L+ [ w]_Idt+ . (Wl-II'Wl-I)dE” (2.2a)
o1 B B
or
PL(€26q) = PyE26;)H Py E2E) 1 -Py (E2E) 1T, (2.3)

But, from Condition (i), (2.1), it follows at once that

P-l (EZEO] ) = P'I (E,?_E ol )I

» 0<€5 <& (2.4a)
Similarly, when 502 (Z_EB), we have directly
Pr(€260p) = Pr(E2E0p)1y ‘
» €g 2 &g - (2.5)

W-l(g) = W-l (E)II

cf. Figs. (2.1). (2.2), Equations (2.4), (2.5) exhibit the desired result,
employed in the previous analyses, cf. [Middleton, 1976, 1977, Refs. [1], [2],
[4]], that when the threshg]d £ lies below the "turning point”,éB we must use
the type I approximatiog (F1-I > W]-I’P1-I)’ and when & falls above &g, the
type II approximation (F1-II > W]-II’P1-II)'

In order to proceed further with the determination of (first-order) Class
B model parameters, it is necessary first to consider the corresponding problems
for Class A models, which are of concern here in their own right, and which

provide structures and procedures needed in the Class B cases.



Section 3. Formal Determination of Class A Model Parameters:

We begin by citing the exact characteristic functions (c.f.'s), deter-
mined earlier ([Middleton, 1974,1976,1977-Refs. [1]-[3]]) and the (exact) ex-
pression for the even-order moments (of the envelope). From this we proceed
to the formal determination of the three (first-order) parameters of the appro-
ximate analytical model, and all the (first-order) parameters of the exact
model. These results, in turn, may be directly applied to the actual estimatio
of the parameters from limited experimental data, as initiated in Section 5

following.
The exact first-order c.f. for Class A interference, with an independent

gaussian component, may be expressed in two principal forms:

z (<o
5 g ~ LT & A
Eq. (2.50), F](1aA)A+G = exp{-Ap-ocapA /2+AA<]. Jo(aAABoA)d€>% 2,0
[Middleton, 1976] 0 (3 10)“” -
y . la
or
f 2k k
i A w (@A) (-1)
i ; ) _ ) ral B A
(I1): ; F1(1a>\)A+G exp{ QZA(]+FA)aAA / 2+ ) K 5 Do}
! k=2 2(k!) R
:
H
{

(3.1b)
obtained on expanding Jo in (3.1a), where specifically [(2.75d), [Middleton,
197611,

a2k : .
QZk,A = AA<BOA’//2k’ k z_ 5 2k {/. Zk(z el,X)dZ

and

-1 - 2
5 FA = UG/QZA s (3.2b)

ap = {ZQZA(]+FA)}
where cé, as before, is the intensity of the gaussian component, and 2n is
the mean intensity of the nongaussian or "impulsive" component, of the Class

A noise model; AA is the Impulsive Index, cf. (2.16), (2.18), et seq. [1],
which is a key measure of the non-normal character of the interference
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[Middleton, 1977, 1976]. The second, equivalent form of the exact c.f., (3.1a),
from which the required approximate form (3.6 ) below is obtained, follows from
{(2.76) in (2.69), (2.59), in (2.50), [Middleton, 1976]}, and is

7.2
A . 2 =a >\ Q /2A
418 ] F](1a>\)A+Gl = exp{—AA-oéaﬁx /2+AAe A
@ (@ /A (-1
L1+ A (@)D - (3.3)
g=2  2°(a!) |
with
Z0
2 _ 112 . o2 \
Cpy = 21(-1) (fo JF 2,1,[AABOA/2]/92A)dz/Z y (3.3a)
O’VV 9

cf. (2.75), (2.75a-d), [Middleton, 1976].

The exact forms of the even moments of the (normalized) envelope are
obtained from (3.1b) in
2k

k d 2
-] === E ( , (3.4)
i) d)\2k 1 tan) A=0

2,2k
2ky _ (K1)42
lep ) = oK)

cf. (5.10a), [Middleton, 1976], and Sections 5.2a, [Middleton, 1976] generally.,
The results are specifically

=1 s €hH=1, )
Q
/EX} = _2__fﬂl__7?.+ 2, (3.5)
Qon (14T 5]
2nU1*Tp )
2 %0
(8= 3B 5 Ar 6, ete
Coagp(1R)T a1ty
/



with tA = EaA.

3.1 Exact Parameter Determination (Class A):

We start by indicating a procedure for determining the three basic first-
order parameters (Q 2A’AA’F A) of both the approximate and exact Class A models.
We then go on to show how all the parameters of the exact (first-order) model
can be found in principle. Hére, as in Sec. 4, we for the time-being assume that
we are dealing, both "experimentally" and analytically, with theinfinite-population
(or "ideal-experimental") and Timiting theoretical distributions and their
parameters. Later, in Section 5 below, we shall briefly consider how to treat
the practical cases of finite data samples and estimates of the theoretical
or infinite population parameters, PD's and pdf's.

The desired approximate Class A model is obtained from the exact c.f.,
(3.3), by omitting the terms 2£>2. The result is [cf. (3.2), Middleton, 1977],
(3.5), [Middleton, 1976] the expanded version2

&2 .2
N N
e . A A mA
Filiatgg =e = 1 qre

;200 = it VIG VRN

The three (global)-parameters appearing in this approximation are (QZA,AA,PA),
cf. (3.2). The associated PD is from (3.3), [Middleton, 1977]:

-A

- Am 02/252
'geAz 0

m,e M e =Ea, . (3.7)

(The associated pdf is given by Eq. (2.3), [Middleton, 1977], Eq. (4.2),
[Middleton, 1976]. The PD, (3.7), and pdf, here are a proper PD and pdf,
cf. footnote 8.]

To determine the three parameters we must "fit" in some sense (3.7) to
the (postulated) given "ideal-experimental" data for Pi_p- An apparent diffi-
culty, however, is that P,_,, (3.7), is an approximate form for all (£O>O,<m),

2. The a2 in Egs. (2.1), (3.2), [Middleton, 1977] should be omitted.
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while the data are infinite-population, or "exact" data. This difficulty
can be overcome by noting that for small (&0,&) the form of the PD (and pdf)
is governed principally by the behaviour of the c.f. as A becomes large,
which means that for the nongaussian component process (A) the exponential
term in the exponent of (3.3) is controlling here (as well as for A»0, for
the large £, 80). But this is the c.f. (3.6), which is now the exact c.f.
as ge,g:+o}, and which correspondingly leads to the exact PD, (3.7), as
£,20. [Of course, for (SO,E) at intermediate values,(3.6), (3.7), and pdf,
are approximate, albeit excellent approximations, as the data of Figs. 2.1,
2.2, [Middleton, 1976] indicate, for example. These analytical forms become
exact again_as -0 or (€,£6+w), also.] Consequently, this suggests that

we employ the limiting properties of the (ideal) data sample along with the
analytic forms (3.7) as 80+0. These are: (1), the PD, and (2), dP/dtg, as
€b+0. The requ1red third relation is the expression for the (exact) second
moment3, ar. s A> = (éi)/aﬁ = ZQZA(1+FA). Accordingly, the needed
three re]at1ons for determining the infinite-population parameters

(QZA,AA,FA) are:

e 2nd _moment : /%§\> = <E§> & ZQZA(1+FA)

" ideal-xpt. ' (analytic)
< (3.8a)
Ciah. PD at limitingly [P, s = (P ) .
small thresholds:4 ]l5§+0 1-expt 1 €§+O (analytic)
(3.8b)
| (i11). slope of PD at  [(dP,/deZ) , ] =[(dPy/de’) , ]
Timitingly small €0+0 j-expt. .0 (analytic)
thresholds:% (3.8¢)

3. It is apparent by inspection of (3.5) that using higher-order (even)
moments alone always introduces one additional parameter, QZk,k>2, etc.,

efi (3uT0)s (85 11) 4.

4. We take tz, rather than 5 , as the variable here, because of the particular
form of (3 7}-

11




Applying Eq. (3.7) to (3.8b,c) then gives explicitly (for the limiting
value EO+O):

(i1).  Tim ("Pr) _ lim (”’1) N
o0 62 i-xpt Eg»0\ g2 1-xpt\ A
0 0
Ay oo AT
A A
= Gy (A, ,Th) = e ) - (3.9a)
HEAT A m=0 m!25,
.2 /2 2
(i11).  Tim <GA+dP1/dt'o> _ Tim (GA"’\EA/'dPﬂdEo) (e2)
€570 Eg i-xpt Ey+0 Eg i-xpt\ A
A, o AT
_ 0 A o B
= Hy(Ay,Th) = e ] D= Gy (3.9b)

i N 2
m=0 m!(ZOmA)

where the Timits are non-zero (positive) [approximated in practice, of course,
by taking €, = &o,xptéo’ for a P]=1-1O'2, or 1-10'3, for example, cf. Sec.

5 ff.] The "approximately equal symbols ("=", "="), are replaced in these
limits by equalities, and the parameters involved are the theoretical, or
"infinite-population" parameters. Note, also that both5 GA’ HA=GA2 are indepen-
dent of 2p 5 cf. (3.8a), a further simplification resulting from the parti-
cular analytic form of the PD, (3.7). Although a search procedure is still

needed, it is now greatly simp]ified6 vis-a-vis the approximative

5. The result (3.9b) is established directly by noting that for small &>
Pir = exp(-KébZ), which applied to (3.9a) gives K=Gps so that P, =
exp(—GAEOZ). Next, using this in (3.9b) yields at once the indi-

cated result, with the interesting identify [Eq. (3.9a)]2 = Hys (3.9b).

6. In fact, from the observations noted in Appendix A-I, A.I-1, it is
possible to get good "starting" values of the parameters (AA,PA,QZA)
directly from<<EA2;>and the PD,P]A. For more refined values one can
use these to initiate the computational search. Typical parametric
behavior of (3.7) with rp and A, is indicated in Figs. 3.1(11), 3.2(11),
[Middleton, 1977].
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"brute-force" approach using the approximate form (3.7) and any 3 points
(0<t15Ero3<e)

We can go on now to obtain, in principle, the infinite set of param-
eters, k>2, which, with (QZA,AA,FA), completely specify the exact (first-
order) Class Amodel, whose c.f. is given by (3.1) or (3.3). Rewriting (3.5) in
unnormalized form gives

s 2‘_ i iy = e
(Ef) = 205, (1+1}) , or 2, (1413) = (E7)/2, and (3.10a)
/e 2

< \EA Q4A+2[92A(1+r b (3.10b)
rf 6\: | 3 |3
\EA pptIYptgp (14T ) +605, (14T2)7 (3.10c)
E2k\— Q +Q fo(9,, (14T} ) )40 . fo(Q,,(1+4T1) )+

. YA/ T2k,A 2k-272 " 2A A 2k-4"4"2A AT

- )QSA(1+FA)k , (3.10d)
2k 2k
from which it is immediately apparent that by computing <EA /i-expt (EA ))

from the (ideal) experimental (infinite population) data, and using (3.10a) for
QZA(1+FA), we can obtain all the (scale) parameters 2, p by iteration.
For example, we have from (3.10a-c),

Coeh 1 g232 g8 p202 14202 2, 1,22
Q4A \\EA/, 2 /i AI/ \EA‘/ &EA/ + 2<EA/ var EA + Z(EA/ (>0)
(3.11a)
= 4 6 91// 4 & 2‘\ 23
L 9 = (Ep, AT VAT VAR (EA, (>0), etc. (3.11b)

With (QZA,AA,PA) obtained above according to (3.8), (3.9), Eq. (3.11) then
provides the complete Timiting experimental specification of all the parameters
of the exact (first-order) Class A model. Incidentally, it is also evident from
(3.10), (3.11) that we can obtain the LKA (k>2) apart from having to determine
the basic parameters (QZA’AA’ A).]

13



3.2 Approximate Parameter Determination (Class A):

In those cases where the approximate forms (3.6), (3.7) yield acceptably
close agreement with the experimental PD (and we do not wish to determine
the higher order parameters QZk,A associated with the exact model [cf. (3.1),
(3.3)]), we can obtain a approximate values of the 3 basic parameters, (QZA’
AA,P ), fromthe first three even moments of the data, on replacing QZk A
therein, cf. (3.5), (3.10), by an appropriate function of -

We first use the summed form of (3.6), viz. (3.3) with the 2>2
terms omitted, expand the exponential and compare witk (3.1b). The result
is the replacement form of 2, . [cf. Appendix A-I, Sec. A.1-1], e.q.

9]

k
S > Aak! D k22, (3.12)

A

e.g. @, > ZQSA/AA; Qp > 592A/A§’ etc. Inserting these in (3.10a-c) then
gives us

[ /EZ\ = 20,,(141)) (3.13a)
bos 02 1 12
(Ep 2 SQZA(K; £ (14)%) (3.13b)
PL R 3
‘EA’ 4892A(A2 A(1+r )+ (1+FA) ) , etc. (3.13c)
A

These three relations can now be solved exp]1c1t1y for (@ 2A,AA,FA). Letting
1+1"A in (3.13) we first obtain z = <EA'/29 op = 14Ty and apply this to
(3 13b,c), solving for AA and finally Qo - The results are easily shown to

be

2.2
(o0 -
. 3(ey-2e)) _ L2k,
(9 = 3 s eg ={ka ) (3.14a)
4(e6+12e2-9e2e4)
. 9(e4-2e5)°
AA “ 3 : (3.14b)
2(e6+12e2-9e2e4)
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3
2e, (e +t12e,-9.e,)
s 258 2 2% g, (3.14c)
3(e4-2e2)

Ta

where, of course, all these approximations must be positive to be accepted.

The advantage of these approximate relations for the three basic Class
A parameters is that they do not require the search procedure involved in
the "exact" calculations (3.8), (3.9). On the other hand, the disadvantages
are two-fold, that: (1), the results are approximate; (2), they necessarily
[cf. (3.12)] do not provide all the (first-order) parameters of the exact
model (including @y ). [See Appendix A-I for further discussion].

4. Formal Determination of Class B Model Parameters:

From the general results of Section 3 preceeding we are now in a posi-
tion to extend the analysis to the more complex situation of determining
the basic parameters for Class B interference models. The situation is more
complex because now the exact characteristic function, and hence the corres-
ponding pdf and PD, W]-B’P]-B’ must be approximated by a pair of characteri-
stic functions, pdf's and PD's [cf. (2.4),(2.5), and the discussion in
Section 2 above, generally].

The exact c.f. for Class B interference, along with an independent
gaussian component, may as in the Class A cases, be expressed by equivalent
series forms, in this case three, each of which is particularly suited to
one of the three tasks: (i), exact determination of the (even) moments;
(ii), approximation for small and intermediate envelope values, and (iii),

a suitable approximation for large envelope magnitudes. From these forms we
can then obtain all the desired parameters of the (first-order) Class B
statistics, as we shall show below. From Egs. (2.51), [Middleton, 1976],
(2.23), [Middleton, 1977] the exact closed-form expression for the c.f. here
is

. _ 2.2.2 ® 5
F](1ax)B+G = exp{-oGaBA /2+AB_/(; <[JO(aB>\BOB)_]J>>\¥,9O'dZ} , (4.1)

with now, cf. (2b),
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2
ag

= 1 '1 i — A2 5 | = 2
= (20,5 (4TR) Y 5 Qpp = AB<BoB>ﬁ./2 } T§ = 0g/ps (4.1a)

where ( ! = fo( ) ydz, de = A 8,e LJhI’ etc., i.e., all relevant,
random parameters of the typical 1nput signal envelope, as discussed in
detail in Section 2 [Middleton, 1977, 1976], e.g. cf. (2.87d), (2.87c),
[Middleton, 1976]. It is, of course, the analytically infinite domain of
z,7.e..(0 < z < =), which reflects the physically, infinitely long-decaying
~ transient effects, which in turn qualitatively and quantitatively distin-
guish Class B interference from the Class A types, cf. (Sec. (2.4), (2.5)
in [Middleton, 1977].

The various series forms of (4.1) are obtained first by observing that
the desired c.f. can be expressed as the limit

Tim

F1(1ax)B+G 20 ](iaxlio)B+G . (4.2)

with ?1(1aA|EO)B+G given by (4.1) with the improper 1ntegra1,f8( )dz, replaced
by the proper one, féO{J -1%dz. [As noted earlier (Sec. 5.2B, [Middleton,
1976]), this permits the series expansion of the integrand.] Thus, for the
first series form we have here the analogue of (3.1b):

- (an)Zk( 1k

k=2 2 (k!)r

. T 3 - 1 2 2
(I): F1(1ax)B+G = exp{—928(1+rB)aBA /2 + QZk’B} 5

(;4.: _3),- -

where now

11m k/ 2k \ } 2ky
. Ag2” f NeXW D dz Azf(BOBQ,A
14 3a)

2 AB(éoB>/2 ., (4.3b)

cf. (3.2a). As before, AB is the Impulsive Index, 2,, the intensity of the

2B
nongaussian component, and ré the ratio of the intensities of the (independent)

gauss to this nongaussian term.
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The second, equivalent series from of the c.f. is found by the methods
described in Sections (2.3)-(2.6), [Middleton, 1977], and Sections (2.3),
(2.5), (2.7), [Middleton, 1976], applied to F 1aA]z p+g and followed by
the limit z o0, cf. (4.2). The result is Eq. (2.87), [Middleton, 1976];
Eq. (2.38), [M1dd1eton, 1977]:

A

|
(IL)s i (ian) BiG © exp{-b]aAB(aB ) (°G+b A )aéxz/z

: 21 1) b ol (4.4)

where (cf. (2.38a-d), [Middleton, 1977])

PN /\2 5

B _n\o /B, 0}
b = r(1-0/2) <? oB b 4=,y § B /A,
lo 2&/2-1P(-|+0L/2) \ /5 )> 2%, (2-0L) ( ) op/ g

(42"'4'@)9(22’_*_2) ,B AB

(21+a)a ol (2+1)1 (2042-0) (2042) 241
(4.4a)
Here o is the spatial density-propagation parameter, {cf. (2.37), (2.24),
(2.26) 3, [Middleton, 1977], such that 0 < o < 2 in the above. [The details
of the derivation are provided in Section (2.7), [Middleton, 1976].]
The third, equivalent series form of c.f. is obtained from (4.3) in
direct comparison with (3.1b). The result is

e e ! SR et eSS — X Rl - i T e (
i i

22
i A -a-A"80 o (Q /A ) )
fIIIa}: 3 F.l('la)\)B+G = exp{ AB_O.éa 2/2+A e B ZB[-I+ Z 2B’ "B ( )

(2 )221 , (4.5)

with 621 given by (3.3a) on replacing Ay by Ag, etc. therein. This expression
is the equivalent of (4.3). We shall need, however, an appropriate alter-
native to the steepest-descent form of (4.4). This is readily

accomplished by the procedures described in (2.91) - (2.93), [Middleton,

1976] or (2.41)-(2.42), [Middleton, 1977], applied to (4.4), to yield

L7



(ITIb):

Fi(iar)g,e = expl-AgtAge

RS 16 18 e R = TETEA PR A IE LU IS A AN = TN oy - ISR |

A

ot -b x /2 o
- 20LB -I+ZB<a )2k]0222

where the coefficients Bk are found directly by a series of recursion
formulas, cf. (2.41b), [Middleton, 1977], in terms of b(2£+2)a.

As we have noted above, all these forms (I-IIIb) of the characteristic
function are equivalent, provided, of course, that all terms in the respec-
tive series are retained. It is when we seek manageable analytic approxi-
mations to the c.f., that is, when we retain only those few terms which
principally influence the structure of the associated pdf (and PD), that
these different forms lose their equivalence. Because of the presence of
the fractional power, A%, in II, (4.4), it may seem that this form of the
c.f. is basically different from the others. However, a little reflection
shows that this effect is counterbalanced in the (totality) of the series
z, where each term is a function of o, cf. (4.4a), leaving only an (infinite)
%eries of (even) integral powers of A. In fact, by reversing the steps:
(2.59), (2.67b) in (2.65), (2.79)-(2.87), [Middleton, 1976], we return to
the generic form (4.1) from which (4.3), (4.5), are alternatively derived.

Now, before going on to determine the parameters (QZB’AB’Fé’blq’a"‘
etc.) of the Class B model, we can use form I, (4.3),to get directly exact
expressions for the even moments of the (normalized) envelope, &, by
differentiation of this c.f. with the help of (3.4). Since the form of

(4.3) is identical with (3.1b) for the Class A cases, we can write at once
from (3.5)

Q
(€ =15 R = 1385 = —p + 2
928(1+ré)
Q 9Q
€)= ot 2 16, etc.,  (4.7)
' Qoo (1+7)) Qop (14T2)
2B B 2B B

with EB = aBE, cf. (4.1a). [Although (4.4#) is equivalent to (4.3), it is
clearly inconvenient for the calculation of moments by differentiation, cf.
(3.4), because of the term (vA%), which can cause divergencies (as x» - 0)

unless balanced by the totality of the series, £, cf. remarks above. ]
2
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Finally, it is convenient at this point to do a further taxonomy with
regard to the model parameters, generally. We have already made a classifi-
cation between global and generic parameters in [Middleton, 1976], Sec. 2.5.
Here we are concerned with Class A and B global parameters which we shall

further distinguish as being structure parameters, i.e., those governing
the form of the PD (and pdf) primarily, e.g., (AA,PA), (AB’Pé’a’b]u’bZk,u’
k>2), and scale parameters, i.e., which primarily set the level and scale
of the PD (and pdf), e.g. (b2a’92k;A,B’k3J; NI)‘ Thus, in our approximate
model forms we have (AA,PA) as structure parameters, with Qop @S sole scale
parameter, while for Class B, (A FB,a,b] ) are the structural parameters,
with (@

ZB’bZa’NI) the scale parameters.

4.1 "Exact'Parameter Determinatijon (Class B):

We begin by introducing first the two approximating c.f.'s, respec-
tively appropriate for small and intermediate values of the envelope, and
for large (and small) envelope values [cf. remanks following Eq. (3.7)].

We then employ(2.4), (2.5) suitably joined at the "bendover" point,EZB, cf.
Figs.2.1,2.2 (and Fig. 3.5, II), [Middleton, 1977, 1976], to establish

the desired approximate, composite pdf and PD. From these (or the cor-
responding c.f's) we obtain the basic parameters of the Class B approximate
analytical (first-order) PD, and pdf. The joining process whereby these
six parameters may be (i), ideally, (ii), empirically determined, is then
briefly discussed, extending the earlier treatment (Sec. 3, [Middleton,
1977, 1976]) to an "exact" procedure.

The two approximating c.f.'s are obtained from forms II, IIIb, Egs.
(4.4), (4.6), following the rationales described in Sec. 2.6.1, [Middleton,
1977], for example. These are respectively
(0<€<€y): Eqs. (2.5a, 3.4a); Fy(ian)g,e = E(iax)(B+G)_I
[[1], Middleton, 1977] 2 9 9

-by Aglagh)®-acha5r?/2  (4.8)

Acg o oé+b Bt Orsva 223 (4.8a)
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and

A

(€psés=): Eq. (2.5b),(3.4b):  Fy(ian)g,q 2 Fy(ian) gyq).py

[LTI, MiddTeton, 1977] A
bosBr 72 5 2 2
= exp{-AgtAge -ogagh 2},
(4.9)

The corresponding PD's are:
(Ofﬁbjﬁg): Eqs. (2.7a), (2.5,6):
[[1], Middleton, 1977]

N w  (-1)"AMr (1420

. 22 ( o 2 g . .. §2

P>k )g » 1-E nzo ™ 1P+ 55025 =€) (4.10)
with

£ =E .62 = (Ao o 1¥s £ = o

£y = €ONI/ZGB 3 Gg = (Z-a +PB)/4(1+PB), Aa = AB(b1aaB/GB) y (4.10a)
and ]F] a confluent hypergeometric function, and7
(€B§£O<w): Eqs. (2.7b), (3.8):
[[1], Middleton, 1977

2 re”
, Ay o AN -E%/20
G A I Se O™ yith (4.11a)
2025 = (/Rgtr)/(141h); Ay = (B2 (4.11b)
mB ~ B'°B B* "B T~ ‘4-a’"B" :

[The associated pdf's, Wi_1.11> for the two regions I: (Ofﬁfﬁé), IT:.
(Eaiéiw), cf. Fig. 2.1, are given explicitly by Eqs. (2.8a,b) [Middleton [1],

7. The relation (4.11a) appears without the factor (4@2) 1 included in
(2.7b), (3.8), [[1], Middleton,1977], which factor s the result of an
earlier, approximate procedure [cf. last paragraph, Section 2.6.1
[[1], Middleton, 19773] and discussion here, e.g. Sec. 4.1, (4.21) and
[[4], Middleton, 1978].
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1977], and (4.3), (4.4), [Middleton, 1976]. These PD's and pdf's are
also proper PD's and pdf's.8]

The exact c.f.'s (4.3), (4.5) indicate that the basic parameters of the
Class B model are: (QZB,AB,Fé,QZk;B(k>2)). The equivalent (exact) c.f.'s
(4.4), (4.6), provide an alternative set: (QZB,AB,Fé,a,b]a,b(22+2)as
2>1). The approximate c.f.'s, (4.8), (4.9), which we use to obtain the
approximating PD's (and pdf's), (4.10), (4.11) above require only the six
parameters: (QZB,AB,I‘é,a,b]a,NI).9 Because of this, we shall determine
the parameters of the c.f.'s (4.4), (4.6), here. 1I% is now important
to note that there is a variety of equivalent procedures for determining
the desired six parameters of the approximating (and exact) c.f:'s. (This
fact was not indicated in the earlier analyses [Middleton, 1977, 1976].)

AT1 procedures demand continuity of P]-I,II at & = &g, i.e. condition

(i), (2.1). Moreover, we may also require continuity and smoothness of

the pdf's at t=€B, according to conditions (ii), (iii), (2.1), In addition,
we may require that the PD's, P]-I,II’ and their derivatives, cf. (2.1), be
exact10 at £o=fB, even though they may not be for other values of Eo'

8. A proper pdf, wi(£), is such that (here for envelopes wy>0, 0<f<w.
and_fgwidt=1, which is equivalent to Py(r >0)=1,Py(t >»)=0, and
P1(E>£0)s 0<¢g<= is nondecreasing. Corresponding conditions on the
c.f. are F1(0)=1, |Fy(iar)| < 1, F1(») = 0; this last if there are
no "mass-points", or delta functions, in the pdf. Inspection of
(4.3), (4.6) demonstrates that these are indeed proper c.f.'s, and
hence the pdf's and PD's are likewise proper, in view of the unique
(here, Hankel transform) relationship between c.f. and pdf (and PD).

9. The parameter N7 is a scaling parameter on ¢, cf. (4.10a), which is
required because F1-(B+G)-I, (4.8) does not yield a finite second
moment on (0,~), and is needed to assist the joining process for
?gi%jII both at ¢ = £g and as ¢+ 0, cf. Sec. (3.2.1), [Middleton, [1]

10. Although the explicit structures of the c.f.'s (4.1), (4.3)-(4.6),
and their approximations (4.8), (4.9), insure continuity and smooth-
ness of wy-1,11 in (0 < ¢ < ), this does not necessarily mean that
wi-1,I] are equal to Wi_exact at &= tB’ without imposing this further
condition.
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Various reasonable rationales for combining the approximate PD's, etc.
and determining the associated (six) parameters can be given. We shall
consider two here, for the so-called "exact" parameter determination.

First, we observe that the type-II approximation (for the c.f., P.D.,

(4.9), (4.11), etc.) is only exact as » -~ 0 (or 6;65 +> o). It is not exact
here for » ~ «» (or E,&b + 0), although it is a Class A form (which is exact
for actual Class A noise, cf. Sec. (3.1) preceeding), because here we have
Class B interference, which even for no independent gaussian component
(oé=0) does not have "gaps-in-time" and hence has no "spikes" in the pdf for
Eb=0. This means that we cannot follow a procedure similar to (3.8) above,
including now the second derivative, and obtain exact values of the parameter
set fﬁ = (2,5,Ag:Tg>a) which are associated with the type II forms [(4.9),
(4.11)]. [We can, of course, use such a procedure, but the resulting fﬁ

are then necessarily approximate. ]

In any case, we must at least suitably join the PD's at EO=CB, where
tE is Fge gggg_po1nt of inflexion of (P1)-1-expt (= P]-exact)’ e.g.

d P]/d&B = 0. This point always exists, of course, since there must always
be a finite second moment associated with (Pl)-i-expt (=(P)) axact)
Thus, two relations of the needed six here are:

Pror = Prorr = (Py)yexpt. (4.12a)
The second relation in (4.12a) is required, in order to relate the analytic
forms to the (ideal) real world. Furthermore, for a third relation, we may
reasonably require that the pdf's are at least continuous at é;=¢3, e.g.

S L
dép d¢p

> (4.12b)

(which is not necessarily equal to (dp1/déé)i—expt unless so specified, nor
does (4.12b) follow automatically from (4.12a), in as much as P]-I,II are
approximations, not necessarily equal at Egig, any €). Next, we may reasonably
require that P]-I,II become equal as Eo +~ 0. This automatically insures that
their first derivatives are also equal (as Eg = 0). For, let us write from

(4.10), (4.11a)
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2 (4 c2 0 1-1
Pi_y = 1-E7% ] = +
4 -2\2 42
b 1e25(2) y Lo pla), 2 dP]-II L&) Py
- ] L

Thus, we have

dP
{( ) Z 2(2) (E 2 I)}as €, >0 > (4.13a)
d(a d(€;)
if we require }1T0( 1-1 = P]-II) It is immediately evident that this does
not insure that d2P /d tz ”ZI dZP]_II/d(Sg)2 (EZ§?)). Relating the

analytic forms aga1n to the (ideal) real world data, we thus have the addi-
tional pair of conditions

14 il = Pyt = AP )i-expt s BF
m . (4.13b)
& -0° Te (p ) :
0 (2) _ z(2) i-expt.
b1 IT g2
0

The remaining condition is, naturally

(ESY = 20,5(1+1y) = (ES). (4.14)

ZB(

Accordingly, we may summarize our first, approximate procedure for joining
and parameter approximation by:

( P]-I ) P1-II = 1) i-expt ~ N
e e

dPro1 _ dPran JERCIN:
| dé¢ dé;
T B ? (4.15)
i LR L Sl 3 (Pl)i-expt.

2\ - _ A2

EB> B 2928(]+Fé) - <EB>1 expt

,,,.,....._..--
P




where by (4.13a) the slopes of P]-I,II are also automatically equal (as
£0+0).

The conditions (4.15) translate specifically, with the help of (4.10),
(4.11), and the use of the asymptotic form of the hypergeometric function,
1F1s cf. (3.7), [Middleton, 1977], respectively into

22 A2
A, @ AN -g4/28
~ r(140/2) feapqunl=2 1. 8 S "B "Sp/%mg _
A T/ Eg [1#0(Eg"5a)] = e mZO m! - (P1)i-expt.,
(4.15a)
A ar(14a/2) N A il £/ 2y
ol (1+a -a - ) e
S () E e B ] B (4.15b)
B m=0 m! OB
o (1"Ar(1+ Wy A, o AT
(1422 ¥ ——fae Py B (= gy(Agrgea), cf. (3.92)
n=0 ° m=0 m!ZOmB
(4.15¢)
_ lim (ﬂ) <E2‘\,
By*0 Eg i-expt B
& = 2aj01#r8): (BRy_enpt. (4.15d)

Other possibilities exist: we may require all the conditions (2.1) to
hold at Eo=&B, viz. (dzP]_I/dEg) = (dZP]_II/de) » which permits us to drop
the second moment relation (4.14) in (4.15), for example. Specifically,
this becomes

2., ~2
m_~€p/2onp

N, @ -A, Ape
~ alotl)r(1+a/2) (1 . =02 B B 2,72 B 0
Ae TT(T=0/2) (ZGB) ¢g [Hl=e 7 I (Ep/oppT) fﬁ];?;
m
(4.16)

Other variants might set the various derivatives at é;tb = fB equal to
their respective (exact) experimental data results, e.g. (dpl/ng)i-expt.’ etc.
In the above set (I) of conditions, and their variations, we have in

each instance joined P]—I,II (and automatically their slopes) as 80+0.

But since P]-II is not an exact form as €, * 0 nor does it per se insure the
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no "gaps-in-time" effect (when oG=O) characteristic of Class B noise, and
P1-I’ here, we may somewhat more logically choose in place of (4.13b), the
alternative conditions

lifo : Prp = (Prli_axpt. 3 dP1éI = (dP;) , (4.17)
“o L 2 ds de~/ i-expt.
0 0
so that a second alternative class of procedures becomes

e s T !
| ¢ Ppg % Py = (P1)1-expt.\B X §
| T 5 :
i o B
| DL s )
ap £g
% I < P]-I - (P1)1-expt. :
; £ * 0 ? (4.18)
| Pr1 | (dﬁ | '

N ~2) ; j
! dcg A& fioexpt 7 |
| i
5 ) )

/ = ! = [ 2\

! \ {Eg, = 205 (1473) = (Eg'y_ayot.
|
L

t
]
1
1

The explicit forms of (4.18) are available at once from (4.15a)-(4.15d) by
inspection, where now specifically the derivative condition as &, - O becomes

0
) N an, e LR 2-\‘
p 1T e agm (1Pt(dP/OE)ER ) o) (4.18a)
') i -> B .
n=0 n: o Eo 0 l E2
0 i-expt

Variants of II, (4.18) are similarly generated: we may drop the second moment
relation and use a second derivative at ¢ = ¢, cf. (4.16).
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Finally, note that from the ?’ parameters so obtained above, and in
particular from the second moment re]at1on (4.14), and w1th the help of the
unnormalized form of (4.7), cf. (3.10), since here (E P exhi. = /Eék
we may obtain 922+2,B’ cf. (4.3a,b) in a straight- forward fashion, as in
the Class A cases, cf. (3.17a,b). It follows at once from this and the
results of (4.15) or (4.18) in (4.4a), that the remaining model B parameters,

e.g., b(22+2) > 2<1, are now spec1f1ed albeit now approximately, in terms

of the experimentally observed <EB )1 _expt. For example, we have explicitly
9
= (8-oy 4B _ (8-ay,~5,-T, 4, 1,22
b4(x = (4_@) - (4—Q)2 AB {<EB’I) = 2\EB> }’ (4.19&)

5
2 AB

Q
_ ¢12-a 6B 12 -0, -1, 6. 944 a2
B = sy (31)224A - G0 AB KEp) - 7{Ep +3Ep’ 1, ete.

(4.19b)
Other possibilities are
Prlor = Pror = Prlicept PMap =P as &0
IT1s P& =&,
dp dp dp 0
e ) | (€8N -expt = 2g(14T3).
0 0 % i-expt” P
(4.20)

This insures exact values of P,_ 1,11 and wy _ 1,11 at &, €, = £B’ but not
necessarily '"smoothness" of W1, 11e and has the poss1b1e advantage of not
requiring the experimental ca]cu]at1on of[dzP /dt jé

Another set of approximate relations, essent1a1]y used in the author's
earlier work [Middleton, 1977, 1976, 1978], is
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Py ® P o
Pjer = Flapp » VMGG
dPy_; P
Iv. Lo 1oL {ee =€,
@€, - dg )0 o B
. /i 2\ - 1
2 Ep’i-expt = 29%p(1+Tp).
dp d2p
> .
de’ de’

with a modified form of the second moment condition

RGNS .
6 2120 ° A Al a9l 9 o A 2
g2 = 1 -./; w](€)1b [4GB/NI]dbt/: w](&)IIt,dE, or
(4.21a)
B g s e . o ]
(4.21b)

to give the required six relations. Equation (4.21b) is the approximate
second-moment relation actually used in [Middleton, 1977], cf. Sec. 3.2.1,
and [Middleton, 1976], Sec. 3.2-A, which employs a suitably normalized pdf,
w]-II'NIIE(W]-II)norm’ to determine Eg over the entire range (0 < & < =),
and which can thus produce errors of somewhat too small values of PD for
large EO, &, when Pé is small. The relation (4.21a), although more compu-
tationally involved, is more precise and more logically motivated. ]
Finally, even when the "turning point" &B is not empirically available,
it is still possible to obtain all the model parameters approximately.
This is accomplished as follows: choose as the required six relations
for 7%

2 /e 2+
Pi_y =Py_:r = (Pq) Riy) =20, (1472 ) (=¢ESD),
, Tin 1-1 1-11 1% 3t Bd1—expt 2B\ B/ Fp
*E0 an
0 dP,_ dp
dzzl . (dE;) P]—I B (Pl—)i-expt. D é61’t%)2 >0,
0 0 i-expt (4.22)
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this last for 50’ 302, say, when the curve for Pl-I noticeably departs from
the raleigh Timit (as go+0). The turning point, 58’ may be approximately
deduced by solving (P1-I = P]-II)’ (P EB (>0), for 58’ once the parameter
set, 7., has been obtained according to V, (4.22).

In all these cases, of course, there is some choice, which in practical
applications we may make as a matter of convenience (as long as we expli-
citly indicate the particular procedures used). The fact that there is no
unique selection of relations for determining the (approximate) parameters
7% stems from the fact that the c.f., and resulting PD's are themselves
necessarily approximate. In practice, of course, we perforce deal with
approximate forms and data, with a consequent further degradation of
accuracy. However, at the present level of accuracies these various ap-
proaches [including those discussed above] appear to give acceptable values
for the parameters, in the sense of acceptably close agreement between the
data curves and the associated analytical approximations [cf. Figs. (2.1)-
(2.8), Part I, of Ref. 2 here]. [See also, Appendix A-I, Sec. A.1-2, for
direct "start-up" estimates of Pé].

5. Some Procedures for Obtaining Parameter Estimates with Finite Data Samples:

In the above analysis we have assumed that we have been dealing with
the idealized, limiting situation of infinite data sample populations, so
that the analytic and empirical statistics (moments, pdf's, etc.) are
equal (probability 1). The consequence of this, of course, is that the
various parameter estimations are precise (in this sense), e.g. (3.9a,b),
(3.10), etc. yield exact values. Specifically, we may write for the
2kth moments of the envelope E

2k lim1 < 2k - g2k
&E Mmﬁ-z :<E >‘i-expt’k.?_]’ (5.1)

in terms of the n sample values Ej, (j=1,...,n), and so on for Qo1 A2
(3.11), QZk,B’ b2k,a’ (4.13), (4.14), etc.

Practically, however, we are always limited to the empirical situation
of finite data samples (n<~). This insures that our estimates are never
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precise (prob. 1), albeit that they may be good approximations. Thus, we
have now the sample moments

2k 1" % 2K
{E >e = ﬁ-.z ESY ., k>1, (5.2)

j Z
for the empirical estimates of the moments /E2k>. Similarly, although

we may use the exact analytic forms for P]_A, P]—I,II’ and their derivatives
etc., as é% > 0,8,8) » EB in the procedures (3.9a,b), (4.15), (4.15d), and
Sec. (4.2), cf. Sec. (3.1), (4.1), (4.2), it is always the experimental
values of P], dP]/dEO, etc. which are necessarily approximate, so that

the various structure parameters (AA,rA,AB,..., etc.) are consequently

approximations, as well.
Letting y(GLEn) = estimator of G based on the data set (§n={Ej},

j=1,...,n), we can use (5.2) directly in (3.11a,b) to write explicitly in
terms of the (even) sample moments

Y(94A’En) = <t27e S %{ﬁ§>§ (>0) » (5.3a)
v(agalE ) = (ED, - 5 (ER)o(Ba/e + 3(EL/S (50), etc. (5.3b)

for the estimators of 2as p etc., based on the finite data samples

En(s E],...,En), n <w, Similar results apply for y QZk B}En) directly
using (3.10), (3.11), cf. (4.14) etc., and for v b2k |E cf. (4.19a,b).
The estimators, vy AA|E > ( '|E Y alE » etc., for the various structure
parameters, however, are not exp11c1t functions of the sample data, E s | Bt

are, rather, functionals of these data11 through P1, P]—I 1> ete.s cf (3.9)

11. An except1on arises in the case of Class A noise when the approximation
(3.12) is used for Q2K ,A- Then the structure parameters are given
approximately but exp11c1t1y in terms of the sample moments, e.g.

v(Q 2A,orAA,orP |E f((ez)e,(e4)e (e 6)e) ,
Ek ‘e. here. Questions

according to (3.14a,b,c), where now (e2k)e
remain, of course.

E\’E
of accuracy and robustness (cf. Sec. 5.2. ff.) nr
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(4.15), (4.15d) This leads to quite different statistical procedures when
we address ourselves to the critical problem of the accuracy and robustness
of the parameter estimates, as we shall briefly indicate below.

5.1 Remarks on the Accuracy of the Estimates:

Before proceeding further here we must remember that we are dealing
always with empirical data, which in turn is always limited in quantity.
To begin with, we do not generally know whether these data belong to the same
statistical population, i.e., are generated by a common statistical mecha-
nism (stationary or not [Middleton, 1960]; and (5.14), and Sec. 5.2 below).
In addition, it is often not clear that the individual elements (Ej’ say)
of the sample, E . are statistically independent, a condition which must be
established if the usual, convenient and effective, statistical methods of
validating and analyzing the data are to be successfully employed. Thus,
we must first validate the data [Middleton, 1969], which consists essentially

of the following procedures, in sequence:

(i). test the sample data (gn) for statistical independence12

(5.4) (of the Ej vis-a-vis the Ek j#k);
(ii). test the sample data for "homogeneity", i.e., whether or
not the (Ej) belong to the same statistical population.

[One such test for (i) is the "runs test" [Middleton, 1969]; for (ii),

12. In the data sampling process, to insure independent samples we must
always be careful to remove any periodic (or dc-"steady") component.
Thus, if we sample instantaneous (IF) amplitudes (Xp), in the receiver,
we must use "jittered" sampling, i.e., we must sample randomly in time
(with no interval between samples less than (approximately) the reci-
procal .of the ARI (aperturexRFXIF receiver bandwidth), cf.[Plemons,
et al, 1972], or more conveniently, we may sample periodically at a
period incommensurable with any periodicities in the data sample, a matter
of experimental testing. If we use envelope data (Ep), on the other hand,
we must remove the (sample) mean, e.g. use ej=Ej-(E/2Ej-‘E’e as the
typical element of the sample. In addition, if there are periodicities,
we can apply the "jittered" or incommensurable-periodic sampling approach
suggested for the instantaneous amplitude above.

30



non-parametric tests, like the Kolmogorov-Smirnov [Middleton, 1969] are
particularly useful because of theirsmall-sample (small n)as well as large
sample, capabilities. A concise description and illustrated application
to a class of physical problems is given in [Plemons, et al, 1972].]
Having validated the data according to (5.4) above as a first step
in estimating the accuracy of the measurement of the model parameters, we
next apply a combination of the classical theory of sample statistics
[Cramér, 1946], [Wilks, 1962] and "goodness of fit" tests [Middleton,
1969] to the various scale parameters, i.e. the 2k-moments QZk,A,B;
and to the structure parameters (AA’AB’FA’Pé’“’bla’bZk-B’ etc.) of the
Class A and B models here.
We begin with the mth order moments of the data themselves (for
example, the independent, instantaneous amplitudes, X , with (X) = 0).
In first applying standard techniques of sample statistics we may start
by determining the various ensemble (or statistical) averages ({)) of
these finite samples. We readily see for these independent sample values
that

g v 1% my
(X)) '<ﬁ'_§ X?/ b1

1S

<x?} = (™), m= 2,2+, (5.5)

(since all X. have the same pdf's), so that all these ensemble means of the
sample data moments, odd as well as even, are the same as the ensemble moments,
The same result applies for the adjusted envelope values, ej = E, -{E), which
are now also statistically independent, since the "dc" component <E) has

been removed. Accordingly, we say that <Xm)e, <em)e, considered as estimates
of the mth-order moments of (X,e) are unbiased, and independent of sample

size n, as well. For envelope data, £n’ it isialso evident that

’ n :
{E™ = <%—§ ef) = E") L m= 2k, 2k+1, (with (E)>0),  (5.5)

so that the moment estimates of the mth-order ensemble momentof Eare likewise
unbiased, and independent of sample size, as well. The variances, and
higher-order moments, of these sample moments, however, do depend on sample
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size: it is easily shown (in the case of independent samples) that

\Xm/z = <<Xm\ >2 ~N oo
\ e ‘@
vare (™, ™y = i } - var(el), (5.6)

‘/m 2 CAm n 2
\\ \3e /e/

Higher order statistics are'similar1y derived. The result (5.6) shows that
lim var(X™,eM+0: the variance of the sample m-order moment vanishes 0(n ']),
E;Qequ1va1ent1y, that the estimates [(X /o <e ) ] of the moments [(Xm),\g
improve, from the point of view of a variance measure, 0(1/V/n) as sample size
increases - a well-known result, of course; [Cramer, 1946], [Wilks, 1962]..
However, for the envelope data an), which are correlated through their

d.c. (and any possible periodic component12), we have instead of (5.6)
var(E™, = LEPM- EM2 4 1 2 CEREDS (5.7)

and <E Em\ # <E /Em It is not now necessarily true that liz var(tm)g 0,
as in (5 6). S1m11ar remarks apply for the higher order statistics of the
envelope moment estimates. This behaviour reinforces the utility of working
with independent data samples, whenever possible, cf. (5.4).

With the above in mind we can proceed to apply the methods of standard
sample statistics to obtain estimates of the accuracy of our (point) esti-
mators of the data moments <Em}, or {Xm). For example, using the instan-
taneous amplitude data, X, or the adjusted envelope data, g, we may replace
the ensemble variances, var {Xm,em} by the sample variances, (vareXm,
vareem) in (5.6) to get

m o _m, m m : _ 1 v v2_ (1L 2
var{X ,e '} = vare(X . )/n , [with vargY = o §{Yj (n § Yj) 3 & .
5.8

as a measure of how close the particular data estimate <Xm>e or {ém}e is to
(Xm>,or'<ém>. This measure is, of course, subject to.fluctuations when considered
over subsets of the infinite data population, and is thus not invariant of

yd



the particular data set employed. Continuing along this line, however, one
can further develop the standard approach, at least in principle, to derive
the pdf's of these moment estimatc‘urs]3 and from them obtain the more mean-
ingful interval estimates]3 associated with these original estimates

[15, Middleton, 1965]. These are the probabilities that particular (point esti-
mates, e.g., y(Y|X(k)), for given particular data X(k), (k=1,2,...), fall
within (11})100%L5f the true value of the quantity Y being estimated.
Finally, by assigning a suitable cost function to measure the error between
the true and estimated values, one can determine the average cost (or

risk) associated with the use of the point estimator y(Y[X), considered
over all possible data sets X = (X(k),k,=1...w)). The iﬁ%erva] estimation
yields a probability which i; a ﬁg;sure of the efficiency of the point
estimator in any particular application (any particularéxﬂk)); the average
risk measures the expected cost or average error in the use of the point
estimator, over all X = (%Xk),k=1,...m).

There are, however, two major technical difficulties in the direct
application of standard sampling theory techniques, and its extentions,
above, to the problem of estimating our noise model parameters from finite
data samples. These are: (i), the nonindependent character of the direct
envelope data, En’ which are the most convenient in practice; and (ii),
the analytical complexity of the estimators themselves, which are in the
case of the structure parameters (A,I'',a, etc.) even more involved func-
tions of the observed data (€, or threshold go) cf. (3.7), (4.10), (4.11).
The former (i), can be largely removed by using the adjusted envelope
{ej==Ej-(E}}, but the latter, (ii), requires an indirect alternative approach,

as we shall note directly below.
Thus, for (i) let us consider the mean of the explicit estimator

(5.3a) of the scale parameter Qp°

(k)

13. We distinguish between an estimate of Y based on a specific data set X
(Y]X(k)), and the estimator of Y,y Y[X based on the entire ensemble
of "data. The former is a fixed number; the latter is a random variable
Middleton, [ 9], p. 942.]
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i 1
<<EA>e> - \\EA e>

(B - L5 ¢ 2 EZEZY # (B - HEB 2. (5.9)

< A]wn »

This estimator is generally biased and depends on sample size (n). Similar
remarks apply for Y(QZk,A,BIEn) and all the various possible moments of these
estimators. Even using Ej = (E}+ej therein does not remove either bias or
dependence on sample size, although the structure of the various correla-
tions [(EEEE} , etc.,.cf. (5.9)] is made explicit. If the instantaneous
amplitude datauz(n are used instead of the envelope data En’ we can take
advantage of sample independence, and the relation

(9 Zilzk: (£ S0l

cf. {(5.11b), [Middleton, 1976]}, to obtain (for both Class A and B noise),
cf. (3.10),

<X?> = Q,(147") <X%} = %—Q4+3Q§(1+F')2
06 = 3 agr B2 qp0,(1+0) 1153 (141)3, et (5.11)
which in turn gives
oy = S0ty - 3%, (5.12a)
ag = B1(x%-154H (XB+60(33) | etc. (5.12b)

the equivalent of (3.11a,b) earlier. Considering now y(94{¥n) based on (5.12a)
with ¢ ) replaced by the sample means ()e we see at once that from (5.5)
et seq.
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\ 2
L 2in N 232y L 2y ovar X2 2.2
Grlaglxn)) = 300 2((x5r = S —ag VLA 4 /xere
# 20% - 2002, (5.13)

so that even here y is still biased, as long as sample size is finite (n<w).
Higher order moments and averages are correspondingly more complex, with
the estimators remaining biased (n<w).

We can, of course, for example,still calculate var y(92k|§n), cf. (5.8),
substituting the sample variances (and other sample moments) for the ensemble
(or "true") variances, moments, etc. to obtain measures of estimate accuracy.
These suffer from bias, dependence on sample-size, complexity, and the basic
fact that they are random quantities, not probabilities which measure accuracy
in a consistently meaningful fashion. Finally, to develop such really indicative
measures of accuracy as interval estimators and average error measures here
is a formidable and as yet unachieved task. The situation is even worse for
the structure parameters, because of their vastly more complex dependence on
Xn’ orvgn, which in turn probably precludes any directly useful analytic

(2%

results. A1l of which leads us to the following, indirect approach:

(5.14). "Goodness-of-Fit" Approach: Since we know the (approximate) analytic
form of the PD's, Pi_a > We use a
"goodness-of-fit" procedure, whereby we
test how well these analytic PD's fit the
experimental PD data, when the experimental

parameter estimates are used in the analy-
tic forms [Middleton, 1969], [Plemons et al,
1972] -

This approach is an appropriately natural one heve in view of the fact that
our methods aboveé [cf. Secs. 2-4] for estimating the parameters of the approxi-
mate noise models all depend directly and explicitly on the analytic and
empirical PD (or pdf), as well as on second moment calculations, a situation
which is not fundamentally altered in determining all the parameters of the
exact models. Again, the Kolmogorov-Smirnov tests [Middleton, 1969],

[Plemons et al, 1972] are particularly useful here, especially for the
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small-sample conditions attending the acquired data at small probabilities

4 or less). [Furthermore, when

(i.e., the "rare-events"), when P] is 0(10°
the parameter estimates are used in the K-S test, in place of the true

(exact, infinite population values), it is known that such K-S tests are

conservative, i.e., when the test statistic used in the test, zsamp1e’
exceeds Zao (the appropriate threshold) the null hypothesis, Hyo (i.e., that
the sample PD "fits" the analytic PD (with the estimated parameters)) may

be even more safely rejected than in the strict case where the analytic PD
emoloys the true parameters (at the same test level, i.e., the probability
of falsely rejecting Ho)([Midd1eton, 1969], p. 38).]

5.2 Remarks on Robustness and Stability:

In all our dealings with analytic models and empirical data the notion
of robustness is important. By "robustness" is meant, essentially, the
following here: that small changes in parameter values produce correspondingly
small changes in the underlying PD (or pdf). If large changes result, then
the model is not robust, and two possibilities arise: (1), the model is

basically correct, and the lack of robustness is truly characteristic; or
(2), there is some important element missing (in the model) which, if in-
cluded, would eliminate this spurious sensitivity, i.e., restore robustness.
Accordingly, in such instances we should reéxamine the model. From the
viewpoint of parameter estimation, robustness is a measure of how sensitive
or insensitive the PD (or pdf) is to parameter inaccuracies. An analytic
perturbation of model parameters, e.qg. FA > FA+AF', AA > AA+AAA, etc.

and subsequent computational evaluation is one method of detecting sensiti-
vities and determining ranges of changes (AT', etc.) wherein robustness may
still remain. Applying these changed values to the "goodness-of-fit"
approach, (5.14), above, thus provides a probabilistic measure of robustness
or its lack. Of course, there always remain the inevitable subjective element,
expressed here in our choice of test threshold, (choice of probability, a).
This, however, is always explicit in properly formulated probability measures
involving data with random components ([Middleton, 1960], Chapter 18).
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In addition to the question of robustness of the model there is that
of the model's stability: does the underlying probabilistic mechanism
remain invariant during the data acquisition time (and during any period
for which we wish to use the model), or does the mechanism change, as
reflected, for instance, in changes in the form and magnitude of the PD
(or pdf), in the values of the model parameters, etc? This is a par-
ticularly pertinent question when long data acquisition periods are
required, i.e., to provide enough data to establish the "tails" or "rare-
event" probability portions of the PD (and pdf). The "stability" problem
is essentially the same problem of establishing the validity of the data,
cf. (5.4): do the acquired data belong to the same statistical population?
Accordingly, suitable "tests of homogeneity" are required here to establish
this fact, the (non-parametric) Kolmogorov-Smirnov test being particularly
effective here, especially when one has to deal with the small-sample cases
for the "rare-event" portion of the PD (and pdf); [Middleton, 1969], [Plemons
et al, 1972].

6.0 Principal Results and Comments
The central purpose of this study has been to provide methods for deter-

mining the parameters of the approximate and exact analytic (first-order) mo-
dels of Class A and B noise, and to indicate procedures for determining the
accuracy of parameter estimates in the practical situation when only finite
data samples are obtainable. The principal new results of this study may be

summarized concisely:

(1). We have shown how to determine precisely the basic (first-order) param-
eters of the approximating Class A model, in the ideal, Timiting case
of infinite (homogeneous) data populations, where in principle the
analytic and empirical models are equivalent [cf. Secs. 2, 3.1, 4.1].
[The basic parameters for the approximate Class A models areifg =
(QZA,AA,PA)]. However, it is possible to obtain only approximate
values of the basic parameters‘?% = (QZB’AB’Fé’“’bla’NI) in the
Class B cases, [except for 2op which can be precisely determined
ideally].
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(2). We have also shown how to determine in principle all the (first-order)
parameters of the exact Class A models, and all the (even, first-
order) moments of the excat Class B models, in the ideal limiting
case of infinite data populations, in addition to the basic param-
eters noted above in (1). These are {QZk,A}’ cf. (3.11);
ok B2 cf. (4.7); and {b2k,a}’ (4.19), k>2, cf. Secs. 3.1, 4.1.

(3). In the case of Class A models, we have obtained explicit approximate
results for the three basic parameters f% = (QZA,AA,FA), in terms of
the first three even moments of the envelope, cf. Sec. 3.2:fAprnendix A-17.

(4). We have demonstrated various alternative, approximate methods of param-
eter determination in Class B cases, cf. Sec. 4.1. Even if an empiri-
cal "turning-point" datum, EB, is not available, it is still possible

to obtain all (first-order) model parameters to good approximation
[Appendix A-17.

(5). We have indicated procedures for estimating parameter values in the
practical situation of finite data samples [Sec. 5]. Various sta-
tistics, e.g., the variance, of sample moment estimates can be useful
here. But, because of bias, dependence on sample size, and partic-
ularly the complexity of the parameter estimates' dependence on the
data set (5h,gn), it is necessary, and natural, to employ suitable
"goodness-of-fit" tests. The parameter estimates (as determined above
in (1) - (4)) regarded as the "true" values, are used therein to
obtain probability measures of the accuracy, or more precisely, the
acceptability with a given statistical control (choice of s the sig-
nificance level of the test), of the parameter estimates, cf. Sec. (5.1).

In dealing with the crucial, i.e. small-probability or "rare-event" region
of the PD (or pdf) where much of the distinguishing nongaussian character of
man-made and natural noise phenomena appear, we must usually employ small-
sample statistical methods, e.g. Kolmogorov-Smirnov tests, etc.. since data
are often relatively limited here, in order to avoid encountering possible
lack of stability in the data source itself: too long periods of observation
can lead to the acquisition of inhomogeneous data [cf. (5.4), and Sec. (5.2)].
The general procedure for judging the accuracy, robustness, and stability
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of the parameter estimates, as outlined in Secs. 5.1, 5.2, are:

(i). First, validate the data, cf. (5.4), i.e., establish independence
and homogeneity of the data sample.

(ii).  Second, use suitable "goodness-of-fit" tests (Kolmogorov-Smirnov,
~etc.), with the sample estimates, to determine whether or not the
analytic model, with these empirical estimates, acceptably (i.e.
with choice of significance level, a&"fits" the empirical PD (or
pdf).

(iii). Third, for robustness (or its lack), vary the parameters in the
analytic model, e.g., AA-+ AA+dAA’ etc., computationally to deter-
mine the extent of change in the PD (and pdf), with particular
attention, of course, to the nongaussian regions.

(iv).  Fourth, stability (data homogeneity) is established in the course
of (1), validating the data. An important question here is how
Tong is the period before instability noticeably sets in. (This
will depend, of course, on the specific physical interference
mechanisms involved, e.g., automobiles, mobile communications, etc.,
and their usage periods.)

Finally, further questions clearly remain: (1), the specific, quantitative
application of the results and procedures described here to empirical data;
(2), the further development of an estimation and sample statistics theory
based explicitly on these Class A and B models; (3), the possibility of a
tractable theory of optimum estimation (along the lines discussed in Chapter

21 [Middleton, 1969], .Chapter 3 [Middleton, 1965], for example); (4) empirical
examination of the robustness and stability questions, in applications,

and so on. Subsequent studies in this series [Middleton, [1]-[5]] will address
one or more or these problems, as the work develops.
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Appendix A-I:

SOME PRELIMINARY PROCEDURES FOR INITIAL ESTIMATION
OF THE PARAMETERS OF THE NOISE MODEL

Frequently (usually for Class B noise) a "mesh" or curve-fitting pro-
cedure involving parameter search and localization based on the rationales
described in Egs. 3.8, 3.9 for Class A, and Egs. (4.15), (4.18), (4.20)-
(4.22) for Class B noise, must ultimately be used in practise to establish
parameter values. Nevertheless, it is possible to obtain reasonably ac-
curate "ball-park", or "start-up", values of these parameters if we take
advantage of a variety of (computationally) empirical observations, which
we shall describe briefly below. These observations are fairly complete
and direct for Class A interference, and not so direct or complete in the
Class B cases. However, in both instances they offer useful starting pro-
cedures, which can very considerably reduce the labor of parameter estima-
tion, particularly entailed, for example, in the various "joining" proce-
dures required for the double approximations of Class B.

A.1 Preliminary Procedures for Parameter Estimation of Class A Noise:

A direct procedure based on the first three even moments of the envelope,
according to (3.14), provides explicit, approximate estimates of 7§A =
(AA’FA’QZA)' The basic approximation here is (3.12), which can be shown
to be equivalent to calculating the (even) moments <E2n>A using the

approximate pdf:

m -Ezag/ZaﬁA
dP-I . -AA o AAE e

= ik 2 ;.2
o|E,=E =0 m!(opa/ay)

B W1(E)A-approx
2

al = (20, (1+13)17",

(A.1-1)
derived from (3.7). The result is

-A Am
A ,,°2 \n
— (ZOmA) . (A.1-2)

A o
2n « nle
(ET), = ]
A 2n 0 m!
aA m=0
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which yields (3.13), n > 1, since the resulting series (in m) are readily
found with the help of

k m

E = = (R L 4«

m
dyk § A
m=0 AdAp™ o ™

= (A —2;)" e M. (A.1-3)

One useful check on the resulting numerical values in (3.13), where
the <E2k>xpt are empirical, is first to obtain 7% = (AA,TA,QZA) from (3.13),
and then to compute (E), (E3>, (E5>, etc. using Wl(E)A-approx.’ (A.1-1),
with these 1%. These results, in turn, are compared with <E>xpt 5 <E3)xpt ,

<E5> — etc., obtained from the empirical envelope data. Analytically
we have from (A.1-1)

s AN
-A, (2n+1) 1w v A 1,2 \n+1/2
2n+ly - A — (25-,) s 0> 0, (A.1-4)
(E777) =e " oontT a§n+1 no mE U mA &
which becomes specifically
m
- - NN T
(n=0): (Ey sL e M J b (207, ) /2 (A.1-4a)
A m=0
3. 38 M2 M 3
(n=1): (E7)= 5 e L =1 (200,075, (A.1-4b)
b m
4aA m=0
/— -A © Am ~
(n=2): (%217 o A ¢ A (552 )5/2 | oc, (A.1-4c)
5 oA m mA
8aA m=0
One natural criterion of accuracy here is
2n+1
2n+2. 2n+2

2nt] 2n+]
|CE >approx—ana1yt." (E >xpt |/<E / xpt :_Bn(<<1), (A.1-5)

when we may say that values of 7% determined from (3.13) are "good" ap-
proximations to the true values as long as Bn is "small" in some sense,
usually vis-a-vis unity, cf. (A.1-5). Of course, as n increases, the



accuracy of our estimates decreases, since (3.7) becomes progressively
cruder as n becomes larger.

Another useful procedure, which gives quick estimates once (Ez)xpt
and the PD, P], have been determined from the data, is to use the empirical
observation (from both computation and experiment) that when AA is 0(0.5 or

less), then AA is approximately
AA = P1 at point where sharn rise in P]_A VS. £, occurs. (A.1-6a)

cf. Fig. (2.1), (2.2), (3.2)II of Ref. 1. For 0.1'5_AA < 0.6 (approx.) one
should pick the ordinate (for P]) where the departure from the (straight-
line) rayleigh portion of the curve begins to occur, cf. Fig. (3.2)II. For
AA < 0.1, it is the point (i.e. value of P]-A) at which the sharp "rise"

in Eo vs. P, takes place. An empirical form of (A.1-6a) is

Ay 2 107° = P ("jump"), b < 0.1, (A.1-6b)
Similar observation for FA can be made: at the point where P]A de-
parts (observably) from its straight line, rayleigh behavior, the abscissa
(€o) value yields a good approximation of FA(db). Coupling this with
2 g ' . .
(E >xpt = 20,,(1+T}) then gives us directly

(FA)empir = <E2>xpt/292A'1 (>0) , 1y <0(1) . (A.1-7)

In this way we obtain from <E2>xpt and P]-xpt
up" values of 7%A, as long as the noise is reasonably nongaussian, i.e.
AA < 0(0.6), PA < 0(10). These results remain to be compared with the

parameters obtained from (3.14), according to the procedures outlined above.

what are quite good "start-

A.2 Preliminary Procedures for Parameter Estimation of Class B Noise:

The "start-up" situation for initial parameter estimation in the
case of Class B interference is not so direct, however, as in the Class A
cases. This stems basically from the fact that two approximating PD's
(and c.f.'s and pdf's) are required for an effective (quantitative)
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description of the first-order statistics (cf. Sec. 4 earlier). A moment
approach 1ike that of Sec. 3.2 leading to explicit relations 1ike (3.14),
is not analytically direct. In addition, there are now six parameters,
Y%B = [AB’Fé’QZB’a’b1a’NI]’ [cf. Sec. 4, (4.1), rather than the three
‘1§A (=AA,PA,92A) specifying Class A interference. Nevertheless, with
<E2>xpt and the PD [=(P1)xpt]’ and the following empirical observations,
we can obtain acceptable "start-up" or initial values, of the defining param-
eters, before using the mesh or curve-fitting technique, based on an appro-
priate set of precomputed PD's which employ parameter values in the neigh-
borhood of the initial estimates.

Let us briefly indicate the procedure, when the bend-over point EB

is empirically known:

(). Pé,QZB:

(49). Az

Here we use the observation, similar to the Class A cases
(cf. A.1-7), that Pé
envelope threshold &; is normalized by <E2>xpt)’ by the

abscissa (80 in db) corresponding to the point on the PD

is quite closely determined when the

where the PD begins to depart from rayleigh. For example,
we note from Figs. 2.5, Ref. 1; [and from Figs. 2.6, 2.8,
Ref. 2, as well as Fig. 2.4, Ref. 1, where now one must
use the actual normalization factors therein to correct to
a normalization based on (E?}Xpt], that Fé = =22 db
(% 8-1073).

Having estimated Fé, we next use

g = (E%),pt/2014T3) (A.1-8)

to get the estimate of 2p- Note that when the amount of
gaussian component is small, as is usual for moderately
to highly nongaussian interference environment, e.qg.

ré << 1), the effect of missestimation of TA is negligible
on Q5.

To estimate the structure factor, or impulsive index, AB’
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we see here, also, that an empirical relation similar to
(A.1-6a,b) holds, provided we choose as the defining
ordinate (P1B) that which coincides with the turn-over point
Eg- [In conjunction with our previous observation, (A.1-6),
on Class A noise, this is suggested by the fact that a

Class A form is used for P, o ;;» cf. Sec. 4 above, and

Sec. 3.2.1, Fig. 3.5(II) of Ref. 1.] Thus,we have here

v

Ag = P1(Eo EB) (A.1-9)
for a reasonable "start-up" value. Again, Figs. 2.4, 2.5

(Ref. 1) and others, bear this out consistently.

(iii). a: the spatial density-propagation parameter o [cf. (5),
Sec. 2.3, (2.37), Ref. 1], (0 < o < 2), is more elusive.
However, we recall that o is one of the "shape" or form
parameters: larger o's (>0(1)) lead to more gradual rises
to the bend-over point &g, [cf. Figs. 2.4, 2.5; also Figs.
3.3, 3.4, Ref. 1]. We may then expect that some measure
of the slope of P]-B (vs. Eo) may yield an estimate of a.
This indeed turns out to be the case: we have found that
the relation

@ 2{[P,(€2€=E;), in db]-[P, (€2€,=0db), in db]3A-10)(db),

(A.1-10)
gives a surprisingly accurate estimate, within 0(10%).
Again, this has been tested on the results of Figs. 2.4, 2.5

2.5 (Ref. 1), and the calculated P]-B of Ref. 2. (Sec. 3).

(iv). Gyt With Tg, Ag, and o in hand [(1)-(ii1)], the resulting
o estimate of the scaling factor GB is readily made from the
relation
= 1rfho 1)31/2 -
Gy = l(5 +Tg)/ (1415)} . (A.1-11)
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(vi).

(vii).

A, or
o

Fb'loc):

€ net

known :

There remains the basic parameter b}

Our reason for determining GB’ which is not an independent,
or basic, parameter of the defining set 7%8’ stems from
its relation to the normalization € = EO(NI/ZGB), used
for Py_p_1» for the small and intermediate values of &>
cf. (4.10), (4.10a). Accordingly, from the experimental
PDs P

1-B-1°

we seek the N/2G, (D5') factor which aligns the theore-

. 2 162 3 o s e
tical Py_;p = 1-€5 with P]-xpt as £ (€)) » 0. This is

done by inspection, and thus we may use

N

- ~]
i ZGBDB > | (A.1-12)

where GB is estimated from (A.1-11), to obtain the desired
estimate of the scaling factor NI'

[or{EgB>, cf. (4.10a),
since by = T(]—a/2)<(é08//§)a>°2a %-]P(1+u/2), Eq. (2.38a),

Ref. 1.], or A, = 2“b]aa§AB, cf. (3.§a) Ref. 1. For these

we use the expansion of (4.10) when € = 0, e.9.,

A ]—(P )
A2 [1- A21 xpt (A.1-13)
£
0

1
] I'('|+OL/27 (>0),

where éo = ébDé] is given above by the procedure leading
: . 2 :
to (A.1-12), with g = E0/<E )B-xpt® 25 before. Since

A = A /2%, (A.1-14)

c.f.(4.10a), and we have found o, GB above, we now have the
desired estimate of Aa, from A, (A.1-12), which in turn,

can give us b]a.

Finally, when EB is unavailable, we can get DB’ A from
(A.1-12,13). For estimates of the other parameters (a,
Fé, AB’ QZB) the most direct procedure is to postulate a
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bend-over point EB’ and proceed as in (i)-(v) above.
Noticeable error can be involved, however, so that curve-
fitting should be invoked, to establish better estimates.

This completes the preliminary estimation procedure for the Class B
parameters, giving us reasonably close estimates about which the more re-
fined comparisons with computed PD's enable us to select more precise values,
if needed. [It should be noted that the paramters of the theoretical com-
parisons with experiment, Refs. 1 and 2 were obtained originally by a curve-
fitting comparison with calculations using a mesh of parameter values, and
some of the "empirical" insights described above here.]

A.3 Remarks on Degree of "Nongaussianness":

In addition to providing us with comparatively quickly determined
parameter estimates, these quasi-empirical procedures give a good indica-
tion of the extent to which the nongaussian character of the interference
is related to the values of the basic parameters 7%A’ /%B. 0f course,
given an experimental PD the nongaussian effect is at once generally apparent
by the extent to which the "rare events" depart from the (rayleigh, or gauss)
line, and where, i.e. at what value of P], this occurs. In more detail,
however, the parameter estimates help quantify this effect:

For Class A noise, a significant nongauss character is exhibited if
FA < 1 and the Impulsive Index, AA is reasonably small, e.q. AA < Bads
say. A highly nongaussian nature is exhibited if A, is O(]O-]) or less
and FA < 0.1: as expected, there is Tittle gauss component and the non-
gaussian portion is highly -structured (small AA).

Similarly, for Class B noise, its character will be strongly non-
gaussian if Ag (or Aa, A) is small, 0(1) or less, and Fé is likewise small,
0(§j0']). Small o (0 < o < 1) leads to a sharper rise (in Eb Vs P], &t
Fig. 2.4, Ref. 1, for example) than does larger o (1 < a < 2), cf. Fig.

2.5, Ref. 1, but does not appear to affect strongly the degree of non-

gaussianness, which is primarily established by AB (or Aa, ﬂ) and Fé.
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Glossary of Principal Symbols

= peak amplitude of tppical input signal

= Impulsive Indexes, (Class A,B interference)

= effective Impulsive Index (Class B)

= normalizing factors

= a posteriori probability; here 1-Distribution=P1
= combined aperture-RF-IF receiver input stages

= source, receiver beam patterns

= gpatial density-propagation parameter

= significance level of test of hypothesis,

Hys (type I error probability)

= generic or typical envelope of waveform from ARI
receiver stage

A

= weighted moments of the generic envelope BOB
= characteristic function

= probability distribution
= delta (singular) function

= instantaneous envelope
= limiting receiver voltage

= normalized (instantaneous) envelopes; £o=enve1ope
threshold

= "bend-over" point (Class B), empirical pt. of
inflexion in P, _p

=E - (B>

= characteristic functions

= confluent hypergeometric function
= noise, receiver bandwidths

= frequency
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G = a basic waveform

g(r) = geometrical factor of received waveform
p't}' = ratio of (intensity of) gaussian component
A*"B to that of the "impulsive", or nongaussian

component

r(x) = gamma function

v(Y]X) = estimator of Y, given X.

iT’f = exponent of characteristic function

IC = incomplete T-function

i = unit vector

Jo’ = Bessel functions, 1st-kind, (0 order).

A = domain of integration

A = argument of the c.f.

A = (x,0,¢), coordinates

n.b. = narrow-band

Ny = scaling parameter

20298 = mean intensity of the nongaussian component

Wswy = angular frequencies (w0=carrier angular fr.)

221,A,B = scale parameters of Class A,B models

P1,P1,P1_I’II = APD or exceedance probabilities

pdf = probability density function

" . 2 _ :
050439500 Bs80Gs0,50p,0p = variances



t,t],t2
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times
sets of waveform parameters

probability density functions

instantaneous amplitude

a normalized time
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