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LOCALLY OPTIMUM AND SUBOPTIMUM DETECTOR PERFORMANCE
IN A NON-GAUSSIAN INTERFERENCE ENVIRONMENT

A. D. Spaulding*

Since the normally assumed white Gaussian interference is the most
destructive in terms of minimizing channel capacity, substantial improve­
ment can usually be obtained if the real~world interference environment
(non-Gaussian) is properly taken into account~ In this report, the
performance of the locallY optimum Bayes detector (LOBO) is compared with
the performance of various ad hoc nonlinear detection schemes. The
known results are reviewed and then it is demonstrated that these
theoretical results may be misleading due to the assumptions that are
required in order to derive them analytically. For a particular type
of broadband impulsive noisE~, the critical assumptions of "sufficiently"
small signal level and large number of samples (large time-bandwidth
product so that the Central Limit Theorem applies) are removed; the
first, analytically, and the second, by computer simulation. The thus
derived performance characteristics are then compared, especially as
the" signal level increases. One result is that there are
situations where the bandpass limiter outperforms the LOBO as the
signal level increases; that is, the locally optimum detector may not
remain linear optimum ll in actual operational situations.

Key words: optimum detection; non-Gaussian noise; communication system
simulation; parametric signal detection; Class A, B noise

1. INTRODUCTION
The real-world noise environment is almost never Gaussian in character, yet

receiving systems ion general use are those which are optimum for white Gaussian
noise (i.e., linear matched filter or correlation detectors).

It is well known that Gaussian noise is the worst kind of noise in terms of
minimizing channel capacity or in its information destrqying capability. This means
that very large improvements in the performance of systems can be achiE~ved if the
actua 1 sta ti sti ca1 characteri sti cs of the noi se and interference a're properly taken
into account, and there have been various significant efforts in the last few years
in this area (Spaulding and Middleton, 1977; Middleton an~ Spaulding, 1983).

When confronted with real-wor1d noise, the earlier and usual approach was to
precede the IIGaussian receiver ll by various ad hoc nonlinearities (e.g., clipper,
hole punchers, hard limiters, etc.) in order to make the noise look II more Gaussian ll

'to the given receiver. Later, optimum systems were derived (e.g., Spaulding and
Middleton, 1977; Hall, 1966) using models of the actual noise. These systems are

*The author is with the U. S. Department of Commerce, National Telecommunications
and Information Administration, Institute for Telecommunication Sciences,
Boulder, Colorado 80303.



adaptive in ·nature and usually very difficult to realize physically. If,. however,
the following two assumptions are made:

1) the desired signal b·ecomes "sufficiently" small [li sufficiently small il

is defined in Middleton and Spaulding (1983)*J, and
2) the time-bandwidth product is large, so that a large number, N, of

independent samples from the interfering noise process can be used
in the detection decision process,

then a "1 oca ll y optimum11detector, generally termed a 1I1 0ca ll y optimum Bayes

detector" or LOBO, can be obtained. Under some rather strict conditions, these
LOBO detectors approach true optimality (asymptotical~y) as the above two assumptions
are met, and usually take the form of the IInormalll Gaussian receiver preceded by one
or more particularnonlinearities.

In this report, we want to briefly review the derivation of the LOBD, primarily
for the case of binary coherent phase shift keying, CPSK, and then review the com­
parison of the LOBO performance with the performance of the hard-limiter (or other
nonlinearity) performance. We do this to point out and have available the results
we need to refer to later. In actual use, the desired signal may be II sma ll,1I but
not II small enough, II and/or the time bandwi dth product may not· be part; cul arly 1arge.

One of the main objectives, then, of this report is to remove the above two assump­
tions to investigate the IItruth ll of the standard LOBO and hard-limiter performance
estimates. This is done for one typical example of broadband impulsive noise. For
this example case, the first assumption (sufficiently small signal) is removed
analytically and the second (large N so that Central Limit Theorem arguments can be
used) is removed by computer simulation. Another main objective of this report is
to summarize the results from an extensive set of Monte Carlo 'computer simulation
results for the CPSK system, using various nonlinearities (including the LOBO
nonlinearity) and also using Rayleigh fading signals as well as constant signals.
We start in the next section by reviewing the pertinent standard analytical results
for the LOBO and then proceed to remove the assumptions used to obtain the II standard ll

performance estimates. An appendix contains the computer alg.orithms used to obtain

the Monte Carlo simulation results.

*See Sections 2.4, 6.4, and Appendix A.3 of Middleton and Spaulding (1983).
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2. LOCALLY OPTINUM DETECTION
The techniques for deriving the locally optimum detector for various' signaltng

situations are well known and covered in detail in Spaulding and Middleton (1977)
and the references therein. Here, we simply review the results in order to indicate
where the two assumptions above come into play. Our problem, for binary CPSK, is to
decide optimally between the two hypotheses:

X(t) = Sl(t) + Z(t) o < t < T

o < t < T.
(1)

In (l),X(t) is our received waveform in detection time T and this waveform contains
either the completely known signal Sl(t) plus the noise Z(t) or the completely
known, equi-probable, signal S2(t) plus Z(t). To obtain our receiver structure we
follow the standard procedure of replaciDg all waveforms by vectors of Nsamples

fro~ the wavefo~s (X(t) +! = {xi}' etc.) and forming the likelihood ratio A(!):

(2)

When Z(t) is non-Gaussian, we operate so as to generate independent noise samples,
zi' i = 1,N in time T, so that only first order pdf1s are required. We now use the
LOBO or threshold operation which we know becomes asymptotically optimum as our
signal S(t) becomes sufficiently small and N + 00 (Middleton and Spaulding, 1983).

Increasing N corresponds to increasing the detection time T, since we cannot for any
noise process sample more rapidly than the bandwidth and maintain independence.
Using a vector Taylor expansion about the signals, Sj' j = 1, 2 here, we get

N

2:
i=l

S. ·
Jl

(3)

N N

+t r; L
; =1 k= 1
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In this expansion, for coherent signaling,-all signal terms of degree two and higher
are discarded. This is the normal "sma ll signal assumption." In general, simply

discarding higher order terms can lead to receiver structures which are not locally
optimum, or in the limit of infinitely large sample sizes (N -+ (0), are not asymptoti­
cally optimum detection algorithms (AODA's). The proper algorithms require a correct
bias (obtainable from proper treatment of the higher order terms)*. The problem is,
that without the proper bias, the higher-order terms i~ the expansion of A(!) can
be discarded only when the sample size N is small. But N must be made large in

order to obtain the required small probabilities of error for weak signals. Thi~,

of cour~e, defeats the whole concept of a canonical and comparatively simple algo­
rithm. One may as well use A(~) itself, which is optimum for all signal levels.
Sufficient conditions that the LOBO is an AODA as well as a LOBO (N < (0) are given

in Middleton and Spaulding (1983), Sec. A.3-3.

For binary symmetric CPSK, and for independent noise samples (3) leads to

N"d1 - ~l dx. 9-n PZ{x i )S2i
1= 1

A(~) rv --N--
d
------

-L dX i 9-n PZ{x i )Sl i
i =1

1 , (4)

which gives the well-known receiver structure shown in Figure 1. In Figure 1, we
see that the receiver is the standard memoryless Gaussian (i.e., degenerate matched

filter) preceded by a particular nonlinearity given by

d
9-{x) = - dx 9-n pz{x) · (5)

Note that this is a completely canonical result in that we have not yet specified

(in the above derivation) what PZ{z) is or what the signals Sl{t), S2{t) are except
that they are completely known. Figure 1 is our receiver, which is adaptive in that
it must change according to (5) for changing noise conditions. The receiver takes

our received waveform samples -x. and uses them as shown to determine our decision
1

variable 8. Now, in order to determine perfornlance we, need the pdf of 8. The pdf
of 8 is almost always impossible to obtain, however) unless we can invoke the

Central Limit Theorem.

* For cases of threshold signal detectors that are neither locally optimum or asymp­
totically optimum detection algorithms, see Luand Eisenstein (1981).
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Sli - S2i H·1

-11(Xi )~i
N

x· 2: 8 < 0I ~
i=l

H2
Figure 1. LOBO for binary symmetric purely coherent signals.

Although the nonlinearity £(x) does not "Gaussianize ll the noise, it does limit
the amplitude excursions of the noise. Because of this, it is common to require N
to be large (normally N must be relatively large to achieve any kind of processing
gain over normal receivers as will be demonstrated later via simulation) so that we
can apply the Central Limit Theorem. This means that we only need to compute the
mean and variance of 8 under each of the two hypotheses. We start with Yi' the out­

put of the nonlinearity for input xi- Suppose Hl is true, then

1
00 pz{z)

E[YiIH,J = - pz(z) p~{z - $'i) dz.
-00

and (6)

In evaluating the above two integrals, the usual approach is to expand the

PZ{z - $'i) and then discard a" terms in $'i of degree 2 and higher. (As mentioned
earlier, one of the objec~s is to investigate the effect of using this small signal
assumption this second time.) Doing the above, we obtain

(7)

L = I [pi{z)J 2

PZ(z)
dz, and

5
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The parameter L determines (for IIsma ll" s ignal) the processing gain achievable for
any PZ(z), including Gaussian noise (for which L = 1).

Using the above we obtain, for binary symmetric signal with Sl(t) = -S2(t) (CPSK),

N 2
E[oIH2] = - E[oIHl ] = 2L L Sli ' and

;=1

(10)

N
Var[oIH2] = Var[oIHl ] = 4 L:

i=l

An estimate of performance is then given by

Pe=prob[o<o]=~erfc S~}
t;2Var[o]

If our two signals are, for example,

(11 )

a < t < T

and

a < t < T

so that S is the signal power, then

E[8] = 2SLN, and

Var[o] = 4SLN - 6S2L2N.

(12 )

(13)

(14 )

Since al:l our noise models are normalized so that the noise power = 1, S is also

our signal-to-noise ratio. We note that SL must be such that the variance isposi­
tive. Since L is usually large (i.e., ~103 - 104), (14) defines, in a sense, the

lneaning of "sma llil signal in the above LOBO analysis. [Very detailed definitions of
"sma ll signal·· are given in Middleton and Spaulding (1983), cf. Sections 7.4,A.3.]

If SL « 1, then (11) becomes approximately

tV
Pe = 1/2 erfc (ISNL!2)

6
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For LOBD1s, the pe~formance parameter L is >1, and is equal to 1 fff~the' noise is
Gaussian.

The above reviews the LOBD approach~ Suppose now that we have a LOBO detectOr
, A

based on the assumption that our interference is pz(zl' and the actual interferenc~

is pz(z). We can carry out the above analysis using PZ(z) in place of PZ(z) where
appropriate to determine the effE~cts of II mismatching" the interference, or we can use
this to determine the sensitivity of the LOBD performance to changing interfe~ence.

This approach also gives results which can be easily used to evaluate the small
signal performance of any ad hoc nonlinearity. The result is that L is replaced by

a parameter Leff , for ilL effective," where, Leff = Li/L2'

L2
= 100

[~z(Z)] 2" p-r(z)dz .
_00 Pz (z) L

and (16 )

(17)

A

If pz(z) = PZ(z), then L1 = L2 = L = Leff ·

We ~an quickly compute the performance of any arbitrary nonlinearity, £(x),
used in the detector of Figure 1. For example, for the hard-limiter, ~(x) = 1, if
x ~ 0 and ~(x) = -1, if x < O. We can solve the resulting expression

d A

~(x) = - dx ~n PZ(x) , (18)

A

to obtain the corresponding PZ(z) to compute Leff via (16) and (17) above. For the
hard-limiter case, we obtain

2Leff = 4 PZ(O). (19)

where PZ(z) is the actual interference. Performance is given ~. (15), so that the

degradation caused by using the hard-limiter is simply the difference between L for
our actual interference (LOBD performance factor) and Lefffor the hard-limiter (or
similarly, for any other nonlinearity).
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Up to this point,we have not specified any "model" for the real ·world non­
Gaussian noise and interference environment. Recent work by Middleton has led to_
the development of a physical-statistical model for radio noise. This model has
been used to develop optimum detection algorithms for a wide range of communications
problems (Spaulding an'd~liddleton ,1977). It is this model which we use here for
our signal detection problem. The Middleton model is the only general one proposed
to date in which the parameters of the model are determined explicitly by the under­
lying physical mechanisms (e.g., source density, beam-patterns, propagation condi­
tions, emission waveforms, etc.). It is also the first model which treats narrow­

band interference processes (termed Class A), as well as the traditional broadband
processes(~assB). The model is also canonical in nature in that the mathematical
forms do not change with ·changing physical conditions. For a large number of com­
parisons of the model with measurements and for the details of the derivation of the
model, see Middleton (1977,1983) and Spaulding (1977). We only summarize the results
of the model which we need here.

For our received noise process Z(t), the probability density function (pdf)
for the received instantaneous amplitude, z, is:

- CX) < Z < CX)

pz{Z)

2
= -z /0. Loo

{ _l)m Amr (ma+1\ F ( 2 )
e m! ex 2 /1 1 - ~ex ; 1/2; ~

TfIs1 m=O
(20)

where lF l is a confluent hypergeometric function. The model has three parameters:
a, A , and D. [A more detailed and complete model involving additional parametersa
has been developed, but (20) above is quite sufficient for our purposes]. The pa-
rameters a and A are intimately involved in the physical processes causing thea
interference. Again, definitions and details are contained in the references. The
parameter ~ is a normalizing parameter. In the references, the normalization is
~ = 1, which normalizes the process to the energy contained in the Gaussian portion
of the noise. Here we use a value of ~ which normalizes the process (z values) to
the measured energy in the process. We cannot normalize to the computed energy,
since for (1), the second moment (or any moment) does not exist (i.e., is infinite).

This is a typical problem with most such models for broadband impulsive noise. While
the more complete model removes'this problem, use of (20) in conjunction with meas­
ured data, will in no way limit us. However, when we discuss the-simulation results,

we will see an interesting result of using "infinite energy" models.
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The result corresponding to (20) for the envelope cumulative; distribution (APO)
is:

-E~/r2 [ E2 00

L (_l)m AmP(E> E ) = e 1 0
0 -Q m! a

m=l

X r(, rna) (, rna 2; ~~) ]+ 2" lF l
- _e

2'

(21 )

0< E<oo •

It is the envelope distribution in the above form which is usually measured and
which we use for validation of the model by comparison with measurements.

The corresponding expressions for the Class A:; narrowband II ;mpul s; veil no; se are

-A= e (22)

where
0

2 = m/A + r~
m 1 + r~

and, for the envelope,

(23)

-A= e
00

L
m=O

(24)

Theelass Amodel has two parameters: A and r~. A is termed the overlap index,
and as A becomes large (~lO), the noise approaches Gaussian (still narrowband) and
r~ is the ratio of the energy in the Gaussian portion of the noise to the energy in
the non-Gaussian component.

The Class A model is appropriate for interference caused by collections of
intentionally-radiated signals (e.g., as in the crowded HF band) and has also found

9



application in various acoustical (e.,g., sonar) problems. The Glass B model is
appropriate for broadband impulsive noise processes such as atmospheric noise,
automotive ignition noise, etc.

Figures 2 and 3 show the comparison of the limiting ·small signal performance
for the LOBD with the ,corresponding performance for the hard limiter. Figure 2 is
for the Class BMiddletonmodel for a wide range of the parameters a and A, and

a
Figure 3 is for the Class A model for various values of the parameters A and r~.

A couple of example values for L are also shown on the figures. On Figure 2, the
point shown (a = 1, A = 1) will be used and referred to later.a

While the hard-limiter may not be the suboptimum nonlinearity one would choose
for all Class A cases, the results show that the Class A LOBO nonlinearity can sub­
stantially outperform the hard-limiter (Figure 3). The results for Class B noise
would seem to indicate that one may as well use a hard-limiter rather than attempt­
ing to i.mplement the much more difficult Class B LOBO nonlinearity .. The results,
however, are limiting results for a suitably small signal (>0) .and N+ 00.

Note that if we use the· receiver optimum for Gaussian noise (no nonlinearity),
the limiting performance (N + 00) is identical for all types of noise (i.e.,
Leff = 1 from (16) and (17) for ~ PZ(z)). While this is certainly true in the
limit, we also know that performance of systems, using the Gaussian receiver in
non-Gaussian noise, can be quite different, even for very small signals. This
means that, in this case at least, the limiting performance may not give a good
estimate for real-world small signal situations, especially for relatively small N~

For large N, and any noise process, we expect the performance to approach the .same
characteristic performance as for Gaussian noise due to the Central Limi~Theorem.

However, we have no means of locating· this "Gaussian performance curve ll in terms
of signal~to-noise ratio. [For our CPSKcase, we will see that the parameter L is
a measure of the difference (in the limit as N + 00) between the LOBO IIGaussian per­
formance curve" and the linear receiver "Gaussian performance curve,1I where both
are operating in the same non-Gaussian noise environment.] Figure 2 shows that
the Class B LOBO nonlinearity and the hard-limiter nonlinearity behave similarly
(only small degradation·); however, these results may be true only in the limit.
In thenext,section,we investigate this question.

10
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3. REMOVAL OF ASSUMPTIONS
In the last section, the performance of the LOBO and various suboptimum non­

linearities (e.g., the hard-limiter) was evaluated u'sing the Central Limit Theorem
in that only the mean and variance of the detection variable 8 need,ed to be evalua­
ted and also using the sufficiently small signal ~ssumption to then evaluate the
required integrals (6). We now want to remove these assumptions to see what effect
the..y may have on estimating the performance of actual systems.

There are two possible approaches. The first is direct cpmputer simulation to
obtain Monte Carlo performance results comparing the various nonlinearities. The
Middleton models are-such that it would be difficult to rapidly generate the random
noise samples required. The second approach is to use the Central Limit Theorem,
but evaluate the integrals (6) directly without the small signal assumptions. This
is also a formidable task, in general, due to the mathematical cornplexity of the­
noise models. There is one Class B situation, however, where both thE~ above methods

-can be used. For Class B noise with a = 1, Middleton (1976) has shown that the
model (20) reduces to the following,

pz(z) (25)

with 'the corresponding envelope APD given by

(26)

The expressions above are models of the Hall (1966) type_ (Hall parameter e = 2),
so the r,1iddleton models can g-ive some physical basis for the Hall model. The
above [(25) and (26)J are only good approximations at the high amplitude IItails ll

and then only for relatively large values of A(A >1). Figure 4 shows the Halla ex-
model envelope distribution from (26) and the Middleton envelope distribution from
(21) for a = land A = 1. Also shown on Figure 4 is the Middleton model fora = 1a
and A

a
= 10-3. As can be seen, the approximation given by (26) is only valid for

large amplitudes and that (26) can be used to approximate the entire distribution
only for the larger values of A . We are, of course, assuming that the physical-

a
statistical model of f-1iddleton is the appropriate model to II ma tch ll the actual envi-
ronment(this has been reasonably well sUbstantiated) and are using the Hall model

13
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MIDDLETON, A = 1
a --4

a = 1 , Sl = 4 x 10

L :1619(32.1 dB)

HALL, e = 2

A~
a

y = 2

L = 5 x 103 (37 dB)

/o

40

20 -

- 40 lI-..I-...L-..J--...--a.._"""'--..I:..-- ..-..-....a.-....-.-..~ ............ __...__..._.____"___ _..
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Prob[E > EOJ

-20

Figure 4. -3Comparison of the ~,1iddl eton model for a = 1 and A = 1 and 10
with the Hall model, e = 2. a
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via (25) and (26) to obtain a simple mathematical form for a special case of
Middleton1s model.

For the Middl'eton model (a = 1, A = 1), L = 32.1 dB (Figure 2). The general
a

Hall model has two parameters, e and y, and is given by

(27)

For e = 2 and y = A 1ri/2, the Middleton approximation (25) is obtaine'd. The 'corre­
a

sponding general Hall APD form is

peE > EoJ = (28)

When (27) is used in the'llL integral ll (8), we obtain

L =

82r(~) y8-1
r (821) liT

dz
~ + 2
2

(29)

The parameter y is a IInormalizing parameter ll equivalent to ~ in the Middleton model.
For our case (a = 1, Aa = 1), y :: 1ri/2. For e = 2, (29) then gives

L = 2/~ (30)

The parameter g is defined as 2/(envelope rms)2 (since the envelope power is twice

the actual noise power), and the envelope rms must be computed from the model. In

obtaining the results of Figure 2, the Middleton model was assumed to~~aturate at
80 dB above the Gaussian level or a~ anexceedance probabili~ ~f 10~6, whichever

came first. That is, we must use a truncated model since the rms for the actual

model does not exist. For the Middleton model (A = 1, a = 1), this gives
a

g = 3.99959 x 10-4. For the corresponding Hall model (for any large truncation

point), we obtain for e = 2 and truncation at 80 dB, corresponding to the Middleton
example,

15



104

0.5x (Envelope rms)2 = ~ y Jf
o

1 , (31)

or y = 12 x 10- 2 ,

resulting in [from" (26) and (28)J n = 4 x 10....4 almost precisely the normaliza-

tion value obtained earlier for the Middleton example. Therefore, for the Hall
model, e = 2, properly normalized, L = 5 x 103 or 37 dB. For the Middleton example,

L = 32.1 dB and for the corresponding Hall model, L = 37 dB even though the impulsive
tails are essentially identical. This points out that the value of L depends on the
relationship between the low level Gaussian portion of the distribution and the rms
level of the entire distribution. As can be seen from Figure 4, when the two dis­
tributions are "ma tched," the Hall distribution has a "l ower " Gaussian level,
resulting in a somewhat larger L. From now o~ we will restrict our attention to
(26), L = 37 dB (or st = 4 x 10-4) .

By using (25) for our pdf of the interfering noise, the integrals (6) can be

directly integrated with no small-signal assumption. We obtain from (6) and (25)

The two integrals are most easily evaluated by contour integration using residues.

After a rather extensive amount of algebra, we obtain

16



(34)

and

so that

Var[y;IH1] = 2 2
5,. + Q1 -

Therefore, for the detection variable 8 (Figure 1),

(35)

(36)

and

N
E[oIH1]= -Ho IH2] = 4 L:

i='"i

N
Var[oIH1] = Var[ol H2] = 8 ~

;=1

251i
2

51; + r2
('37)

(38)

Of course~ for 5 + 0, the aboVe (37) and (38) reduce to the results obtained earlier
(10) (n = 2/L and L5 « 1).

The hard-limiter result obtained earlier (19), that is

2
Leff = 4PZ (0) , (39)

is a limiting result (5 + 0). F6~ the Hall approximation (25)

_ 16 _
Leff - =z- - 0.81 L, (40)

TI n

so for the Hall model the hard-limiter, according to (40), will result in 0.912 dB
degradation, while for the corresponding Middleton model, the hard-limiter (in the
limit) will result in a 1.5 dB degradation (Figure 2).

17



In terms of the actual signal samples, the suitably~ small signal approach
gives

so that for the detection variable &,

(41 )

and

N

L
;=1

(42)

N
Var[oIH1,2] • 4 L

i=l
( 2 16 4)

51; - 1T2r2 Sl; .

Without this small-signal assumption, the integrals, (6) eventually give,

and

4- -
'IT

N

L
i::= ]

-1 (2;1;)·
51; Tan v~~

(43)

[Tan~l (~;)J 2

Of course, as before as 5 + 0, the results (43) approach those of (42). Also note
th~t in (42) the variance quickly becomes negative as 5 increases, but in (43) the
variance exists for all signal levels (but + 0 as 5 + 00).

For the signaling set given by (12), we can generate our,signal samples as
follows:

Sl ft ;) = 51; = m cos [ Q . (i - 1)J (44)
N-l

where
t. = T ( i 1) and -Q = wOTN-l -

1
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We now use (44), (37,38),"(42), or (43) in (11) to estimate performance for various

signal-to-noiseratios S and number of s~m~l~s N. (Also, for the coherent case con­
sidered here, it is just as vallid to make all the signal samples the same, namely,
sli = ~. In fact, this was done for the computer Monte Carlo simulations covered
next.)

The comparison of the results using (44), (43), and (42) for N = 100 are shown
in Figure 5. On Figure ·5, three curves are given: the standard result (5 + 0) from
(13,14), the result using (37,38) (S~O),and the hard limiter result from (43)

CS~O). The signal samples were generated via (44). Also shown on Figure 5 are
simulation results (to be covered in the next section) for the LOBO nonlinearity
(bandpass) and the bandpas~Jimtter, and we see that the calculated results are
quite close to the simul"ated results in all cases. Note that removing the small
signal assumption makes only about 1.5 dB difference (.the same is truE~ for the
hard-limiter). Since N = 100 here, we expect the Central Limit Theorem approxima­
tion to be quite adequate, a~d we see that it is.

Figure 6 shows results for~N = 10. First, we note that perfor~ance cannot be
calculated from the normal result (13,14) since the variance quicklY becomes negative.
This is noted by the dashed curve (S + 0). The hard-limiter calculat~ion from (43)

(S~O) matches the simulation results only for small signal levels and departs
rapidly as the signal inc"reases. The LOBD calculated results from· (37,38) (S~O)

follow the simulated results better. The differences are, of course, du~ to the
Central Limit Theorem approximation used for the c~lculated results not being valid
for N = 10,. especially in the "tails." The most interesting result shown, however,
is that the hard-limiter outperforms the LOBD as the signal level increases
(around SNR = -28 dB and Pe = 10-6 in this case). Even though N = 10 and the
simulation results go ta P = 10-6, the simulation results shown are statisticallye
quite accurate.. That is:, the eff,ect shown is rea:l.

4. MONTE CARLO COMPUTER SIMULATION RESULTS
In the previous section, the assumption of suitably small signal normally

used in performance estimation was removed for one Class B example. However, the
Central Limit Theorem argument was still required. The only way to get around this,
since it is impossible to find the actual pdf of the detection variable 8 instead of

just its mean and variance, is b,Y direct computer simulation. This means that we
must be able to quickly generate a large number of random samples from the appropri­
ate noise and signal distributions. For example, if N = 100 and we want to deter­
mine performance in the range P = 10-6 and we decide that we need at least ten

e
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Simulation:

o Opt~ Nonlinearity
(Bandpass)

A Bandpass Limit~r

~Hard Limiter
S+t-O

(Eq. 43)

5...,.....0
,(Eq. 37 ,38)

S --...0
LOBO

(Eq. 13,14)

Figure 5. Calculated and simulation results for the hard-limiter and LOBD
nonlinearities for N = lOO.
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o

S """0
LOBD

(Eq. 37,38)

N =10

Hard Limiter

S++-O
CEq. 43).

""""S ~O----'"
(Eq. 13, 14) \\

\

Simu lotion:

o Opt. Nonlinearity
(Bandpass)

165
A Bandpass Limiter

167 l.--__..l.- .-L-.__--J.-__--J-.__----L.&.__---'

-55 -50 -45 -40 -35 -30 -25

SNR

Figure 6. Calculated and simulation results for the hard limiter and LOBO
nonlinearities for N = 10.
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errors for statistical significance, then we need 100 x 10·x 106 = 109 random

samples for this one point. This problem of the large number_ofrandom samples
required has always been one of the drawbacks of Monte Carlo simulation, and,
obviously, the use of ~~iddleton's model to generate random interference samples is
out of the question without resorting to some much si'mpler approximation. It turns
out that it is reasonably efficient to generate random noise samples from the Hall
model.

In using Monte Carlo simulation, the accuracy of the estimate must be specified
and this then usually determines the number of random samples required. A simple
explanation of the Monte Carlo concept and v~rious techniques has been given lon~

ago by Kahn and Mann (1957) gnd an excellent survey~'has been presented by Halton
(1970). Halton especially covers the important area of "variance reduction. 1I The
variance reduction technique appropriate to our problem is termed IIImportance
Sampling. 1I The general idea of importance sampling is to draw samples from a distri­
bution other than the one given by the problem and to carry along an appropriate
weighting factor, which, when multiplied into the final results, corrects for having
the wrong distribution. The biasing is done in such a way that the probability of
the samples being drawn from an lIinteresting ll region is increased. If good Impor­

tance Sampling techniques can be developed for a prob1em,then many l~ss (orders of
magnitudes less) random samples are required to achieve the same giv~n level of
statistical significance. Unfortunately, it is usually difficult to develop such

techniques. A detailed example of using Importance Sampling quite effectively for
nonlinear channels and Gaussian noise has been given by Shanmugam and Balaban (1980).
Although substantial effort was expended, we could not develop any significantly
II good" sampling methods for our problem at hand so that the results presented in

this section are based on~straight Monte Carlo techniques.
In generating the random samples in order to obtain the input Xi (Figure 1) to

the system being simulated, bandpass processes are employed. That is, envelope and
phase representations are used as in Figure 7. In Figure 7, the signal sample is
15", corresponding to the signals given by (12). Because of symmetry only Sl(t)
(IS") needs to be II sent. II An error will occur whenever the resultant Xi' after

modification by the nonlinear receiver, lies in the shaded region of Figure 7.
Actual detection is based on the sum of N such signal plus noise resultants. For

a constant signal, all signal samples are the same, namely, the~. Flat fading
signal situations are obtained by using a constant signal throughout a detection
interval T, but then allowing this Ilconstant~ to vary from one detection interval to
the-next according to some fading distribution. Results for flat Rayleigh fading
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Figure 7. Signal phasors plus noise phasor for CPSK.

signals will be included here. Other fading situations can be simulated by allowing
the signal samples to vary within a detection interval. On Figure 6, each noise
sample Hi is obtained from the appropriate envelope (e.g., Rayleigh for Gaussian
noise) and each noise phase angle, 8i , is obtained from a uniform distribution

°< 8 < 27T.
The details of generating random samples from arbitraryd,istributions is

treated by Bogdan (l981). The procedures start by generating a randonn sample (or
samples) from a uniform distribution in the interval (O,lJ and then modifying this
sample according to the desired distribution. To do this usually. requires taking
the inverse of the cumulative distribution function (which, of course, makes it
impossible to use Middleton1s model). For example, for Gaussian noise, Rayleigh
envelope, if V is uniform on {O,lJ, then a Rayleigh distributed randorn variable, X,

is obtained from

x = [-2 0
2 2n (1 - V]1/2 , (45)

where 0
2 is the real noise power. If we have normalized the noise envelope to its

rms value, i.e., envelope power = 1, then the real noise power, 0
2, is 1/2. For

the Hall model, random samples are obtained from

-2
X = y(V8- 1 _ 1)1/2
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(47)

and we will give results for e = 2 (as in the last section) and for e = 4. Also, for
the Hall model, the LOBO nonlinearity is quite simple (see Figure 1),

ex.
Y

- ,
i - 2 2

xi + y

In actual systems, the nonlinearity (47) operates on the magnitude of the complex
received waveform sample, that is, the magnitude of X. is used. In the hard limiter

1

case, the bandpass version becomes a bandpass limiter. Physically, the bandpass
limiter is a hard limiter followed by a zonal filter, so that no signal distortion
is obtained from the nonlinearity and the following correlation receiver remains
II ma tched ll to the signal, as in the previous analysis. The behavior of the bandpass
limiter when used with Gaussian noise and one CW signal has been analyzed in great
detail by Davenport (1953) (see also problem 13, page 311 of Davenport and Root, 1958).
A simplified analysis has also been given by Cahn (1961). This analysis shows that,
in terms of signal-to-noise ratios (SNR) in and out of the nonlinearity.

(j) 0 = i (j) I when (j) I « 1 ,

and (48)

(~) = 2 (~) when (j)I » 1 .
,N 0 ~ I

That is, Gaussian noise and the bandpass limiter results in 1.05 dB degradation for
small SIN and 3 dB degradation for large SIN. Using (19) to obtain Leff for the .
hard-limiter and Gaussian noise we obtain L = TI/2 = 1.57, or 1.96 dB degradat'o~., eff

The receiver structures that were simulated are shown in Figure 8. The
bandpass receivers (a,b,d, Figure 8) we~e used almost exclusively, but some results
for the others (c ande, Figure 8) were obtained, mainly for curiosity·s sake and to

see how much difference resulted:
If the actual probability of error is Pe , then an estimate of Pe is

K

E
i=l

a.,,

where a. is 1 if the i th transmitted symbol isin error and zero otherwise and K is,
the number of transmitted symbol with detection based on N sample points for each of

_A

the K symbols. The mean and variance of Pe are given by Pe and Pe(l - Pe)/K,
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Figure 8. Receiver structures.

25



respectively. For low probability of· error, the normalized standard deviation is
approximately (KPe)-1/2. The sirhulat'ion programs are designed so that either a

maximum number of symbols transmitted or a minimum number of errors detected will
terminate the execution.

The first simulation results are given on Figure 9. These are for Gaussian
noise for N = 1,10,100 using a linear receiver (optimum) and the hard-limiter [(c)
of Figure 8] and the bandpass limite~. The object .hereis to make sure that the
simulation results corr~spond to the known theoretical results so that we know the
simulation programs are functioning properly. Results fora Rayleigh flat fading
signal and Gaussian noise are also given on Figure 9 (N = l}. As expected, we see'
that the "hard limiter" is slightly inferior to the bandpass limiter.

Figure 10 shows results using the Hall model (8 = 2)lInormalizedll asin the
previous section to represent Middleton1s model. The result from Figure 10 for
N = 10 and 100 were discussed in the last section where they were compared to various
analytical results. Note the interesting results for the~linear receiver. Identical
results.were obta'ined for N = 1, 10, and 100. This' is, of course, ,not physically
meaningful and is the result of using a model for which the moments do not exist.
This "infinit·e power ll problem goes away whenever a nonlinearity is employed, as with
the other results of Figure 10. For a linear receiver, for N = 10 say, detection is
based on a "no ise sample ll which is the sum of the ten noise samples from the basic
underlying distribution. Except for Gaussian noise, the distribution of the ··sum
sample" is different .from the distribution of each individual sample, and approaches
Gauss via the Central ·Limit Theorem. This makes it difficult to analytically deter­
min.e'the .per,formance of linear.systems in non...;Gaussian noise for time banc;iwidth
products other than T. The above is .,for "rea l·· noise processes with finite moments.
Consider the Hqll model for e = 2. The pdf is given by

pz{z) = 2 y 2
n(z + y )

so that the characteristic function is

This gives
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So if

ct>Z(U) = ~1T. 100

__1_- cos uz dz =
a (y2 + y2)

-yue (52)

y =
N

L: Zi
1=1

(53)

(54)

the pdf of Y is given by

Py (y) = [2 Ny 2 J'
7f Y + (Ny)

That is,'y has the same pdf as the individual zits, but is N times '·'·'bigger.'" This
explains the linear receiver results bf Figure 10. In doing the simulation with
8 = 2 and the linear receiver, a truncated Hall model was also used. That is, all
values generated that were larger than some threshold were either discarded or
reduced to the threshold value. This procedure made no difference and the same
results shown on Figure 10 were obtained. That is, the mathematics given above
still dominated. Also indicated on Figure 10 for N = 1 are results using the LOBO
nonlinearity and the bandpass limiter. As indicated, these-results were essentially
identical to those obtained for the linear receiver, demonstrating the known result
that for N = 1, no improvement can be obtafned by using nonlinear receivers and in
order for nonlinearities to be effective, N must be greater than 1.

Figure 11 gives simulation results for the Hall, 8 = 2, noise and a Rayleigh
fading signal, N = 10. Note that as for a constant signal and N = 10 (Figure 6 and
10), the bandpass limiter outperforms the LOBO nonlinearity as the 5NR increases.
This behavior is easier to see for a Rayleigh signal, since the Pels are much higher
at the "crossover" point betweE~n the LOBO and the bandpass 1imiter.

To complete the simulation results for 8 = 2, Figure 12 shows what happens when
Gaussian noise is the actual interference and our receiver uses the LOBO nonlinearity
for 8 = 2. The solid curve is the theoretical performance for the linear receiver
in Gaussian noise (optimum) and the degradation caused by using the LOBO nonlinearity
(N = 10) is shown. Using (16) and (17) to compute Leff , we obtain the integrals

-28 /00 2 _z2/ 202

L, = 2' 1?2,2· . z2 + y2 e dz
a V27f(J-

.' -00

29
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and (55)

00 2
J 2 z 2 2
_00 z + y )

2 2
e-z /20' dz

The Ll integral can be evaluated analytically but the L2 appareritly cannot be.
Numerical integration of Ll and L2 gives

(56)

The Leff tells us the degradation expected for "sma ll" 5(>0) and N -+ 00. The degra~

dation obtained for N = 10 using the simulation results is on the order of 10 dB
from Figure 12. Simulation results for N = 100 were not obtained.

As detailed in Section 3, the Hall model, e = 2, properly normalized was used
to approximate Middleton1s model to II check" previous results based on suitably
small signal and £~ntral Limit Theorem arguments. Simulation results were also
obtain~d for another Hall distribution, e = 4. Unlike the e = 2 case, the first
three moments exist for the 8 = 4 case. The pdf for e = 4 is

pz{z) (57)

and the APD is

(58)
3

yProb E > E =o (E~ + y2)3/ 2

If this is normalized to the envelope rms level' (which now can be computed), then
y = 12/2. A quite interesting result is that for the Hall model, e = 4, the
lIimprovement factor ll L is only 4 (6 dB). Figure 13 shows theAPD (8 = 4) and this
noise is obviously highly non-Gaussian. Comparing Figure 13 (8= 4) and ,Figure 4
(8 = 2 and for which L = 37 dB), the noise distributions do not appear to be lIall
that much different,11 especially in the tails. Yet for 8 = 4, L is only 6 dB. As
we will see from the simulation results, thi's 1131 dBdifference ll (37-6) is quite

real.
First, Figure 14 shows results for a linear receiver for both constant and

Rayleigh fading signal. Since we are now using a "rea l" noise process with finite
moments, we obtain Iinormallires.ults for the different time-bandwidth products. As
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Figure 14 shows, as N increases, the performance results look more· and more like
the standard result for Gaussian noise due to the Central Limit Theorem (which, as
noted earlier, only applies to random variables with finite moments).

Figure 15 shows the linear receiver, constant signal, results along with results
for the bandpass limiter and the LOBD nonlinearity. First, note' that· as before,
use of nonlinearities for N = 1 gives no improvement over the linear receiver, but,
of course, does give improvement for N = 10 and 100. For N = 100, this improvement
is only 6 dB, as predicted by L. Note that the LOBD nonlinearity here also is only
slightly superior to the bandpass limiter. From Figure 9forN = 100, the linear
receiver operating in Gaussian noise (optimum) requires approximately a SNR of
-13 dB for Pe = 10-3 and from Figure 15 the LOBO receiver (locally optimum) requires
approximately -20 dB SNR for P = 10-3. This is a 7 dB differenc~ and the limitinge
difference predicted by L ~'Jas 6 dB. Next, from Figure 10, N = 100, Hall e =2
noise, a SNR of -53 dB is required for Pe = 10-3. This is the "31 dB difference"
(approximately) between the two Hall noises'mentioned above and given b.y the two
correspondingLvalues (37 dB versus 6 dB) .. This shows that. we cannot arbitrarily say,
by inspection, that a noise process which is. ll tremendouslyll non-Gaussian can result
in "tremendous ll ,improvement over the 'corresponding Gaussian or linear r,eceiver
situation.

Finally, Figure 16 compares performance for a constant signal and a Rayleigh
fading signal for N = 10. Note, that while for the 8 = 2 case and· N = '10, the
bandpass 1imi ter began to out·perform the LOBO non1 i nearity for both constant
signal (Figures 6 and 10) and Ray'leigh fading signal (Figure 11) as SNR increased.
Here (8 = 4) the LOBO nonlinearity' appears to be lIalwaysli slightly superior to the
bandpass limiter.

5. CONCLUSIONS AND DISCUSSION
In the derivation of the LOBO, two essential assumptions are made. That the

de.sir~d signal is suitably small (see ~1iddleton and Spaulding, 1983) and that the
numb/er of independent noise samples increases without li·mit. The usual means of

estimating the performance, once the detectors have been derived, again make use
of these two simplifying assumptions. This results in performance measures that
are strictly true only in the limit. It has been the purpose here to investigate,

via particular examples and computer Monte Carlo simulation,. how the LOBDls will
actually perform in actual possipleoperational situations. The results are .. varied,
but in general, the "standard ll limiting performance estimates do provide correct
performance measures under appropriate conditions (large Nand S sufficiiently small).

35



10-1 ..-

10- 2

oLOCALLY OPTIMUM NONLINEARITY

BANDPASS LIMITER

LINEAR RECEIVER

o

o

x

1~6 L~~~~~J_L~~~_~LI [I [I l 11 I j ~ 11 I ~~I Ill .. , .
-35 -30 -25 -20 -15 -10 -5 0 5 10 15" 20 25

SNR, dB

~ 10-3
~
~
I..LJ

W
LL.

en
0

>-
I-

2 10-4
co t:
c:(
co
0
~
a...

10- 5

Figure 15. Simulation results for Hall noise, e = 4, for a linear receiver and for the
LOBD and bandpass limiter nonlinearitie$.



~

~

*

~ ..

~

~

~

o
\
\

\ N = 10

\
o
\

~

o LOCALLY OPTIMUM NONLINEARITY,
CONSTANT SIGNAL

-* LOCALLY OPTI~·1UM NONLINEARITY,
RAYLEIGH SIGNAL

,
1 :1= I I l-rl....·r--·r~··f- -r·_··T.,-·lJ...·r'~r-r-·rr-d·r···la··l· '·r..'T·.. ·"'"-l··"} ~...T-··l-T··l··_·1--1-··T·-~T'T"--..r-l·l·-T-l·--,I-·r·--l-r-l-,'rr

--- --0 •
-- 0 _~ HALL NOISE, 8= 4

u.~

'""" \
\10- 2 .-

10-1

10-
3 t:

W 0:::
-....... 0

0:::
0:::
LLJ

LL.
o

~ 10-4
.......
-J
.......
co
<C
co
o
0:::
0-

10- 5

25

h. BANDPASS LIMITER, RAYLEIGH SIGNAL

10- 6 ·1 I I I ..LLL.Lu...1..L..L.JJ.-LLL.L.U_U-LLLLLU·1 I I I J I II I j I I I LL.J I I I I ! ! IJ I. .
-35 -30 -25 -20 -15 -10 -5 0 5 10 15 -20

SNR. dB

Figure 16. Simul.ation results for constarit and Rayleigh fading signal, Hall noise,
e = 4, N = 10.



The simulation results demonstrated that the LOBD ' sactl1ally performasadvert'ised.
One example was shown where the LOBD departed from being lIclose to optimumllas the
signal level increased (N = 10) and was eventually outperformed by the ad hoc
bandpasslirrfiter. Inall cases, the LOBO outperformed (in the limit) lIreasonable"
nonlinearities, e.g., the hard-limiter, only by a small amount «3 dB) for Class B
interference. The corresponding situation for Class A interference still needs to
be investigated. Also, it was demonstrated that one cannot be assured of always
obtaining lIgreatll improvement over the linear receiver by using nonlinear

processing. One Class B, highly non-Gaussian example (8 = 2), gave 37 dB improvement
whereas another Class B, highly non-Gaussian example (8 = 4), gave only 6 dB improve­
ment.
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APPENDIX
~ COMPUTER SOFTWARE

In thi s ,appendix·,; we simply 1i st the computer simul,ation programs used for the
simulation results given in the report.. The programs are essentia-1ly self-explana­
tory via the comment and format st~tements. The 15 routines, BPSKO-BPSK14, simulate
the receiver structure given in .Figure 8. The programs are all similar and differ
from each other only slightly to make use of differen~noise processes and
diffe~ent non1inearities and various combinations of these. The programs are
easily modified for other signaling and noi.se situations. For examplE~, the second
BPSK14 program given is a modified BPSK14 program (first one given, constant signal)
for a Rayleigh fading signal.

These programs were used on CYBER170/750 computers. The IInorma111 DO loop pro-
. 5

cedure used in the programs will not function properly for N > 10. An example
of the required modification for N = 106 is shown in BPSK2.
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~ PROGRAM BPSK0(INPUT,OUTPUT)
C THIS IS ONE OFA SERIES OF SHORT PROGRAMS TO DETERMINE
C PROBABILITY OF BINARY BIT ERROR FOR BINARY COHERENT PSI
C SYSTEMS USING VARIOUS FORMS OF NONLINEAR PROCESSING
C AND"NON GAUSSIAN NOISE. ,
C HALL MODEL ,THETA=4. ,LINEAR RECEIVER,NOISE ENVELOPE RMS=l.
C NSY -'IS THE NUMBER OF SYMBOLS TRANSMITTED
C NER IS THE NUMBER OF ERRORS DESIRED,MAXIMUM
C NTBIS THE TIME-BANDWIDTH PRODUCT

COMPLEX Z
PRINT?

7 FORMAT(34H HALL, THETA = 4., LINEAR RECEIVER, /)
PI =3. -141592654
PIZ=PI+Z.
THETA=4.
GAM=SQRT(Z. )/2..
NTB= 10 S NSY=leeeee $ NER= lee'
PRINT 6, NTB, NSY, NER

6 FORMAT(7H NTB = , 13, 88 NSY = , 19, 88 NER = , 13, /)
RNP=0.5

C REAL NOISE POWER=0.S+ENVELOPE POWER.
SIGSQ=RNP
SIG=SQRT(SIGSQ)

C USE VARIOUS SIGNAL TO NOISE RATIOS DEPENDING ON TBP
DO 90 1.= 1, 15
SNR=-25.+I+S.-le.·ALOGI0(FLOAT(NTB»
RSP=le.··(SNR/10.)
SP=SQRT(RSP)
ERS=0.
DO S0 N= 1,NSY
SUM=0.
DO 60 J =1, NTB
PHI=PI2·RANDN(D)
R=RANDN(D)
E=-(2.0/(THETA-l.»
T=SIG+GAM+SQRT«R·+E)-l.)
Y=SP+T+COS(PHI)
SUM=SUM+Y

60 CONTINUE
C CHECK FOR AN ERROR

IF(SUM.LE.0.) ERS=ERS+l.
NERS=ERS
IP(NERS.EQ.NER) GO TO 85

80 CONTINUE
8S PE=ERS/N

VAR=PE·(I.-PE)/N
PRINT 8, SNR,PE,ERS,VAR,N

90 CONTINUE
8 FORMAT(FS.l,2X,E8.2,2X,F7.1,2X,E8.2,2X,19)

END.,

42



20
60

C

/r
C
C
C
C
C
C
C
C
C

7

c
c

6

C

c

PROGRAM BPSKI (INPUT ,OUTPUT)
THlS~ISONE'OF A SERIES OF SHORT PROGRAMS TO DETERMINE
PROBABILITY,OF BINARY BIT ERROR FOR BINARY COHERENT PSI
SYSTEMS USING VARIOUS-FORMS OF NONLINEAR PROCESSING
AND NON GAUSSIAN NOISE.
HALL MODEL,NOISE ENVELOPE RMS=1.,THETA=2.,BASEBAND
HARD LIMITER -(NO FILTERING).
NSY IS THE NUMBER OF SYMBOLS TRANSMI'TTED
NER IS THE NUMBER OFERRORSDESIRED,MAXIMIDf
NTB IS THE TINE BANDWIDTH PRODUCT
COMPLEX Z
PRINT 7
FORMAT (37H' ,HALL, THETA=2 BASEBAND HARD ~[MITER,/)
PI=3.141592654
PI2=PI·2.
THETA=2.
GAM=SQRT(2.)/20e.
THIS VALUE OF GAMMA; 'RESULTS IN APD SATURATION USED
IN PREVIOUS ANALYTICAL WORK.
NTB=10 $ NSY=100000 $ NER=100
PRINT 6, NTB, NSY, NER
FORMATC5H NTB=, 13,6H NSY=,19,68 NER=,'I3,/·)
RNP=0.5 .
REAL NOISE POWER=0-.S.ENVELOPE POWER.
SIGSQ=RNP
SIG=SQRT(SIGSQ)
USE VARIOUS SIGNAL TO NOISE RATIOS DEPENDING ON TBP
DO 90 1=7,8
SNR=-SS. +1.5. -10 .•ALOGI0 (FLOAT'(NTB»
RSP=10.··(SNR/10.)
SP=SQRT(RSP)
ERS=0.
DO S0 N= 1 ,NSY
SUM=0.
DO 60 J= 1 ,NTB
P8I=PI2·RANDN(D)
R=RANDN(D)
E=-(2.0/(THETA-l.»
T=SIG·GAM·SQRT«R··E)-l.)
IF(SP~T.COS(PHI» 10,20,20

10 SUM=SUM-l.
GO TO 60
SUM=SUM+ 1.
CONTINUE
CHECK FOR AN ERROR
IF(SUM.LE.0.) ERS=ERS+l.
NERS=ERS
IF(NERS.EQ.NER) GO TO 85

S0 CONTINUE
85 PE=ERS/N

VAR=PE·(l.-PE)/N
PRINT 8, SNR,PE,ERS,VAR,N

90 CONTINUE
8 FORMAT(FS.l,2X,E8.2,2X,F7.1,2X,ES.2,2X,19)

END
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~ PROGRAM BPSK2(INPUT,OUTPUT)
C THIS IS ONE OF'A SERIES OF SHORT.PROORAMS TO DETERMINE
C PROBABILITY OF BINARY BIT ERROR FOR BINARY COHERENT PSI
C SYSTEMS USING VAR IOUSFORMS OFNONL INEAR PROCESSING
C AND NON GAUSSIAN NOISE.
C HALL MODEL ,NOISE ENVELOPE RMS=l.,THETA=2.,COMPLEX
C PROCESSING (BANDPASS) ,OPTIMUM NONLINEARITY.
C NSY IS THE NUMBER OF SYMBOLSTRANSMJTTED .
C NER IS THE NUMBER OF ERRORS DESIRED., MAXIMUM
C NTB IS THE TINE BANDWIDTH PRODUCT

COMPLEX Z
PRINT 7

7 FORMAT(3SH HALL, THETA = 2., OPT NL, BANDPASS, /)
PI=3.141S92654
PI2=PI*2.
THETA=2.
GAM=SQRT(2.)/200.

C THIS VALUE OF GAMMA RESULTS IN APD SATURATION USED
C IN PREVIOUS ANALYTICAL WORK.

NTB=10 $ NSY=1000000 $ NER=10e
PRINT 6, NTB, NSY, NER

6 FORMAT(7HNTB = , 13, 88 NSY = , 19, 88 NER = , 13, /)
RNP=0.S

C REAL NOISE POWER=0.S.ENVELOPE POWER.
SIGSQ=RNP
SIG=SQRT(SIGSQ)

C USE VARIOUS SIGNAL TO NOISE RATIOS DEPENDING ON TBP
C DO 90 1=1, 12 .
C SNR=-SS.+I+S.-10.+ALOG10<FLOAT(NTB»

SNR = -29.
RSP=10.++(SNR/10.)
SP=SQRT(RSP) -
ERS=0.

C DO 80 N=l,NSY
N=l

1001 SUM=0.
N=N+l
DO 60 J= 1,NTB
PHI=PI2*RANDN(D)
R=RANDN(D)
E=-(2.0/(THETA-l.»
T=SIG·GAM·SQRT(R··E)-l.)
Z=CMPLX(SP+T~COS(PHI),T·SIN(PHI»

ZMAG=CABS(Z)
Y=(2.~ZMAG)/(ZMAG·ZMAG+GAM·GAM)

C REAL PART OF NONLINEARLY PROCESSED SIGNAL PLUS
C NOISE VECTOR

YY=Y*(SP+T·COS(PHI»/Z~AG

SUM=SL)l+yy
60 CONTINUE

C CHECK FOR AN ERROR
IF(SL~.LE.O.) ERS=ERS+l.
~EHS=ERS

If(NER~.EQ.~ER' GO TO RS
IF ( S . LT . 1()OO()OC)) GO TO 1~je 1

80 CONTINUE
85 PE=ERS/N

VAR=PE-(l.-PE)/N
PRINT 8, SNR,PE,ERS,VAR,N

90 CONTINUE
8 FORMAT (F5. 1,2X,E8.2,2X,F7. 1,2X,E8.2,2X, 19)

END
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A PROGRAM BPSK3(INPUT,OUTPUT)
C THIS IS ONE OF A SERIES OF SHORT PROGRAMS TO DETERMINE
C PROBABILITY OF BINARY.BIT ERROR FOR BINARY COHERENT PSX:
C SYSTEMS USING VARIOUS FORMS OF NONLINEAR PROCESSING
C AND NON GAUSSIAN NOISE.
C HALL MODEL,NOISE ENVELOPE RMS=1.,THETA=2.,LINEARRECEIVER.
C NSY IS THE NUMBER OF SYMBOLS TRANSMITTED
C NER IS THE NUMBER OF ERRORS DESIRED,MAXIMUM
C NTB IS THE TINE BANDWIDTH PRODUCT

COMPLEX Z
PRINT 7

7 FORMAT(34H HALL, THETA = 2., LINEAR RECEIVER, /)
PI =3. 141592654
PI2=PI·2.
THETA=2.
GAM=SQRT(2.)/200.

C THIS VALUE OF GAMMA RESULTS IN APD SATURATION USED
C IN PREVIOUS ANALYTICAL WORK.

NTB=l $ NSY=1000e0 $ NER=100
PRINT 6, NTB, NSY, NER

6 FORMAT(7H NTB = , 13, 8H NSY = , 19, 8H NER = , 13, /)
RNP=0.5

C REAL NOISE POWER=0.5-ENVELOPE POWER.
SIGSQ=RNP
SIG=SQRT(SIGSQ)

C USE VARIOUS SIGNAL TO NOISE RATIOS DEPENDlNGON TBP
DO 90 1=1, 18
SNR=-45.+I·S.-10.-ALOG10(FLOAT(NTB»
RSP=10.·-(SNR/10.)
SP=SQRT(RSP)
ERS=0.
DO 80 N= 1;NSY
SUM=0.
DO 60 J= 1,NTB
PHI=PI2·RANDN(D)
R=RANDN(D)
E=-(2.0/(THETA-l.»
T=SIG·GAM.SQRT«R··E)-l.)
Y=SP+T·COS(PHI)
SID!=SUM+Y

60 CONTINUE
C CHECK FOR AN ERROR

IF(SUM.LE.0.) ERS=ERS+l.
NERS=ERS
IP(NERS.EQ.NER) GO TO 85

80 COSTINUE
85 PE=ERS/N

VAR=PE·(l.-PE)/N
PRINT 8, SNR,PE,ERS,VAR,N

90 CONTINUE
8 FOR~AT(FS.l,2X,E8.2,2X,F7.1,2X,E8.2,2X,19)

END
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~ PROGRAM BPSK4CINPUT,OUTPUT)
C THIS IS·ONE OF A·SERIESOF SHORT PROGRAMS·TO DETERMINE
C PROBABILITY OF BINARY BIT ERROR FOR BINARY.COHERENTPSK
C SYSTEMS.USING VARIOUS FORMS OF NONLINEAR PROCESSING
C AND NON GAUSSIAN NOISE.
C HALL MODEL NOISE ENVELOPE= 1. ,THETA=2:', IDEAL BANDPASS
C LIMITER, (HARDLIMITE'RPLUSFILTER) .
C NSY IS THE·····NUMBER, OF SYMBOLS IRA:NSM]TTED
C NER IS THE NUMBER OF ERRORS DESIRED,MAXIMUM
C NTB IS THE TINE BANDWIDTH PRODUCT

COMPLEX Z
PRINT 7

7 FORMAT(35H HALL, THETA = 2., BANDPASS LIMITER, /)
PI =3. ·141592654
PIZ=PI·Z.
THETA=Z.
GAM=SQRTfZ.)/2e0.

C THIS VALUE OF GAMMA RESULTS IN APDSATURATION USED
C IN PREVIOUS ANALYTICAL WORK.

NTB=l $ NSY=100000 $ NER=lee
PRINT 6,. NTB, NSY, NER

6 FORMAT(7H NTB= , 13, 88 NSY = , 19, 88 NER = , 13, /)
RNP=0.5

C REAL NOISE POWER=0.5.ENVELOPE POWER.
SIGSQ=RNP
SIG=SQRT(SIGSQ>

C USE VARIOUS SIGNAL TO NOISE RATIOS DEPENDING ON TBP
DO 90 1= 1, 13
SNR=-5S.+I·S.-10.·ALOGI0(FLOAT(NTB»
RSP=10.··(SNR/10.)
SP=SQRT(RSP)
ERS=0.
DO 80 N= 1,NSY
SUM=0 ..
DO 60 J= 1,NTB
PHI=PIZ·RANDN(D)
R=RANDN(D)
E=-(Z.0/(THETA-l.»
T=SIG·GAM*SQRT«R··E)-l.)
Z=CMPLX(SP+T*COS(P81),T·SIN(PHI»
YY=REAL(Z)/CABS(Z)
SUM=SUM+YY

60 CONTINUE
C CHECK FOR AN ERROR

IF(SUM.LE.0.) ERS=ERS+l.
NERS=ERS
IF(NERS.EQ.NER)GO TO 85

80 CONTINUE
85 PE=ERS/N

VAR=PE-(l.-PE)/N
PRINT 8, SNR,PE,ERS.VAR,N

90 CONTINUE
8 FORMAT (FS. 1,2X,E8.Z,2X,F7. 1,2X,E8.Z,2X,I9)

END
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~ PROGRAM BPSKS(INPUT,OUTPUT)
C THIS IS ONE OFA SERIES OF SHORT PROGRAMS TO DETERMINE
C PROBABILITY OF BINARY BIT ERROR FOR BINARY COHERENT PSK
C SYSTEMS USING VARIOUS FORMS OF NONLINEAR PROCESSING
C AND NON GAUSSIAN NOISE.
C HALL MODEL ,NOISE ENVELOPE RMS=1.,THETA=2.,REAL PROCESSING,
C OPT NONLINEARITY.
C NSY IS THE· NUMBER OF SYMBOLS .TRANSMITTED
C NER IS THE NUMBER OF ERRORS DESIRED ,MAXIMUM
C NTB IS THE TINE BANDWIDTH PRODUCT

COMPLEX Z
PRINT 7

7 FORMAT(35H HALL, THETA = 2., OPT NL, BASEBAND, /)
PI =3. 141592654
PI2=PI·2.
THETA=2.
GAM=SQRT(2.)/200.

C THIS VALUE OF GAMMA RESULTS IN APD SATURATION USED
C IN PREVIOUS ANALYTICAL WORK.

NTB=l S NSY=100000.S NER=10e
PRINT 6, NTB, NSY, NER

6 FORMAT (78 NTB =, 13, 88 NSY = , 19, 8H NER = , 13, ,I)
RNP=0.5

C REAL NOISE POWER=0.S.ENVELOPE POWER.
SIGSQ=RNP
SIG=SQRTfSIGSQ)

C USE VARIOUS SIGNAL TO NOISE RATIOS DEPENDING ON TBP
DO 90 1=1,14
SNR=-5S.+I·S.-10.·ALOG10(FLOAT(NTB»
RSP= 10 .•• (SNR/10.)
SP=SQRT(RSP)
ERS=0.
DO 80 N=l,NSY
SUM=0.
DO 60 J= 1,NTB
PHI=PI2·RANDN(D)
R=RANDN(D)
E=-(2.0/(THETA-l.»
T=SIG.GAM.SQRT( <R••E)-l.)
Y=SP+T·COS(PHI)
YY=(2.·Y)/(Y·Y+GAM·GAM)
SUM=SUM+YY

60 CONTINUE
C CHECK FOR AN ERROR

IF(SUM.LE.0.) ERS=ERS+l.
NERS=ERS
IF<NERS.EQ.NER) GO TO 8S

80 CONTINUE
85 PE=ERS/N

VAR=PE·(l.-PE)/N
PRINT 8, SNR,PE,ERS,VAR,N

90 CONTINUE
8 FOR~AT(F5.1,2X,E8.2,2X,F7.1,2X,E8.2,2X,I9)

E~D
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% PROGRAM BPSK6(INPUT,OUTPUT)
C THIS IS ONE OF A SERIES OF SHORT PROGRAMS TO DETERMINE
C PROBABILITY OF BINARY BIT ERROR FOR BINARY COHERENT PSK
C SYSTEMS USING VARIOUS FORMS. OF NONLINEAR PROCESSING
C AND NON GAUSSIAN NOISE.
C GAUSSIAN NOISE, LINEAR RECEIVER (OP.TIUM) ..
C NSY IS THE NUMBER OF SYMBOLS TRANSMITTED
C NER IS THE NUMBER OF ERRORS DESIRED,MAXIMIDI
C NTB IS THE TIME-BANDWI-DTO PRODUCT

COMPLEX Z '
PRINT 7

7 FORMAT(26H GAUSSIAN, LINEAR RECEIVER, I)
PI=3.141592654
PI2=PI·2.
THETA=2.
GAM=SQRT(2.)/200.

C THIS VALUE OF GAMMA RESULTS IN APD SATURATION USED
C IN PREVIOUS ANALYTICAL WOHK.

NTB=l $ NSY=100000 $ NER~100

PRINT 6, NTB, NSY, NER
6 FORMAT(7H NTB = , 13, 8H NSY = ,19, 80 NER = ,13, /)

RNP=0.5
C REAL NOISE POWER=0.5-ENVELOPE POWER.

SIGSQ=RNP
SIG=SQRT(SIGSQ)

C USE VARIOUS SIGNAL TO NOISE RATIOS DEPENDINGON,TBP
DO 90 1=1,6
SNR=-14.+1-4.-10.-ALOG10(FLOAT(NTB»
RSP= 10. _. (SNR/10.>,
SP=SQRT(RSP)
ERS=0.
DO S0 N=l,NSY
SUM=0.
DO 60 J= 1,NTB
PHI=PI2-RANDN(D)
R=RANDN(D)
T=SQRT (-2. -SIGSQ.ALOG( 1. -R»
SUM=SUM+SP+T·COS(PHI)

60 CONTINUE
C CHECK FOR AN ERROR

IF(SUH.LE.0.) ERS=ERS+l.
NERS=ERS
IF(NERS.EQ.NER) GO TO 85

80 CONTINUE
85 PE=ERS/N

VAR=PE·(l.-PE)/N
PRINT 8, SNR,PE,ERS,VAR,N

90 CONTINUE
8 FORMAT (FS. 1,2X,E8.2,2X,F7. 1,2X,E8.2,2X, 19)

END.,
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~ PROGRAM BPSK7(INPUT,OUTPUT)
C THIS IS 'ONE OF A SERIES OF SHORT PROGRAMS TO DETERMIN'E
C PROBABILITY OF BINARY BIT ERROR FOR BINARY COHERENTPSK
C SYSTEMS USING VARIOUS FORMS OF NONLINEAR PROCESSING
C AND NON GAUSSIAN NOISE.
C GAUSSIAN NOISE,IDEAL .,BANDPASS LIMITER
C (HARD LIMITER PLUS FILTER).
C NSY IS THE NUMBER OF SYMBOLS "TRANSMITTED
C NER IS THE NUMBER OF ',ERRORS ,DESIRED ,MAXIMUM
C NTB IS THE TIME-BANDWIDTH PRODUCT

COMPLEX Z
PRINT 7

7 FORMAT(33H GAUSSIAN, IDEAL BANDPASS LIMITER, /)
PI =3. 141592654
PI2=PI-2.
THETA=2.
GAM=SQRT(Z.)/ZOO.

C THIS VALUE OF GAMMA RESULTS IN APD SATURATION USED
C IN PREVIOUS ANALYTICAL WORK.

NTB=lO $ NSY=lOOOOO $ NER=l000
PRINT 6, NTB, NSY, NER

6 FORMAT(7H NTB = , 13, 88 NSY = , 19, 88 NER = , 13, /)
RNP=0.5

C REAL NOISE POWER=O.5*ENVELOPE POWER.
SIGSQ=RNP
SIG=SQRT(SIGSQ)

C ' USE VARIOUS SIGNAL TO NOISE RATIOS DEPENDING ON TBP
DO 90 1=1,2
SNR=-90.+I*4.-10.-ALOGIO(FLOAT(NTB)
RSP=10.-*(SNR/I0.)
SP=SQRT (RSP)·
ERS=O.
DO 80 N= 1 ,NSY
SUM=O.
DO 60 J= 1,NTB
PHI=PIZ*RANDN(D)
R=RANDN(D)
T=SQRT(~2.*SIGSQ-ALOG(1.-R»
Z=CMPLX(SP+T*COS(PHI),T-SIN(PHI»
ZMAG=CABS(Z)
YY=(SP+T-COS(PHI»/ZMAG
SUM=SUM+YY

60 CONTINUE
C CHECK FOR AN ERROR

IF(SUM.LE.O.) ERS=ERS+l.
NERS=ERS
IF(NERS.EQ.NER) GO TO 8S

S0 CONTINUE
85 PE=ERS/N

VAR=PE-(l.-PE)/N
PRINT 8, SNR,PE,ERS,VAR,N,

90 CONTINUE
8 FORMAT <FS. 1,2X,E8.Z,2X,F7.1,ZX,E8.2,2X,I9)

END
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PROGRAM BPSK8(INPUT ,OUTPUT)
THIS IS ONE OF A SERIES OF SHORT PROGRAMS TO'DETERMINE
PROBABILITY OF BINARY BIT ERROR FOR BINA'RY COHERENT PSI:
SYSTEMS USING VARIOUS FORMS OF NONLINEAR PROCESSING
AND NON GAUSSIAN NOISE.
GAUSSIAN NOISE, BASEBAND HARD LIMITER (NO FILTERING).
NSY IS THE NUMBER OF SYMBOLS TRANSMITTED
NER IS THE NUMBER ·OF ERRORS DESIRED,MAXIMUM
NTB IS THE TINE BANDWIDTH PRODUCT
COMPLEX Z
PRINT 7
FORMAT(32H GAUSSIAN, BASEBAND HARD LIMITER, /)
PI =3. 141592654
PIZ=PI·Z.
THETA=Z.
GAM=SQRT(2.)/Z00.
THIS VALUE OF GAMMA RESULTS IN APD SATURATION USED
IN PREVIOUS ANALYTICAL WORK.
NTB=10 $ NSY=leeee0 $ NER=leeee
PRINT 6, NTB, NSY, NER
FORMAT(7H NTB= , 13, 8H NSY = , 19, 8H NER=, 13, /)
RNP=0.5
REAL NOISE POWER=0.5.ENVELOPE POWER.
SIGSQ=RNP
SIG=SQRT(SIGSQ>
USE VARIOUS SIGNAL TO NOISE RATIOS DEPENDING ON TBP
DO 90 1=I,Z
SNR=-30.+I·4.-10.·ALOGI0<FLOAT(NTB»
RSP=10.··(SNR/10.)
SP=SQRT(RSP)
ERS=0.
DO 80 N=1, NSY
SUM=0.
DO 60 J= 1, NTB
PHI=PIZ*RANDN(D)
R=RANDN(D)
T=SQRT (-2 .•SIGSQ.ALOG( 1. -R»
IF(SP+T.COS(PHI» 10,10,Z0

10 SU)f=SUM-'l.
GO TO 60
SUM=SUM+ 1.
CONTINUE
CHECK FOR AN ERROR
IF(SUM.LE.0.)ERS=ERS+l.
NERS=ERS
IF(NERS.EQ.NER) GO TO 85

80 CONTINUE
85 PE=ERS/N

VAR=PE·(l.-PE)/N
PRINT 8, SNR,PE,ERS,VAR,N

90 CONTINUE
8 FORMAT (F5. I,ZX,E8.2,2X,F7.1,2X,E8.2,2X,I9)

END
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~ PROGRAM BPSK9(INPUT,OUTPUT)
C THIS .IS ONE,. OF A SERIES·.OF SHORT ·.PROGRAMS TO DETERMINE
C PROBABILITY OF,BINARYBIT ERROR FOR BINARY COHERENT PSI(
C SYSTEMS USING VARIOUS FORMS OF NONLINEAR PROCESSING
C AND NON GAUSSIAN NOISE.
C GAUSSIAN NOISE,HALL THETA=2. NONLINEARITY, BASEBAND
C (NO FILTERING).
C NSY IS THE NUMBER OF SYMBOLS TRANSMITTED
C NER IS THE NUMBER OF ERRORS DESIRED ,MAXIMUM
C NTB IS THE TINE BANDWIDTH PRODUCT

COMPLEX Z
PRINT 7

7 FORMAT(35H GAUSSIAN, THETA = 2., NL, BASEBAND, /)
PI=3.141592654
PI2=PI·2.
THETA=2.
GAM=SQRT(2.)/200.

C THIS VALUE OF GAMMA RESULTS IN APD SATURATION USED
C IN PREVIOUS ANALYTICAL WORK.

NTB=10 $ NSY=leeeee $ NER=10eee
PRINT 6, NTB, NSY, NER

6 FORMAT(7H NTB = , 13, 8H NSY = , 19, 8H NER = , 13, /)
RNP=0.5

C REAL NOISE POWER=0.S.ENVELOPE·POWER.
SIGSQ=RNP
SIG=SQRT(SIGSQ)

.C USE VARIOUS SIGNAL TO NOISE RATIOS DEPENDING ON TBP
DO 90 1=1,1
SNR=-30.+I·S.-10.*ALOG10(FLOAT(NTB» )
RSP=10.·*(SNR/19.)
SP=SQRT(RSP)
ERS=0.
DO S0 N= 1,NSY
SUM=0.
DO 60 J= 1,NTB
PHI=PI2*RANDN(D)
R=RANDN(D)
T=SQRT(-2.·SIGSQ*ALOG(I.-R»
Y=SP+T-COS(PHI)
SUM=SUM+(2.·Y)/(Y-Y+GAM·GAH)

60 CONTINUE
C CHECK FOR AN ERROR

IF(SUM.LE~0.) ERS=ERS+l.
NERS=ERS
IF(NERS.EQ.NER) GO TO 85

S0 CONTINUE
85 PE=ERS/N

VAR=PE-(I.-PE)/N
PRINT 8, SNR,PE,ERS,VAR,N

9<3 CONTINUE
8 FORMAT(FS.l;2X,ES.2,2X,F7.1,2X,E8.2,2X,I9)

END
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~ PROGRAM BPSK10(INPUT,OUTPUT)
C THIS IS ONE OF A SERIESOPSHORT PROGRAMS TO DETERMINE
C PROBABILITY OF BINARY BIT ERROR FOR 'BINARY COHERENT PSI
C SYSTEMS,JUSING VARIOUS FORMS OP' NONLINEAR PROCESSING
C AND NON GAUSSIAN NOISE.
C GAUSSIAN NOISE,"HALL'THETA=2 . NONLINEARITY,
C BANDPASS(WITH FILTERING).
C NSY IS THE NUMBER OF SYMBOLS TRANSMITTED
C NER IS THE NUMBER OF ERRORS DESIRED,MAXIMUM
C NTB IS THE TINE BANDWIDTH PRODUCT

COMPLEX Z
PRINT 7

7 FORMAT(3SH GAUSSIAN, THETA =2., NL, BANDPASS,/)
PI=3.141592654
PI2=PI·2.
THETA=2.
GAM=SQRT(2.)/200.

C THIS VALUE OF GAMMA RESULTS IN APD SATURATION USED
C IN PREVIOUS ANALYTICAL WORK.

NTB=l S NSY=100000 S NER=100
PRINT 6, NTB, NSY, NER

6 FORMAT(?H NTB = , 13, 8H NSY = , 19, 88 NER = ,13, /)
RNP=0.5

C REAL NOISE POWER=0.5.,ENVELOPE POWER.
SIGSQ=RNP
SIG=SQRT(SIGSQ)

C USE VARIOUS SIGNAL TO NOISE RATIOS DEPENDING ON TBP
DO 90 1=1,9
SNR=-15.+I·S.-10.·ALOGI0(FLOAT(NTB»
RSP=10.··(SNR/10.)
SP=SQRT(RSP)
ERS=0.
DO 80 N= 1,NSY
SUM=0.'
DO 60 J=I,NTB
PHI=P 12.RANDN (D)
R=RANDN(D)
T=SQRT (-2 .•SIGSQ.ALOG (1. -R»
Z=CMPLX(SP+T·COS(PHI),T·SIN(PHI»
ZMAG=CABS(Z)
Y=(2.·ZMAG)/(ZMAG·ZMAG+GAM·GAM)
YY=Y·(SP+T·COS(PHI»/ZMAG
SUM=SUM+YY

60 CONTINUE
C CHECK FOR AN ERROR

IF(SUM.LE.0.) ERS=ERS+l.
NERS=ERS
IF(NERS.EQ.NER) GO TO 8S

80 CONTINUE
8S PE=ERS/N

VAR=PE·(l.~PE)/N

PRINT 8, SNR,PE,ERS,VAR,N
90 CONTINUE

8 FOR~AT(FS.l,2X,E8.2,2X,F?1,2X,E8.2,2X,19)

END
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~ PROGRAM BPSKI 1(INPUT,OUTPUT)
C 'THIS IS ONE OF A SERIES OF SHORT PROGRAMS TO DETERMINE
C PROBABILITY OF BINARY BIT ERROR FOR BINARY COHERENT PSK
C SYSTEMS USING VARIOUS FORMS OF NONLINEAR PROCESSING
C AND NON GAUSSIAN NOISE.
C HALL MODEL,NOISE ENVELOPE RMS=1.,THETA=4.,
CREAL PROCESSING, OPT IMUM NONLINEARITY.
C NSY IS THE NUMBER OF SYMBOLS TRANSMITTED
C NER IS THE NUMBER OF ERRORS DESIRED, MAXIMUM
C NTB IS THE TIME BANDWIDTH PRODUCT

COMPLEX Z
PRINT 7

7 FORMAT(35H HALL, THETA = 4., OPT NL, BASEBAND, /)
PI =3. 141592654
PI2=PI·2.
THETA=4.
GAM=SQRT(2.)/Z.
NTB=10 $ NSY=100000 $ NER=1000
PRINT 6, NTB, NSY, NER

6 FORMAT(5H NTB=,13,6H NSY=,I9,6H NER=,14,/)
RNP=0.S

C REAL NOISE POWER=0.S.ENVELOPE POWER.
SIGSQ=RNP
SIG=SQRT(SIGSQ)

C USE VARIOUS SIGNAL TO NOISE RATIOS DEPENDING ON TBP
DO 90 1=1,2
SNR=-4S.+I·S.-10.·ALOG10(FLOAT(NTB»
RSP=10 .•• (SNR/10.)
SP=SQRT(RSP)
ERS=0.
DO 80 N= 1,NSY
SUM=0.
DO 60 J= 1,NTB
PHI=PIZ·RANDN(D)
R=RANDN(D)
E=-(2.0/(THETA-l.»
T=SIG·GAM·SQRT«R··E)-l.)
Y=SP+T·COS(PHI)
YY=(THETA·Y)/(Y·Y+GAM·GAM)
SU)I=SlJ)I+YY

60 CONTINUE
C CHECK FOR AN ERROR

IF(SUM.LE.0.) ~~=ERS+l.

NERS=ERS
IF(NERS.EQ.NER)GO TO 85

80 CONTINUE
85 PE=ERS/N

VAR=PE·(l.-PE)/N
PRINT 8, SNR,PE,ERS,VAR,N

90 CONTINUE .
8 FORMAT (F5. 1,2X'IE8. 2 ,2X,F7. 1, 2X,E8.2 ,2X, 19)

END
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~ PROGRAM BPSK12(INPUT,OUTPUT).
C THIS IS ONE OF A SERIES OF SHORT PROGRAMS TO DETERMINE
C PROBABILITY OF BINARY BIT ERROR FOR BINARY COHERENT PSK
C SYSTEMS USING VARIOUS FORMS OF NONLINEAR PROCESSING
C AND NON GAUSSIAN NOISE.
C HALL MODEL,NOISE ENVELOPERMS=1.,THETA=4.,
C IDEAL BANDPASS LIMITER (HARD LIMITER PLUS FILTER)'~

C NSY IS THE NUMBER OF SYMBOLS TRANSMITTED
C NER IS THE NUMBER OF EilRORS DESIRED,MAXIMIDf
C NTB IS THE TINE BANDWIDTH PRODUCT

COMPLEX Z
PRINT 7

7 FORMAT(35H HALL, THETA = 4., BANDPASS LIMITER, /)
PI=3.141592654
PI2=PI·2.
THETA=4.
GAM=SQRT(2.)/2.
NTB=le0 $ NSY=le0e00 $ NER=10e
PRINT 6, NTB, NSY, NER

6 FORMAT<5H NTB=,I3,6H NSY=,19,6H NER=,I3,/)
RNP=0.S

C REAL NOISE POWER=0.5-ENVELOPE·POWER.
SIGSQ=RNP
SIG=SQRT(SIGSQ)

C USE VARIOUS SIGNAL TO NOISE RATIOS DEPENDING ON TBP
DO 90 1=6,6
SNR=-25.+I·S.-10.-ALOGle<FLOAT{NTB»
RSP=10.--(SNR/10.)
SP=SQRT(RSP)
ERS=0.
DO 80 N= 1 ,NSY
SUM=0.
DO 60 J= 1 ,N:TB
PHI=PIZ-RANDN(D)
R=RANDN(D)
E=-(2.0/<THETA-l.»
T=SIG-GAM·SQRT«R·-E)-l.)
Z=CMPLX(SP+T-COS(PHI),T-SIN(PHI»
YY=REAL(Z)/CABS(Z)
SU)I=SUM+YY

60 CONTINUE
C CHECK FOR AN ERROR

IF(SUM.LE.0.) ERS=ERS+l.
NERS=ERS
IF<NERS.EQ.NER) GO TO 85

80 CONTINUE
8S PE=ERS/N

VAR=PEtr(l.-PE)/N
PRINT 8, SNR,PE,ERS,VAR,N

90 CONTINUE
8 FORMAT (F5. 1,2X,E8.2,2X,F7. 1,2X,E8.2,2X,19)

END

54



20
60

C

7

6

c
c
C
c
c
C
c
C
C

c

c

PROGRAM BPSK13(INPUT,OUTPUT)
THIS IS ONE OF A SERIES OF SHORT PROGRAMS TO DETERMINE
PROBABILITY OF BINARY BIT ERROR FOR BINARY COHERENT PSK
SYSTEMS USING VARIOUS FORMS OF NONLINEAR PROCESSING
AND NON GAUSSIAN NOISE.
HALL MODEL, NOISE ENVELOPE RMS=1.,THETA=4.,
BASEBAND HARD LIMITING (NO LILTERING).
NSY IS THE NUMBER OF SYMBOLS TRANSMITTED
NER IS THE NUMBER OF ERRORS DESIRED,MAXIMUM
NTB IS THE TINE BANDWIDTH PRODUCT
COMPLEX Z
PRINT 7
FORMAT(38H HALL, THETA=4. BASEBAND HARD LIMITING,/)
PI=3.141592654
PI2=Plilt2.
THETA=4.
GAM=SQRT(2.)/2.
NTB=10 S NSY=10000 $ NER=100
PRINT 6, NTB, NSY, NER
FORMAT(SH NTB =,13,68 NSY =,19,6H NER =,13,/)
RNP=0.S
REAL NOISE POWER=0.S.ENVELOPE POWER.
SIGSQ=RNP
SIG=SQRT(SIGSQ)
USE VARIOUS SIGNAL TO NOISE RATIOS DEPENDING ON TBP
DO 90 1=1,8
SNR=-2S.+I·S.-10.·ALOG10(FLOAT(NTB»
RSP=10.··(SNR/10.)
SP=SQRT(RSP)
ERS=0.
DO 80 N= 1. ,NSY
SUM=0.
DO 60 J =1, NTB
PHI=PI2·RANF(D)
R=RANF(D)
E=-(2.0/(THETA-1.»
T=SIG·GAM·SQRT«R··E)-I.)
IF(SP+T.COS(PHI» 10,20,20

10 SUM=SUM-1.
GO TO 60
SU14=SU)f+ 1.
CONTINUE
CHECK FOR AN ERROR
IF(SUM.LE.0.) ERS=ERS+l.
NERS=ERS
IF(NERS.EQ.NER) GO TO 8S

80 CONTINUE
85 PE=ERS/N

VAR=PE·(l.-PE)/N
PRINT 8, SNR,PE,ERS,VAR,N

90 CONTINUE
8 FORMAT(SX.FS.l,2X,lPE12.S,2X,0PF7.1,2X,lPE12.5,2X,16)

END
31
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~ PROGRAM BPSK14(INPUT,OUT14,TAPE6=OUT14)
C THIS IS ONE OF A SERIES OF SHORT PROGRAMS TO DETERMINE
C PROBABILITY OF BINARY BIT ERROR FOR BINARY COHERENT PSK
C SYSTEMS USING VARIOUS FORMS OF NONLINEAR PROCESSING
C AND NON GAUSSIAN NOISE.
C HALL MODEL,NOISE ENVELOPE RMS=I.,THETA=4.,
C COMPLEX PROCESSING (BANDPASS) ,OPTIMUM NONLINEARITY.
C NSY IS THE NUMBER OF SYMBOLS TRANSMITTED
C NER IS THE NUMBER OF ERRORS DESIRED, MAXIMUM
C NTB IS THE TINE BANDWIDTH PRODUCT

COMPLEX Z '
PRINT 7

7 FORMAT(35H HALL, THETA = 4., 'OPT NL, BANDPASS, I)
PI=3.141592654
PI2=PI+2.
THETA=4.
GAM=SQRT(2.)/2.
NTB=10S NSY=100e0 S NER=100
PRINT 6, NTB, NSY, NER

6 FORMAT(7H NTB = , 13, 8H NSY = , 19, 88 NER = , 13, /)
RNP=0.S

C REAL NOISE POWER=0.5.ENVELOPE POWER.
SIGSQ=RNP
SIG=SQRT(SIGSQ)

C USE VARIOUS SIGNAL TO NOISE RATIOS DEPENDING ON TBP
DO 90 1=1,8
SNR=-2S.+1'-5.-10.+ALOGI0(FLOAT(NTB»
RSP=10.++(SNR/10.)
SP=SQRT(RSP)
ERS=0.
DO 80 N= 1,NSY
SUM=0.
DO 60 J=I,NTB
PHI=PI2+RANDN(D)
R=RANDN(D)
E=-(2.0/(THETA-l.»
T=SIG·GAM·SQRT«R++E)-l.)
Z=CMPLX(S~+T·COS(PHI),T·SIN(PHI»

ZMAG=CABS(Z)
Y=(THETA-ZMAG)/(ZMAG·ZMAG+GAM·GAM)
YY=Y-(SP+T+COS(PHI»/ZMAG
SUM=SUM+YY

60 CONTINUE
C CHECK FOR AN ERROR

IF(SUM.LE.0.) ERS=ERS+l.
NERS=ERS
IF(NERS.EQ.NER) GO TO 8S

80 CONTINUE
85 PE=ERS/N

VAR=PE·(l.-PE)/N
WRITE(6,S) SNR,PE,ERS,VAR,N

90 CONTINUE
8 FORMAT (FS. 1,2X, IPE12.S,2X,0PF7. 1,2X,lPEI2.S,2X,16)

END
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~ PROGRAM BPSK14(INPUT,OUT14,TAPE6=OUT14)
C THIS IS. ONE OF A SERIES OF SHORT PROGRAMS TO DETERMINE
C PROBABILITY OF BINARY BIT ERROR FOR BINARY COHERENT P~;K
C SYSTEMS USING VARIOUS FORMS OF NONLINEAR PROCESSING
C AND NON GAUSSIAN NOISE.
C HALL MODEL ,NOISE. ENVELOPE RMS= 1. ,THETA=4. ,
C COMPLEX PROCESSING (BANDPASS) ,OPTIMUM NONLINEARITY.
C NSY IS THE NUMBER OF SYMBOLS TRANSMITTED
C NER IS THE NUMBER OF ERRORS DESIRED ,MAXIMUM
C NTB IS THE TINE BANDWIDTH PRODUCT

COMPLEX Z
PRINT 7

7 FORMAT(3SH HALL, THETA = 4., OPT NL, BANDPASS, /)
PI=3.141592654
PI2=PI·2.
THETA=4.
GAM=SQRT(2.)/2.
NTB= 10 $ NSY= 143000 $ NER= 100
PRINT 6, NTB, NSY, NER

6 FORMAT(7H NTB :: , 13, 88 NSY = , 19, 88 NER = , 13, /)
RNP=0.S

C REAL NOISE POWER=0.S-ENVELOPE POWER.
SIGSQ=RNP
SIG=SQRT(SIGSQ)

C USE VARIOUS SIGNAL TO NOISE RATIOS DEPENDING ON TBP
DO 90 1=1,8
SNR=-2S.+I+S.-10.+ALOG10(FLOAT(NTB»
RSP=10.·+(SNR/10.)
SP=SQRT(RSP)
ERS=0.
DO 80 N= 1,NSY
SUM=0.
TT=RANDN(D)
SP=SQRT(-2.·RSP+ALOG(1.-TT»
DO 60 J =1, NTB
PHI =P 12-RANDN (])
R=RANDN(D)
E=-(2.0/(THETA-l.»
T=SIG+GAM-SQRT«R··E)-l.)
Z=CMPLX(SP+T-COS(PHI),T·SIN(PHI»
ZMAG=CABS(Z)
Y= (THETA+ZMAG»)I (ZMAG.ZMAG+GAM+GAM)
YY=Y+(SP+T-COS(PHI»/ZMAG
SUM=SUM+YY

60 CONTINUE
C CHECK FOR AN E]~ROR

IF(SUM.LE.0.) ERS=ERS+l.
NERS=ERS
IF(NERS.EQ.NER) GO TO 8S

80 CONTINUE
8S PE=ERS/N

VAR=PE·(l.-PE)/N
PRINT 8, SNR, PE, ERS, VAR, N

90 CONTINUE
8 FORMAT(FS.l,2X91PE12.S,2X,0PF7.1,2X,lPE12~5,2X,I6)
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