NTIA Report 83-133

A Method for Counting Errors, Deletions,
and Additions When Both Transmitted
and Received Data Are Known

W. J. Hartman

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

David J. Markey, Assistant Secretary
for Communications and Information

September 1983

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

ABSTRACT

1. INTRODUCTION

2. DESCRIPTION OF THE PROBLEM
3. STATISTICAL BACKGROUND

4. SOME ALGORITHMS

4.1 General

4.2 Uncorrelated Data (Binomial Distribution)
4,3 Correlated Data

4.4 Formatted Data

PRESELECTED DATA

5.1 Synchronization and Error Counting
SUMMARY

REFERENCES

Page
iv

jv

16
16

19
22
25
26

LIST OF FIGURES

Page
Figure 1. An example of the numbering of the bytes. 4
Figure 2. The state diagram for the Markov process describing the
transmitted data. 4
Figure 3. The four-state Markov process describing the combined
transmitted and received data. 5
Figure 4. The state diagram for the Markov process describing matches
(1) or mismatches (0) between the two data sets generated by
the appropriate process. 6
Figure 5. Diagrams showing (a) the left shift and the detection of
deletions and (b) the right shift and the detection of
additions, under the assumption that sufficient data exists
between successive occurrences of additions or deletions to
obtain a match. g 15
Figure 6. An example showing additions of data with file marks. The
file marks are denoted by X. 18
Figure 7. The alternation of bit patterns. 20
Figure 8. A demonstration of deleted data, showing the tentative
alignment. 23
LIST OF TABLES
Page
Table 1. Comparisons of Parameters for Application of the Normal
Approximation as Function of the Correlation of the
Transmitted Bits, Expressed as p - q 8
Table 2. Binary Clock Readings Starting at 0 and Corresponding
Bit String 21

jv

A METHOD FOR COUNTING ERRORS, DELETIONS, AND ADDITIONS WHEN
BOTH TRANSMITTED AND RECEIVED DATA ARE KNOWN

W. J. Hartman*

The problem of counting the occurrences of bit errors, block errors,
bit additions or deletions and block additions or deletions is considered.
A general method is developed for counting such occurrences for cases
when the occurrences are not excessive. The definition of excessive
varies with the amount of correlation in the transmitted data. Modi-
fications of the general method are given for various cases of blocked
data, with or without accompanying block identification, and for the
special case when the transmitted data can be selected.

1. INTRODUCTION

Federal Standard 1033 (GSA, 1979; Seitz, 1980) and a similar standard proposed
by the industry group, American National Standards Institute (ANSI, 1982) provide
a set of performance descriptors for application to digital communication services.
A second proposed standard (Seitz et al., 1981) deals with methods for measuring
the performance descriptors. Wortendyke et al. (1982) have measured some of these
parameters on the ARPANET. The present report describes methods for measuring the
values of some parameters associated with the user information transfer, specifi-
cally, the bit or block errors, bit or block loss, and bit or block additions.

If we call the errors, additions, and deletions, events, the problem we con-
sider is to describe the events as accurately as possible for a given set of data
which passed through a digital system. We do not consider the additional problem
of using these event descriptions to characterize the expected probability of
occurrences over the system. .

The methods developed here are described using some terminology from computer
programming, because it provides a concise way of describing the sequence of events.
This is not intended as a structure for implementing an efficient program.

In order to be specific, much of the description is given in terms of 8-bit
bytes. The extension to other word lengths should be clear.

The organization of the report is designed to describe first the case of data
that are random and uncorrelated. This gives the simplest description of the method

*The author is with the Institute for Telecommunication Sciences, National Tele-
communications and Information Administration, U.S. Department of Commerce,
Boulder, CO 830303.

even though a program implementing the method would take the longest time to run.
As the data become more structured, the description becomes more complicated, and
(generally) the running time becomes shorter.

2. DESCRIPTION OF THE PROBLEM

The problem we consider here is described as follows: given two strings of
binary data, one of which is supposed to be a replica of the other, but which may
have errors (E), deletions (D) of data, or additions (A) of data, find an algorithm
for locating those parts of strings that match, and determine (when possible) whether
errors, deletions, and/or insertions have been made. We assume that no error is
introduced in the comparisons. The two data strings might be thought of as a "trans-
mitted" string and a "received" string. We will identify quantities associated with
the "transmitted" string by capital letters, and quantities identified with the
"received" string by lower case letters. Note that this identification does not
reduce the generality of the algorithms which follow.

It will also be assumed that the data are ordered, and that no transpositions
occur in the ordering between the two sets of data. That is, if bit i precedes
bit j in the transmitted data, and these two bits occur as bit i' and bit j' in
the received data, then bit i' precedes bit j'.

As a convention, we assume that the bits are numbered from right to left, i.e.,
bit 1 is the right most bit and the last bit is the left most bit in the string.
We denote by B(i, j) [b (i, j)] that string of eight consecutive bits (a byte)
which is i bytes to the left of the byte which has the jth bit in its right most
position. The capital letters denote the strings from the transmitted data, and
small letters those from the received data. See Figure 1 for an example. If i is
negative, the byte is to the right. We denote by B(i, j) [+] b(i', j') the total
number of mismatches between the two bytes. We will also have occasion to make use
of words designated by w(il, IPYRRER 1n) [w(i1, oy vees in)], of length n, made up
of the bits from positions 1], 12, etc. These will be shortened as follows:
W(i, ..., n) means the consecutive bits from bit i to bit n, W(i ..., k, k#m ... n)
means the consecutive bits from 1 to n, with the bits k+1 to k+m-1 omitted, and
W(f(i); i = k, n) means the bits selected from the positions f(i), i = k to n.
Similar to the definition for bytes, we denote by W(...) [+] w(...) the number of
matches between the bits in the positions corresponding to the associated arguments.
The matchfunction for bytes varies from 0 to 8, while the upper limit for the match-
function for words depends on the number of arguments in the word.

3. STATISTICAL BACKGROUND

We assume that the transmitted data is a sample from a balanced binary string,
i.e., a string with (nearly) equal numbers of zeros and ones. We also assume that
correlation (if any exists) can be described by a first order Markov process either
on the data directly, or on a decimated set from the original data. The state
diagram for the process is shown in Figure 2. This same diagram will be used for the
case where some correlation exists between consecutive bits, or for the case where
every kth bit is generated by the process. This]atterrcase will be used for the
case of data, for example where the bytes are correlated, but the bits within a
byte are not. The probability of a transition from a 0 to a 1 is the same as the
probability of a transition from a 1 to a 0 in keeping with the hypothesis that
the data are balanced.

If the received data is assumed to be generated by a similar process, we
obtain the four state diagram of Figure 3, where the first element in each state
represents transmitted data and the second element represents received data.

If we now designate the two states 00 and 11 (matches) as state 1, and 01 and
10 (mismatches) as state 0, we obtain the state diagram shown in Figure 4. It
should be noted that the steady state probability for the diagram in Figure 4,
P(0) = P(1) = 1/2, as long as Pys Pp # 0, 1, showing that the average number of
matches between the two data sets is n/2 bits when n bits are compared. It should
also be noted that since (p]p2 + q]qz) - (p]q2 + p2q1) = (p] - q]) (p2 - q2), if
P # 1/2 and Py # 1/2, the model shows a tendency to remain in the same state
whenever Py > Gy and Py > Gps OF Py < Q4 and Py < Qps and a tendency to change
state whenever P1 < 9 and Py > Gy Or Py > qq and Py < Qp- For many practical
situations, it is reasonable to assume that Py = Pos and although some generality
is lost, this assumption will be made for the remainder of this paper.

Since we will be primarily concerned with a large sample (n) we will make use
of the normal approximation to the distribution of the occurences of matches
which requires the mean, X, and standard deviation, o. These are given by (Gabriel,
1959)

X = n/2 (1a)
o=1/2 [n 1 +d %‘tﬂ'—]]/2 (]b)

19 321

HIEEEEEEEEEEEEEEEEEEEEEEEEEE

N\ J N J
Yo Y

B(2,3)=B(0,19) B(O, 3)

Figure 1. An example of the numbering of the bytes.

€O (D

P

Figure 2. The state diagram for the Markov process describing the
transmitted data.

Figure 3. The four-state Markov process describing the combined
transmitted and received data.

P19z t P20,

p,P, +4,4, ‘e 0’ PP, +4,4,

P19, *P, 9,

Figure 4. The state diagram for the Markov process describing matches
(1) or mismatches (0) between the two data sets generated by
the appropriate process.

where d = (q - p)z. For p = 1/2, these reduce to the mean (n/2) and standard devia-

tion (V/n/4) for the binomial distribution as expected. To estimate how much the

term in (1b) deviates from the binomial distribution, we give values for d, p(or q),

%;% and %—:—% in Table 1. In this table, the length of a run (of 1's or 0's)

which occurs with probability 1/2 is given, for the transmitted sequence as k,

and for the comparison of the two sequences as k'. We see that large values of

d, corresponding to large values of p, can produce long runs. As will be seen,

this can cause problems in determining when two sequences are in synchronization.
The probability of k or more matches in n samples (between two sequences

generated by the same Markov process as outlined above) is given approximately
by

[e o]

P (k or more matches) ~ f d(x) dx,
t

o2
where ¢(t) = R (2)

™

with X and o given in (1). This approximation is best for small d and large n.
Gabriel (1959) gives estimates of the fit of the actual distribution to the nor-
mal approximation for d < 0.8. An asymptotic estimate for Pn is given by

Py ~ ii_t.l (3)

From Table 1 it is seen that for d = .81, a run in the transmitted sequence of
length 13 occurs with probability 0.5. For this d, a run of 89 occurs with prob-
ability 0.01 in the original sequence, and a run of 46 occurs in the comparison
sequence with a probability of 0.01. It is clear that for highly correlated data,
the chances of deciding that two strings match when in fact they are from two
different processes is not negligible unless a large sample comparison is made.
A method for overcoming this difficulty is presented later.

There are several computational methods available for estimating the correla-
tion in the transmitted data, with the Fast Fourier Transform (FFT) methods being

Table 1. Comparisons of Parameters for Application of the Normal
Approximation as Function of the Correlation of the Transmitted
Bits, Expressed as p - q

| (1) (2)
(9) p } f g ‘/} f g run length p2 + q2 run length
P-q k for p ' for b2 + o2

orp +gq
.01 .505 1.020 1.01
.04 .6 1.083 1.04
.09 .65 1.198 1.094
.16 g 1. 381 1.175
.25 .75 1.667 1.291
.49 .85 2.922 1.709 4 .745 2
.81 .95 9.526 3.086 13 .9050 6
.9409 .97 32.841 5.731 22 .9418 11
. 9801 .99 99.503 9.975 68 .9802 34
. k k+1

(1) that integer k such that p~ < 1/2 and p > 1/2

2 2)k

(2) that integer k' such that (p° + q 2 2)k *

< 1/2 and (p~ + g > 1/2
Both of these may be interpreted as the number of consecutive 1's (0's),
given an initial 1(0), that occur with probability 1/2.

among the most efficient. We will not consider the specific method used but only
assume that we can compute the correlation function c(n) when necessary.

4. SOME ALGORITHMS

4.1 General

From our assumptions, we know the number of bits transmitted NT and the num-
ber of bits received NR. The first test is to determine NT - NR. If NT - NR > O,
then more bits have been deleted than added; if NT - NR = 0 then the same numbers
of bits (perhaps zero) have been added as deleted; and if NT - NR < 0, then more
bits have been added than deleted. Denote the number of deletions (additions) by
ND (NA). If a priori information is available for ND (or NA), certain simplifi-
cations will occur as noted in the following.

The first problem is to obtain a synchronization of the received string with
the transmitted string. This procedure varies for different transmitted strings.
In all cases, however, we assume that not more than 25% of the received bits are
in error, where deletions and additions are not counted as errors. It would be
possible to allow a higher percent of errors if it were known that no deletions
or additions occurred, but this will not be considered here.

4,2 Uncorrelated Data (Binomial Distribution)
We begin by zeroing the registers to be used for counting correct bits RC,
Errors RE, additions RA, deletions RD, right data shifts RSR, and left data shifts
RSL.

We next check to see if a tentative alignment exists at either end of the
two strings. We first test for condition CI1,

Cl: B(0, 1) [+] b(0, 1) <1
If this is true, we go to START. If not, test condition C2,
C2: B(0, NT - 8) [+] b(0, NR - 8) <1

If this is true, reverse the numbering or both bit strings and go to START.
If neither C1 or C2 are true, we perform the following tests, where TL and
K1 are constants, which are discussed later.

First check if

L

i=0

B(1, 1) [+] b(i, 1) <K

o~ —

If it is
(1*) set RE=C, RC=8 (TL+ 1) - C

(2*) renumber the bits in both strings so that bit i (bi) becomes
bit i -8 (TL + 1),

(3*) discard the bits with negative numbers,
(4*%) NT = NT - 8(TL + 1), NR = NR - 8(TL +1), and
(5%) go to START.

If C > K] check if

L

0o —

B(-i, NT - 8) [+] b(-i, NR - 8) < K1 ,
0

i
where the (-i) indicates bytes to the right of the indicated start. If it is,
reverse the numbering of both strings, perform (1*), (2*), (3*), (4*), and (5*).
If NT = NR, go to ERROR, otherwise continue.

If C > Kl, set m = min (NT, NR) and check if

TL
C= x B(-i, m-8) [+] b(-i, m-8) < KI
i=0
If it is, reverse the numbering of the bits in both strings, starting with bm =
b1, perform (1*), (2*), (3*),

(6%) if NR > NT, set RA = NR - NT and set NR = NT =m - 8(TL + 1)
or if NT > NR, set RD = NT - NR and NR = NT =m - 8(TL + 1),

and (5%).
If NT < NR and C > K1, check if

TL
C= 1 B(i, 1) [+] b(i, NR = NT + 1) < KI
i=0

10

If it is, perform (1*),

(7*%) renumber the bits in the received string so that bit
NR - NT + 1 becomes bit 1,
perform (2*), (6*), and (5%*). If C > K1, go to ERROR.
If NT > NR and C > K1, check if

TL
C= 3z B(i, NT - N+ 1) [+] b(i, 1) < KI
i=0

If it is, perform (1%*),

(8*) renumber the bits in the transmitted stream so that bit
NT - NR + 1 becomes bit 1,
perform (2*), (6*), and (5*). If C > K1, go to ERROR.

Except in the cases where we go to error routine, we have made the decision
that we have obtained an alignment of the two sequences at either the beginning
or the end, or at a shift of one sequence relative to the other. The cases that
have been covered include those where all additions or deletions occur at the
beginning or end of the sequence, and/or where error bursts do not occur at the
beginning or end. Situations where bit additions and/or deletions occur both
near the end and the beginning as well as throughout the data will result in no
decision.

The probability of deciding that the data is aligned (by the preceding pro-
cess) when in fact it is not cannot be calculated. However, under certain other
hypotheses some estimates of the probability of this occurring at random is given
in the discussion of the ERROR routine.

We have explicitly assumed that there are enough bits in both data strings
to carry out the operations. However, in the following routines we must test to
determine if we are approaching the end of a string, since at each stage we are
updating NT and NR. If we are near the end, we go to a DONE routine, which handles
the small number of remaining bits.

START: Let AT = [NT/8], AR = [NR/8] and AM = min (AT, AR), where [.] indi-
cates the greatest integer. Calculate

C=B(i, 1) [+] b(i, 1) i =0, 1, ... AM.

1

At each step, if C = 0 and i = AM, go to DONET. If C = 0 and i # AM, calculate
another C.
At the first occurrence of C # 0 (say at i = i') set RC = RC + 8i', NR =
NR - 8 i', NT = NT - 8i', and renumber the bits so that the bit in the right most
position of B(i', 1) [or b(i', 1)] is now bit 1, then go to the error routine.
ERROR: calculate AT, AR, and AM as before. If NM < TL, go to DONE2. Define

C(i) =B(i, 1) [+]1b(i, 1), i=0, 1,2, ... TL ...

-l

where T = TL is a limit chosen as described later. If

L
C(i) < K1

><
I
™M —

i=0
set RE = RE + X, RC = RC + 8(TL + 1) - X, NT = NT - 8TL - 8 and NR = NR - 8TL -8.
Renumber the bits, with bit 876 + 8 + 1 = bit 1, and go to START.

If X > Kl and NM < TU, go to DONE3. If NM > TU, and if

TU
X=X+ I c(i)<ke,
i=TL+]

where TU and K2 are constants described later,

(9*%) set RE = RE + X, RC = RC + 8TU + 8 - x, NT = NT - 8TU - 8,
NR = NR - 8TU - 8, and go to START.

If X > K2, test if C(TU) < 1. If it is, test if

TU+TL+1
Y= I c(i) < K1
i=TU
If it is, do (9*) and go to START.

If C(TU) > 1, go to SHIFT. In effect, if we return to START, we have decided
that the T(= TE or TU) bytes of received data are the same as the T bytes of trans-
mitted data except for X bits in error. If we go to SHIFT we need to determine
whether additions and/or deletions have been made, or possibly a large burst of
errors occurred.

In order to determine TL’ TU’ K1, and K2, we examine the growth of the prob-
ability of k or fewer errors (n-k or more matches) occurring at random out of a

12

total of n bits where, to be specific, we consider n of the form 21'+2 and k of the
form 2' - 1, for i =1, 2, 3, This gives an error rate n/k -~ 1/4, and the
t for the normal approximation to the binomial distribution is

i+2

fon-k-X-.5_2 2 -5 Lis2 .5

Thus, by choosing i sufficiently large, we can make the probability of the random
occurrence as small as we wish. For i = 2, 3, (16 and 32 samples), k = 3, 7 and
p=1.06 x 1072, 1.05 x 1073 respectively, calculated from the binomial distribu-
tion. For i = 4 (64 samples), k = 15, and p = 8.8 «x 107°. Fori =8 (1024 samples),
k = 255 and p . 10790, Thus, a reasonable choice of bounds is TL = 7 (i.e., 8
bytes), K1 = 15, TU = 127 (128 bytes), and K2 = 255. The algorithm allows large
numbers of errors for short periods to account for error bursts. If additional
information about the occurrence of errors is available, the limits can be adjusted
for this.

SHIFT: Before describing the SHIFT algorithm, it is necessary to make some

assumptions concerning the types of additions A (or deletions D) which are admis-

sible. An addition is the insertion into the received string of a string (1 or
more bits) of bits that did not originate from the transmitted string--similarly for
deletions. We assume that between any pair, A-A, A-D, D-D, or D-A, a minimum

number of bits, DM>>1, in the received data originated from the transmitted data.

We choose DM > 8TU + 8. Thus, we do not Timit the number of bits that can be
inserted and/or deleted, but do prohibit certain occurrences as exhibited in the
following examples. (1) We do not allow the replacement of one block of data by

a (nontransmitter originated) different block of data, since this would constitute
an A-D pair without the required intervening block. (2) Dropping (or adding) one
bit from each byte is prohibited.

At this stage, we are reasonably certain that B(0, 1) and b(0, 1) are not in
alignment. Thus, we begin by attempting to align the sequences by the same pro-
cedure used in the initialization stage. If this is unsuccessful, we use a more
sophisticated alignment procedure below. '

First, check if C = B(0, NT - 8) [+] b(0, NR - 8) < 1. If it is, reverse
the numbering of the string and go to START. If C > 1, check if

13

L
B(-i, NT -8) [+] b(-i, NR -8) < KI.
0

O
]
I o™ —

i

If it is, reverse the numbering of both strings, perform (1*), (2*), (3*), (4%*),
and (5%). If NT = NR, go to RSHF.
If C > K1, check if

L
B(-i, m - 8) [+] b(-i, m - 8) < KI.
0

I o~ —

.i

If it is, reverse the bit numbers, perform (1*), (2*), (3*), (6*), and (5*).
If C > K1, reverse the bit numbers and check if

C = gL B(-i, m - 8) [+] (-i, m - 8) < KI.
i=0

If it is, again reverse the bit number, perform (1*), (2*), (3*), (6*), and
(5%). If C > K1, set FLAG = 0, and if NT < NR, go to RSHF. If NT > NR, go to
LSHF.

Only RSHF (right shift) will be described here, since LSHF is the same with
the shift being done on the transmitted data. RSHF is intended to discover the
condition shown in Figure 5a, and LSHF the condition shown in Figure 5b.

RSHF: Let
TL
D(j) = ¢ B(i, 1) [+] b(i, j), for j=1, 2, ... NR - 8TL - 8.
i=0
If, for some j = jl,
TU
D(j1) < K1, test if C = £ B(i, 1) [+] b(J, j1) < K2.
i=0

If it is, set RSR = RSR + j1 - 1, RE = RE + C, RC = RC + 8TU + 8 - C, renumber the
data in the transmitted string so that bit 8TU + 8 + 1 becomes bit 1, in the
received string bit 8 TU + 8 + j1 + 1 becomes bit 1, let NT = NT - 8TU - 8, NR =
NR - 8TU - 8 - j1 and go to START. If C > K2, continue testing.

14

T[]oo[oooo1 D l—b rlooo'ooolooool

e

R[Iooooooloooo] r]ooolooooJA]-b

Figure 5.

match match

(a) (b)

Diagrams showing (a) the left shift and the detection of
deletions and (b) the right shift and the detection of
additions, under the assumption that sufficient data exists

between successive occurrences of additions or deletions to
obtain a match.

15

If j > NR - 8TL -8 and FLAG # 2, set FLAG = 1 and go to LSHF. If FLAG = 2, this
implies that both the LSHF and RSHF routines have been used without finding a part of
the sequences that are in sync. Thus, we declare that the data remaining at this
point are ambiguous, and exit. It may be desirable to record the remaining data and
reprocess it with different limits for the tests.

Rather than processing all of the data through one shift before going to the
other, it may be desirable to process the data in blocks, alternating the shift
direction.

DONE: These routines, which are not described in detail, are needed to process
(approximately) left-over data. This block of data is not large enough to process
in the shift routine, and hence will be regarded as having additions or deletions
at the end of the string, if the string lengths are different, and having the
error count produced by comparing the bits from 1 to m.

4.3 Correlated Data

One method of overcoming the problems encountered with correlated data is
to increase the number of bytes examined at each stage of the program. Thus, the
limits TL, TU, and DM would all be increased. This places some restrictions on
the allowable errors, additions, and deletions, as well as requiring more compu-
tation time. A second method would be to use words in place of bytes, where the
words consist of 8 bits of the form W(ki; i=1, 8), where k is a number such that
the autocorrelation is essentially zero for shifts of k or more bits. For this
method, DM should be increased to achieve the same results in the shift routine.
The efficiency of the routine should be approximately the same as the original.

4.4 Formatted Data

Data are frequently grouped into records, or files, or both. These may or
may not have identification (ID) such as record numbers, end of record information,
etc. Two cases are most common, equal block length with no ID, or blocks with ID.
If it is known that the possibility exists that an entire block (record, file)
of data is added or deleted, the program can be modified to search for this possi-
bility.

For data with block ID, this ID can be used to obtain an initial alignment
of the two data strings or portions of these strings where each block that is
aligned using the ID is treated in the usual way in the program, with any data
for which a decision is reached being discarded, and any data which is declared

16

undecidable being replaced in its original location with respect to the remaining
data.

For problem data, it is necessary to consider two types, that which contains
only information such as an end of file mark, and that which contains file numbers
or something similar.

In both cases, if an end of file mark is found, the number of bits in the
file is then known. In addition, it is easy to count the number of files detected
in the received data (NFR) and to compare this with the number of files in the
transmitted data (NFT). The following situations can occur: (a) errors in an end
of file mark, causing it to be read as data; (b) deletion of an end of file mark;
(c) addition of an end of file mark; (d) addition of data with an end of file mark;
(d') addition of data without an end of file mark; and, similarly (e) and (e') for
deletion of data. As was the case with the additions and deletions of data in
the unstructured data, it is necessary to restrict the addition and deletion of
file marks. Thus, if the addition of a group of file marks (with or without
accompanying added data) occurs, followed by some "good" data (possibly with errors),
another file mark addition or deletion cannot occur until a number, MF, of "good"
files with file marks have been received, and similarly for deletions. An example is
shown in Figure 6. This prohibits insertions, for example, of end of file
marks unless there is a minimum number of legitimate end of file marks between
them. The same constraint as in the original program holds with respect to data
additions after additions of file marks and/or data.

Thus the algorithm is designed as follows: Let WFk(i_i; i =1, TU) be the
words following (+) or preceding (-) the kth file mark which we will denote by
WF(k+), WF(k-), WF(k+), WF(k-) for short, where the choice of + or - depends on
the application. We denote a right shift comparison by CR(i) = WF(1) [+] w F(i),
i=1, 2, ... NRF and a left shift.

CL(i) = WF(i) [+] wF(1), i =1, 2, ... NLF.

By direct analogy with the shift routine, we see that we will obtain alignment
around the file marks, unless one of the assumptions is violated. Once an align-
ment is found, we work both forward and backward (if necessary) from that point,
using the program.

It can be seen that the number of shifts in the shift routine can be limited
to approximately twice the length of the file under consideration, since we return
to aligning files if we do not achieve synchronization in the shift routine.

17

HEREEE HEEEEEEEEEEEEEE
w v J
(e IXT T 1]
appep) LL = * ¢ [X]
DATA :
L[e X]
4 A)
HEEEEEEEN
(T IIITITITIX HEEEEEEER
FI'}"_ES< CORRESPONDING DATA SETS
WHEEEER HEEREEER

Figure 6. An example showing additions of data with file marks.
The file marks are denoted by X.

18

It is also seen that either of the cases of a file mark having errors, or
another symbol becoming a file mark because of errors, will be handled routinely
in this process.

In the case of data having file numbers, additional information is available
for alignment, and files for which the file numbers can be read in the received
data can be easily processed through the program against the same number file
from the transmitted string. The remaining data can then be processed in the same
way as the data containing only file marks.

It is seen that the more information that is available from the data, the
more complicated the algorithm, but usually, a given accuracy is obtained with less
computations.

The last case that we consider is the case where the data is blocked into
groups of equal size, without markers indicating the beginning or end of the
blocks. In this case, we proceed similarly to the case of data with end of file
markers. We 1imit the shift routine to approximately two block lengths, (or less
if the blocks are long) and if synchronizétion is not achieved, we shift by block
lengths to detect whether whole blocks have been added or deleted. If this does
not occur, we must return and treat the data as if it were unformatted.

5. PRESELECTED DATA
If one has the opportunity to select the transmitted data, it is possible to
select sequences which identify the bit and its position. One such sequence will
be considered here.
The sequence we select is generated by a binary clock which updates for each
bit of transmitted data. If the clock at time T has the representation

n n
[(mod 2) means that the bit is 1 if I a; is odd, or 0 if I a, is even].

i=o0 i=o

19

This sequence is sometimes called the Thue-Morse sequence (Hershey, 1979).
The sequence exhibits some desirable properties which are apparent ubon examining
Table 2 and Figure 7. In Table 2, it is seen that each string of the first 2k
bits is complemented in the string of 2k bits starting at bit 2k + 1. This is
shown in Figure 7 for 4, 8, and 16 bits where the bits are numbered left to right.

One can easily prove the following properties of the sequence.

If the k rightmost bits of the clock are 0's at time T, the sequence of gen-
erated bits bT ... b(T + ok
generated starting at T = 0.

- 1) are the same or the complement of the 2k bits

We will designate a string of 2k bits which starts with the clock having k
rightmost 0 bits as either S(k) which is the string that starts at T = 0 or S(k),
the complement of the string S(k). It can be shown by induction that at most
two consecutive occurrences of S(k) or S(k) can occur. Hershey (1979) shows this
for bits, i.e., at most two consecutive 0's or 1's can occur. In fact, if one
starts at T = 0, and represents S(k) by {0}'s and S(k) by {1}'s, then the sequence
of the {} symbols corresponds to the original sequence. Further, it can be shown
that the sequence S(k) S(k) cannot occur more than twice in succession.

We note, however, that this matching of strings does not necessarily obtain
for other starting points or shifts. For example, the 4 bit string b7 - bl10 is
the same as bl - b4. Also, note the comparison between the strings b20 - b23
(1011) and b24 - b27 (0011) where there is one mismatch.

We use the symbol # to denote the bit-by-bit operation between two words,
where for each corresponding bit,

181=0060=0and1860=0861=1.

We shorten our definition of a word so that W(k, i) means the word of length 2k

bits starting with bit i. Thus, W(k, i) & W(k, i) = {0}, the string of 2k zero
bits, and W(k, i) ® W(k, i) = {1} the string of 2% one bits.

bie
1 |
0 |

0
1

100 1 110
0110| 001

Figure 7. The alternation of bit patterns.

20

Table 2. Binary Clock Readings Starting at 0 and Corresponding

Bit String
Clock Bit Bit #
0000 0 1
0001 1 2
0010 1 3
0011 0 4
0100 1 5
0101 0 6
0110 0 7
0111 1 8
9

(a) The first bit is complemented in the second bit.
(b) The first 2 bits are complemented in the third and
fourth bits.
(c) The bits 1 through 4 are complemented in bits 5 through 8.

21

We now note that if W(k, i) is an S(k) (or S(k)), then

{0}
W(k, i) ® S(k) = {or
{1}

and Condition 1.
K {0}
W(k, i +2°) 8 S(k) = {or
{1}

If W(k, i) is not an S(k) (or S(k)), then condition 1 will not hold since the
sequence S(k) (or S(k)) cannot occur more than twice in succession, and the
sequence S(k)S(k) (or S(k)S(k)) cannot occur more than twice in succession. This
then will form the basis for one of our tests.

As in the previous algorithms, we assume that NT and NR are known. We also
assume a minimum number of error-free bits after any deletion or addition. Finally,
since counting the errors, deletions, and additions is similar to the previous
algorithm, this portion of the algorithm will not be included again. Instead,
only the procedures for detecting these will be explained. Since the algorithm
is designed to work with 8-bit bytes, we will further shorten W(3, i) to W(i)
and S(3) to S.

We assume that the transmitted sequence begins with the clock at 0, and we
define synchronization when the two data strings match, and the words W(i) and
w(i) are both either S or S. This is slightly different than the definition used
in the previous algorithm where synchronization was defined for bytes starting
at any bit.

5.1 Synchronization and Error Counting
Suppose & bits of the transmitted string have been compared with 2 bits of
the received string (& may be 0) and synchronization needs to be established.
(a) Choose £' > ¢ such that the binary representation of &' has 0's in the
three lowest order positions, and compute the string W(2' + 1) and W(&' + 9).
(b) calculate, for i =0, 1, 2 ... 7,

w(e' + 1 +d) [+] W'+ 1) =Cl(e" +1i+1)
wie' + 9+ i) [+ W(e' + 1) =cC2(2' +1+1)

and w(2' + 9+ 1) [+] w(e'" + 1 +14) =C3(2" +1 +1)

22

If C1(2' + it 1) = 0or 8and C2 (&' + io + 1) = 0 or 8, we declare byte align-
ot 1 and go to (c). If not, go to (d).

(c) At this point, we are reasonably sure that the data w(&' + 1 + i) and
w(2' + 9 + i) came from the transmitted data, although it may not have come from
the same section as W(&' + 1). We can almost certainly rule out the possibility
that the data w(2' + 1 + i) and w(®' + 9 + i) are added data. If &' # 0, and/or
i # 0, then there is a high probability that some data have been deleted. If data
have been deleted, then the situation is as pictured in Figure 8 where it is seen
that the bit in the received data which we have tentatively labeled &' + 1 + i
should be labeled a. Thus, o - & - 1 - 10 bits have been deleted.

If the data do not have errors for a sufficiently long interval after the

ment for the byte beginning at &' + i

deletions, we can find the positioning of the clock using the method of Hershey

and Lawrence (1981). This requires approximately 4(a - & - i_ + 1) error free

bits, a Targer number of bits if errors are permitted. Thus,oif other information
is not available, an error free period of approximately 4 times the length of the
deletion is required for an exact determination of the clock position.

Instead of finding the exact position at this time, we can use the following
error detection routine to count additional bytes in partial synchronization in
order to try to Timit the range of possible clock positions.

If C1(2* + i+ 1) = 0, we renumber with bit 2' + io + 1 set to bit 1, and
continue testing C1(8¢ + 1) =0 2 =0, 1, 2 ... until, for some %os C1(85Lo +1) # 0.

If C1(8£o + 1) =0 or 8 and 02(820 + 1) = 0 or 8 we shift right by bytes,
until we again reach the condition C1(820 + 1) = 0 and return to the beginning
of c. This step may not achieve total alignment all at once, but will eventually
achieve it. This is guaranteed since we have the requirement that no errors or
additions may follow directly an addition.

o) 2+1 Q2

T e o o e o o e o o

R e o o e o o

SN
(L2+1+4,) 2+1

Figure 8. A demonstration of deleted data, showing
the tentative alignment.

23

If C1(85Lo +1) # 0 or 8, but C](BQO - 7) = 0, we assume that an error has
occurred, or deletions have occurred, or additions have occurred.
If

C4: |C3(8JL0 +1) - C1(8£o +1)| = 0or 8,

we assume that we are still in sync, but that errors have occurred. We count
01(820 + 1) as errors and go to d.

If C4 is false, we go to a.

C4 will be true whenever one has byte alignment, and 2 consecutive bytes
do not have errors. If the former condition is not satisfied, we return to align
the bytes, whereas if the latter condition is not satisfied, we go on to count the
errors over a larger segment of data. Finally, we proceed to conduct additional
tests for added data.

Since it is possible for the two strings to align over a given block of n
bytes from the transmitted data and a different block from the received data,
the possibility exists that a spurious alignment was achieved, and at the same
point where the misalignment would be detected, errors, deletion or addition
occurred. The probability of this is thought to be small, although very difficult
to calculate.

(d) Upon entering this routine, we have one of several conditions. First,
the data are aligned, but with an error burst. Renumbering, so that the first
byte we examine starts with bit 1, we calculate

™M~

_ C1(81 + 1) = C5.
i=0
if C5 < 15, we assume C5 errors. We then continue counting errors, using C5 until
we reach the end of the data, or until C5 > 15, in which case we continue.

Second, the data are not in alignment (even partial alignment). This condi-
tion could be caused by either a deletion or an addition. If NT > NR, we use
first the tests in (a), (b), and (c), and if this is unsuccessful, we assume an
addition of data has occurred and go to the following.

Renumber the data so that the first bit to be examined is bit 1. As before,
pick W(1) to be an S. Calculate w(8k + i + 1) [+] w(8k + i + 9) = C(k, i), i = 0,
T ... 7. IfNT<NR, we first try k such that 8 + 1 > NR - NT. If this is
successful in finding C(k, i) = 0 or 8, for i = 10 we work backward byte-by-byte

24

to find the smallest k associated with i io' If it is unsuccessful, or if

NT > NR, we test using k = k' « 1024, k' =1, 2 ... until we find C(k, i) = 0 or 8,

for some k0 and i. We then work backward to find the smallest k for this io' This

determines the amount of data added. We then return to the calculation at the

beginning of this section to determine errors. When again C5 > 15, we go to (a).
If we do not find k such that C(k, i) = 0 or 8, we declare the data undecid-

able.

(e) We now note that, even though we have not counted the number of bits
deleted each time a deletion has occurred, by keeping track of the counts each
time we set a bit number to 1, and by counting the number of additions from (d),
we are able to count the total number of bit deletions. Thus, our imperfect
alignment in (c) did not require the complete clock determination.

6. SUMMARY

It is seen that data with few errors, and a small number of deletions or addi-
tions, present no problems. It is also seen that certain conditions containing
combinations of additions, deletions, and errors lead to situations in which it is
impossible to make counts. The algorithms described are designed to make the
"uncountable" situations rare, while making the calculations for "good" data as
efficient as possible within the same general framework.

The algorithms effect a compromise between counting errors over a large seg-
ment of data and declaring data "out-of-sync." This is done to avoid the SHIFT
routines when possible since these are the most time consuming portions of the
procedure.

When the data are structured, the shift routines provide for a compromise
between bit shifts and block shifts. The likely direction of the shift is deter-
mined by the bit counts in the two data strings.

For transmitted data with high autocorrelations, it is more difficult to make
accurate counts. Even though this problem can be somewhat alleviated by increasing

the appropriate limits used in the tests, an effort should be made to use uncorre-
lated data for best results.

25

7. REFERENCES

ANSI (1982), Proposed American National Standard No. X3.102, Data communication
user oriented performance parameters, April. Available from the author of
this report.

Gabriel, K. R. (1959), The distribution of the number of successes in a sequence
of dependent trials, Biometrika 46, pp. 454-460.

GSA (1979), Interim Federal Standard 1033, Telecommunications: digital communica-
tion performance parameters, General Services Administration, August. Avail-
able from Office of the Manager, National Communications System, Technology
and Standards Division, Washington, DC 20305.

Hershey, J. E. (1979), Comma-free synchronization of binary counters, IEEE Trans.
Inform. Theory IT-25, No. 6, November.

Hershey, J. E., and W. F. Lawrence (1981), Counter synchronization using the Thue-
Morse sequence and PSK, IEEE Trans. Commun. COM-29, No. 1, January.

Seitz, N. B. (1980), Interim Federal Standard 1033 reference manual, NTIA Report
80-55, December, (NTIS access. No. PB81-174898).

Seitz, N. B., K. P. Spies, and E. L. Crow (1981), Telecommunications: digital
communication performance measurement methods, proposed Federal Standard 1043,
Version 5, May. Available from the authors of this report.

Wortendyke, D. R., N. B. Seitz, K. P. Spies, E. L. Crow, and D. S. Grubb (1982),
User-oriented performance measurements on the ARPANET: the testing of a
proposed federal standard, NTIA Report 82-112, November, (NTIA access.

No. PB83-159947).

26

FORM NTIA-29 U.S. DEPARTMENT OF COMMERCE
(4-80) NAT'L. TELECOMMUNICATIONS AND INFORMATION ADMINISTRATION

BIBLIOGRAPHIC DATA SHEET

1. PUBLICATION NO. 2. Gov't Accession No.

NTIA Report 83-133

3. Recipient’s Accession No.

4. TITLE AND SUBTITLE 5. Publication Date

A Method for Counting Errors, Deletions, and Additions | September 1983

When Both Transmitted and Received Data are Known 6. Performing Organization Code

7. AUTHOR(S)

W. J. Hartman

8. PERFORMING ORGANIZATION NAME AND ADDRESS
U.S. Department of Commerce
NTIA/ITS

9. Project/Task/Work Unit No.

10. Contract/Grant No.

325 Broadway
Boulder, CO 80303

11. Sponsaoring Organization Name and Address

12. Type of Report and Period Covered

National Telecommunications and Information
Administration

Washington, DC 1

14. SUPPLEMENTARY NOTES

15. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature
survey, mention it here.)

The problem of counting the occurrences of bit errors, block errors, bit
additions or deletions and block addition or deletions is considered. A
general method is developed for counting such occurrences for cases when the
occurrences are not excessive. The definition of excessive varies with the
amount of correlation in the transmitted data. Modifications of the general
method are given for various cases of blocked data, with or without accompany-

ing block identification, and for the special case when the transmitted data
can be selected.

16. Key Words (Alphabetical order, separated by semicolons)

17. AVAILABILITY STATEMENT 18. Security Class. (This report) 20. Number of pages
XKl unuimiTED. Unclassified 30
19. Security Class. (This page) 21. Price:
D FOR OFFICIAL DISTRIBUTION.
Unclassified

rU.S. GOVERNMENT PRINTING OFFICE: 1983-776-475/30

