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A GENERAL THEORY OF RADIO
PROPAGATION: THROUGH:'& STRATIFIED ATMOSPHERE

George Hufford#¥

When wave propagation through a stratified atmosphere
is formulated in operator theoretic terms, it becomes evi-
dent- that the problem does not follow the guide of the usual
examples of mathematical physics. Nevertheless, such a
formulation is useful to reveal why many of the usual proce-
dures are valid and where they may be deficient. In parti-
cular, even if the refractivity profile is merely required
to belong to a general class of perhaps badly discontinuous
functions, the problem always has a well-behaved solution
that may be subjected to a modal analysis. On the other
hand, the resulting mode series converges neither rapidly
nor uniformly, and, as the asymptotic behavior of the modes
shows, one 1is advised to wuse that series only with
caution,

Key Words: Airy functions; contraction semi-groups; creeping wave modes;
modal analysis; radio wave propagation; stratified atmospheres;
wave guide modes; weak convergence

1. INTRODUCTION

The problem of electromagnetic propagation through a horizontally strati-
fied atmosphere has been extensively studied by a great many authors. Among
the first were the contributors to Kerr (Freehafer et al., 1951) in their
descriptions of efforts made during World War II to explain anomalous radar
returns. The following decade saw a flurry of activity marked especially by
publication of the books of Wait (1962) and Fock (1965). These summarize the
problems involved and the advances made in obtaining satisfactory solutions.
Subsequent work has been abstracted in the extensive bibliography of Arora and
Wait (1978); recent examples include the numerically oriented reports of
Pappert and Goodhart (1977) and of Marcus and Stuart (1981).

In most of these previous studies one encounters such words as "eigen-
values," "modes," and "orthogonality"--words that make one think of inner
products, Hilbert spaces, and self-adjoint transformations. - There are, how-

ever, two difficulties with these notions. First, despite the appearance of

¥The author is with the Institute for Telecommunication Sciences, National
Telecommunications and Information Administration, U. S. Department of
Commerce, Boulder, CO 80303 3328.



the Helmholtz equation, the problem is not a seif-adjoint one. The principal
reason for this is the radiation condition at infinity, which is an explicitly
nonreal condition. And second, it is difficult to see how Hilbert space can
enter at all since even the simple spherical wave eikr/r is not square-inte-
grable in 3-space. The situation here can be contrasted with the thecry of
cavities as described, e.g., by Jones (1964, Ch. 4). In that theory the
finiteness of a cavity (and the assumption of perfectly conducting walls)
gives rise to a satisfactorily self-adjoint problem, the solutions to which
have qualitative properties that are immediate consequences of this fact.

Despite the difficulties, there are functional analytic reasons for using
the above terms and it is our purpose here to explore these reasons using
modern operator theory. We believe that such an analysis will clarify many of
the mysteries of mode theory and that, indeed, we shall find some new and
useful results. Terminology and background for our approach may be found in
such texts as those of Stone (1932), Helmberg (1969), and Dunford and Schwartz
(1958, particularly Chapters 7 and 8).

Before proceeding to a particular problem, let us first recall how to
introduce Hilbert space and square-integrable functions into propagation

problems. We do this by the simple device of assuming that space is filled

with a small, but positive, conductivity. Using the time convention*e—lwt we
shall assume that the wave number is complex and has the form

where ko and § are both real and positive. An outgoing wave will then be
characterized by the property that it decreases to zero exponentially.

The problem we shall treat is that of propagation around a spherical
earth and through a horizontally stratified atmosphere. We use a formulation
that can be traced back to Fock (1965, Ch. 13). Although this formulation is
scalar and two-dimensional and an‘avowed approximation, its solutions are the
same as the usual approximations to the solution of the more physically
realistic problem.

We suppose a rectangular coordinate system in which x is the distance
along the path of propagation, y is transverse to the path, and z is the
altitude above the earth's surface. Then we seek a function ¢(x,z) that will

represent a component of the electromagnetic field and that satisfies



>
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22 _211< az-g + ikM(z)9, x>0, 250 (2)

where M is the modified refractivity
M(z) = N(z) + Yz. (3)
Here, N is the refractivity of the atmosphere (with an order of magnitude of
perhaps 1073) and Y (equal to about 157°10"7 m™! in the case of Earth) is the
curvature of the assumed earth.
In addition, we require that at the surface of the earth the field satis-

fies an impedance boundary condition
20(x,0) = -ikz¢(x,0), x>0 (4)

with Re(Z) 2 0, and that there be a "source function™ u(z) so that
$(0,2) = u(z), z > 0. (5)
The complex number Z is the "normalized surface impedance" and the condi-
tion that its real part is nonnegative implies the earth absorbs energy. Very
often it is desirable to allow Z to become infinite so that the boundary
condition becomes ¢(x,0) = O. Here; however, we shall, to simplify>our argu-
ments, assume that Z is always finite.
It will also be necessary to impose conditions on the refractivity N,
Now we do not want to exclude the case where N has a jump discontinuity--i.e.,
where there are atmospheric layers of different properties, one lying directly
above the other. ' Therefore, particularly since it will not harm our argu-
ments, we shall require only that N is a bounded measurable function. 1In
addition we assume that N is real and nonnegative with, say,
0 S N(z) SN, (6)

and that N vanishes identically at sufficiently great heights so that there
such that

N(z) = 0 for z > z, - (7)

a
These latter two requirements—-—-that N be nonnegative and that it vanish at

exists a height Z

sufficiently great heights—-—-are probably not crucial for the solution to the
problem. For example, it should be sufficient to say that at great heights
N(z) approaches zero rapidly enough. However, the two requirements seem
physically realistic and they introduce enough simplification in what follows

to warrant their retention.



Of course, the introduction of a possibly discontinuous N{z) means that
such equations as (2) must be understood to be valid only almost everywhere.
But this sort of qualification is always necessary when we are dealing with

spaces of integrable functions and we shall not mention the point again.
2. RESTATEMENT OF THE PROBLEM AND A FIRST SOLUTION

The only reason ¢ = 0 is not a solution to the problem described in (2),
(4), and (5) is the presence of the source function u in (5). Furthermore,
since the equations ére all linear in ¢, we expect the solution will be linear
in u. Indeed, we would expect that for each x > 0 the solution defines a
Function of z which is linear in u, and we would write ¢(x,z) = Txu(z) where
Ty is a linear operator that is presently unknown and whose discovery will
constitute the solution to the problem.

Adopting this approach, we note that each Ty carries functions of z into
functions of z. We must now specify what kind of functions we want to consi-
der., For this we choose the Hilbert space of square-integrable functions of z

defined on the interval [0, »). The inner product is the usual one given by
(u,v) = f: u(z)v¥*(z) dz (8)

where the star is used to denote the complex conjugate. The norm is then

defined by
ﬂuﬂ2 = (u,u) = fz |u(z)|?dz. (9)

Before continuing, let us note that the norm as thus defined has a useful
physical significance. Let us suppose that the original electromagnetic
problem involved vertically polarized waves and that the function ¢ was de-
fined so that the magnetic field has the component Hy = ¢eikx. Now the basic
premise on which are based the approximations leading to Fock's formulation
given above is that ¢ is slowly varying, particularly as compared with the
exponential. Thus, taking the .curl of the magnetic field and discarding the
derivatives of ¢ we find that the dominant component of the electric field
is Ez = -Zo¢eikx, where Z, is the intrinsic impedance of space. The corres-

ponding component of Poynting's vector is then Sx = ZO|¢|2 exp[-2Im(k)x], and



it follows that for each x the square-norm of ¢(x,z) is directly related to
the dominant part of the total flow of power across the vertical plane at x.

We can now restate our problem in operator theoretic terms. We seek a
family {Tx; x>0} of linear operators on the space of square-integrable func-

tions u such that for each u

d .
5§Txu = 1kATxu (10)
and
1im T u =u (11)
x>0+

where A is the unbounded operator defined, within its domain, by

Au(z) = —lEu"(z) + M(z)u(z) (12)

2k
the primes denoting differentiation with respect to z. The domain of A, which
we shall call D(A), is the set of functions on which A is defined. Its des-
cription is as important for the definition of A as:is the formula (12). It
consists of those functions u whose first derivatives are absolutely contin-
uous functions (i.e., functions that equal the integrals of their deriva-
tives), for which both u and Au are square-integrable, and for which
u'(o) + ikzu(0) = 0. (13)

As is usually the case in such operator theoretic formulations, the boundary
conditions have been incorporated into the definition of D(A). Note that the
condition at infinity has been taken care of by the simple requirement that u
be square-integrable., In the end, A is a "closed" lineaf operator whose
domain is a linear manifold that is dense in the space of all square-inte-
grable functions.

An equation such as (10) is sometimes called an "evolution"‘equation
since one can imagine watching the solution unfold as the distance x increas-
es. It is very much like a system of first order ordinary differential equa- -

tions, and one refers to the function u of (11) as the initial value. One
elkxA

even expects to be able to write Tx = , 1f only one can ascribe a meaning
to the exponential., 1In this same vein there is a second interpretation one
can give the operator T4+ When x and s are both positive: one imagines, as

the solution unfolds, stopping at the distance s to mark the solution and then



continuing on for a distance x using now the new initial value. Consequently,
one expects T, . = T,T,, and one speaks of the family {T,; x>0} as a one-

parameter semi-group (the inverse required to form a group is absent) of

transformations. If such is the case the operator ikA is called the infini-

tesimal generator of the semi-group.

Assuming the TX exist, there are some further preliminary remarks we can
make, In particular, consider the magnitudes of the Tx——i.e., the norms.
Because of (11) we would suppose that “Txu" > Ju] as x » o.

Fur thermore,

d 2
L

d
dx Ei(Txu’Txu)

(1kATxu,Txu) + (Txu,lkATXu) (14)

2 Re(ikATXu,TXu),

so that one expects the norm to be a smooth, continuously differentiable
function whose initial value is simply [ul.

Whether or not the T, exist, the expression Re(ikAu,u) is interesting in
its own right. It is a quadratic form in u that evidently represents the
additional power flow across a vertical plane that is over and above what we
have called the "dominant" component given by the square-norm itself. Inte-

grating by parts, we find that for any u in D(A)

(Au,u) = 70 =5 un(z) + M(z)u(z)] uk(z) dz

2K (15)

1 -
= —u'(z)u*(z) Io

S fmlu'lzdz + fm M|u|2 dz
2Kk 2k "0 °

Using the boundary conditions (since u is in D(A)), the first term here can be

replaced by (iZ/2k)|u(0)|2 and we find

Re(ikAu,u)

1 2 sin § [« 2 © 2
- — Re(Z)|u(0) - ——— u'| dz - k sin §
2 | | 2k J’ol | o jOMlul dz (16)

n

0,



where the inequality arises because of the restrictions on §, Z, and N. This
is an important inequality that we shall soon use to gbeat effectiveness, It
seems to say that as distance increases, power is always lost, both to the
ground and to the conductive atmosphere.

For now, we can note from (14) that if the T u exist, their norms are
always nonincreasing so that ﬂTXuﬂ < Ju} for all x > 0. The T, are "norm
decreasing." Recalling that the norm of a bounded linear operator is given
by |T] = sup |Tu/[u], we nave

It | <1, x > 0. (7
In trying to solve (10) one tool that comes to mind is the Laplace trans-

form. If we are given the T, we can then develop a second family of operators

o =-ikAx
R, = [ e T dx, (18)

where A may be complex. We would surely expect this integral to converge

whenever X is such that Re(ikA) > 0; indeed, from (17) there would follow

o, =ikAx ;
IR, < [ole | dx £ 1/Re(ik)) (19)
To obtain a more direct formula for RA we apply ikA to both sides of (18),
finding
. © ~-ikAx d
ikar, = [° e =T,
-ikAx o o —ikAx
- e T, |0+ ik [Te T dx (20}
= -1 + kAR,
whence
ikR, = (A - &) (21)

A
We are thus led to a scheme for finding the Ty: we first solve for. the

inverse operator in (21) as a function of A and then use the inverse Laplace
transformation. In pursuing this scheme it will be important to know for what
values of A the inverse operator does and does not exist; indeed, in the
general theory of operators this knowledge is of great help in characterizing
the operator A. Values of A for which the inverse in (21) exists and is a

bounded linear operator are said to belong to the resolvent set and in that




case ikRA is the resolvent of A. Other values of A--those for which the
inverse does not exist or is unbounded--comprise the spectrum of A.

According to the general theory in which A is any closed operator, the
resolvent set 1s an open subset of the complex plane and within it the resol-

vent is an analytic function of A. In particular, RA has a derivative

gKRA = —ikRi (22)

which we shall need later on.

At this point it is useful to introduce the adjoint A* of the operator
A. (Note that in our notation the star can mean either the adjoint of an
operator or the complex conjugate of a scalar. Note also that in (21) we have
used the scalar X to indicate the operator that simply multiplies a function
by A. Thus A¥ can denote an operator that is either the adjoint of X or the
product by the complex conjugate. Fortunately, the two are the same.) Since
A is unbounded, so also will be A¥, 1Its domain is given as the set of those
functions v for which (Au,v) is a bounded'linear functional as u varies
throughout D(A); and when v is such a function, A*¥v is defined by {(u,A¥v) =
(Au,v). Using the definition of A and integrating by parts twice, we find
that for any u in D(A)

(Au,v) = fm [—l~ u" + Mul] v¥ dz
0 2
2K
1 o o 1 LJ

= —=(u'v¥ - uv¥")| " + j ——uv¥"dz + f Muv*dz

2k2 o] o) 2k2 o) (23)
= —L5 w0 (v (0) - ik*z¥v(0))* + [Tu [—L5 v + MVI¥ dz

2k 2k *

Since the first term in this last expression is not bounded in u unless it
vanishes identically, it will follow that A¥ is the differential operator

given by

1
2k*

A*¥v(z) =

2V"(Z) + M(z)v(z) (24)

where the domain -D(A¥) is the class of all functions v with absolutely contin-
uous first derivatives, for which both v and A¥v are square-integrable, and

for which



v'(0) - ik*Z¥*v(0) = O. (25)

Comparing this with the definition of A, we note that A¥ is just the same
operator except that all coefficients and parametric values have been replaced
by their complex conjugates. One interesting way to say this is that the
problem adjoint to the original one is the same as the original except that
the opposite time convention is used. A consequence is that whatever we can
say about the characteristics of A will also be true of those of A¥* provided
all quantities involved are replaced by their complex conjugates,

With these preparations in hand we are already in a position to demon-
strate the existence of a solution to (10), our major technical tool being the
inequality (16). Suppose that A is any'complex number satisfying Re(iki)>O0.
We can then show that )\ is in the resolvent set. First, A - A is one-to-one;
for otherwise there would exist a function v # 0 such that (A - A)v = 0, But

then, because of (16),
Re(ikA)Hv"z = Re(ikAv,v) = Re(ikAv,v) £ 0, (26)

which is impossible. Second, the range of A - A is dense in the space of
square-integrable functions; for otherwise there would exist a function v # 0
such that ((A-A)u,v) = 0 for all u in D{A). But this would imply that v is in
D(A¥*) and that (A¥-A¥)v = 0. From our remarks concerning A¥ and complex
conjugates, this would in turn imply that (A-A)v* = 0, which we have already
seen is impossible. Thus (A—A)-1 exists and is defined on a dense linear
manifold. Finally, we must show it is bounded. Let u be in the range of

A-4, and let v be the unique function satisfying ik(A-A)v = u. Then again

because of (16)
Re(ikA) |v|? = Re(ikAv + u,v) s Re(u,v) < Ju] |v], (27)

so that |v] £ Juf/Re(ikAr). It follows that the correspondence of u with v

defines the bounded linear operator R, which satisfies (21) (and, incidental-

ly, also (19)) and is a one-to-one co?respondence of the entire space of
square-integrable functions with D(A).

Thus all of the lower half-plane defined by Re(ikl) > 0 lies within the
resolvent set and the resolvent satisfies the inequality (19). These are

exactly the requirements of the basic Hille-Yosida theorem concerning semi~



groups of operators (see Dunford and Schwartz, 1958, or Hille and Phillips,
1957). The consequences are that ikA is indeed the infinitesimal generator of
a semi-group {TX} and that (10), (11), and also (17) are satisfied} One minor
shortcoming here (which we shall emend shortly) is that we are assured that
Teu is in D(A) only when u is already in D(A)--thus (10) is assured only for u
in D(A).

From the general theory there are also available to us several ways to

represent the solution T,. These are all in terms of R, where X is in the

A
lower half-plane described above. 1In one of these representations we have
n\ " .n
(28)
: ikx, \-n
= HB O -

for each square-integrable u., The second formula here is merely a restatement
of the first using the definition in (21). The first formula imitates one of
the lesser known representations of the inverse Laplace transform, while the
second formula shows how T, may be interpreted as an exponential function.
These formulas are probably not very useful for computations, and we would
prefer the more standard representatién of the inverse transformation. There

are difficulties, but at this point we can say that when u is in D(A)

Tu=lin 55 [ e¥MRua (29)
trw t

where Ly is the straight line contour extending from —te—ia—io to te_ié-io

with 0>0. 1In general, the convergence here is very weak and the restriction

on u and the use of the Cauchy principal value are both necessary.

In passing, we might note that these results do not depend on the strict
inequalities Y > 0, § > 0. If either or both of these constants vanish, then
the inequality (16) remains valid and the existence of the T, as bounded
operators on Hilbert space safisfying (17) is still assured. We shall have
more to say about this later on. \

When § > 0 we can sharpen (16) somewhat and then obtain considerably

stronger results for the T,, Let t be a small positive or negative number;

then as in (16) we may write

10



Re(eiTikAu,u) = - % Re(e'2) |u(0)l2

_ sin (8-1)
2k
o

5 (30)
f; fu'lzdz - k sin(8+1) fo M]u|2dz.

Now the second and third terms here are still negative provided [TI < 8. The
first term is also nonpositive if either Z = 0 or |t| is small enough and
Re(Z) > 0. Even if Z is pure imaginary we can show that the expression above

is negative when |1| is small enough by using inequalities such as

: [u(O)l2 - f: ag-lu(z)[2 dz = -2 Re(u',u)

(31)

[7AY

2fur] Jul s Q) fur]® + x ful®

Then any tendency for the first term to be pbsitive will be cancelled out by

the other two terms. 1In short, we can always find a T > 0 such that
it,
Re(e” "ikAu,u) £ 0 (32)

whenever u is in D(A) and [t| < 1.

Let S be the sector in the complex A-plane that has its vertex at the
origin and that contains all A with —n-G—To < arg A < ‘6+TO. Then S subtends
an angle of = + 210 and contains the lower half-plane Re(igk))O within its
interior. Clearly, S defines the region within which Re(elTikA)>0 for
all 1, || < 1,+ Proceeding as we did before in developing the inequalities
(26) and (27), it is straightforward to show that S lies within the resolvent
set and that for any A in S | v

IR, [ s 17k a(x) (33)
where d(A) is the distance from the point A to the boundary of S.

Although we have enlarged the knowﬁ'part of the resolvent set only
slightly and although the inequality (33) is only a little stronger than (19),
the conséquences are striking. The Ty now form what is called an‘"analytiCal"
semi-group (see Hille and Phillips; 1958, Ch. 11) in which these operators can
be analytiéally continued into a pdrtion of the complex x-plane. In pafti—
cular, éonsider the difficult formula in (29). The contour there may now be
deformed into a cdntour I' consisting of two rays thét méet néar thé origin and

that iie above L. making positive angles (say 10/2) with it. The inequality =

1



(33) will assure that integrals over the two small arcs Joining the end points
will vanish as t goes to infinity. 1In the resulting integral the term
exp(ikix) is now exponentially decreasing as A goes to infinity along either
leg of T, and the integral is therefore absolutely convergent. We may drop
the requirement for the principal value and alsc any restrictions bn the

operand u, There results the satisfyingly simple expression

T o= [ MR an (31
which is valid for all x > O. Further consequences are that T, u is in D(A)
for all x > 0 and all square-integrable functions u, that (10) is always
satisfied, that, indeed, Txu is infinitely differentiable and belongs to
D(An),-for all n, and that Ty is continuous in the "uniform operator topo-
logy." This last statement means ITS - Txﬂ tends to zero as s approaches x

from either side; it is not true when x = 0.
3. THE RESOLVENT

With almost nothing in the way of hard analysis, we have derived .several
important results concerning the Tx' Further progress, however, requires a
more detailed examination of the operator A. In particular, we need a more
nearly explicit representation of the resolvent.

Given the square-integrable function u we want to find an expression for
the function v = RAu. This means we want to solve the equation ik(A-A)v = u,
or equivalently to find a function v in D(A) that satisfies the ordinary

differential equation
v'(z) + 2k2(M(z)-A)v(z) = 2iku(z). (35)

Of course, (35) always has a unique solution to the "initial value problem"
when values of v and v' are prescribed at some particular value Qf z (see,

e.g., Coddington and Levinson, 1955). The question for us will be whether

such a solution is in D(A). But any solution to (35) will have absolutely

continuous first derivatives, and all that remains is to assure that the

boundary conditions at the earth's surface and at infinity are satisfied.

12



To solve this "boundary valgeAproblem" we-use the standard "variation of
constants" method;"Thé'fibéﬁlsfép here is to find suitable solutions to the
"homogeneous" equation where in (35) the function u is replaced by zero. In
particular, consider what happens at infinity. We recall that for z > z, We
have N(z) = 0, so that the homogeneous equation becomes

v (z) + 2k2(Yz-\)v(z) = O, z> 2 (36)

A simple change of variables converts this to Airy's equation

2

—95 w(e) - 6w(e) = 0 (37)
de

which is one of the standard second order differential equations of mathemat-
ical physics. Since the coefficients are analytic functions of 6, the equa-
tion and its solutions may be extended to the complex plane, Indeed, since
the equation has no singular points in the finite plane, any solution of (37)
will be an "entire" function--i.e., a function that is analytic in the entire
complex 6-plane,

Because Airy's equation and its solutions are so important to us, we
should like to pause here to discuss the related notation. The standard

solutions to (37) are the Airy functions Ai(e), Bi(@). Their definitions and

a list of many of their properties may be found in Abramowitz and Stegun
(1964), for example. They are linearly independent and "real" in that they
have real values when 8 is real. The function Ai, in particular, is widely.
used in the study of caustics and of the general theory of asymptotics invol-.
ving "turning points" of differential equations,

It would seem useful to supplement the two standard solutions with othérs
that resemble "traveling waves" when 6 is real and negative. This has been
done by many authors, but always in an ad hoc way.

Here, we would like to suggest a more formal notation that expands upon
the standard notation described above and imitates what is done to define the

Hankel functions. In this notation we would write

13



il (e) = aite) - 181(e) = 2517 3p1(e127 3
i/, 1/2,(1) 2 \3/2
Wil (e) = aice) + iBi(e) = 261341 (5127/ 3,

(M

(Wi (g%))*
These two functions, which we might call "Airy functions of the third kind."
are linearly independent solutions of (37). Except for multiplicative con=-
stants they correspond to what Fock (1965) calls wq and w, and to what Wait
(1962) calls w, and wy.

One property of these functions that will be important to us concerns
their asymptotic behavior as 6 becomes large. In the almost complete circle

defined by -5n/3 < arg & < w/3, it can be shown that

372

() (1 + 0(e

i“-1/29-1/46(2/3)6 -3/2

Wi (8) = - ) (39)
where the remainder term is uniform so long as arg 6 remains bounded away
from w/3 or -5n/3. Roughly speaking, Wi(1) is either exponentially large or
exponentially small, depending on whether Re(e3/2) is positive or negative.
The radials at arg 8 = -57/3, -m, -%/3, and w/3 mark where Re(e3/2) = 0 and
separate the plane into three equal sectors within each of which the sign of
this quantity is constant. Only in the sector -v < arg 6 < -n/3 is the func-
tion exponentially small; in the other two it is exponentially large. At the
crack where arg 6 = n/3 (or -5n/3) one can picture two representatiohs obtain-
ed by continuing (39) up to and beyond the two boundaries. These representa-
tions differ, particularly since their exponents have opposite signs, and the
proper asymptotic expansion in this region is simply the sum of the two. |
Qualitatively, the appearance of Wi(1) along this radial is that of a "stand-
ing wave." Using complex conjugates as suggested in (38), we find immediately
that Wi(2) is exponentially small in the sector /3 < arg 6 < 1 and has the
appearance of a standing wave along the radial arg 6 = -n/3.

Returning to the problem posed in (36), if we set
0(z) = (2273 3(x-v2) | (40)

then two linearly independent solutions are

14



wi " (o(z))

w+(A;z)

(41)

w_(1;2) wi 2 (6¢2))

As z tends to infinity, arg 6(z) tends to -w + 28/3; thus, no matter what
complex value ) may have, 8(z) eventually takes on values in the third of the

complex plane where Wi(1) is exponentially small. 1Indeed, for fixed X we have

2 43/2

-1/2
3 )

% /37 1kz3/? - 1k0WZE/Y + 0(z (42)
and since the lead term here has a negative real part, it will follow from
(39) that w, is eventually exponentially decreasing. On the contrary, w_
increases exponentially. As the notation indicates, w, resembles an upgoing
wave while w_ resembles a downgoing wave, '

We are now in a position to describé the solution to the resolvent equa-
tion (35). We first find (which is computationally the hard part!) two func-
tions gO(A;z), g(r;z) satisfying the homogeneous part of (35) with prescribed
initial values, For definiteness we suppose

= ' — :
g,(0) =1, g',(0) = -ikz 13)
g(z) = w (z) for z > z_
Thus g, éatisfiesrthe boundary condition (13) and g is exponentially decreas-
ing to zero for large z.

Since the initial values and the differential equation are analytic in

the parameter A, it will follow that for each z, these two are entire func-

tions in A. They will be related in that their Wronskian
p(}) = g (2) g'(z) - g(z) &' (2) (4y)
is independent of z. In particglar, setting z = Otand using (43), we have
p(A) = g'(0) + ikZg(0) (45)
Of course, the two functions are linearly independent if and only if their

Wronskian p(i) does not vanish.

We can now construct a "Green's function”
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74N
X
A
N

U(A;Z’C) = g(Z) SO(C) 0 (u6)
8,(z) &(z) 0szs¢
in terms of which we would want to define a linear operator
Gxu(z) = f: G(rsz,zlulg) dg
(47)

= g(z) fg g,(ziulg) dz + g (2) f: g()ulz) dz

The function G is continuous in its three variables and, for fixed z and r, an
entire function in A. That it is symmetric in z and 7 is an expression of the
"law of reciprocity”; but that it is not Hermitian symmetric shows once again
that our problem is not self-adjoint. At z = g the first derivative of G with
respect to either z or z has a jump discontinuity whose size is exactly the
Wronskian p(1).

For fixed z, G is exponentially decreasing in gz and therefore square-
integrable., It follows that when u is square-integrable the function
v{z) = GAu(z) exlsts and is finite for each z > 0., Evaluating the first two
derivatives of (47), it can be seen (1) that v satisfies (35) provided the
right-hand side is replaced by p(A)u(z), and (2) that v satisfies the boundary
condition (13). There remains the niggling question as to how v behaves for
large z. Even this has an immediate answer provided u belongs to the class of
square-integrable functions that vanish for all sufficiently large z; for then
(for that same sufficiently large z) v is simply a multiple of g and hence is
exponentially small, For this special class of functions we find that GAu is
in D(A) and that

ik(A-A)G,u = p(M) (148)

2ik

To further refine this statement, it is now useful to show
® (o 2 ® 2z 2
[o [Sle0sz,0) | %acdz = 2f0|e(2)|*[%]e,(2) | “deaz < = - 9

for then it will follow that GA is a bounded operator that can be applied to
all square-integrable functions. Toward this end, we first note there is no
difficulty with the integral in the finite portion of the (z, g)-plane.

Indeed, if either of the two variables remains bounded, G is exponentially
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small in the other and convergence is assured. It is only along the diagonal
Zz = ¢ that we may find troubleh It will therefore suffice if we can show that
- (49)-holds when both lower limits are replaced by a value n that is at our

disposal. We suppose that n is, first, greater than z_ and, second, large

a
enough so that asymptotic estimates of w, and w_ are fairly accurate. Because
of the first criterion, it will follow that within the integral g equals w,
and 8o is some particular linear combination of w, and w_. The part of 298
that is a multiple of w_ will not cause problems since, again, this part will

be exponentially decreasing. There remains only to show
® 2(z 2
w (z W dgdz < = 0
[ol, (2|2 (2) | “az (50)

- Let o(z) = 2 Re(-(2/3)9(z)3/2). Then for large z we have

o(z) = g voy ko sin § 23/2 + O(z1/2)
g'(z) = 2/2Y k_ sin & 21/2 + O(Z_j/z)
; 0
(51)
2 -1/2 =0 2 -1/2 o .
|w,(2) |~ ez "% 7, |w_(2)]|~ oz e
z 2 -1/2 .,-1 ¢ -1 0
fnlw_(c)| dg ~ ¢,z o' e~ ¢z e

where Cq and c, are constants depending on A. As a function of z the inte-
grand in (50) is 0(z~3/2) and hence is integﬁable, although just barely.

We have thus demonstrated that the integral in (49) is finite and that,
therefore, for each complex A the operator GA is bounded. (Actually, we have
even shown the stronger property that GA is "compact.") Thus (48) is valid
for all square-integrable u, and consequently the resolvent exists for-all

XA where p(A) # 0 and

N
[l
x~

We also note that as an operator-valued function of A, GA will be entire.
Thus R, is the quotient of two entire functions and hence is "meromorphic"--

A
i.e., it is analytic everywhere in the complex plane except at certain isola-

ted poles.

This rather straightforward behavior of the function R, can be contrasted

A



with the situations that arise when either Y or § is allowed to vanish. 1In
the case of a flat earth when Y = 0, the functions in (41) become meaningless
and the subsequent analysis invalid. It is, however, easy enough to solve
(36) for this case; but note that A1/2 appears and that it is impossible to
find a solution such as w, which decreases to zero for large z and which is
entire in A. 1Indeed, it is quickly seen that the entire ray defined by

arg X = m = 28§ belongs to the spectrum of A, thus introducing the well-known
"pranch cut" into consideration.

On the other hand, when Y > 0 but § = 0 (so that k is real), the func-
tions in (Y1) still define solutions to (36); it is only the subsequent asymp-
totics that are false. The first term in (42) is pure imaginary but we can
still appeal to the second term to show that g is again exponentially decreas-
ing provided, however, that Re(ik)) > 0 --i.e., that X lies in the lower half-
plane, When X is in the upper half-plane, we‘can still attempt to find the
resolvent in terms similar to (52) and (47). But now we cannot define g as in
(42); instead we must assume g(z) = w_(z) for z > z_,, since now it is this
function that is exponentially decreasing. This approach succeeds in the
special case when Re(Z) = 0, for then (16) becomes Re(ikAu,u) = 0 and argu-
ments similar to those of section 2 will show that RA exists and satisfies
IRAM S 1/|Re(ika)|. Thus R, exists on both sides of the real line but is
described by two different analytic functions. The real line is a "natural

boundary" separating the two branches and consequently the entire real line
forms the spectrum of A.

This peculiar result is partly an artifact of our choice of function
space in which to operate. Note, indeed, that when k is real and Z pure
imaginary then the operator A is, according to the rules of that function
space, self-adjoint. This seems to be one example of where being able to say
an operator is self-adjoint is of little help.

Returning to the straightforward case where both Y and § are positive,
consider what happens when A satisfies p(A) = 0. Then because of (45), the
function g satisfies the boundary condition at the earth's surface; it there-
fore belongs to D(A) and then (A-A)g = 0, so that the operator A-A is not one
to one, We say that A is an eigenvalue (a modal value) and that g is an

eigenfunction (a mode). The function

ikax

o(x,2) = g(rsz)e (53)
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safisfies (2) and the boundary conditions, and its initial value is g(z).
More generally, if a proﬁosed source function u can be expanded as a linear
combination of several such eigenfunctions, then the final solution to our
problem is the same linear combination of functions of the form (53).

There is a general approach to such linear combinations, -Let B be a
17 Ao
eigenvalues of B with corresponding eigenfunctions ¢1,.¢2, «es o+ ‘Then
A*1, A ¥

closed linear operator with adjoint B¥., Suppose A .+« are distinct

PUREE are in the spectrum of B* and are very likely to be eigen-

values, Suppose they are and that w1, w2, ... are corresponding eigenfunc-

tions, Then

()\-A)(¢SW)=(A¢’.¢')_(¢’A*¢)
n m n"'m n'n"'m n"- mm (5}4)

(B, s¥) = (¢,,B¥Y ) = 0

so that o, and wm are orthogonal provided n # m. We say that {¢n} and {wm}

form a biorthogonal pair of sequences. Such a pair is not so powerful a tool

as the usual single orthogonal sequence that plays an important role in the

basic theory of Hilbert spaces. Nevertheless, we may note that if

u=1=Iaé, (55)

then

(u,y ) am(¢m.wm) ‘ (56)

which may be solved for ap provided (¢m,wm) # 0, a condition that is not
guaranteed. ;

In the case of the particular operator A, let us suppose that {Am} is a
set of distinet eigenvalues and that gm(z) = g(Am;z) are the corresponding

eigenfunctions. Then indeed Am* are eigenvalues of A¥ and the corresponding

eigenfunctions are the complex conjugates g, ¥. It follows that
(8,8%y) = 0, n#mn (57)

and that if u is a linear combination of the 8y then

us=_= (u,g; )gm/(gm,g;) (58)
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provided, of course, that none of the denominators vanish, Although the
expression (u,g*) seems a rather tortuous way to write Jugdz, we shall retain
that notation because it is a continual reminder of the relationship betwsen
the solution to our problem, the role the adjoint plays, and the particular
form taken on by the-adjoint.

Let us examine the conditions under which one of the denominators in (58)
might vanish, Let u be a particular eigenvalue; then the corresponding g,

will be a scalar multiple of g and, indeed, we may write

8,(2z) = g(z)/g(0) (59)
(Note that g(0) cannot vanish; for if it did then by (45) it would also be
true that g'(0) would vanish, whence g would vanish identically, contradicting
(43).,) It will then follow from (46) that

G(u;z,z) = g(z)g(g)/g(0) ‘ (60)

On the other hand, substituting (52) in (22) we find

, d . 02,2
-p (A)GA + p(A) i\ GA = 2k GA (61)
and, in particular,
2.2
' G = -2k 62
p' (n) y Gu | (62)
But from (60) we have
G2u = (u,g*)(g,g*)g/g(0)>
H (63)
= (g’g*) G u
g(0) u
whence
o' (w) = -2k%(g,8¥)/g(0) | (64)

Thus (g,g*) vanishes if and only if p'(u) vanishes. Furthermore, if p'(u)
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# 0 then from (52) we see that the Laurent series expansion of R, about p has

A
the form

-1

21K _(-p) G+ e (65)

N e)

so that (g,g¥) does not vanish if and only if p is a simple pole of RA‘

4, THE RESOLVENT FOR LARGE A

Thus far we have said how the solution might appear if there were a
sufficient set of eigenfunctions; we have not shown that even one exists. To
remedy this omission we now consider what happens when the contour of thé
integral in (29) or (34) is deformed into a large semicircle in the upper
half-plane, and we shall show that as it is deformed it must cross poles of
the integrand. »

OQur first task in this process will be to determine the asymptotic behav-
ior of RA and its components as A becomes large. As a general note we remark
that since A appears in the differential equation (35) only in the term N(z)

+ Yz - X, we might expect that when X is large it completely dominates the
expression and asymptotic results should be independent of the refractivity
function N(z). We would expect to obtain the same results as when N is, say,
identically zero. As it turns out, this expectation is only partly satisfied.

First we consider the function go(A;z). Let
o = ek(21)1/? (66)
where € = +1, the sign being chosen so that Re(a) 2 0. Then g, satisfies

2 .z _ _ _
e (2) + X [ M1 - &) (1yay
(67)

-20z ikZ =202
) - - e )

1
“altre 24"

since by direct differentiation and evaluation one can show that it would then

satisfy the homogeneous part of (35) and the initial values (43). Now (67)
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can be treated as an integral equation for the function e-azg (z). As such
the kernel is M(c)(1-e-2u(z_g)) and is uniformly bounded in aoso long as
Re(a) 2 0 is satisfied. Because of the coefficient o | in front of the inte-
gral, we see that when z is constrained to lie in some bounded interval the

integral operator reduces to a small perturbation. It fcllows that

g, (h32) = 571 + 0(1/a)) + 2 %(1 + 0(1/a)) (68)
where the remainder terms are uniform so long as z remains bounded.

Next we turn to the function g(i;z). Setting
g(z) = w,(z) + r(z) ' (69)

we note that the remainder r vanishes identically for z > Z and otherwise

satisfies the inhomogeneous differential equation

rt* + 2k2(M-A)r = -2k2Nw+ ('70)

With o again as in (66) one may check that r also satisfies

o, |
e®r(z) + & [ @ mp)(1 - & 2y ar

(71)
2 z

__k a - o-2a(z-2)y ot
- - £ [EN@a - e de~*w, (g) dg

which may be treated as an integral equation for the function eazr(z). As
such we again find the kernel is bounded so long as z < z,4 (which is all that
interests us anyway); as before the coefficient a-1 means that the integral
operator will introduce only a small perturbation to the solution,

We need, then, to estimate the'integral that forms the inhomogeneous part
of (T1). When -51/3 < arg k2’3
behaves for large ). From (40) we find

A < w/3 we may use (39) to determine how w,

363/2 =8 - eaz + 0(1/a)
3 " L (72)
3/2 :
B = (k/3Y)(2))
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where.oq and: e-are as in (66). There follows

-1/2e6-eaz

w, (X;2) = co(-ea) (1 + 0(1/a)) (73)

3)1/6

where ¢, is the constant (2k2Y/n and the remainder term is uniform for

o]
bounded z. The inhomogeneous part of (71) then becomes

Z < - —
Concerning €, we note that it is positive when larg kle £ 7 and negative
in the adjacent intervals. It therefore seems useful to define two sectors of

the A-plane

S,: -7 = 28 £ arg X <

wi=x
w

(75)

_5m_ 28
32' 3 3 < argll

IA

-1 - 28

Then € is 1 in S1 and -1 in S,. To complete coverage of the plane we would
also define a third sector So Which includes a neighborhood of the ray
arg A = w/3-28/3.

In the sector S1, where € = 1, the last exponential under the integral in
(74) disappears and the integral is a bounded function of r. Thus the inhomo-
geneous part of (71), and hence also the function eazr, is of order e a_3/2.
It follows from (69) that in 54

g = -ic a-1/2eB-az

o (1 +0(17a)) (76)

This is just a small perturbation of the function w,.

In 82, however, that same exponential does not disappear. Indeed, it
becomes a large and important factor, thus making the analysis more complica-
ted. We can separate the expression (74) into two parts obtaining

_ B+20.2z
a 1/2e 42(a) (1 + 0(1/a))

(77)
2a 3/2eB+2az 20 max(z z;,O)dc

zZ
+ cok (1 + 0(1/a)) foaN(;)e
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where

2 =z -2a(z_-=¢)

<[ e ? T ag (78)

Qla) = T
The second part of (77) is quickly disposed of. The integral it contains is
bounded and hence the complete term is of order an3/2e8+2uz.v From {71) the
corresponding part of re®? will be of the same order of maghitude and hence
the corresponding part of r will be 1/a times the order of magnitude of W
When combined with w, as in (69) this becomes just another of the second order
terms.

We are left with only the first part of (77). Substituting this in (71)
and (69) we find that for A in S, and z < z,

_ 2a(z_=-2)
o /2B L ot1/a) m e 2 QMa)( + 0(17a))] (79)

g = ¢,
The last element of this expression is the new one; it involves a large expo-
nential factor and is not just a small perturbation of the original function
W,. One might argue, however, that this exponential is multiplied by what is
evidently the small coefficient Q(a); so perhaps the term is not so large
after all, Certainly, from the definition (78) one notes the integral there
is bounded so that Q tends to zero at least as rapidly as 1/a. But more than
this, the integral will probably also tend to zero, although just how rapidly
will depend on differentiability properties of N(z). Nevertheless, if one

supposes that z, is particularly chosen to be the smallest elevation with the

a
property that N(z) vanishes for z > Zg» then Q will never go to zero so fast
as an exponential in o. Thus the last term in (79) will be large

whenever Re(a) is large.

Of course (79) shows how the field represented by g can be separated into
an upgoing and a downgoing wave. What is perhaps surprising is that in some
circumstances the downgoing wave dominates. Note, however, that when z ap-
pr’oaches*za or when Re(a) approaches zero, then the exponential épproachesva
moderate size, the smallness of Q takes over, and this downgoing wave is
absorbed into the other second-order terms.

When A is in S, the proper asymptotic expression for g is simply the sum

of the expressions (76) and (79). In (79) the quantity B must be replaced by

24



-B to account for the fact that we have changed arg A by 2w.
We can now write down asymptotic expressions for the Wronskian p(i).

Differentiating (76) and (79) and evaluating (45) we find

icoa1/2e8(1 + 0(1/a)) in S1
1/2 B 20‘Za
p(r) = co e [1 +0(1/a) + e Qla)(1 + 0(1/a))] in 82 (80)
1coa‘/2[e3(1 « 0(170) - ie P(1 + 0(1/a)) in s
~B—20.Z '
-ie 2 Qa) (1 + 0(17a))]

It is interesting to note that in these expressions the surface impedance Z
has been absorbed in the second-order terms.
As a passing remark, we also note that dominating the expressions in (80)

is the factor eiB. Since B = O(>\3/2

) we see that p is an entire function of
order 3/2. Because the order is not an integer it follows from Picard's
"little theorem" (see, e.g., Copson, 1935, Ch. 7) that p attains all complex
values infinitely often. in particular, it follows that p has an infinite
number of zeros, thus answering at least one of our questions.

More to the point, perhaps, a closer examination of (80) yields some
details concerning the zeros of p. There will be two sets of zeros along the
two boundaries of 82--i.e., one sét in So and another near where
arg K2\ = -7 and Re(a) = 0; there are no (large) zeros in S;. In S, it be-
comes a matter of solving

207
e L i 4 0(1/0) +ie QM) (1 + 0(17a)) (81)

when arg k2/3

A= w/3 and Re(B) = 0. As functions of ) the term B varies more
rapidly than does a, and the left-hand side of (81) varies much more rapidly
than does the right-hand side. Choosing some approximate value for i, we may
evaluate the right-hand side (which will usually be large), then move A
towards S1 so that the real part of 8 becomes large enough to make the magni-
tude of the left-hand side match that of the right, and then adjust the
imaginary part so that the arguments (phases) match. Since this latter will

happen infinitely often as B steps through values{séparated by about iw, we

(1)

deduce an infinite sequence Am

of eigenvalues with the property
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lim 2V /p?/3
m=o m

2/3eiw/3

= %(3ﬂY/k) (82)

At the other boundary of 82 we need to solve an equation of the form

2aza
e Qla) = =1 + 0(1/a) (83)

Throughout most of S,, Re(a) is large and the exponential in (83) dominates
making the left-hand side large. When, however, o is on the boundary of So
where Re(a) = O the smallness of Q makes the left-hand side small. Since the
exponential varies much more rapidly than does Q, we may adjust A‘so that
first the real part of o becomes just large enough to offset the smallness of
Q and then the imaginary part to match phases. Again, this latter will happen
when az_ steps through values separated by about iwn., We find a second infi-

(2)

nite sequence Am of eigenvalues, this one such thét

lim 1;2)/m2= -w2/2kzz§ (84)

m->w

The first of the above series leads to the "creeping wave" (Ekersley)
modes while the second leads to the "waveguide" (Gamow) modes. Noﬁe how the
first series becomes more dense as m increases while successive elements of
the second series become further and further apart. In the literature one
reads also of "trapped" modes and "whispering gallery" modes. These are
special modes whose associated eigenvalues are small or at most moderately
large; they can be only finite in number, While they are often the most
important terms in a modal expansioh, théy do not appear in our present consi-
derations since we have restricted ourselves to those with large eigenvalues.

' We have seen that except when p()) vanishes the resolvent RA is an inte-
gral operator with kernel R(A;z,z) = 2ikG(i;z,z)/p()). We can now combine the
expansions of 851 g, and p to obtain the asymptotic béhavior of this kernel
as A becomes large. The fesults will be uniform in z and ¢ provided, however,
these two variables are constrained to lie within some bounded interval., As
such an interval becomes larger, the expressions will be valid only if A be-
comes sufficiently larger.

In S, we combine (68), (76), and (80) to obtain
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ROz, = 2K 28 4 oa/a + 2 (v otizan] (85)
_which-seems”simplé enough. If z and ¢ are bounded away from O and arg a is
bounded away from -w/2, then the second term (looking like a wave reflected at
the earth's surface) disappears since it is exponentially smaller than the
first. We might also note it is no accident that the dominant term

e—cﬂz-CI looks 1like an approximation to the delta function. From (18) and
(11) it follows that for any square-integrable u the expression ikARAu tends
to u when A tends, say, to -ie~.

When A is in 82 the results are more complicated. We express them here

using only dominant terms, each of which should be multiplied by a factor

1 + 0(1/0). We also assume ¢ £ z and appeal to symmetry for the contrary
éase. Assembling the previous results we find for A in 82 and z < Zy

2a(za—z)
R(A Z, C) = a [ aIZ CI (X(Z‘*'C)] 1 - e S5as Q(a) (86)
1+e 2 Qa)

When z - Z_s (86) is still valid except that the term in the numerator
involving Q(a) will disappear. We should also note that we do not mean to
exclude the "degenerate™ case when the refractivity vanishes identically.
Then Q will also vanish and corresponding terms in both numerator and denomi-
nator of (86) will disappear.

We are now ready to attack the inverse Laplace transform as given in (29)
or (34). These formulas involve an integral in the A-plane whose contours
extend foughly from left to right and lie below any poles that the integrand
might have. Our plan is to deform those contours into a rough semicircle Ce
having radius t and extending into the upper half-plane. Then the original
integral will equal the integral over Ct plus the residues at any poles the
deformation will have had to cross. If we can show that the integral over Ct
tends to zero as t goes to infinity, we will have the desired result: that

T x4 equals the sum of the residues at all poles of R,u.

A

If we replace R, by its representation as an 1ntegra1 operator, then our

A
integral becomes an iterated integral in the variables A and gt and involves
the kernel R(A;z,z) that we have just been studying. The results of our

study, however, are valid only when z and z both remain bounded. Before
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applying them we must limit ourselves to those situatibns in which this is
true,

Let B, be the collection of all square-integrable functions each of which
vanishes for sufficiently large z. These are the functions with "bounded
support.," Clearly, By is a lineaﬁ manifold that is dense in the space of
square-integrable functions. Then if in (29) or (34) we restrict u to lie in
Bys the resulting integral over g is effectively a finite integral and we may
treat ¢ as bounded. To bound z similarly we simply restrict ourselves to
consider the integral only for a fixed z. Then since large t implies that 2
is large all along Ct’ our asymptotiec results for R(A;z,z) will apply.

Note that with u in B, the two integrals of our iterated integrai are
both over finite intervals. The integrals may therefore be interchanged and

we may first turn our attention toward estimating

jC R(A;z,;)eikAXdA (87)
t
for fixed z and 7. To help here, we recall that Ct lies in the upper half-
plane so that when x > 0 the exponential in (87) has a negative real part--
except perhaps at the two end points. )

The contours Lg of (29) and T of (34) both lie within the sector Sqe
Following along C¢ one finds a small arc at the beginning and about one~third
of the semicircle at the end that 1lie in S;. From (85) it follows that the
resolvent kernel R is Q(1/a) and hence, by Jordan's lemma, that these portions
of (87) tend to zero with increasing t.

About two-thirds of Ct>lies in 32; In this sector, as one sees from
(86), the function R can be exponentially large. The worst case (when R is
largest) comes about in the degeneratevsituatioh when Q(a) vanishes identical-

1/2) and hence for large

ly; then R is of order a-Texp(a(z+;)). "But o is 0()
enough A the integrand in (87) is still dominated by the negative

exponential exp(ikki). This suffices to show that this portion of (87) also
tends to zero as t increases.

There remain to be considered the sector S, and a small sector at the
other boundary of S, where Re(a) = 0. In these two sectors there are points
where p(A) vanishes and the function R has poles. For large A the poles thus
form two picket lines running radially out from the origin. Clearly one must

deform the contours C, somewhat so that they cross these lines transversely at
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about midway between two of the successive poles. Furthermore, when a Ct
crosses either of the sectors in that fashion p(A) will remain large

and R(A;z,7) Pelatively'small. For example, at the lower edge of 52

where Re(a) ié nearly zero wheh one crosses midway between poles, the denomi—
nator of (86) will be of order unity. Our previous estimates of the magnitude
of the function R within 82 will still be valid. Similarly, as Ct crosses SO
the minimum magnitude of p(A) will be 0(A1/u) which is still large. Both
lines of poles can be crossed in such a way as to keep the function R within
bounds, and the negative exponential in (87) will assure that these portions
also tend to zero as t increases.

Thus all portions of (87) tend to zero and clearly the convergence is
uniform as long as z and ¢ remain bounded. The iterated integral that defines
the inverse Laplace transform also tends to zero and we have left only the
residues at the poles of the function R. If we assume the poles are all
simple poles and that their locations Aé, m=1,2,. . ., are numbered in order
of increasing magnitude, then from (29), (58), (64), and (65) we see that when

u is in BO we have

- (u, g*) iki x
TXU(Z) = -2k 2 m 8 (z)e m {88)

Concerning what multiplicity the poles have, we may note that when Am is large
our asymptotic results show that the associated poles certainly are simple.

If some of the smaller values of m correspond to multiple poles, the corres-
ponding terms in (88) must be replaced by the proper residues. These will

involve factors of the kind xJ

exp(lkA X).

The result in (88) provides for point-wise convergence only, although
clearly we also have uniform convergence for bounded z. In the infinite.
interval, however, we cannot expect uniform convergence nor any kind of
convergence in the mean. Indeed, consider one of the creeping wave modes
gn(z). Its global behavior is determined fairly well by the function 6(z) de~
fined in (40). As z goes from O to increasingly higher heights, 8 begins high
up in the firét gquadrant with arg 8 = w/3 and moves along a straight line to
the left and downward (because of the positive conductivity we have imposed),
first passing into the second quadrant and then eventually into the third.

Thus when Yz » ]Aml the function g, is exponentially small and
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when Yz < |Am| it resembles a standing wave of only moderately large size, In

between, however, 6(z) is high up in the second quadrant and gm(z) will be |
very large. In particular, it is clear that ﬂgmn tends rapidly to infinity

with increasing m. Nor can we expect help from the other terms in (88). The
denominators, for example, are only moderately large since they pertain to

properties of g, at z = 0.

Of course, from the practical point of view of numerical evaluation, the
result in (88) seems quite sufficient. That we require u to be in B,-—in
other words, that the source be of finite extent--does not seem like much of a
restriction; and computations will normally involve only a finite number of
values of z., It is only when one wants to use the series in a further analy-
sis that one must be wary.

Nevertheless, it is a curiosity worth mentioning that (88) is not a
rapidly converging series. For example, consider only the creeping wave
modes. These make up a subset of the terms of the series and consist of
coefficients multiplying the exponentials exp(ikkmx) where the Am grow at a

2/3. Estimating the coefficients is difficult since

rate proportional to m
they seem to be subject to important second-order effects. But note that the
proof of (88) definitely required x > 0; if one simply sets x = 0 one expects
that the resulting series of coefficients alone will diverge. Indeed, under
some circumstances the coefficients will actually grow in magnitude at a rate
of about exp(bm1/3) where b is positive. Convergence is therefore controlled
by the exponentials whose magnitudes are dominated by a factor exp(—am2/3)
where a is positive. This factor tends to zero faster than any power of 1/m,
but it also fails the ratio test: the ratio between successive factors tends
to unity. This means that the series does nof converge as rapidly as a geo-
metric series. If x is small and more than a few creeping wave modes are
needed to obtéin the desired accuracy, then one can expect that a great many
of these modes will be required.

Fortunately, a modal expansion is normally used for computations only
when x is large and z is small so that the points of interest are all well
beyond the horizon. Fortunately also, the accuracy one requires is not great;
one creeping wave mode often suffices. Indeed, when ducting occurs it is
often true that no creeping wave modeé-—and even no waveguidermodes-—are
needed, for the miscellaneous smaller eigenvalues have very small imaginary

parts and contribute the only major terms,
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The result in (88) can be expressed in functional analytic form. Let

(n)

SX u’ represent the sum pf the first n terms of the series. Then, ﬁsing our
comments about uniform convergence for bounded z, we have that for-any u and v
in By

Lim (s{™u,v) = (T u,v) (89)

n->w
We say that Sin)u converges to Tiu "in the weak topology generated by B," and
that Sin) tends to T, "in the weak operator topology." Each of the Sin) is,

of course, a bounded linear operator defined for all'square—integrable func-
tions. The trouble--and the reason the introduction of a weak topology is
necessary--is that the norms ﬂSin)I tend to infinity with n. We should also
note that the weak topology used here is even weaker than that usually descri-
bed in textbooks; in the latter, one allows the functions u and v of (89) to
be any square-integrable functions.

There is a fairly simple way to think of a weak topology such as that
defined above. Let u be any square-integrable function; then the inner pro-
duct (u,v) is like a "coordinate" of u along the "v-axis." (The likeness is

stronger if v has unit norm, but this is not ihportant hére.) Thus (89) says
(n)
X

dinate of T,u. If the basic space were of finite dimension this would in turn

that each (permissible) coordinate of S u tends to the coﬁresponding coor-
imply "strong" convergence, but in the space of square-integrable functions it
is definitely a weaker statement.

Finally, we can at last reply to the question raised at the beginning of
this section as to whether there are sufficiently many eigenfunctions. By
"sufficiently many" we would mean that to any square-integrable function u
there exist finite linear combinations of the eigenfunctions that approximate
u as closely as desired-—-in other words, that any suggested source can be

approximated by a sum of modes. The answer to this question is a qualified
(n),
X

of the eigenfunctions and from (11) which says that Tyu approximates u. Using

yes and arises from the fact tﬁat S is itself a finite linear combination

our present array of tools, an actual approximation would proceed in three

~steps: first, we would choose a u, in the set B, that adequately approximates

(o]
u (simply truncate u at a sufficiently large value of z); then we would choose

X > 0 small enough so that Txuo adequately approximates u Finally, we would

(n) o
X

u adequately approximates TyUge

choose n large enough so that, by (89), S o
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This latter will also be the desired approximation for u.

The rub here comes from the last step. According to (89) we can approxi-~
mate any finite number of "coordinates," but we cannot go further to approxi-
mate, for example, over the infinite z=-axis. While we can say that the weak
closure of the linear manifold spanned by the set {gm} is the entire space of
square-integrable functions, we cannot say this of the "strong" closure.
Although textbooks do not mention the subject, we might say that the biortho-

gonal pair of sequences {gm} and {gm*} is "weakly complete.™
5. CONCLUSION

We have seen how the Hilbert space of square-integrable functions on
(0,») often provides a natural setting for the problem of propagation through
a stratified atmosphere. The reason for this is that the resulting square-
norm is closely related to power flow. We found that an almost immediate
consequence is that the solution can Be represented as an analytic, norm-
decreasing semi-group of transformations on that Hilbert space.

When one comes to a mode analysis, however, the results lose much of
their directness. Sometimes the Hilbert space seems even to get in the way,
as when we seem forced to accept a nonstandard weak topology. This is rather
disappointing since it was the customary use of mode theory and (bi-)ortho-
gonality that first led us to introduce Hilbert space,

As another instance of how we seem hindered rathér than helped, consider
the case when the wave number k is real. Then the function R(A;z,r) exists
and is analytic in the lower-half A-plane, and it is not impossible to use
analytic continuation to extend this function (but not the operator RA) into
the upper-half plane. Most of the results of Section 4 will still be valid;
even the conclusion (88) will probably still be true, although the proof will
require fussier details. In the process, however, we shall have lost our
Hilbert space. The "modes" gm(z) are now not square-integrable; instead they
increase exponentially to infinity. Of course, this has further
consequences. It becomes difficult to claim that the modes satiéfy the radia-
tion conditidn at infinity and impossible to claim that the radiation condi-
tion characterizes them.

Finally we would suggest that one reason the hybrid methéds (see, e.g.,

Felsen and Ishihara, 1979) seem so attractive is that the mode series con-
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verges so poorly and that it is particularly the creeping wave modes that give
the greatest trouble. We would also suggest that cleaner and more complete
results might berthained'with:a_change$in function space. For example, the
pabﬁiéuiabvfbrﬁiof‘the weak topology introduced above with its emphasis on
functions of bounded support reminds one of the theory of distributions and

generalized functions.
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