NTIA Report 93-293

Wideband HF Noise/Interference
Modeling Part Il: Higher-Order
Statistics

John J. Lemmon
Christopher J. Behm

U.S. DEPARTMENT OF COMMERCE
Barbara Hackman Franklin, Secretary

Gregory F. Chapados, Assistant Secretary
for Communications and Information

January 1993






CONTENTS

Page

LIST CIFPROUIREES . . ...« oo s e e i ommeu s smsmssss ssvirsmmss)nsessss iv
LIST OF TABLES . . . . .. e e e e e e e viii
ABSTRACT v incn o @ ibo@eness RIiRIBIEIRiborEI i menNsinsmsasmsn i 1
1. INTRODUCTION . . . e e e e e e e e e 1
1.1 Background . . ... . ... 1

12 Noisefinterference MOGE]l ... :vsv i cm iz ms @ st i s s it dmibnnme 2

I3 SOOPE scnairsimpnemimiamiTsSnmis s m WIS EGHEEEFITHEE 60 3

2, AUTOCORRELATION FUNCTIONS . . . ... e e 7
2.1 Calculation of the Autocorrelation Function . ...................... 7

2.2 Comparisons of Model with Measurements . ..................... 10

. DISTRIBUTIONS OF ENVELOPE LEVEL CROSSINGS ................. 4]
3.1  Pulse Width and Pulse Spacing Distributions .. ................... 42

3.2 Comparisons of Model With Measurements . ..................... 81

4. SUMMARY AND CONCLUSIONS . . c.iveieienssosmsvasniinasnssss 84
5. ACKNOWLEDGMENTS . . .. e e e e e e 86
6. REFEREBINCES ;o vsoncmimeses im0 cmsmah oo s smanissdnsdisedioness 87
7S 2 G T I T 91

111



Figure 1.

Figure 2.

Figure 3.
Figure 4.

Figure 5.

Figure 6.
Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.
Figure 14.

Figure 15.

LIST OF FIGURES

Page
I-channel data at 5936 MHz (case study 1) ...................... 13
Normalized autocorrelation function for (a) 0 < T <4ms, (b) 4 ms <1
< 8ms, (¢) 0.996 s <1< 1.0s,and (d) 1.0 s <1< 1.004 s (case
StUAY 1) .o e e s 14
Average power of measured noise/interference (case study 1) .. ........ 15
I-channel data at 1929 MHz (case study 2) ............ciivun.n 16
Normalized autocorrelation function for (a) 0 < T < 4ms, (b) 4ms < 1T
< 8ms, (¢) 0.996 s < 1 < 1.0s, and (d) 1.0 s < T < 1.004 s (case
SIS DY o o n s R P E M E R S Y A g gy g e e 17
Average power of measured noise/interference (case study 2) .......... 18
I-channel data at 13.666 MHz (case study 3) ..................... 19
Normalized autocorrelation function for (a) 0 < T < 4ms, (b) 4ms < 1
< 8ms, (c) 0.996s <1< 1.0s, and (d) 1.0 s < T < 1.004 s (case
BUAYE FY © o eoocoimio v o s mim m cm o m i n ks B A A B Rd 6§ Bk S S S 20
Average power of measured noise/interference (case study 3) ......... 21
Power spectrum of measured noise/interference on a scale from 0 to
128 kHz (case study 3) . ... vttt it e e e 23
I-channel data at 13.666 MHz (case study 4) ..................... 25
Normalized autocorrelation function for (a) 0 < T < 4ms, (b) dms <t
< 8ms, (¢) 0.996 s <t < 1.0s, and (d) 1.0s < T < 1.004 s (case
SOV RY ., i s mrn e me i G R RS SRR B S 26
Average power of measured noise/interference (case study 4) .. ........ 27
I-channel data at 23.862 MHz (case study 5) ..................... 28
Normalized autocorrelation function for (a) 0 < T < 4ms, (b) dms < 1
< 8ms, () 0.996s <t < 1.0s,and (d) 1.0 s <t < 1.004 s (case
SAY B) e e s R E R A e e Y a e e 29

iv



Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.
Figure 22.
Figure 23.

Figure 24.

Figure 25.

Figure 26.

Figure 27.

Figure 28.

List of Figures (cont.)

Page
Average power of measured noise/interference (case study 5) .......... 30
Normalized autocorrelation function of simulated noise/interference ... .. 31
(Gaussian noise and narrowband interferers)
Normalized autocorrelation function of simulated noise/interference .. ... 35
(Gaussian noise, narrowband interferers, and impulsive noise)
Power spectrum of simulated noise/interference over a bandwidth of
1024 MHZ . . ..ttt e e e e e e s 37
Power spectrum of simulated noise/interference on a scale from 0 to
2B ERRE o T m s ma e s W g e e s e s e e e e 38
I-channel data of simulated noise/interference . .................... 39
Normalized autocorrelation function of simulated noise/interference . . ... 40
Voltage envelope of measured noise/interference (case study 1) ........ 43
Pulse width distributions of measured noise/interference at thresholds of
(a) 0, (b) 10, (c) 20, (d) 30, (e) 40, () 50, (g) 70, and (h) 90
(onse SRV IY 2 oo miwmvie s als s samsms e s e nm s macewcameme s 44
Pulse spacing distributions of measured noise/interference at thresholds
of (a) 0, (b) 10, (c) 20, (d) 30, (e) 40, (f) 50, (g) 70, and (h) 90
(CH5E SHIAV' L) .. o cvnm s cm s b s i G B R ARG G AH RS 46
Voltage envelope of measured noise/interference (case study 2) ........ 48
Pulse width distributions of measured noise/interference at thresholds
of (a) 20, (b) 40, (c) 60, (d) 80, (e) 100, (f) 120, (g) 140, and (h) 160
(CHsE SWIAY'2) 53 cams v iR s ibLib RO MINEMIEN I N N Mm@ 49
Pulse spacing distributions of measured noise/interference at thresholds
of (a) 20, (b) 40, (c) 60, (d) 80, (e) 100, (f) 120, (g) 140, and (h) 160
(case Study 2) . ..ot e e 51



Figure 29.

Figure 30.

Figure 31.

Figure 32.

Figure 33.

Figure 34.

Figure 35.

Figure 36.

Figure 37.

Figure 38.

Figure 39.

Figure 40.

Figure 41..

Figure 42.

List of Figures (cont.)

Voltage envelope of measured noise/interference (case study 3) ........ 53

Pulse width distributions of measured noise/interference at thresholds

of (a) 0, (b) 10, (c) 20, (d) 30, (e) 40, (f) 45 (case study 3) ........... 54
Pulse spacing distributions of measured noise/interference at thresholds

of (a) 0, (b) 10, (c) 20, (d) 30, (e) 40, and (f) 45 (case study 3) ........ 56
Voltage envelope of measured noise/interference (case study 4) ........ 58

Pulse width distributions of measured noise/interference at thresholds

of (a) 0, (b) 5, (c) 10, (d) 20, (e) 30, and (f) 40 (case study 4) ......... 59
Pulse spacing distributions of measured noise/interference at thresholds

of (a) 0, (b) 5, (c¢) 10, (d) 20, and (e) 30 (case study 4) . ............. 61
Voltage envelope of measured noise/interference (case study 5) ........ 62

Pulse width distributions of measured noise/interference at thresholds

of (a) 0, (b) 5, (c) 10, (d) 25, and (e) 30 (case study 5) . ............. 63
Pulse spacing distributions of measured noise/interference at thresholds

of (a) 0, (b) 5, (c) 10, (d) 20, and (e) 30 (case study 5) .............. 64
Voltage envelope of measured noise/interference on a scale from 0 to 64 ms
CaSEBUAY B) ;i vus vanmimwemimos o aNEFEFEA DI RESEF E5 TS S S 65
Voltage envelope of simulated noise/interference . ................. 66

Pulse width distributions of simulated noise/interference at thresholds

of (a) 0.5 (b) 10, (c) 20, (d) 30, (e) 40, (f) 50, (g) 70, and (h) 80 ....... 67
Pulse spacing distributions of simulated noise/interference at thresholds

of (a) 0, (b) 10, (c) 20, (d) 30, (e) 40, (f) 50, (g) 70, and (h) 80 ........ 69
Voltage envelope of simulated noise/interference .................. 71

vi



Figure 43.

Figure 44.

Figure 45.

Figure 46.

List of Figures (cont.)

Pulse width distributions of simulated noise/interference at thresholds
of (a) 0.5, (b) 5, (c) 10, (d) 15, (e) 20, (f) 25, (g) 30, and (h) 40 .......

Pulse spacing distributions of simulated noise/interference at thresholds
of (a) 0, (b) 5, (c) 10, (d) 15, (e) 20, (f) 25, (g) 30,and (h) 40 .........

Pulse width distributions of simulated noise/interference at thresholds
of (a) 0.5, (b) 5, (¢) 10, (d) 15, (e) 20, (f) 25, (g) 30,and (h) 40 .......

Pulse spacing distributions of simulated noise/interference at thresholds
of (@) 0, (b) 5, (c) 10, (d) 15, (e) 20, (f) 25, (g) 30, and (h) 40 .........

vil



Table 1.

Table 2.

Table 3.

Table A-1.

LIST OF TABLES

Page
Measurement Characteristics of Wideband HF Noise/Interference Records
Used in Case STAIES, o v viv oo v sm s siom o eis o s wisimn s s o 8 s & o e s 11
Parameters Used in the Simulation Model for Figures 17
and 39-41 . . L e e 33
Parameters Used in the Simulation Model for Figures 18
and 42-46 . . . . e e e e e 34
Measurement Characteristics of Wideband HF Noise/Interference
ReECOTAS . . ottt e e e e e 91

viil



WIDEBAND HF NOISE/INTERFERENCE MODELING
PART II: HIGHER ORDER STATISTICS

John J. Lemmon and Christopher J. Behm"

This report is the second in a series of reports which describe the
development of a wideband HF noise/interference model. The model is based on
measured data and is suitable for implementation in a wideband HF channel
simulator. The measured data, analyses of the first-order statistics of the data, and
a proposed noise/interference model based upon those analyses were discussed in
Part I of this series. The present report, Part II of the series, describes analyses
of selected higher-order statistics of the data: the autocorrelation function and
pulse width and pulse spacing distributions. Examples of these quantities
generated from the model are compared with measured data, and refinements of
the model based upon analyses of the higher-order statistics are discussed.

Key words: channel simulator; noise/interference; wideband HF

1. INTRODUCTION

1.1 Background

During the past several years interest in HF communication systems over wide bandwidths
(on the order of 1 MHz or more) has been revitalized. This resurgence of interest in wideband
HF has been motivated by the application of spread spectrum technology to HF systems and the
development of digital signal processing techniques which enable the development of HF systems
having far better performance than HF systems of only a few years ago.

In view of the numerous uncertainties concerning the performance of new communication
systems which have not been fielded and tested extensively, channel simulation is an attractive
approach for the evaluation of communication system performance. Channel simulation enables
the laboratory performance evaluation of communication systems without the cost and time of
building hardware and running extensive field tests. Other advantages of channel simulation,
including accuracy, repeatability, stationarity, availability, and parameter variation, have been

discussed by Hoffmeyer and Vogler (1987).

“The authors are with the Institute for Telecommunication Sciences, National Telecommunications
and Information Administration, U.S. Department of Commerce, Boulder, CO 80303-3328.



For a number of years, laboratory performance evaluations of narrowband HF
communication systems have been conducted using the channel model and channel simulation
techniques developed by Watterson et al.  Although this narrowband model and its
implementation in channel simulators has been widely reported in the literature (Watterson, 1981
and 1982; Watterson and Coon, 1962; Watterson et al., 1962 and 1970; CCIR, 1974; Ehrman
et al., 1982; Mooney, 1985; Girault et al., 1988; McRae and Perkins, 1988; LeRoux et al.,
1987), the model has only been validated for narrowband (less than 12 kHz) stable channels.

Motivated by the need for a wideband HF channel simulator, the Institute for
Telecommunication Sciences has undertaken the development of a wideband HF channel model.
The model is to be accurate over wide bandwidths (on the order of 1 MHz or more), validated
with measured data, and suitable for implementation in a wideband HF channel simulator. The
model is to include noise and interference, which can be quite severe in the HF band, as well as
a model of ionospheric skywave propagation.

The wideband propagation model and the implementation of the propagation and
noise/interference models in a real-time channel simulator have been discussed elsewhere (Vogler
et al., 1988; Vogler and Hoffmeyer, 1988 and 1990; Hoffmeyer and Vogler, 1990; Hoffmeyer
et al., 1991; Mastrangelo et al., 1991). The purpose of the present series of reports is to discuss

the development of a wideband HF noise/interference model.

1.2 Noise/Interference Model

In Part I of this series (Lemmon and Behm, 1991) a wideband HF noise/interference
model based on measured data was presented. It was pointed out that, in contrast to previously
developed models which attempt to describe statistical characteristics of the noise/interference,
the present model describes the noise/interference waveform itself, which is essential if the model
is to be used to simulate that waveform.

The measured data were obtained by the Mitre Corporation as part of its experimental
wideband HF communications program. The equipment used in the experiments was described
briefly in Part I and in more detail by Perry and Rifkin (1989). The data consist of 42 one-
second records of the digitized (sampled at 1.024 MHz), baseband, in-phase (I) and quadrature

(Q) components of the received noise/interference over an equivalent rf bandwidth of 800 kHz.
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The data were collected in March, 1989 in Bedford, MA at various times of day and at various
frequencies in the HF band (3-30 MHz). The times, dates, center frequencies of the data, and
the values of the variable attenuation used in the front-end of the receiver are listed in Table A-1
in the Appendix.

To analyze these data, software was developed to generate the following quantities:

plots of raw data (I and Q)

probability density function (pdf) of raw data

pdf of voltage envelope (¥ (1>+Q?))

pdf of power envelope (I*+Q?)

pdf of phase (tan"'Q/T)

cumulative distribution function (cdf) of power envelope

distribution of average level crossing rate of the voltage envelope

power spectrum ‘

cdf of power in the frequency domain (sum of the squares of the real and
imaginary parts of the complex Fourier transform of the raw data)

pdf of phase in the frequency domain (phase of the complex Fourier transform of

the raw data)
In addition, software was developed to perform the following functions:

frequency domain excision of narrowband interference

simulations of noise/interference

Using these analysis tools, a variety of case studies were conducted. Based on the results
of the case studies, it was proposed that the noise/interference can be represented as a sum of

three components:

Gaussian noise

Narrowband interferers (sine waves)

3



Impulsive noise (filtered delta functions)

The narrowband interference is presumably manmade, arising from numerous users of the HF
band. Broadband impulsive noise can be natural (atmospheric noise) or manmade. However,
as discussed in Section 3, the impulsive noise analyzed herein is assumed to be of manmade
origin, because the time durations of the noise bursts and the times between bursts are not
consistent with those of atmospheric noise.

If x(t) denotes the noise/interference signal at rf, and the in-phase and quadrature
components of the baseband signal are denoted by I(t) and Q(t), respectively, then x(t) can be

written as

x(t) = I(t)cos wyst + Q(t) sin w,t, (1)

where @, is the carrier frequency. The proposed noise/interference model describes the complex

baseband voltage,

z{£) =Tt} + 10}, (2)
by the expression
Ny ) Ny . B '
Z(t) = g(t) + E Aie”l(buit ’¢1) Y E Bj SlTIZTIB(t tj) elmotj‘ (3)
i=1 j=1 t_tj

where g(t) is a complex, zero-mean, white Gaussian process, A, are the baseband frequencies
of the sine waves (Aw;=w-w,), ,0, are random phases, B is the bandpass (in Hz) of the low-pass
filter in the HF receiver, t; are the arrival times of the (filtered) impulses, N; is the number of
narrowband interferers in the frequency band of interest, and N; is the number of impulses in the
time interval over which the noise/interference is being modeled. The frequency and phase
distributions of the narrowband interferers are uniform, and in Part I the arrival times t;, were also

uniformly distributed, although it will be shown in the present report that this is inadequate to



correctly model the higher-order statistics.

It remains to specify how the amplitudes A; and B; are distributed. In Part I it was
proposed that the pdf for the amplitudes A, be modeled by the amplitude pdf of a model
developed by Hall (1966):

(0,-1) y?\"l A

0] 0z’ (4)
(A2 + y3) %"

p(A) =

where 6, and 7y, are free parameters (with the constraint that 6, > 1, so that p(A) is
normalizable). It was also proposed in Part I that the amplitude distribution of the B; be
described by that of the Hall model for amplitudes which are less than some maximum value

B,..» and that the distribution be cut off for amplitudes greater than B,

1-6, &
0. /2 2016572 2 007z ' 0<B<B (5)
D(B) =1 (Bh,+y%) A0/ 24377 (BE4yy) ,

0, B>B

max

where 0y and vy are free parameters (with 8; > 1). The expression in the first line of (5) differs
from that in (4) because cutting off the distribution results in a different normalization constant.
The techniques used to generate amplitudes distributed according to (4) and (5), and to generate

the Gaussian noise, were discussed in Part I.

1.3 Scope
The model described above enables one to simulate noise/interference signals whose
statistical characteristics can be compared to those of measured data. Clearly, many such
characteristics could be examined. In Part I of this series, the first-order statistics were
investigated. These quantities characterize the time-averaged behavior of the noise/interference.
It was shown that, for appropriate values of the model parameters, the simulated

noise/interference has first-order statistics that closely resemble those of the measured data.



However, a complete characterization of the noise/interference requires investigation of
the higher-order statistics as well. These statistics are necessary to specify the relationships
between the noise/interference process at different instants in time. For example, it was shown
that the average numbers of level crossings of the voltage envelope per unit time of the simulated
noise/interference are in agreement with measured data, but it remains to investigate how these
envelope crossings are distributed in time.

In this report, selected higher-order statistics of the noise/interference are discussed. To

keep the analysis tractable, attention has been restricted to the following three quantities:

Autocorrelation functions
Pulse width distributions

Pulse spacing distributions

Autocorrelation functions are important because they define the time scales over which the
noise/interference becomes decorrelated and provide information about the time scales over which
the noise/interference processes vary. Pulse width and spacing distributions are useful for
detailed modeling of the noise/interference waveforms, especially impulsive noise. These
distributions provide information about the fine structure of the noise bursts, as well as

information about the nature of the correlations of the noise bursts in time.



2. AUTOCORRELATION FUNCTIONS

2.1 Calculation of the Autocorrelation Function
The autocorrelation function is of fundamental significance in characterizing a random
process because it specifies the degree to which the process is correlated at different instants in
time. For a general (nonstationary) complex-valued random process z(t), the autocorrelation

function ¥,(t,,t,) at times t, and t, is defined as (for example,see Cox and Miller, 1965):

yxx(tlttz) =E{x(t1)x(t2)}r (6)

where E{ }, the expected value, is defined as an ensemble average, and where * denotes the
complex conjugate.

For the case of a stationary process, Y(t,,t,) is not a function of t;, and t, separately, but
is a function of the time difference t=t,-t,. For the case of a stationary, ergodic process, the
ensemble average is equivalent to a time average so that the autocorrelation function, denoted

by R(7), can be defined as:

T
) = Jimt . (7)
R(7) lvr:-L-I-nT jo‘z (t)z(t+1)dt,

The noise/interference data to be analyzed consist of 42 one-second records that were
collected at various times of day and at various frequencies in the HF band. Thus, for a given
time and frequency, only one data record is available (not an ensemble of records), so that the
ensemble average in (6) cannot be computed. On the other hand, the expression in (7) cannot
be evaluated, because a record of infinite length is not available, and because the computational
effort would be prohibitive for arbitrarily large, but finite T. Moreover, the noise/interference
is generally nonstationary, so that the definition in (7) is not applicable. For example, Abraham

et al. (1989) investigated the nonstationarity of wideband (1 MHz) HF noise after interference



excision and found, using a standard statistical F-test, that average stationary time durations were
only on the order of 10 ms.

These difficulties are often encountered in the calculation of autocorrelation functions.
An alternative approach that is commonly used is to calculate the quantity R(t,T), defined as

T
R(t,T) = fz‘(t)z(t+-r)dt. (8)
(8]

H| P

For a stationary, ergodic process R(t,T) approaches y(t) as T approaches infinity. However, this
is not the case for a nonstationary process, and therefore R(t,T) is not a true autocorrelation
function in the strict sense, even as T approaches infinity. Nevertheless, R(t,T) is a useful
measure of the degree to which a random process is correlated with itself at different instants of
time, and this is the definition of the autocorrelation function used in this work.

An analytic expression for R(t,T) in the proposed noise/interference model can be
obtained by substituting (3) into (8). First consider R(0,T). The Gaussian noise, the narrowband
interferers, and the impulsive noise are uncorrelated with one another, and the Gaussian noise and
the narrowband interferers are zero-mean processes. Therefore, upon substituting (3) into (8),
the integrals of the cross-terms between the Gaussian noise and the narrowband interferers,
between the narrowband interferers and the impulsive noise, and between the Gaussian noise and
the impulsive noise vanish. Thus, R(0,T) is simply the sum of the average power of the Gaussian
noise, the narrowband interferers, and the impulsive noise. These integrals are easily performed,

and were discussed in Part I. The results are:

P, = 202 (9)

where ¢ is the variance of the real and imaginary parts of g(1),

Py = E Al (10)



and

2728 @
T E B2 (11)

Now consider R(t,T) for non-zero values of T. Again, the integrals of the cross-terms
between different components of the noise/interference vanish, leaving the sum of the
autocorrelation functions of the individual components.

The Gaussian noise is white; hence, its power spectrum is independent of frequency, and
its autocorrelation function (the inverse Fourier transform of the power spectrum) is a delta
function. Therefore, the autocorrelation function of the Gaussian noise vanishes for non-zero
values of. 7. ‘

The impulsive noise consists of filtered impulses which are localized, oscillatory functions
of time. Therefore, the only contributions to the autocorrelation function of the impulsive noise
arise at those values of T that equal the difference of the times of arrival of two distinct impulses.
Let two such impulses be labeled by a and b. Then the corresponding contribution to the

autocorrelation function is:

21";123 B Bbeiwo(tb_t') (12)

a

where the integral from O to T has been approximated by the integral from -e to +ee. If the
impulses arrive periodically in time, contributions of the form of (12) combine at values of T
which are integral multiples of the period. However, the arrival times of the impulses in the data
analyzed herein are not precisely periodic, and therefore contributions of the form of (12) do not
combine for non-zero t. Moreover, it was shown in Part I that accurate simulation of the data
containing impulsive noise required approximately 50 impulses over a duration of 4 ms. Thus,
if T is on the order of or greater than 4 ms (which it is in the examples below), contributions of
the form of (12) are expected to be small compared to the sum in (11). It was also shown in the

aforementioned simulation in Part I that the sum in (11) is itself approximately 11 dB less than



the contribution in (10) due to the narrowband interferers. Therefore the autocorrelation function
of the impulsive noise is expected to approximately vanish for non-zero T.
Finally, the autocorrelation function of the narrowband interferers is readily evaluated.

One has:

Ny
E AZg-isesr, (13)

i=1

where the integral over the cross-terms vanishes due to the orthogonality of sines and cosines of
different frequencies.
Combining results, the complete autocorrelation function of the noise/interference model

can be approximated as:

N N

= 2. 2T%B xR o2 N a2, -iAegr, (14)

R(%,T) = (20%+= Y B3, + ) Ale
j=1 i=1

where 8., is an impulse function, defined as:

b= g7 Teol" (15)

Thus, R(t,T) consists of an impulse at t=0, and the periodic function in (13) at non-zero values

of T.

2.2 Comparisons of Model with Measurements
In Part I of this series, the 42 noise/interference records were examined, and five records
were selected that were considered to be representative of the entire data base. Detailed case
studies (consisting of analyses of the first-order statistics) were performed on these five records.
The results of two of the case studies were compared with analyses of the first-order statistics
of simulated noise/interference for two particular sets of model parameters. A similar program

was carried out in the present work for the higher-order statistics. The times, dates, and center

10



frequencies for the five case studies are listed in Table 1. The autocorrelation function for each
of the five case studies was computed using (8). The integration time T was chosen to be 4 ms
(i.e., 4096 samples). For each case the autocorrelation function was computed for 0 <1 < 8 ms
and 0.996 s < 1 < 1.004 s, corresponding to two 8 ms windows of delay at the beginning and
end of each one-second record. Because one expects an impulse in R(t,T) at t=0, which is
difﬁéult to see on the plots, the autocorrelation functions were normalized so that R(0,T)=1.
Finally, because R(t,T) is complex, the absolute magnitudes of the normalized autocorrelation
functions have been plotted. Thus, the quantity which has been plotted in each case is |[R(1,T=4
ms)/R(0,T=4 ms)|.

To gain some insight into the nonstationarity of the noise/interference, the power (I*+Q?%)
has been plotted versus time for each of the 42 one-second records. The results are shown in the
Appendix. Each plot shows the power averaged over 1,024 consecutive samples (i.e., over 1 ms)
and plotted (in dB) versus time for the entire one-second record. The time scales on the
horizontal axes in these plots are therefore in units of ms. Thus, the "number of 1024 samples”
spans an interval of 1024, which corresponds to a time duration of 1.024 s. These plots reveal
that, over time intervals of 1 second, the received power is reasonably stationary in some cases,

but can be highly nonstationary in others.

Table 1. Measurement Characteristics of Wideband HF Noise/Interference Records Used
in Case Studies

Case Date Time - Center
Study (1989) (UT) Frequency
(MHz)
1 10 March 09:58:11 5.936
2 28 March 22:10:40 19.29
3 28 March 10:26:48 13.666
4 29 March 02:31:34 13.666
5 15 March 19:22:32 23.862

11



The I-channel data, the normalized autocorrelation function, and the average power for
the first case study are shown in Figures 1, 2, and 3, respectively. The time scales on the
horizontal axes in Figures 1 and 2 are in units of the sample time of the data, that is, 1/1.024
MHz. Thus, the "count” in Figure 1 spans an interval of 4096 samples, which corresponds to
a time duration of precisely 4 ms. Similarly, the "delay” in each of the plots in Figure 2 spans
an interval of 4096 samples, which corresponds to a range of T of preciscly 4 ms.

The I-channel data in Figure 1, plotted over the first 4 ms of the record, is typical of the
42 noise/interference records. The normalized autocorrelation function in Figure 2 is as expected:
a unit impulse at 1=0 followed by a periodic function of T. By the end of the one-second record
the autocorrelation function has changed slightly; this is an indication that the channel was not
precisely stationary over the duration of the record, as reflected in the average power plotted in
Figure 3.

Figures 4, 5, and 6 show the I-channel data, the normalized autocorrelation function, and
the average power, respectively, for the second case study. As in the first case study, the
autocorrelation function shows the expected behavior, but varies slightly by the end of the record,
due to a small degree of nonstationarity in the channel.

The Ichannel data, the normalized autocorrelation function, and the average power for
the third case study are plotted in Figures 7, 8, and 9, respectively. Whereas the autocorrelation
functions in the other four case studies consist of a rapidly oscillating, periodic function with a
well-defined envelope, the function in Figure 8 is neither rapidly oscillating nor periodic, at least
over time intervals of 8 ms or less. However, this behavior can easily be accounted for within
the proposed noise/interference model.

If the sum over narrowband interferers in (13) and (14) is dominated by a single term,
the magnitude of the autocorrelation function is a constant. If the channel is dominated by two
narrowband interferers with equal amplitudes and closely spaced in frequency, the resulting signal
(beating pattern) consists of a single carrier at the average frequency, amplitude modulated by
a sine wave of half the difference frequency. It is easy to show that the magnitude of the
resulting autocorrelation function is proportional to the magnitude of the autocorrelation function
of the slowly varying modulating function (a sine wave). More complicated modulating functions

can arise if additional pairs of narrowband interferers (with equal amplitudes) beat against one

12
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another, such that the average frequency of each pair is the same (so that the resulting signal

consists of a single amplitude-modulated carrier).

To take a specific example, consider pairs of narrowband interferers with no random
additive phases, distributed symmetrically in amplitude and frequency about some center
frequency. The complex baseband signal can be written as:

Z(t) - E Ai(e-i(ABo"ai)t+e'i(Am°*61)t)' (16)
i

where Aw, is the center frequency. Substituting (16) into (8) and carrying out the necessary
integrations, one finds:

R(t,T) = 2 1Aw" Y Afcosd;t. (17)
i

Although the expression in (17) is periodic, the period is large if the lowest common multiple
of the periods of the cosine waves is large.

To verify that this type of scenario is applicable to the present case study, the power
spectrum calculated from the first 4 ms of the data was examined. The power in the channel
is indeed dominated by a cluster of narrowband interferers closely spaced in frequency and
centered at approximately 65 kHz (baseband). The power spectrum is plotted on an expanded
scale from 0 to 128 kHz in Figure 10. The horizontal scale is in units of 250 Hz, because the
spectrum was calculated from 4 ms of data. The frequencies of the four strongest interferers
appear to be distributed approximately symmetrically about the center of the cluster. It is
difficult to determine whether the amplitudes of the dominant interferers are distributed
symmetricaly about the center of the cluster, due to the presence of the background noise;
however, the structure of the I-channel data (which resembles a single carrier with amplitude
modulation) and the autocorrelation function (which is essentially devoid of rapid oscillations)

strongly suggest that this is the case.
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The I-channel data, the normalized autocorrelation function, and the average power for
the fourth case study are shown in Figures 11, 12, and 13, respectively. As discussed in Part I,
the noise/interference in this case is dominated by a single narrowband interferer. Thus, one
expects the sum over narrowband interferers in (13) and (14) to be dominated by a single term,
so that the magnitude of the autocorrelation function is approximately constant. As can be seen
in Figure 12, the magnitude of the autocorrelation function is approximately constant over the
first 8 ms, with small periodic oscillations. By the end of the record, the magnitude of the
autocorrelation function has increased and is varying, although the structure and magnitude of
the oscillations appears unchanged, indicating that the power of the dominant interferer has
increased and is varying, whereas the power of the interferers responsible for the oscillations in
the autocorrelation function have remained relatively stationary. Figure 13 reveals that the total
power in the channel did indeed become oscillatory approximately half way through the record.

Figures 14, 15, and 16 show the I-channel data, the normalized autocorrelation function,
and the average power, respectively, for the fifth case study. In this case the noise/interference
includes impulsive noise in addition to narrowband interferers, as can be seen in Figure 14.
However, the nature of the autocorrelation function (an impulse at 1=0 followed by a periodic
oscillatory function) is similar to the other case studies. This is because, as explained above, the
impulses are narrow and do not arrive precisely periodically in time. The autocorrelaton
function in Figure 15 appears to change only slightly by the end of the record, indicating a
relatively stationary channel. This is consistent with Figure 16, which shows that the fluctuations
of the average power remain relatively stationary over the duration of the record, except for a
noise burst approximately three fourths of the way through the record.

Based upon the case studies, it appears that the measured data have autocorrelation
functions whose characteristics are well-described by (14) (with the exception of nonstationarity).
Although (14) is also expected to correspond to the autocorrelation functions of the proposed
noise/interference model, it remains to show that the simulated autocorrelation functions closely
resemble those of the measured data. To venfy this, a variety of simulations were conducted,
both with and without impulsive noise.

Figure 17 shows plots of the magnitude of the normalized autocorrelation functions for

simulated noise/interference consisting of Gaussian noise and narrowband interferers. As was
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(c) 0.996s < 1< 1.0s, and (d) 1.0s < T < 1.004s (case study 4).
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threshold one expects the pulse width distribution to have relatively few events, with those events
occurring at relatively large widths. One also expects the pulse spacing distribution to have
extremely few, if any, events, with such events occurring at the minimum spacing (1 ps).

As the threshold is gradually increased from zero, one expects to encounter upgoing and
downgoing crossings more frequently, so that one expects the pulse width distribution to have
relatively more events, with these events occurring at relatively smaller widths. Similarly, one
expects the pulse spacing distribution to have numerous events (more than 0 or 1), with many
of these events occurring at spacings greater than the minimum spacing (1 us), because the
probability that the envelope exceeds the threshold begins to decrease.

As the threshold is increased further and approaches the upper edge of the envelope, the
probability that the envelope exceeds the threshold continues to decrease, and the number of
envelope crossings is also decreasing. One therefore expects the pulse width distribution to have
fewer events, with these events occurring at smaller widths. One also expects the pulse spacing
distribution to have fewer events, with these events occurring at larger spacings.

Finally, to the extent that the upper and lower halves of the envelope are symmetric about
the mean value of the envelope, one expects the pulse width and spacing distributions to exhibit
complementary behavior in the following sense. Consider two values of the threshold which are
symmetric about the mean value of the envelope; that is, the larger threshold exceeds the mean
value of the envelope by the same amount that the smaller threshold is less than the mean value
of the envelope. If the envelope is symmetric about its mean, one expects the distribution of
upgoing crossings at the upper threshold to be identical to the distribution of downgoing
crossings at the lower threshold, and vice versa. Thus, one expects the pulse spacing distribution
at the upper threshold to be identical to the pulse width distribution at the lower threshold, and
vice versa.

To varying degrees, all of these features are present in Figures 23 through 37. However,
the pulse width and spacing distributions are especially helpful for modeling the impulsive noise
in the fifth case study. For example, the pulse width distributions in Figure 36 at thresholds of
20 and 30 reveal numerous pulse widths between 2 and 10 us, whereas the base width of the
central lobe of an impulse filtered with a 400 kHz lowpass filter is 2.5 ps. A pulse width greater

than 2.5 ps can be achieved either by passing an impulse through a filter with a bandpass less
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of 2.5 ps, but whose times of arrival differ by less than 2.5 pus. However, the pulse spacing
distributions in Figure 37 at thresholds of 20 and 30 reveal numerous pulse spacings on the order
of or less than 10 ps, which is indicative of fine structure in the pulses, suggesting that the pulses
consist of superpositions of individual impulses. That this is the case can be seen in Figure 38,
which shows the voltage envelope for the fifth case study, plotted on an expanded scale between
0 and 64 ps. The pulse in the center of the plot consists of a superposition of two or more
filtered impulses.

The pulse spacing distributions in Figure 37 at thresholds of 20 and 30 also exhibit bumps
in the vicinity of 500 ps, which indicate that the pulses tend to occur periodically in time.
However, the fact that the bumps have finite widths and are not delta functions indicates that the
pulses are not precisely periodic, as discussed above. Thus, the level crossing distributions reveal
both fine structure and time correlations associated with impulsive noise, which should be taken
into account in the noise/interference model.

The level crossing distributions also indicate that the impulsive noise in the fifth case
study is not atmospheric noise. Lightning flashes contain one or more strokes whose pulse
widths are on the order of 100 microseconds, with spacings between strokes on the order of tens
of milliseconds (Uman, 1987). On the other hand, the level crossing distributions for the fifth
case study reveal pulse widths on the order of several microseconds and pulse spacings on the

order of half a millisecond.

3.2 Comparisons of Model with Measurements

To investigate the level crossing properties of the noise/intterference model, simulations
of one-second duration were performed, with and without impulsive noise. The noise/interference
in the first simulation, to be compared with the first case study, consists of Gaussian noise and
narrowband interferers, using the parameter values listed in Table 2. The first 4 ms of the
voltage envelope are plotted in Figure 39, and the pulse width and pulse spacing distributions
computed from the entire onc-sccénd record are shown in Figures 40 and 41, respectively.

The pulse width distribution at zero threshold has not been displayed in Figure 40 because

there are no occurrences of pulse widths at this threshold; as explained above, the occurrence
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of one or more events would require the I- and Q-channel voltages to simultaneously vanish at
two or more sample times, which is extremely unlikely. On the other hand, the pulse width
distributions of the measured data at zero threshold show numerous occurrences. This is because
the data were obtained using A/D converters with a finite resolution (finite number of bits).
Thus, values of the voltage envelope which are finite, but less than the resolution of the A/D
converters, are recorded as zero. Therefore, to make a meaningful comparison between the
measured and simulated distributions at small values of the threshold, the simulated distribution
has been computed for a small, but finite (0.5) value of the threshold. Aside from this caveat,
the general characteristics of the distributions computed from the measured data in the first case
study (Figures 24 and 25) and the simulated data appear very similar to one another.

The noise/interference in the second simulation, to be compared with the fifth case study,
consists of Gaussian noise, narrowband interferers, and impulsive noise using the parameter
values listed in Table 3. The impulses are uniformly distributed in time; that is, 50 impulses
are uniformly distributed in time within each 4 ms block of the simulation, resulting in a total
of 12,500 impulses in the entire one-second simulation. The first 4 ms of the voltage envelope
are plotted in Figure 42, and the pulse width and pulse spacing distributions computed from the
entire one-second record are shown in Figures 43 and 44, respectively. At the lower values of
the threshold (less than 20), the measured (Figures 36 and 37) and simulated distributions are
qualitatively similar. However, at the higher thresholds the pulse widths of the simulated data
are narrower than those of the measured data. The simulated pulse spacing distributions also fail
to reproduce the features of the measured distributions. For example, at a threshold of 30 the
simulated distribution does not have the pronounced tail that the measured distribution has at
small pulse spacings, and the bump in the simulated distribution in the vicinity of 500-1000 us
is much broader than it is in the measured distribution. This is not unexpected, since no attempt
was made to model the fine structure of the pulses by superimposing filtered impulses, and the
impulses were not correlated in time, but were uniformly distributed in time (within each 4 ms
block).

To rectify these deficiencies, noise/interference was simulated using the same parameter
values that were used in the previous example, but with the impulses correlated in time using the

following procedure. First, the impulses are distributed only within windows of 4 pus duration.
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The window that each impulse is placed within is chosen randomly from the total set of
windows, and within each window the distribution of arrival times is uniform. Second, the
spacing between the centers of the windows is a random variable uniformly distributed between
450 ps and 550 ps. Thus, the impulses occur in bursts which exhibit fine structure (with an
average of 6.25 impulses per burst), and the arrival times of the bursts are approximately (but
not precisely) periodic. As in the previous simulation, 50 impulses are distributed within each
4 ms block, resulting in a total of 12,500 impulses in the entire one-second simulation.

The resulting pulse width and pulse spacing distributions are shown in Figures 45 and 46,
respectively. The distributions in Figure 45 indicate that, relative to the previous example, the
pulse widths at high thresholds have been broadened (due to the superposition of filtered
impulses within the bursts). Also, the pulse spacing distributions at high thresholds in Figure 46
have a tail at small values of pulse spacing (due to the fine structure within the bursts), and the
bump in the vicinity of 500-1000 ps is narrower than in the previous example (due to the time
correlations of the bursts). Although the simulated distributions typically have fewer occurrences
associated with these features than do the measured distributions, these differences in the number
of occurrences could be removed by simulating the impulsive noise with a greater number of
impulses. One could also envisage a more sophisticated modeling of the arrival time distribution
of the impulses to more accurately reproduce the shapes of these features. However, the
examples demonstrate that the qualitative features in the measured distributions that cannot be
simulated using uniformly distributed times of arrival of the impulses can be simulated by

appropriately distributing the impulses in time.
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4. SUMMARY AND CONCLUSIONS

A simple model of wideband HF noise/interference has been developed, based on analyses
of measured data. In contrast to previously developed models, which provide descriptions of the
statistical characteristics of the noise/interference (for example, the amplitude probability
distribution), the present model describes the noise/interference waveform itself, and can therefore
be used to simulate the noise/interference process. The statistical characteristics of the process
have been investigated to guide the model development and to check the validity of the model.

In Part I of this series, the first-order statistics of the noise/interference were examined,
and it was shown that the quantities generated from the simulated data closely resemble the
corresponding measured quantities for a variety of measured data. Thus, the time-averaged
behavior of the amplitude and phase of the simulated noise/interference was shown to be
consistent with that of the measured data.

In the present report, certain higher-order statistics of the noise/interference have been
analyzed. =~ These analyses are necessary to investigate the relationships between the
noise/interference process at different instants in time. In particular, the autocorrelation function
and the pulse width and spacing distributions of the voltage envelope have been investigated.

An analytic expression for the autocorrelation function of the simulated noise/interference
was derived, and, using this expression for guidance, it was shown that the wide variety of
autocorrelation functions of the measured data can be simulated using the proposed model with
appropriate choices for the amplitudes and frequencies of the dominant narrowband interferers.
However, the nonstationarity of the noise/interference, which is evident in some of the measured
data, has not yet been incorporated into the model.

Pulse width and pulse spacing distributions were computed for both measured and
simulated noise/interference, and it was shown that, in the absence of impulsive noise, the
measured and simulated distributions are qualitatively similar. However, it was found that, in
the presence of impulsive noise, the model as previously formulated (with a uniform distribution
for the times of arrival of the impulses) does not generate all the observed features in the
measured distributions. Accordingly, the model was refined by developing a "bursty" distribution

for the times of arrival of the impulses, whereby the impulses are correlated in time. It was

84



shown that the refined model does indeed generate features in the distributions that are similar
to those in the measured distributions.

The comparisons of measured and simulated statistical quantities in this work (as well as
in Part I) are of a qualitative nature. Quantitative comparisons are difficult because one is
dealing with an infinite variety of waveforms generated by random processes. Ultimately, the
validity of any model for the simulation of noise/interference can only be established by
quantitative comparisons of radio performance using simulated and measured waveforms.

Conspicuously absent from the model development is the incorporation of a waveform
for wideband HF atmospheric noise. The development of such a waveform requires the analysis
of additional data containing atmospheric noise. However, the fact that the impulsive noise
investigated thus far can be modeled as a train of filtered impulses using an appropriate time of
arrival distribution suggests that atmospheric noise, as well as other manmade impulsive noise,
can also be modeled as a train of filtered impulses, appropriately distributed in time. The pulse
width and spacing distributions should enable one to model the distributions of times of arrival
in a manner analogous to the modeling of the impulsive noise discussed in the present work.

These investigations are currently under way and will be reported elsewhere.
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APPENDIX

Table 1 displays the measurement parameters that were used to obtain the
noise/interference records discussed in this report. Listed are the times, dates, center frequencies,
and values of the variable attenuation that were used to record these data. Each record is
identified by a record number. The following plots display the power (I>+Q?) versus time for
each of the records. Each plot shows the power averaged over 1,024 consecutive samples (i.e.,
over 1 ms) and plotted (in dB) versus time for the entire one-second record.

Table A-1. Measurement Characteristics of Wideband HF Noise/Interference Records
Record Date Time Center Variable
Number (1989) uTm) Frequency Attenuation

(MHz) (dB)
1 15 March 04:01:22 9.244 24
2 15 March 05:50:42 7.844 21
3 15 March 06:22:00 10.662 16
4 15 March 07:48:05 7.844 29
5 15 March 09:46:34 5.936 22
6 15 March 11:57:02 7.844 21
7 15 March 15:15:59 19.29 6
8 15 March 19:22:32 23.862 6
9 15 March 20:06:49 15.848 26 .
10 22 March 22:21:16 19.29 27
11 15 March 22:34:52 19.29 6
12 10 March 00:29:22 19.29 6
13 10 March 00:39:19 18.718 24
14 17 March 00:57:51 15.848 29
15 17 March 03:20:34 10.662 11
16 10 March 03:41:19 13.666 12
17 10 March 03:48:17 13.666 18
18 17 March 04:45:19 9.244 28

91




Table A-1. (Cont.)
Record Date Time Center Variable
Number (1989) (UuT) Frequency Attenuation

(MHz) (dB)
19 10 March 06:25:57 10.662 18
20 10 March 06:32:43 9.244 30
21 17 March 07:08:11 10.662 11
22 17 March 08:47:51 5.936 21
23 10 March 09:51:21 7.844 31
24 10 March 09:58:11 5.936 27
25 10 March 17:37:32 23.862 6
26 27 March 23:37:48 19.29 12
27 28 March 02:05:34 15.848 25
28 28 March 03:27:56 13.666 25
29 28 March 05:59:35 15.848 6
30 28 March 08:13:01 15.848 29
31 28 March 10:26:48 13.666 20
32 28 March 12:07:27 18.718 17
33 28 March 19:04:31 19.29 16
34 28 March 22:10:40 19.29 17
35 28 March 23:39:48 15.848 26
36 29 March 02:31:34 13.666 27
37 29 March 03:28:33 10.662 27
38 29 March 14:53:31 25.885 6
39 29 March 16:27:07 23.862 6
40 29 March 18:51:19 25.885 6
41 29 March 20:37:32 19.29 16
42 29 March 20:45:25 19.29 16
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