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PREFACE

This is the second in a series of studies by the present authors which
addresses the critical problem of signal detection in highly nongaussian
electromagnetic interference (EMI) environments. (The first in this series
is the Report-OT-75-67, UOptimum Reception in.an Impulsive Interference
Environment ll

, June 1975, by A.D. Spaulding and D. Middleton, for the Office
of Telecommunications - u.S. Dep't. of Commerce [Ref. [la]], subsequently
published in somewhat shorter form in the IEEE Transactions on Communications
in 1977, [lb].

Because of the recent development (1974- ) of effective, tractable
statistical-physical models of typical EMI environment ([2]-[lOa]), which
provide at least the complete first-order statistics of the received inter­
ference (as it appears following the initial linear stages of narrow-band
receivers), it has become possible to determine and compare the limiting
threshold (i.e. weak-signal) performance of both optimum and conventional
receivers in such disturbances. The latter are found to be heavily degraded
vis-~-vis the former, because of the highly nongaussian character of these
typical telecommunication environments, where both man-made and natural
II no ise ll can and usually do predominate. Optimality is important, since
from it one can establish the limiting behaviour of suitably designed re­
ceiving algorithms, as well as evaluate the performance of current subopti­
mum receivers. These results, in turn, are fundamental to the technical
basis of effective spectrum use and management. Included here as well, is
the aforementioned construction of adequate EMI models and the explicit
identification of the pertinent data bases required for both empirical and
analytic applications.

These ,studies accordingly focus on signal detection, with particular
attention to the structure of the nongaussi an EMI and its IIscenario", i.e.
propagation laws, source di'stributions, signal waveforms, etc., as well as
the corresponding (desired) signal scenario. In this way o~servables of the
EM! environment are directly incorporated into the results, e.g., optimum
signal processing algorithms, suboptimum procedures, and performance measures.
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Among the many topics under investigation in this series are: (1), the
role of the interference class (Class A, B noise) on detection algorithms
and performance; (2), the effects of the EM! scenario on performance; (3), the
various matched filters appropriate to different propagation conditions for
the desired signal; (4), the effects of approximate or inaccurate EM!
parameter data on structure and performance (i.e. IIrobustness" questions);
(5), receiver structure and performance for var~eties of digital signal wave­
forms in common usage; and many related problems, which one hope,s to examine
as the work progresses.

Finally, it should be stressed that, although attention is directed
here primarily to (EM) telecommunication environments, the concepts, methods,
and results of this work are quite generally applicable to other communica­
tion fi€lds and physical systems. This is a direct consequence of the canoni­
cal formulation of the detection problem itself, on the one hand, and of the
canonical nature of the broad spectrum of interference scenarios encompassed
by the recently-developed non-gaussian noise or interference .models on the
other. Consequently, it is expected that the approaches and resultsob­
tained here should have impact well beyond the particular applications to
EM! tel'ecorrmunication :systems discussed herei'n.
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OPTIMUM RECEPTION IN NONGAUSSIAN ELECTRO~GNETIC

INTERFERENCE. ENVIRONMENTS: II. OPTIMUM AND SUBOPTIMUM
THRESHOLD SIGNAL DETECTION IN CLASS A AND B NOISE*

by

David Middleton** and A.D. Spaulding***

ABSTRACT

In this second part of an ongoing study, the general problem of ~ptimum

and suboptimum detection of threshold (i.e. weak) signals in highly non­
gaussian interference environments is further, developed from earlier work
([la],[lb];[34]). Both signal processing algorithms and performance measures
are obtained canonically, and specifically when the electro~agnettc inter­
ference environment (EMI) is either Class A or Class B noise. Two types of
results are derived: (1), canonical analytic threshold algortthrns and per­
formance measures, chiefly error probabilities and probabilittes of detection;
and (2), various typical numerical results which illustrate the quantitative
character of performance. Suboptimum systems are also treated, among them
simple cross- and auto-correlators (which are optimum in gausstan i'nter­
ference), and cl i pper-correl ators whi"ch employ hard 1imiters (and are con­
sequently optimum in "Laplace noise ll ). The vart.olJS modes of receptton con­
sidered explicitly here'include:(i), coherent and incoherent reception; ,Ctil,
~compositell or mixed reception (when there is a nonvanishi~g coherent com­
ponent in the received signal; (iii), lI on-off" and btnary,signals, as well
as varieties of fading and doppler spread.

* Work supported under contract (first author) with the Instttute of Te,le­
communication Sciences (ITS), Boulder Colorado~ National Telecommunication
and Information Administration (NTIA) of the ,U.S. Dep't. ,of Commerce,
Wash. D.C. Work also partially supported by the U.S. Nep't. of-Defense.

** 127 E. 91 St., New York, N.Y. 10028
***ITS/NTIA of U.S. Dep't. of Commerce, 325 Broadway, Boulder, Colorado 80303.



Both local opt"imality (LD) and asymptotic optimality (AD) are demon­
strated, along with the critical influence of the proper bias in the optimum
algorithms, which maintain their LO and AO character as sample size is
increased, without having to add additional terms in the original threshold
expansion (and thus produce insurmountable system complexity for the very
large samples required for effective detection of weak signals). It is
shown that for AD, as well as LD, two conditions may be needed to establish
the largest magnitude of the minimum detectable input signal which can be

permitted and still maintain the optimal character of the algorithm. In
addition to the more general Bayes risk and probabilistic measures of per­
formance, Asymptotic Relative Efficiencies (ARE1s) are also included and

their limitations discussed. A number of numerical examples which illustrate
the determination of performance and performance comparisons are provided,
with an extensive set of Appendices containing many of the analytic details
developed and presented here for future use, as well.

KEY WORDS AND PHRASES:

Threshold signal detection, optimum threshold detection algorithms,
performance measures, performance comparisons, electromagnetic inter­
ference environments (EMI), suboptimum detectors, locally optimum and
asymptotically optimum algorithms; Class A, B noise; correlation
detectors; clipp~r-correlators; error probabilities; minimum detectable
signals, processing gain, bias, EMI scenarios; co~posite thresh~ld
detection algorithms; on-off binary signal detectlon; non-gausslan
noise and interference.

2



1. INTRODUCTION

Nongaussian noise and interference have been recognized for some time
[10], [lOa] as an increasingly significant factor in the degradation of the
performance of most electronic systems and' of telecommunication systems in

particul~r [la,b]. Both natural and man-made noise contribute noticeably
here, with the latter becoming the dominant component in most i'nstances,
as time goes on. At the same time, most teleconrnunication systems ..
specifically receivers - have been designed to"be (~pproximately) optimal
against gaussian noise (both internal and external). This has been accom­
plished by means of II ma tched filters ll ([11J,[12J), whose particular struc­
tures depend on the mode of recepti on, t i .e., on whether or notre~cept,.on

is II coherent" of,lIincoherent ll [Sec. 19.4, [12JJ. Now, because of the
growing presence of nongaussian interference of all Rinds, these conven­
tional or "classica111 (correlati'on) recei'vers are found to b~ badly degraded
O(20-50db) typically, and new designs (or ltalgortthmsllJ for opti'nla.ltty are
accordingly required [la,b], [13].

Analytically quantifiable procedures for opti:mal s,tgnal processtng qt

all desired signal levels in arbitrary interference are not generally,posstble,
however. Thus, to obtaina II genera111 sol uti on, ei',ther one must restri'ct

the class of signals and interference, mode of observation, etc.!~ or one

must limit the approach to threshold sig~a1s, where now there ts no restric­
tion on signal type and interference class. Such.an approach i's accordtngly
canonical ~ [14], with sever~al constderable advantages over more specffic but
less general methods. These advantages are: (i), an explictt operational de­
velopment of the required optimum signal, processing algorithms (t.e. detectton
or signal extraction); (ii), an explicit formali'sm for evaluati,ng error­
probability performance dil~ectly in terms of the various first and second
moments of the processing algorithm (vis-a-vis the various hypothesi's sta,te,s.
involved, e.g. Ho: interference alone, Hl : desired signal plus interference,.
etc.); and (iii), a similar procedure for obtaining the performance of speci-
fi ed sub-op..timum sys terns in the e1ectromagneti c interference (EMI) 'envi'ronment.

Optimal ity here is expressed in the general sense ofmtn111lum ayer,~ge

risk or cost (i.e. Bayes risk ([12J, Chapters 18,19), and in the J09re spect'&l
sense of minimum probability of error, or maximum probabtltty of correct·
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signal detection, etc., which is, of course~ ultimately embedded in the
more general Bayes formalism. Of course, as the signal level increases the
signal threshold algorithm is no longer optimum, but it is still better
on an absolute basis than it is for very small si'gnals. Moreover, it re­
mains better, in many instances~ than the original suboptimum systems to
which it is often vastly superior in the threshold'r~gime (as noted above).

For these threshold signals optimality is achieved under the strictly
mathematical condition of vanishingly sma-ll "input signals. In the prac­
tical cases, however, as we show here, effective optimality 1's mai'ntained
as long as the small desired input signal does not exceed some upper bound
(itself small). [The desired signal is, of course, nonvanishing in all
practical applications.] These optimum threshold a.lgorlthms can be shown
to be optimum in two senses: (i), locally optimum (LO), i.e. essenti'ally
yielding the smallest error probabilities f~r ·~mal.l. ~,ig~~l~ ~/(9<e<e«1},

with finite sample sizes (n<oo); and eii), asymptotical ly' optimum. (AO),

where for these same LO a1g~ri thms, the error probabi 1iti'es (o'r aver,age
risk, more generally) remains minimal (and can approach zero) as sample­
size increases indefinitely (n~). For the latter we emphasize that the
structure of these threshol d optimum (LO) a1gori'thms remai'ns unchanged as
n~, provided the correct bias, B~(e), isemployed.Wlthout the proper
bias term in: the threshold algorithm, the processi,ng is subopttmum, and
Inoreover,. is not only not LO but is also not AD. [These questions are dis-
cussed in detail in Sees. 2.4,6.1,6.4, and particularly in AppendixA3 ff.]

The concept of optimum threshold reception is comparatively venerable.
Perhaps the first e~position of the concept was presented for detection by
Middleton in 1953, 1954, [15J and [16J, where the approach was to demonstrate
a series development the generalized likelihood function in various orders
of cross- and autocorrelation components, mostly non-linear in the received
waveform data. Among the important subsequent works are those of Rudnick in
,1961 [17], who expressed the threshold detector in an alte~native closed form,
more useful in applications, and that of Capon [18], also in 1961, who intro­
ducedthe notion of asymptotic relative efficiences (ARE's) for performance
measures.
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A further important step, including these earlier advances and embedding
the overall approach fully in the Bayes formalism ofs.-ta'tistica] communication
theory ([10]; Section 19.4, Chapter 20, of [12]), was presented by Middleton
in 1966 [14]; (see also [21]). Thomas and coworkers fi2l]-[24]) have applied

these methods, particularly to non-parametric reception, si"nce aBout 1965;
at about the same time Antonov [25], 1967, and a little 'later Levin and
his colleagues ([26]-[28], approx. 1969 and subsequently, used these con­
cepts for signal detection ,and estimati,on. More recently (1978), Sheehy
for example, has applied these ideas to acoustic signals. [See also [48]

for some recent observations on the current statuS' of work tn thi's area.]
In this present study we shall use Middleton's 1966 paper [14J as a starti',ng
point for the derivation of specific detection algorithms and performance
measures, alone the lines, to some extent, of [la,b], and particularly, [34J.

Although the general threshold detection formalism has been avatlable
since 1966, cf. [14], its practical applicability has been ltmited until
recently because of the lack of physically realistic and tractable nongausst~n

noise models. Most of the interference models suggested have been ad hoc
attempts to represent such phenomena, without s'uffictent physica1 basi's and
analytic structure to apply generally. This difficulty was largely removed
in the mid-70's and subsequently, by the development of stati'stical~phystcql

models of interference, which are both analytically tractaBle and well­
verified by experiment, [2]-[9J. Specifically, first-order probabi'ltty
distributions and densities have been obtained, with the model parameters
themselves determined analytically from the phys';-cal EMf scenarto i~nyolyed

[8], [9], or empiri ca'lly [6], [7], when such informati onts unavai'l aDl e. These
models are canonical also, in the sense that the 'form of the results ts in-
dependent of the particular physical mechanisln involved, the pri'nctpal con­
ditions being; (i), that the potential number of possible sourc1es productng the

resultant interference ,be large, and (ii), that each source emtts tndependentlr
of the others [cf. Sec. 3 below].

Two main classes of interference are distinguished: Class A noise, whtctl
is "co herent" in the rece'iver in that it produces negligible transtents th,er.e­
in; and Class B noise, which is alternatively tlincoherent U

, produci.ng essen­
tially nothing but transient responses. The former. is non~impulsive, whtle'
the latter is usually highly impulsive. Typical examples of Class A
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interference are other, man-made telecommunications for the same channel
or spectral region. Similarly, automobile ignition noise and atmospherics
are common types of Class B fnterference, cf.[6]. We stress the fact that
these interference models, and their classification, are not limi"ted to EMl",
but apply equa,llywell (with different numerical values, of course) tn
other physical areas where the samebastc source conditions noted above
apply.

In the fullest formal sense these. general stgnal processtng algortthms
(e.g. for detection and extraction) usually require nth-order statistical
descri pti ons of the interference. Fortunately, we can. greatly simp1i"fy

the analysis, without serious loss in either methodology or performance,
by using independent (noise) samples. Such procedures are conservative, tn
that they provi de upper bounds on performance, in the s·ense of 1a.rge'r error
probabilities for given input signal levels and sampl~ sizes, or greater
signal levels or sample sizes, for the same error pl1obabilfttes, etc. At
the same time we can now use the new canonical stattsti'cal-pnysi'cal inter­
ference models noted above, to provide a truly realistic account of the EMf
environment in which our signal processing tasks are to oecarri'ed out.

Because the parameters of these Class.A a~d Bmodels are themselves
derivable from the underlyi'ng EMI scenario (i.e. source dtstrtbutton, profJ­
agation . law and fading effects, signal structure, etc., (cf. Sec. 3 'ff.l,·we
can gain further insight into the role of the EMf scenarto on system perform­

ance, and from thi s predi ct how changes fn source distri buttons, prop.~gqtton

condi·tions, etc., may a,ffect rece.iver operati'on. In effect, wha,t we hAve
done by i'ntroduci ng these phystcally-derived interfe'rence model s· ts to sno\'l

explicitly how the underlying physical mechanisms and condi"ttons can tn­
fluence system design and behaviour.

In our present study we shall confine our attention to threshold
signal detection in canonical Class A or Class B interference, resery~ng

the extension of the analysis to general signal levels alo~g the li'nes tndt-,
cated in [la]) for a subsequent study. Our specific goals are to oBt&tn

(i). the optimum threshold signal detection algortthms for Doth
the coherent and incoherent modes of reception,

(i i ). the associ ated optimum performance for these a,lgortthJJJs, qnd
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(iii). comparisons with selected suboptimum receivers, namely, receivers
conventionally optimized against gaussian noise, viz. eross- and
auto-correlation detectors, and against impulsive noise, e.g.,
clipper-correlators.

(iv). An important fourth goal is to study the effects of Itrnisma tch",
i.e., when approximate or incorrect parameter values and/or noise
distributions are employed in system design and operation.

Accompanying this is the concept of IIrobustness": how' little (or how much).
is perfonnance degraded by these various types of "mi'smatchtl

•

Most of the results to be achieved under the above are new, altho,ugh
a few special cases have been obtained earlier [13]; also Ila,e]. In ad­
dition to the analysis, selected numerical results illustrate typ~~al. per­
formance situations in typical Class A and B EMf environments. 'Algortthll)
structure is shown in a number of IIflow diagrams~', which i'ndtcate the orgqnt~

zation of the various operational elements.
Specifically, among the principal new results achieved herE~ are the de­

monstration of asymptotic optimality (AD) of the (optimum) tflreshold a.lgorithms,
when the correct bias is used,. various explicit results for coherent and i"n­
coherent detection, ; ncl udi ngcompos;-te detectors when th,ere 1S a nonv~ntsht.-ng

coherent signal component, and upper bounds on the minimum detectaBle s:tgnal,
required to preserve optimali'ty of the th~eshold a,lgortthm. P~r~llel results
for binary signals are silTlilarly obtained.

This Report is organized as follows: Section 2 presents a conctse over~

view of the general threshold theory needed for both matched and mismatched,
optimum and suboptimum systems, developed 'mainly f'rom [14J. Section 3 SUJ1.)­

marizes the pertinent statistics and EMI scenario and parameter structures'
needed for the Class A and B interference treated here, based 'mostly on [6J,
[9], [13]. Section 4 considers threshold detection algorithms themselves,
in detail. Section 5 treats "matched filters" and the o'perational tnter­
pretations of these algorithms, whi'le Section 6 examines the.performance of
these various optimum and subopti~um detectors in analyti'c,detatl. In Sectton 7
selected numerical results are obtained and discussed, ,for typtcal cl~sses of
(desired) signal waveforms. Section 8 completes the work with a snort dis­
cussion of both the principal general and specific results, as well as sug­
gested next steps in the analysis. The Append;'ees provide most of the
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technical details, and the computer software, needed in the main text.
We remark, finally, that the calculated great improvement of systems

optimized properly to these highly nongaussian interference environments
vis-a-vis conventionally optimized receivers (i.e. against gauss noise)
stems fundamentally from the following conditions:

(1), the fact that the former are adaptive systems, which sense the
(parameters of the) EM! environment currently with the the de­
tection process, and

(2), the fact that the entire density function (pdf) is then sui'tably
employed to give the correct threshold algorithm, while the latter
remain sensitive only to second-moment statistics (which, of
course, are sufficient when the noise is gaussian).

The degree of improvement over conventional detectors depends, as
expected, on how nongaussian (in intensity and statistical structure} the
interference is. When the interference reduces to 'ga'uss, soa1so does the
(optimum) detector algorithm~ again as we would expect. It should be noted,
however, that the degradation of conventional (stmple-correlatton} receivers
is greatly reduced vis-~-vis the optimum algortthm when (sub-optimum)
clipper-correlators are employed. Nevertheless, optimum threshold algorithms
may still provide a worthwhile improvement, O(3-10db), over the clipper­
correlators, particularly when "compositelt or mixed coherent and i'ncoherent
processing can be employed. In any case, the results of an opti'mality
study are always needed in any effort to assess ultimate performance and

practical departures from it. Finally, recent additional studies [49-54]
are to be noted for possible extension of present work.

2. GENERAL THRESHOLD DETECTION THEORY:
Threshold detection theory, as is well-known [14J, is a general sub­

element of the Bayes, or (minimum) average risk theory of signal reception
([19J,[12J, Chap. 18, et seq.), and as such carries with it all the same
general statistical structure and concepts of the latter, more comprehensive
formulation. Moreover, the general Bayesian detection theory naturally
provides the starting point from which the former is developed. We begin,
accordingly, with a very brief summary of the general formalism for both
optimum and sub-optimum detection.
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2.1 Remarks on General Detection Theory:
Optimum reception, and, in part~cu1ar optimum· detection, is well- ,

known to require the minimization c~~ the probabilities of decision errors.

This is achieved (in the usual context of minimizing the average risk, or
cost, of decisions) by cons-tructinr the "test statistic", or reception
algorithm, !\n(!.!S). Here An is the (generalized) likelihood ratio, defined
in the standard way [Ref. 12, Chapt~r 18] by

(2. 1)

where! = (X1' ... ,Xn) is the set of n samples of received data;~ represents
the desired signal; (>S' the average over the signal or its (possibly)
random parameters, while p,q (=l-p) are respectively the a priori-Probabili­
ties that a received data set X does or does not contain the desired signal.

~

The quantity Fn(xlS) ;s the probability density function for the! set X,
""'" \AI -\IV

under the condition of the presence of a signal (5) in the usual fashion.
The optimum detection process, then, consists of ~omparing A~l) (or any mona­
tonic function of A~llsay, the logarithm, log A~l»} with a suitably chosen
threshold,/(, e.g.

deci de Ho: II no signal present ll
, if log A~l) <: log it

decide H,: ltsignal, as well as interference
is present ll

, if log A~l) ~ log ~ (2.2)

Similarly, for non-optimum systems, ·the reception algorithnl, or pro­
cessing of the data, is some (pre-determined) function, g(X), and the de-

~

cislon process has, like (2.2), the form,

decide H1:

if g~) < log K , e.g. noise alone }

if gOO ~ log K, e.g. sig~a1 as well as noise,

(2.3)

where now the threshold K is lC (K), and usually K=afC, with ~ some (posi­
tive) constant.
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Performance is generally expressed as some linear function of the Type
I and Type II error probabilities, (a,S), e.g.

f OO flOgit-
a = a(SIN) =w,(gIO)dg ; B= B(NIS) = w,(gIS)dg,

log It -00

which for optimal systems, (minimizing average risk), becomes

100 flOg 7V
a* = w,(g*IO)dg* ; B* = w,(g*IS)dg* .

1og~ -00

(2.4a)

(2.4b)

The w,(g*IO) etc. are the ('st-order) pdf's with respect to Ho' H, of the
optimum or suboptimum test statistic or "detection a'gorithm", g* = log A(1)

n
or 9(0). The associated average costs or risks are (cf. Secs. (2.3, 2.4,
Ref. 20)

R* =;,((a*,B*) = Ii +p(c{1)_c{1»(.11. a*+B*) = A +8 (~*+B*)
o 0 l]l a 0 ]l

(2.5a)

= A +8 (1la+B) ,o 0 Jl
(2. 5b)

(2.5c)

so tha t sys tern compari sons are then log; ca lly made on a compari son of R, R*

for the same thresholds K =ii, where now II :: p/q. The convention h_ere i.s that
C(j) = C((dHj ). · ): the superscripts refer to the hypothesis state (H

J
.), andeC1Slon -

the subscripts to the decisions actually made, and errors naturally Ucost"
more than correct decisions. [For a detailed development see Ref. 12,
Chapter 19, Ref. 20, Chapter 2.]

The formalism above is adapted to the common situation where the alter­
native reception situation (Hypothesis Hl ) is a "signal and noise" as opposed
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to Ho: IInoise alone ll
• In many telecorrmunication applications the' choice

is between two types of signals in noise (or interference), and the test
statistic (2.1) becomes now for these binary signal cases.

with 1\(i)=Eq. l2. 1l;

t ~ 1,2; (S t ) . (~. 6)

The decision process (2.2) 'is, correspondingly,

decide H1: lI a signal (Sl) present in noise ll , if Log 1\~21) < log ~2 )

decide H2: lI a signal (S2}present i'n noise", if log 1\~211 ~ 10g!c;2 '
(2.7)

wi th

(2.7a)

(It is assumed that all signals {Sl} are distinct (lldisjointll ) from all

signals {52}' so that there is no ambiguity in establishing correct and
;lncorrect decisions. When the signal classes over1ap~ however, n~odifications

in the cost assign~nts, i.e. the selection of the c~j) above, mus~ be made:
see Sec. 2.2, [20].)

Performance in the case of alternative signal classes is obtained as
above [(2.4), (2.5)], now with the obvious notational modifications:

(*) (2)*
S + Sl
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where g(*), etc. = g* (=log A~21)) or 9 , etc., and the various wl refer
to the optimum and suboptimum detection algorithms and their associated error
probabi 1i ti es.

2.2 Threshold Detection
Thus, in the detection phase of reception -which is always the ini­

tial, or acqui~ition phase at least - and usually subsequently - each signal
unit is to be detected, i.e., a decision made as to the presence (or absence)
of the signal symbol, to form a stream of decisions, generating the signal
sequence, which is then ultimately decoded into the desired message (pos­
sibly corrupted by interference, etc.). However, in the majority of prac­
tical situations, the explicit development of the optimum algorithm A~l),
or log A~l), cannot be achieved, only approximated. Moreover, the evalua­
tion of performance, via the error probabi'li'ties (a,*,S*), cf. (2.4b), is
even more difficult. Ingenious approximations are required, and even these
are not sufficient. Only by a literal (i.e. purely computational) realiza­
tion of An can we expect to obtain the optimum processor (as is sometimes
done.)

In any case, for the important purposes of predicting performance,
analytical methods, for all signal levels, are not generally realizable, and
we must (apart from brute-force simulation) seek other approaches. Fortunately,
as we have remarked in Sec. 1 above, it is possible to obtain canoni'cal results
analytically, in the critical limiting case of weak signals, which, also
fortunately, is of very considerable interest, as it is the situation which
establishes the limiting performance, i.e., the best that can be done either
for optimum processors g(X)*, or for specified systems, g(X), which are
suboptimal. In general, the limiting, optimal algorithm for any interference
has been shown [14J to be (for additive signal and noise processes) the ex­
pansions of the (log) likelihood ';r'a'tio about zero signal (8=0):

2 ..J"

• g(;)* == log 1.1 + e£~1 + ~! [2(es-~'11)£+tracec..es-g,)]+Bn(~)*'

(2.9)

12



where (cf. Sec. III, Ref. [13]):

6 =~ a~; i= [aojsj~ ; ljJ = (N2), (N) = 0

1 1
= [aOjsj/,(a~ ]; 6j = aojs j

ll= p/q

(2 .ga)

; s =
\IV

and 1 is a normalized signal wave form, such that (s2) = 1 ; a~= input
signal-to-noise power ratio; ljJ = (N2) = (total) mean square noise (or in..
terference) power. Here, y and z are the column and square matrices

""" """
a .a · s.s.

Y = [Y,·] = [- ~x. log Wo] ; Os :: [s!s~J=[ 0' OJ 1. J]; x=X/!i ;
tAJ 0 .;;, 1 J . - V\I ~

1 a~
o

(2 .1 0)

with

this last for the postulated additive signal and noise, so that Wo is the
joint pdf of X (=V) when there is only noise.

Here Bn(;)* [=0(63 or 64)] is a bias, which is determined from the
higher order terms in the expansion (2.9), averaged with respect.to the

;. ... .

null-hypothesis, e.g. Ho: no signal. The (correct) bias is critical for
optimum performance in these, threshold cases, where n»l necessar;:ly.[See
Appendix A3.] The resulting bias is also required to i"nsure the cons·tstency
of the test (Hl vs. Ho) as sample size (n) becomes tnfinite (as e+o), or for
n<oo, as 6=e~0. The quantity gQ)* we call the Lata11y Optimum BayesOetector
(or LOBO), as it .gives a Bayes or minimum average rtsR,·cf. C2.5a)" and
Appendix A3.

The general result (2.9) for the LOBO includes corre1atedsamp1e.s,and
both incoherent and coherent· receptton. For the 1atter, s trtctly, we h.ave
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i l f 0, e.g. (s(t-e»efO, where e is the signal epoch vis-;-vis the ob­
server (receiver), which by definition of coherence, is now assumed to be
strictly given. At the other extreme, we have so-called incoherent recep­
tion, where 11 = 0, e.g., (s(t-e»e = O. In between these extremes, it is
possible to have what we call quasi-coherent reception, where wl(e) is non­
uniform, such that (s}e f 0, and may be small but not ignorable compared
to the terms containing (siSj)e' i.e. 0(e 2), in (2.9). These distinctions
are particularly pertinent when dealing with narrow-band signals, where
now wl(e) is defined over an RF carrier cycle, not over the whole duration
of the signal. [In such cases, feedback loops are often used to IIlock-on ll

from the initial instance of purely incoherent reception, to the eventual
stage of more or less exact phase tracking, which permits strict synchroni­
zation of the local oscillator of the receiver, with the RF phase of the
desired input signal. The result is then, of course, coherent reception,
vs. the incoherent reception that occurs when this IIphase-learning ll process
is not employed.]

The critical feature of coherent vs. incoherent detection is, of
course, the fact that the LOBO for the former is O(e), while the latter
is 0(e2), e «1. The structures of the optimum threshold detector, or
LOBO, are then, respectively, [cf. Appendix A-I, also]:

I. Coherent Reception: (Hl vs. H~

log A(1)1 ;, g(x)* = [log Jl +8 (e)* ] +eys' ,
n coh J\I c n coh ~'\N

while for the latter we have

(2 . 11 )

II. Incoherent Reception (H l vs. Ho):

(1) ~ * A e2 ~ ~ _
log An-inc - g(x)inc = [log Jl+Bn(e)inc]+ 2T [lU's).l+tracel's;J, (~=O),

(2.12)
A- A-

in which B~-inc 1 B~-coh' generally. For mixed modes of reception (i.e.
IIquasi-coherentll cases), we must use a s"uitably modifi'ed form of (2",91, cf.

Appendix A3-o.
When there are two classes of signal to be distinguished, generally
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according to (2.6), (2.7), the general optimum threshold algorithm (2.9) is

(2. 13)

where now

_ (2) (1)
=~e - £e '

(2.13a)
and B~21)* is once more a suitable bias to insure. optimality and conststency
of the test H2 vs. Hl here. This bias is obtained, as before [cf. (2.10)
et seq. and Appendix A-I] b.y averaging the next (non-vanishing) terms in the
expansion of log A(21) again with respect to Ho' since log A~21) =
log A~2)-109 A~1) is the difference of two "on-off" detectors, viz.

log 11 +8(21)* = log 11 + (0(e(2)3) ~(0(e(1)3)1 ' or
21 n 21 Ho .fto

4 4
= log 11 + (0(e(2) )/ -(e(e(J) )21 Ho Ho

(2.14)

Thus, (2.11) and (2.12) now become, for S2 vs. Sl in the same interference

15



I. Coherent Reception (s{1,2)rO):{H2 vs. Hl~

g{2l){x)* = [log 11 +B{2l){a)*] + y{-;T2t;nT) ,
V\, c 21 n c tN '-'V ~

and

II. Incoherent Reception (s{1,2)=O): H
2

vs. Hl~

(2.15)

(2. 16)

The decision process is given by (2.7), with (2.13), generally, and with
(2.15), (2.16), respectively for the coherent and incoherent modes of recep­
tion. [Equations (2.11) and (Z.13).apply in the IIcompos-iteli or II quas i­

coherent ll cases, when there is enough coherence (via phased-locked loops,
for example) to justify using both processing modes simultaneously, cf.
II-C (Part II), (la): These variants are reserved to a subsequent study,
cf. Sec. 8. ]

Finally, for suboptimum detectors we have,

g{2l){X)~ -)- g{2l){x). = g(2){x). -g{l){x\.
lAi lnc ~ lnc "" lnc ~lnc

(2.7)

with decision rules (2.7) on replacing log A~2l) -)- g{2l)(~* by g{2l) {~,}, etc.

The decision process is, of course, carried out according to (2.3), (2.7),
with log An replaced by g*, cf. {2.9}, (2.11).,.{2.13), (2.15),{2.16).

2.3 Gaussian Interference
The threshold canonical forms of Sec. 2.2 readily reduce to the known

structures when. the noise or interference is gaussian. This is easily seen
from (2.10) and the pdf
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where one has directly

[ ( - 1 ) ] ay i J -1y = k x. ; z = [- --- = -k .
~ V\N "'" 1 '"'" ax . ,J\o N

J

(2.18)

(2.18a)

Thus, the threshold algorithms (2.10), (2.12) in the "on-off ll cases
become

I. Coherent Reception (H1 vs. H~

I

A* ~ -1
g(x)* = [log p+Bn- coh] +~N !
~ c gauss gauss

II. Incoherent Reception (H1 vs. H~

where

(2.19)

(2 •. 20)

(2.20a)

These results are just those (Eq. 20.7, Eq. 20.11a, [12]) obtained many
years ago for these gaussian situations.

Similarly, we find for the two-signal cases (2.15), (2.16), that the
threshold algorithms reduce respectively to
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I. Coherent Reception (H2 vs. H1b.

(2.21)

and

II. Incoherent Recepti on (H2 vs. H,b.

(2.22)

With~~2) = [<a~~)a~i)sF)sj2»] , etc. [Equations (2.21), (2.22) agree, as
expected, with the earlier results, Problem 20.12, p. 935, [12J, and Section
20.4-5, [12J, respectively, when the accompanying interference is gaussian
noise.]

Thus, when the noise is gaussian, the resulting algorithms remain opti­
mum (LOBD1s) with a generalized cross- or auto-correlation structure for the
processors, cf. (2.19)-(2.22). With independent noise sampling (k~-l)=(6ij))'
these algorithms reduce to the simpler speci'fic LOBO structures A.1-24,25)

with the biasesqnow obtained from {_4,9}, (4.12).

2.4 Canonical Evaluation of Threshold Detection Performance:
By threshold detection we mean not only appropriately small input signals

vis-a-vis the accompanying interference, but also appropriately large obser­
vation periods, expressed as a suitably large number nl.2n) of effectively
independent noise 'samples. Thus, for the LOBO, or g*, cf. (2.9) et seq., we
consider the quasi-limiting cases of II sma ll signals" (e 2«1) and large samples
(n~n'»l), or equivalently, large time-bandwidth products n ~ BeT»l.
Performance, in terms of the error probabilities (2.4b), is then found by
direct application of the Central Limit Theorem (cf. Sec. 7.7-3, [12]) to
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the detection algorithm, or test statistic g*. Accordingly g* is asymptotically
normally distributed, in the 1I 0n- off ll cases (H1 vs. Ho)' with the first

and second moments t

<
(*) 2 *2

, (9 ) IH H -+ var g* IH H =0 0, 1
0' 1 0' 1

(2.23)

e.g.
- (g*- / g*) )2/20*2 - (g*- (g*>H )2/20*1 2

~ Ho 0 1
w (g*IH ) ~ e ------; w

l
(g*IH

1
) ~._e _

1 0 _~ _I 2
12~a~ 12~a; (2.24)

In fact, applying (2.23), (2.24) to (2.4b) for 1I 0n- off ll detection (H1
vs. Ho), where the (condi ti ona1) fa 1se-a1arm probabil i ty, a'F (or thresho1d

~), ;s preset, [the so-called Neyman-Pearson Observer, (Sec. 19.2-1, [12J)J,

we have

* 1 (9*)0-109 7{ .. (g*> -log 1(,
a F ~-2{1+e[ ]}; s* ~!{l-e[ . 1 ]},

a*12 - 2 *12o a l

(2.25)

so that the probabi1ity~ PO' of correctly detecting the presence of a signal

is maximized to become

(g*) -(9*> 0*
p* = p(l-S*) tV R{1+e[ 1 0 - ~ 0-1(l-2a*)]},
o - 2 12 a; 0 1 F

on eliminating threshold/t., Here

2 LX _t2 1y = e(x) == - e dt =·erf x; x = e- (y)
;; 0

(2.26)

(2.26a)

are the well-known error function and its inverse. [Equation {2.16) is, of.course,

:~~~~:~ent to minimizing the error probability (S-+S*), with a=aF fixed.

t But, see the ultimate condition (2.29) ff, when for optimality crt -+ cr~, etc.
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Similarly, when the threshold is set to ~= 1, i.e. when (a~*, S+S*)
are jointly minimized, we have the so-called Ideal Observer [cf. Sec. 19.2-2,
[12]], so that the total probability of decision error is

1 (g)~ (g*)0
P~ = pS*+qa* ~ 2{1-pe[ * J+qe[ * ]},

12 01 12 00
= 1, (2.27a)

which for symmetrical channels (i.e. p=q=1/2) reduces further to

( ) (g*)H

I

1 1 g* 1 ]+ 10_[. 0 J 1/
p~ sym '" 2{l- 20[ ~ '2 * J, /t.= 1; p=q=1/2 ·

12 0i u. 00
(2.27b)

The Neyman-Pearson, or fixed false alarm observer is appropriate to
the initial stages of detecting the presence of a desired signal, while the
Ideal Observer (i{ = 1) is the more suitable criterion (i .e. total decision
error probability) when particular elements of a signal are to be detected,
i.e. II marks ll or tlspaces" (in these lIon-off ll cases), in the course of message
transmission, where now p~ ;s directly proportional to the bi.t-error rate.

Equations (2.23)-(2.27b) apply equally'well,'formally,"forsuboptimum

detectors, g(?S): we simply replace g* by g, o~,o by 01,0' PO' P; by PD' .
Pe in therabove. Furthermore, we have explicitly for the averages (2.18)

(2.28a)

with

(2.28b)

cf. (2.9), for the postulated additive signal and noise cases here.
The relations PO' PD' P~, Pe , etc., (2.25) et seq., hold asymptoti-

cally for all input signal levels (as long as the number (nl<n) of effecti'vely
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independent noise samples r1emains large). However, the LOBD1s, g*, [(2.9),
(2.11), (2.12) etc.] are then no longer optimum, in the locally optimum
sense (e2«1, n'»l), but can become drastically suboptimum as the input
signal level (rua) becomes larger. In. ~eeping with the concept of the LOBO,
which is a truncated series developnent in a, cf. (2.9), which depends on
the mode of observation (or reception) i.e. coherent or incoherent [cf.
(2.10) et seq.], we must be similarly consistent with respect to the ap­
propri ate power of a in determining the above probabi 1i ty measures of per-
formance. Because of the asymptotically optimum (AO) condition, cf. Appendtx
A3, which determines tne'bias B~(e) as the average of tn@next htg~est'non­

vanishing (Ho-) average in the series develop~nt log An=g~+~ •• ~ cf. (2.9)~ we
must likewise require that (Ji2=(J~2+Fn(e or e2), where .F~«l. This CAO) condition,

", .. (2.29)

in turn, requires that the input signal level remains appropriately small,
to insure that g* (=LOBD) is indeed "locall y optimum ll .and asymptotically optl'Tl)um.

We can make the condition (2.29) somewhat more explicit by consideri.ng
for these additive signal alnd noise cases (2.28b) the expansions

(2.30a)

so that

(2.30b)

and
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~ '2~

.'. F~ = ao[2(g*)0<g*~~/wn)0 - ((g*) j!l~/wn)oJ

2
+a20 [«(g*)CSw"s/w) -2(g*' /g*~WI /w ) "J +O(a3) « 0*2, (2.30c)

~~n~ no,s 10\ N~n n 0 0 0

with

(2.30d)

Thus, for coherent reception the first term of (2.30c) determines the re­
quired smallness of (a ), while the second term supplies the needed condition

- 0
on (a~) in the incoherent cases (since,(2.30d),i=o then, etc.). Suboptimum
algorithms, g, are handled similarly, with g* + 9 in the above. We shall
encounter explicit examples of F~ « 1, (2.30c), later, in Section 6 ff.
In any case, (2.26) and (2.27b) now reduce to

(*) . (*)
p(*) '" Q ('+8 [(g 1- (g 0 _8- 1(1-2,,,(*))J ,I
o - z l 12 (*) "'F'2 0

0

/ (*), (*)
(*) • , ( , [\g ), J 1 [(g oJI

pe ~"2 ll- "2 e (*) +"2 e . (*) ,
12 (J /2 0 11 = 1o 0 ~ ·

(2.31)

F(*)«o(*)2 ,
n 0

(2.32)

Here, super (*) denotes optimum by super * alone and suboptimum otherwise,
i.e. a blank superscript.

For the common telecommunication situations involving the IIsymmetricalll
2-signal situations H2: S2+N vs. Hl : Sl+N, cf. (2.13)-(2.17), performance,is
calculated as above with the help of (2.8). Now, however, we have a* :>l:" f3~1)*,

s* -+ s~2)*, i[-+i(12' cf. (2.7), (2.7a), and (2.24) is appropriately modified
(2)* .

g* -+ 9 , (2.13) et seq., Ho -+ Hl ; Hl -+ H2, n »1. Thus, for example,
(2.32) is extended to
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(2T) I /'g(2) (*)'. .... ~g'(2)(*» \)
(*) • 1 [\~ I~l ~' ',1 ] (. • _ '. _

Pe ~ 2" 1-P20! ,(*Lt P1 GL {*} ... { ,1l21 = P2/P1' P1+P2 - 1
.- 12 0" 12 0'1 ' (2.33)

(* )~ '\J (*)2 . . . 2 .where 0'2 'YO", , , and the hl gher order terms 1n e(or e ) are dropped 1 n the
means and variances, consistent with the order of development of g(21)(*), as

explained above in the case of the 1I 0n-off ll detection algorithms, cf. (2.29).
We shall see some examples of this in Sec. 6 ff., as well.

Finally, the explicit evaluation and comparison of threshold performance,
by LOBD's (g*), or specified sub-optimum systems. (g), may be effected by
comparing P~ vs. PD' or P~ vs. Pe , for the same perameters: . observation
time (= sample size n), input signal-to-noise ratio e(=~ ~ ' or a~ )
and input signal and noise levels, etc. Comparisons may also be made using
the associated error probabilities (a*,S*), or (a,S), in the Bayes and average
risks (2.5a,b). Other useful ways of comparison include calculations of
the various Asymptotic Relative Efficiencies (ARE's), and Efficacies, cf.
Appendix, [14].(See also, p. 921, of [laJ and our remarks in Sec. 8.) [In
addition to the results of Secs. 6,7 here, examples of comparisons based on
the error probabilities are also given further in [la], [13], [14J.J

3. A SUMMARY OF CLASS A AND B INTERFERENCE MODELS: 1st-ORDER STATISTICS:
In this section we provide appropriate first-order statistics of Class

A and B interference. This includes the general EM! scenario, from which
the principal pararreters of Class A and B models may be calculatled, as well
as a rather general desired signal scenario, which encompasses most practical
applications.

We shall henceforth approximate the general threshold theory [Sec. 2] by
restricting the analysis to independent noise or interference samples (n).
As explained in Section 1 above (and as we shall see in Secs. 4-7 subsequently),
this greatly simplifies the analysis, without significantly affecting the
results. Moreover, it permits us to use the recently developed (and experi­
mentally verified, [5J,[6]) first-order probability models of Class A and B
interference, which canonically describe most classes of noise and· interference.
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3.1 Desired Signal Scenarios:
The desired signals are here narrow-band input waveforms,*which appear

likewise as narrow band signals at the output of the front-end stages of
the receiver, i.e. before any subsequent linear or nonlinear processing.
These desired signals often have the same generic form as those producing
the interference (in Class A cases). One has explicitly (in sampled form)

(3.1 )

where l/J(;= IN) is the mean total noise intensity (measured at the same

point in the receiver as the desired signal). Here rd E rD/~O = ~A/~o

is the normalized distance of the source to the receiver, ~o is the
normalizing distance, Co = speed of propagation, ~o that A is a distance
measured in units of time (sees.). The quantityaais a dimensionless scale
factor embodying the effects of fading.

In an alternative fom we may write (3.1) as

[
ajGo(tj,cj» ] A •

S = cos[w (t.-€)-~.-~] = [aOJ· s.~] =[~s(t.-e)] (3.1a)
~"AY 0 J J 0 J 12 J

where now

(3.1b)

and the "mean alJl>litude", Ao' over the sampling period t ,To+to) is obtained

from

(3. 1c)

* The'canonical theory is in no way li"mited by this practical condttion,
cf. (2.9) et seq.
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The normalized signal waveform (Sj) is likewise defined by (3.la) with the
he1p 0 f (3. 1c ), cf. Sec. 19" 4, [1 2J, Eq• (19. 49a ) .

In many applications dilgital signals may be used, with no significant
A

ampli tude modulation, so that Go and los are no longer time-dependent. Thus,
we can write (3.la) as

[ [~Go(q,)/12 ] ] _ Ao · _
S = 12 cos[w (t. - e)- ~ ·- ~ ] = [~ s (t --e)] - [a J- s ·~] ,
~"AY 0 J J 0 12 J 0 J

(3.2)

which defines the normalized signal Sj now by

(3.2a)

so that (sJ)e = 1, as requi red.
Since the location of the desired signal source is not necessarily

known at the receiver, A is a random variable, as is the fading parameter
,!, and the beam-pattern function, Go(~)' as well. For most observation
periods Rayleigh fading is the expected mechanism, e.g., ~ obeys the pdf

22
2a e-a fa

=----

a2
c:l > 0 (3.3)

The average effects of the (resolvable) multipath are determined by the
value of the propagation exponent (y), which, for example, is usually
larger than unity for rough terrain, e.g. y = 2 is an often-used empirical
value; (y need not be an integer, however). Moreover, the desired source
may be moving (comparativel ..y slowly), so that its location v'is-a-vis the
receiver is described by a random walk pdf of the form [30J, [31]
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(3.4a)

or

(3.4b)

When the source is not moving, but its location is unknown to the re­
ceiver, the pdf of its location can be usefully expressed alternatively by
the density function [9],

Bl1 = A12-~~~o2-11 ; (0<) Ao 2. A1 ( <<lO) }
, }J~O.

o ~ <I> ~ 2n
(3.5)

for the simple geometry of Figure 3.1, where the possible location of the
source ;s in the region AS. Other, more complex geometries may be handled
in the same fashion, but this rather simple model often gives reasonable
and representative results.

\
\
\

\

"" '---.

/
/

/
..",/

----

A
Or = _D_

o Al

I.t - cPl-~O

Figure 3.1. Schema of w1(~)' wl(~)~ Eq. (3.5); ao(~~o/~l) ratio of inner to
outer radii.
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3.2 EMI Scenarios: Calculation of Parameters:
The EMI scenario describes how a typical interfering source radiates

and where it is located (statistically) in a domain (AI) of such possible
sources. It also provides an explicit structure for the resulting, typical
waveform as seen. following the lineau~ front-end stages of the receiver.
The scenario is fundamental in determining the explicit structure of the
various distributions of the EMI itself, particularly when strictly canoni­
cal conditions do not hold, cf. [32J, for Class A as' well as Class B inter­
ference~ Equally important, the EM! scenario allows us to calculate the
principal parameters of these distributions, as we note below, cf. (3.10) ff.

The (first-order) EMI scenario is specifically defined by:

tv).

( i ) .

(i i ).

(iii).
(i v) .

the propagation law [A-Y, cf. (3.1a)], y>O ;

the distribution, crS' of sources in AI; here
crS '" A- llwl ( cj> ) ;

the statistics of the fading parameter, ~, cf. (3.3),(3.1);
the average emission characteristics of the sources, as
embodied in the "overlap index" AA' AS ;
the structure of the wave-for'm-beam pattern factor

Go(t,cj»=1 t;T(cj» Ibuo(t,!L') ,

cf. (2.17), [6J
where tlRT(cj»=composite source (T)-receiver (R)

beam pa tterns ,
Uo =normalized basic interference waveform

in 1; near rece; ver output, before ~"pro­

cessing";
b =appropriately dimensional parameter.

(vi). the statistics of any other pertinen't parameters tn
the typical source model.

(3.6)

For the interfering sources we use (3.5) again, where AI now is not
necessarily the same domain as that for the desired signal source, AS;

Fig. 3.1 shows a typical domain. [We simplify without serious loss of
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generality, by writing 0S(A,<I» = 0S(A)OS(<I» here.] Note, for example,
that Il=O corresponds to a uniform source distribution 0S(A,<I» = 0oS/All = 0oS.
Specifically, the envelope of a typical source at the output of the front­
end stages of the receiver (to the subsequent processing) is

A aGo(<I>,t)
B = , cf. (3. 1) ,
o AY

(3.7)

where now the scenario (3.6) applies.
The global, or IImacroll_parameter of Class A, or Class B, interference

are 1j = {A,n2,r ' }A,B' defined by

AA,B = "overlap index" = (av. no. of interfering sources emit­
ting at any given instant) x ( aVe duration of a typical
emission);

n2A ,B = [A(B~)/2JA,B= mean intensity of the nongaussian com-
(3.8) ponent of the EMI;

rA,B = [0~/n2]A,B = gaussian factor, or ratio of the mean
intensity of the gauss to the non-gauss component of
the EMI;

IN/A,B = (n2+0~)A,B = mean total intensity of the interference.

The gauss component is itself a sum of two components:

(3.9)

the one due to (many) unresolvable external sources (o~), the other, to
receiver noise, which appears largely in the initial·Cli'neqrI. s't.a·ges·of tfie

receiver. -
From (3.5)-(3.7) we can now readily calculate n2,r l

, and IN. Thus,
we have
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(3.11)

l(G2)
n = A 0 _1_.. (3.10)

2 . 2 <~2Y)

where (G~) = (G~)<jl' etc., cf. (v), (3.6). From (3.5) it follows that

1. 2Y+1l-2
( 1/"A2y) :: c.(2) = 2-ll_{,' -ao ), 2-2Y-ll -2y

~,y 2y+~-2\1 2-p ao A1
-ao

-
with (ll,Y ~ 0). Similarly, r l and IN' cf. (3.8), become

(3. 12)

for Class A, or B interference. Clearly, the geometry and other elements of
the EMI scenario strongly influence the magnitudes of these "macroll_parameters,
cf. (3.8), and as we shall no:te below, the specific structure of the associ'ated
probability distributions.

Finally, we remark that more complex channel characteristics can be
introduced, i.e. scatter channels which introduce spreading in fr'equency and path
delay of both the desired s'ignal and the interfering signals whic:h may be
developed along the lines of [3], [35], r36], and in a much more general
way, by Middleton, in [37], [38]. For the 1st-order EMI's no correlation
structures appear (we assume independent samples, or equivalently, noise
samples taken outside the (rms) delay and frequency spread intervals). On
the other hand, the correlation structure of the signal is preserved tn
our processing, so tha.t the effects of channel "spread ll

, if present, will
modify the received signal. (We reserve the analysis to a later study. I

3.3 Probability Densities (of the Instantaneous Amplitudes):
It has been shown [32] that the EMI scenario can noticeably influence

the form of the pdf (and APD) of Cl ass A and B noise. We summari ze the per­
tinent results established elsewhere (Class A, [32J; Class B, I5], [6J1: ..,
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I. Class A Noise:
There are two principal developments for Class A interference [32]:

(1), the IIstrictly canonical ll forms, which correspond to source distribu­
tions where the potentially interfering sources are either equidistant, or
approximately equidistant, from the receiver; and (2), the IIquasi-canonical
cases, where the sources are widely distributed in space and ~ or~ is
rayleigh distributed. For the former we have the following expression for
the first-order pdf (needed subsequently for locally optimum processing
algorithms and performance, cf. Secs. 4-6):

(1). Strictly Canonical Class A pdf:

m -x2/4~mA2
-AA 00 AA

w
l

(x)A+G = e L mr _e _
m=O -_I "2

1 4'lT(JrnA

where'

(3. 13)

xx=-----
In2A O+rp)

(3. 13a)

Equation (3.13) is also appropriate for the lIapproximately" canonical cases,
where the source distribution is no longer confined to sources equidistant
f,rom the receiver; [for details, see Sec. 5 of [32]].

(2). Quasi-Canonical Class A pdf:

(3.14)

where the IIcorrection term ll ;(0) is specifically
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and where

(3. 14a)

'"

2 _ m/AA+rA '" 2 2 1
2 · r _. rid d I · acrom = l+rA 'A = A ; ao«l = 2-a· {2-ah

ao

(»1) (3. 14b)

(3. l4c)

!n which (ll,y,ao) are parameters of the EMI scenario, cf. Sec. (3.2) above, and
go is a numerical scaling factor obtained by a suitably analytic "fitting" pro­
cess, described in Secs. 7.2, 8.4 of [32J.

For Class B interference we have, similarly ([6J,[13J,[33]):

II. Class B Noise:
Here'we use a simplified version of the general first-order case [6J,

which involves only three parameters, instead of the usual six. Moreover,
we assume a limiting form of the EMI scenario, where now ao (=~olA.l) + 0,
e.g. ~o = 0, cf. Fig. 3.1: potentially interfering sources can be effectively
co-located with the receiver. This permits a considerable mathematical
simplification of the resulting pdf [6] but, in turn, gives a distribution
for which none of the moments eX;'sts (because the intensity at a point source
is infinite, in such models). This ·defect is readily overcome in practice
by truncating the pdf wl(x) at sufficiently large amplitudes (x»l), or

00

equivalently, at sufficiently small values of the APD (Pl =/xowl(x)dx),
[cf.Fig. 1, [33] and discussion therein]. [For the more complete model
(still with AO=O, but suitably approximated at large x to insure finite mo-
ments, see [5],[6],[13].]
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The appropriate pdf here is thus [from Eq. (2.l0a), [13]], a

(3) {Quasi-Canonical Class B pdf (ao+O):

-x2/n
( ) e B ~ (_l)n A"n r(na.+l) F (_ nex .1/2.x2/ n )w, x B+G ~ L n! ex 2 , 1 2' , j)tiB '

1TfnB n=O

or

(3. 15a)

where a ;s given by (3.l4c) and

and

with
"

/2 ~r(l_-_2)_ ,,(:,,,,,,B
1202B

),;a)
AN = 2abl'NAB/[2n2B(1+rBI )]a ; b, = /'2

u. u. a 2a r(l+ 2)

(3. 16a)

(3. 16b)

(3.16c)

(It can be shown that f:oowl{x)A+Gdx = 1, from the series development of lFl ,
etc., and moreover, that wl ~ 0, all x, as required of a proper pdf or directly
from the characteristic function, (2.38), [6], with (A-+O,OO) therein.) Thus,
this model has three parameters P3B = {Aa,nB,a}. The parameter nB is a nor­
malizing parameter (through Nr in (3.16a), cf. (2.11c), [13J). As before,
the "macro-parameters" (AB,n2A ,rS) are defined precisely as in tfie,Cla,s$ A
cases, cf. (3.B). In practice, one uses a value of nB which normalizes
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the x-process to the measured intensity of the process, since the analytical
second moment does not exist, for the reasons explained above. Although
the more complete roodel ([6],[7],[13J) removes this difficulty, using (3.15a)
in conjunction with empirical data does not at all limit the app'licability
of this simplified Class B model.

4. OPTIMUM* AND SUBOPTIMUM THRESHOLD DETECTION 'ALGORITHMS:
We now return to Section 2.2 above and consider both LOBD and selected

suboptimum threshold detection algorithms, under,the'simplify;ng'assump­
tion of independent noise or interference samples. The correlated or
IIcoherent ll structure of the desired signal is, of course, preserved, since
it is a critical elerrent in enhancing the signal vis-a-vis the noise. For
the suboptimum cases here we choose three types: I, correlation de,teetors,
which are conventionally optimum when the noise or interference reduces to
the gaussian; II, LOBO structures, where, however, there is a mismatch
between the algorithm selected and the cri'tical class of interference in
which the desired signal is being received, or where the esti'mates of the
noise parameters are noticeably imprecise, or both. And rIr, where corre­
lation detectors (already suboptimum i'n nongaussian noise) are used 1n
similar IImismatchedU situations.

We begin with the optimum cases:

4.1 LOBO Detection Algorithms:
From {2.11 )-(2.16) we obtain for independent (put not ne,cessartly sta...

tionary) noise samples the following results

I. Coherent Reception (H1 vs. H~

(4.1)

* See Appendix A-3 for a demonstration of the optimality of the LOBD and
associated conditions; cf., also, Sec. 2.5, above.
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where now

and

Similarly, we get

lao Coherent Reception (H2 VSo Hl~

(4.2a)

(4.2b)

where

B(2)* = _1 ~ L{2){/a(?)s(.. 2))2 _ la(1.)s~1)2} cf. ( )
n-coh 2 ~ 1 \' 01 1 \' 01 1 ' Ao2-45 0

1
(4.3a)

[The explicit structures of the various bias terms are derived in Appendix
A-l.]

I I. Incoherent Reception Oil vs 0 Hal=-

A 1 n
9(x) ~ = [log 11 + B*. ] + -2I \ [R, • R,. + R, ~ o. ·](a ·a ·s .. s .) , (4 •4)

".A. 1nc .. n-1nc 0 h 1 J 1 1J 01 oJ 1 J

where

cf. (A.1-20a), and
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IIa. Incoherent Reception 0!2 vs. H,~

(4.5)

where

(4. Sa)

from (A.2-5ab), andagain, the bias terms here are derived in Appendtx A-l.
The quantity ti is

4.2 Selected Suboptirnum Detection Algorithms: (Si"mple..:.and:Clipper-l
Correlation Detectors
We begin with the simple or un~istorted coherent (i.e. cross-) cor­

relation detectors, and the corresponding incoherent (or auto-) correlatton
detectors, which are (threshold) optimum structures when the noise is
gaussian [cf. Sec. A.1-3], and which may be optimum at all si'gnal levels
when special conditions at the receiver so warrant. [For a discussion of
specific examples, see Sec. 20.4-1, [12], Secs. 2.5,2.6, [20].J For in­
dependent noise samples we obtain [from Sec. (2.3), for ins~ance!1 or Sec.
A. 1-3):
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J. Simple-Correlators:

A. Coherent ReceRtion lli1 vs. Hall-

n
g(~c = B~oh + jll(aojsj)xj ;

~. Coherent Reception 0i2 VS. Hl~

g (21 ) (x) = B(21 )f + I [(a .5 .)(2) - /~ .s .)(l)Jx. ,
~ c coh j=l OJ J \oJ J J

where the biases are now [cf. A.4-22] specifically

(4.7)

(4.8)

Similarly, for incoherent reception we have

C. Incoherent ReceRtion [H1 vs. Hall-

D. Incoherent Reception lli2 vs. H1£

(4.9)

(21 ) (21 ) I 1 n ( (2) ( (1 )9 (x). = B. + -21 \ [ (a .a .s.s.) )- {a ·a .s.s.) ]x.x.,
~ 1nc 1nc . .L. 01 oJ 1 J 01 oJ 1 J 1 J

1J (4.11)

and from [A.4-55] the biases are found to be explicitly

1 n < 2 In. 2
B! = log II -"2 I (aOJ·sJ')-"4.I. laO;aOJ·s;sJ')
lnc j=l lJ \
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(4.12b)

For the energy detector, cf. (A.4-61a), (4.11), (4.12) are simply
modi fied to

(Energy) :

(4.12b)

with the bias

(4. 12c)

This shows, as expected, that for detection here, the signal energies must
be different, and the larger the difference, the better the di'scrimination
between the (1) and (2) states.

II. Clipper Correlators:
From Secs. A.4-3,4 we may write specifically the (suboptimum)

detection algorithms when IIsuperll-clippers are used in the correlation re­
ceivers, in contrast to the situation above (I), where there is no distortion.
We summari ze the res ull ts :

A. Coherent Reception lli1 vs. Hah

(4. 13)
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B. Coherent Reception 012 vs. Hl~

(4.14)

Similarly, for the incoherent cases we have

C. Incoherent Reception ill, vs. H~

n
+ L (e.6.)sgn x. sgn x. ,

· · 1 J 1 JlJ

and for binary signals:

D. Incoherent Reception ill2 vs. H,.1..

g(2l)(x). = log ll- I [(e~2)2)._<e~l)2)J[1_l2w (0).]
~ 1nc ill· 1E 1

In the above w'E(O)i is the (jth-) value of the noise pdf (A4-50b) when

xi = o.
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4.3 Selected Suboptimum Detection Algorithms: II-Mismatched LOBO's.
Here we indicate "mismatch ll by the following device: from (4.1), (4.2)

we wri te

(4. 17)

where DIE denotes D-class parameters, or parameter estimates, D=D ' , when
the pdf of x is chosen (correctly or not) to be E-class. Thus, we have
the following varieties of mismatched and matched condi"tions:

TABLE 4.1. VARIETY OF MISMATCHED AND MATCHED CONDITIONS.

Parameter ISelected Class RemarksValues (0)= I of Interference
I (E)=
I

1) . D 0 Exact (or .lItrue ll
) parameter values are used

in the same postulated class of inter-
ference.

(1 a). E E Same as 1). EfO, or E = D.)
2). 01 D Class Destimates, 01 (rD) used in same

postulated Class (D) of interference
3) • 0 E Class 0 (exact) parameter va1ues uS'ed in

chosen Class (E) interference.
4) . 01 E Class Destimates (D'~D) used in postu-

lated Class E interference
-

[Interchanging 0 and E clearly introduces no new forms of relationship. Later,
when perfonnance is to be evaluated, along the lines of Sec. 2.4, we shall
need to relate the category (E) to the: actual, or true, statistical situa­
tion, with respect to which the various averages of g*, g, etc. are to be
taken, cf. Sec. 6 and Appendix A-I.]

Accordingly, the various possible mismatched threshold detection al­
gorithms follow directly from (4.1)-(4.6) on replacing R.j the~in by R,OIEIJ'
etc., and, correspondingly, g* by the now suboptimum forms golE' subject to
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the combinations of Table 4.1. The bias terms in the LOBO's remain unchanged
here. The (generally) suboptimum correlation detectors are not affected by
the actual or assumed classes of parameter values or interference statistics.

Finally, in all cases, the complete detection algorithm requires that
the number(s) produced by the processing algorithm (g*,g, etc.), as given
specifically in Secs. 4.1,4.2 above, be compared against the appropriate
threshold log 7(, log K, log if(21), cf. (2.2), (2.3), (2. 7) respectively:
if the threshold is equalled or exceeded, we decide H1 (or H2): a signal
(or signal 2) is present: if the threshold is not exceeded, we choose the
alternative (i.e. null, HO)I, or signal 1 cases. We shall give explicit
examples in Section 7 ff.

SECTION 5. MATCHED FILTER STRUCTURES: INTERPRETATION OF THE ALGORITHMS
From the earlier analyses of [20J, Chapter 4, and the Appendix therein,

we can establish matched filter structures for the linear portions of the
threshold signal processing explicitly indicated in g,g* for both coherent
and incoherent reception cf. (4.1), (4.4), (4.7), (4.10) above. This is
important because such structures provide a guide to the actual realization
of the physical entities which are needed to carry out the indicated pro­
cessing, either directly as a computational program, or much more conveniently,
usually, by building the specialized mini-computer which represents the
operations involved, perhaps in chip form, etc. In the case of specific
examples, we shall confine our attention here (in the incoherent cases ex­
plicitly) to the important special cases when the desired input signal is
narrow-band, the usual situation in telecommunications practice. We con-
sider again the coherent and incoherent cases in detail for the frequently
encountered 1I 0n-off ll (i.e. H1 vs. Ho) detection situations. Corresponding
results for the two-signal (H2 vs. H1) are summarized in Sec. 5.

5. 1 Coherent Reception (H1 vs. Holi
Here we have the situation shown in Figs. 5.la,b, for both optimum and

suboptimum (i.e., cross-correlation detectors). First, in the optimum case,
the input sampled data {xj } is non-linearly processed, to yield Yj=tj , cf.
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(4.1). This new (voltage) sample, [where Yj=y(tj)=R.(x(tj )), etc., of course]
is then passed through a (linear) "matched filter ll

, where the weighting
function of the filter is

(5.1)

so that

(5.2)

(which in continuous form becomes, on (O-,T+), the linear functional

(5. 2a)

The matched filters are shown in Figs. 5.la,b. For the suboptimum situa­
tion of the cross-correlation detector of (4.7), we have

n n
- L (aoJosi)xJ. = L x(tJo)hM(T-tJ. ;T)at,

j=l \ j=l
(5.2)

and all operations here are linear, of course. The matched filter remains
the same; only the prefilter processing is different~ The filter, hM, is a
form of delay line filter, with suitable weighting (~hM) and a read-out at
t=T from wherever we choose to start the particular sampling for the
interval (to,to+T), from which we in turn then make the deci:sion indicated
by (2.2). We have called such filters IIBayes mached fi1te~s of the 1st
kind, Type 111

, cf. Sec. 4.2, [20J, which is, of course, recognized as a
special form of (cross-) correlation filter.
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5.2 Incoherent Reception (H, vs. H~
Here we have the same phenomenon: a highly non-linear operation on the

sampled data, to obtain 1,1 1
, cf. (4.4), and then to pass these into a

second-order nonlinear system, which in this instance can be expressed in
the manner of Fig. (5.2), either as a combination of time-varying (linear)
filter and zero-memory square-law device, or as another time-varying (linear)
filter, and multiplication operation. The point is that the (linear) matched
filter here can be represented in two reali'zable (i.e. operating only on
the past) forms. These are:

where

w(2)* _= ~ ( )
T ly·y ..a .a .s.s.

i 3 1 J 01 OJ 1 J

= 0, elsewhere,

n (n?o0r 00). .2
= L y. J.. YihM(tJ--ti , t J

e ).(ilt)
j=l J 1=1

n 2= I z(t-)
· 1 1J=

(5.4}

(5.5)

(5.5a)

The filter, hM(t.-t.,t.), is time-varying and realizable, and we call it'a
J 1 J ------

Bayes matched filter of the 2nd kind, type 1 (cf. Fig. 4.3, [20J, also).
In the narrow-band situation we are usually forced to deal with, an

equivalent, alternative form of matched filter {e.g. Fig. 5.2, where a
multiplier is employed, instead of a .zero-memory quadratic device). For
this we have

u/(2)* = n "
T 2 y-y.hM(t--t. ,t

J
. )~t

•. 1 J J 1
1J
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where explicitly

(5.7)

in which

(5.7a)

This filter is discussed in Sec. 4.3, [20], also, cf. Fig. 4.4, ibid. It
is realizable, tirre-varying, and as in the coherent cases, depends only on

A

the signal statistics; see Sec. 5.3 ff. (The same filter, hM, or hM, clearly
applies for the suboptimum, autocorrelator of (4.10), with Yi + xi' Yj + Xj'
a linear transformation, cf. (5.3).)

5.3 Signal Scenarios
Using Sec. 3.1 we can provide a more detailed structure for the above

matched filters, including the effects of fading (a) and propagation law
(y), cf. (3.2), (3.2a). Specifically, for narrow band signals without ampli­
tude modulation, we have from (3.2), (3.2a)

(5.8)

(5. 8a)

s. = 12 cos [w (t.-€)-~.-~]
J 0 J J 0

aGo
aoj = =aBo

A
Y~2iN

Bo = G/A
Y~iiN '

where the fading effects are governed by the statistics of ~, cf. (3.3),
for example.

Thus, for coherent reception the matched filter hM' (5.1), becomes
explicitly
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O-<t.<T+; =0, elsewhere~
J

(5.9)

since wl{e} = o{e-eo}. Moreover, with the assumed stationarity of all
random processes here, we have aoj = ao (= a<Bo»)' under the further not
unreasonable assumption thatao {and a, Bo} and e are all mutually in­
dependent. This result, (5.9), is clearly independent of the fading law,
whether or not it is rapid or slow, and whether or not the signal source
is movi ng. Thiis, in turn, isa di rect consequence of the coherent mode
of detection.

On the other hand, with incoherent reception all the above e~ffects

appear explicitlyinthe~tructure of the appropriate matched filter [e.g.
A

hM, hM, {5.4}, {5.l}], as we might expect, because of the second-order
statistics involved. Thus, for example, 11M, (5.l), becomes now from
(5.8)

= (aOiaOj)cos[wo{t;-tj}-<I>i+<I>j]' tj>ti )

=0 ~<tt '
(5. 10J

and we have, moreover, the various situatioAs:

(i). slow fading (one-sided):

fa .a .J = a2 = a2 IG2\/i )..2y\1 01 oJ 0 \' 01 N

(ii). rapid fading (one-sided):

2 ( 2) - 2y -2< . 2 - 2y= {a G /INA }o ••+(1-0 .. )a G) /INAo 1J lJ 0
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(iii). slow fading (two-sided):

(5.1lc)

These results can be extended to include doppler, namely, relative
motion between the desired signal source and the receiver: the normalized
signa1 (5. 8) i snow

SJe = 12 cos[{w +wd)(t.-€)-~.-~ ]o J J 0
(5.12)

so that [cf. III, Sec. 5.1 of [34]]

2 2
-(6wd) (ti-tj) /2

p •• == (s.s.) = e cos[w {ttl-t.)-~.+~.J, (5.14)S-lJ 1 J€'Wd'... 0 1 J 1 J

where 6wd =(wo/Co)6Vd, trtj = (i-j)6T, and ,(6)(d}2 ls·,the variance in rela­

tive velocity, and we have postulated a gaussian distribution of velocities;
Co is the speed of (wavefront) propagation of EM waves in the medium in
question. Applying the relations (5.11) with (5.13) gives, in this more
general case,

, t j > t i ,)

t j < tt .

(5.14)

= 0 ,

2 2
A ) - ( 6wd) (ti-tj ) /2
hM{t.-t.,t.)~t=/a.a · e cos[w (te-t.)-~.+<I>.]J 1 J VOl oJ 0 1 J 1 J

for this matched filter for incoherent reception. In this way, from the
lIanatomy" of the desired signal, from source to receiver, we can construct
the desired matched filter for detection. rWe remark that still more
sophisticated (received) signal forms can be constructed, if the channel
itself is dispersive, i.e. has time-delay and frequency s·pread effects as
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well as fading (above), cf. [35]-[38] and remarks at the end of Sec. 3.2
above.]

5.4 Extensions: Binary Signals (H2 vs. H1fl.
The matched filters above for the "on-off" cases (Hl vs. Ho) are

directly modified in the binary signal situation (H2 vs. Hl ). Comparing
(4.3), (4.5), (4.8), (4.11) with the respective "on-off ll cases, we see at
once that (5.1) and (5.7) are modified to

h~2l)Lltl = (a .s.\-(a .s.),;o < t. < T; = 0 elsewherecoh OJ j'2 OJ J - J-
(5. 15a)

From the results of Sec. 5.3 we have, in detail:

< > (1)- a · lcos[w l(t.-e )-~. -~])
OJ. 0 J 0 J 0

O<t.<T,- J-

for the coherent cases (where any doppler is compensated for). For the
incoherent cases (5.14) becomes

(5.16)

t. > t. ; = 0, t. < t. ,
J' , J
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where now the effects of doppler ('" Awd) show up as a common damping factor
(since the source/ofsigna1s 1,2 is the common source). For further If.anatomy"
of the filter structure, we can use (5.8), (5.8a), for aoi ' etc.

5.5 The Generic Character of the LOBO as Adaptive Processor:
At this pointitis important to point out a number of general properties

of the canonical LOBO's "described above. We observe that:

(1). For coherent and incoherent detection - with independent noise
samples - the matched filter depends only on signal statistics
and structure. Because the LOBO is a threshold system, only
first and second-moment statistics of the signal amplitude are
needed, Sec. (5.3). [Higher-order statistics are required,
of course, for doppler, which is phase variable, cf. (5.13).J

(2). The matched filter (by definition) is always linear, but mayor
may not be realizable, in the sense of operating only on the
"pastil of the received data [cf. Chapter 4, [20J);

(3). A variety of equivalent matched filters can be obtained, to
represent the data functional ~(l), ~(2), etc.;

(4). The general functional description of the LOBO is as follows:

(i). It first "matches" the receiver to the (non-'gaussian, or
gaussian) noise or interference, in that fa), it "adapts" ­
i.e., determines the Class of interference (A,B, or C)
and then estimates the Glassparameters,i§A' ~B' etc.-
to generate a nongaussian functional, e.g. 1,!1, of the
input data;

(ii). Next, the LOBO then IImatches ll the signal - as it is a
priori known or structured at the receiver - to this
new input (~,~I, etc.), to form an appropriate correla­
tion detector for the non-gaussian functional ~, etc.
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These IImatched ll filters are, by definition, always linear
and usually realizable in the causal sense [Sec. 5.2, 5.4J;

(iii). For incoherent detection there is an additional, third
operation, which follows the matching process, (if), above.
This is usually a nonlinear operation plus summation, where
the additional nonlinearity is either a memoryless quadra­
tic process or a. multiplication;

(iv). In the mixed cases, of combined coherent and incoherent
processing, (usually where there is some RF phase informa­
tion in narrow-band reception), the nonlinearities fol­
lowing steps (i), (ii), can be more complicated (cf. [lb],
Part II, IIC., for example).

Figure 5.3 illustrates the general formalism of LOBO signal detection,
for either coherent or incoherent reception, in the prototypical 1I 0n-off ll

case (H l vs. Ho). The extension to the binary signal cases (H2 vs. Hl ) is
immediate from Sec. 5.4.) Note the key elementsof Locally Optimum Bayes
Estimation (LOBO's), of the EM! parameters. (The LOBE theory is developed
in parallel concept to that of the LOBO, except that for the most part one
operates under the Hl : IIsignal-present ll condition.) The combi·ned operation
of LOBO and LOBE is clearly an adaptive process, which, of course, accounts
for its usually significant superiority over conventional systems, a priori
optimized against gauss noise.

Often, of course, in practice nonoptimum or finite-sample estimates
of the parameters of the interfering noise are usually used, as outlined in
Sec. 4.3 above. Moreover, before estimating the pertinent noise parameters,
it is necessary to establish which class of interference the detE~ctor is
operating against. One method of doing this is to estimate the pdf (or APD):
Class A noise is alwa),s distinctively evident by an (almost) zero magn~.tude

of the pdf (or a flat plateau in the APD) be'tween the small-'ampli·tude or
IIgaussianll region, and the large-amJ>litude region. In Class B interference
there is no zero amplitude region (or flat plateau). [See [6], [7].) An
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additional advantage of these (estimated) pdf's (etc.) is that they can
also be used to give (estimated) values of the Class (A, B) parameters in­
volved, in the manner of [7], for instance. However, if the elements of
the EMI scenario are known, the needed parameters can then be calculated,
rather than estimated, in the manner of Sec. 3.2 above.

6. PERFORMANCE OF OPTIMUM AND SUBOPTIMUM THRESHOLD DETECTORS: MINIMUM
DETECTABLE SIGNALS, PROCESSING GAINS, AND CONDITIONS OF APPLICABILITY

From the general results of Sec. 2.4 and the specific results of
Appendices Al-A4, we can obtain at once explicit canonical forms for the
various error and correct s'ignal detection probabilities by which perfor­
mance is most generally measured. This is discussed in Sec. 6.1, while
specific structures are reviewed in Sec. 6.2, along with the joint con­
cepts of minimum detectable signal and processing gain, in turn illustrated
by the specific relations developed in Appendices Al-A4. In Sections
6.3-6.5 we exami ne the improvement factors of the optimum detectors over the
suboptimum (correlation) detectors discussed in this paper, along with
the important conditions on the strength of the input signals which permit
us to employ these (analytical) performance measures, and thereby to ob­
tain meaningful numerical r,esults from them. It is shown (in Sec. 6.4),
for example, that the set of conditions, for both coherent and incoherent
recept'ion, must be simultaneously obeyed, if one is safely to use the
performance measures for either mode of reception. This couplin~J of the
coherent and incoherent modes of detecti on in the eva1uati on of ei ther mode
is the consequence of the fact that coherent detection can never be in­
ferior to incoherent detection under the otherwise same signal and noise
conditions of observation. In any case, we emphasize the fact that ~ur

results apply generally to all signal types~ broad' band'and'narrbw~band~' and
- ,.

can be immediately specialized to narrow band examples'as needed. cf. Sec. 7 ff.
We proceed:
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6.1 Canonical Performance Measures:
We now apply the specific results of Appendices Al-A4 to Eqs. (2.31)­

(2.33), and note that regardless of the mode of detection, optimum (but
not suboptimum) algorithms are asymptotically normally distributed, G(log 11

i cr~2/2, cr~2), where cr~2 is the variance of the detection algorithm in
question (and is the same under both hypotheses)! Here (+) refers to:
(-), Ho; (+), H1 in the lI on-off ll cases, or to Hl' H2, respectively in the
binary signal situations (s(l) vs. s(2)). The results are the canonical
forms for the correct signal detection probability (Neyman-Pearson Observer)
and the error-probability (Ideal Observer), used in ongoing telecommunica­
tion reception.

We have, accordingly, since for optimum (threshold) detectors

(6.1)

the relations [from (2.31),(2.32)J for the lIon-off ll cases, 'both optimum and
'suboptimumtt

(*)pr) ~ t {l+e[ ~ -e-1(l-2C1.~*))]}, (N.P. Observer), (6.2)

where CI.~*) is the false-alarm probability and s~*) is the false-detection
probabi 1i ty tt

t The suboptimum cases yield asymptotically normal foms, but with different
means ,and variance structures, cf f (6.3) ff. .

~t We use the condensed notation b(*) to denote either b* or b, (* =opt.;
,- otherwise sUboptimum). It ;s important to note that the appropriate bias terms

{i.e. those for which the algorithms becomes optimum for the correspondtng noise
[cf. Appendix A4-1,D] are assumed here. Otherwise, one must use (2.31J, (2.32)
directly. See footnote, next page
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with

2 l X
_t

2
-1e(x) = -e(-x) =-- e dt; e (y) = x in s(x) .

Ir; 0
(6. 3a)

A

For the suboptimum cases note the presence of DO' (cf. A.4-12,31), as well
as 0

0
, in the above (and following) expressions. In the optimum cases we have
~, of course, here:

Similarly, for the Ideal Observer (threshold't=l) ,in the 1I 0n-off ll cases,
where one considers- the; error probability p~*) = qc/*)+pa(*) as the measure
of performance, the result here is specifically, on combining (6.3) in

P(*).
e ·

(*) (*)
(*) ~ 1 0 0 log 11 0 0 log 11 ~Pe =2{1-pe[ 2'2 - A ]+qe[ - ---- + A ]},/~=l, [1.0.],

v£ 12 0* 212 12 0*o 0 (6.4)

for the general channel (ll=p/q~l, or J.1=,1). This reduces to the case of

the symmetrical channel (11=1) to the more familiar, simpler result for the
optimum cases: t

(}1=l):
(*)

p(*) t\, -21 {l-e[ L]} , ~= 1, [I.O.].
e - 212

(6.5)

When binary signaling is employed we can also use a Neyman-Pearson
Observer (N.P.O.) procedure, where now one of the error probabilities
a~*) + ai 2)(*) (the [conditional] probability of incorrectly stating that
signal S2 is present when actually signal Sl occurs) is preset and the other
(s(*) + s~l)(*) is minimized or otherwise evaluated according to (6.2)~
which becomes nowt

-1-----
Our suboptimum cases are here (and subsequently) restricted to those sttuattons
where the (nonvanishing) bias is chosen to be the appropriate bias for the class
of noise for which these (suboptimum) algorithms, cf. Sec. 4.2~ become optimum
cf. Appendix A4-l,D. Otherwise, we must employ (2.31),(2.32) d;:'rect1yas
performance measures.
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[N.P.O.], (6.5a)

where (6. 3,) becomes

(6.5c)

In the more common operational situations it is the symmetric channel (P21=1)
that is used, so that (6.5d) reduces directly to the more familiar, and simpler,

threshold result:

. (21)(*)

P(*) ;- l{l-e[ o~ ]} [1 0 i'1I 1]
·v 2 ' •• , '~=].l21 = •

e - '212
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This, like (6.2)-(6.5d) above, is a canonical form; [but note the restriction,
footnote, p. 55:]

Finally, as we have noted earlier and recall now, various conditions
on the "smallness" of the input signals ('\a~>o) must be satisfied if these
performance measures (6.2)-(6.5e) are to predfct receiver performance
accurately. These conditions will be discussed in Sec. 6.4 ff. In the
meantime, we note that these results above are canonical in several ways:
(i), their form is independent of the mode (coherent or incoherent) of
reception; (ii), they are independe,nt,formally, of. signal structure,
(i.e. narrow-band as well as broad-band signal are included), and '(iii),
last but by no means least, they are likewise invariant, formally, for the
explicit noise statistics.

6.2 Minimum Detectable Signals and ProcessinaGains:t
We can "anatomize" the quantities [a~*)2, a~2l)(*)2], identifying

the II minimum detectab'le si!lnal ll and IIprocessing gain ll through the following
definition of lI output signal-to-noise ratio".when the (total) noise is stationary:

where rr(*)(n) is the processing gain, and <a~)~7~ is the minimum input de­
tectable signal (-to-noise ratio), (j)~~:~in' or more loosely, the J!linimum
detectable signal. Here, f(*)(a~)~i~) is some (simple) power of (a~)~7~,
as we shall note below, cf. (6.9)~ (6.22b), whose structure depends on the
mode of observation. The quantity (S/N)~:f2iS an effective output signal­
to-noise (intensity) l~atio" after processing, which determines the perfor­
mance of the detector in these threshold regimes, according to the appro­
priate probability measures, (6.2), (6.4), (6.5) above. The min'imum detectable
input signal-to-noise ratio <a~>~~~ has its component signal and noise in­
tensities measured at the same point in the receiver, usually at the output
of the receiverls (linear) front-end stages, before subsequent nonlinear
processing (as exhibited in the algorithms g~*)(}}), etc.). The minimum
detectable signal is the least (normalized) input signal (intensity) which

See footnotes on pp. 54, and p. 55., particularly.
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can be sensed at the receiver, subject to the particular controls of the
decision probabilities and observation time (i.e. sample-size, n).

From the assumption of "practical optimality" discussed in Sec. 2.4
above, where it is sufficient that the Hl-variance, (cr~ )2, of the threshold

1n
a1gori thm be effecti vely equa1 to the Ho-vari ance, (cr~n) 2, e. g.•

cf. (2.29), we can also derive the useful concept of IIminimum detectable
signal", <a~);in' and associated processing gain, rr*. This is because the
condition .F(n,a&)/(cr~n)2 « 1, establishing a maximum value for threshold
signals, <a~), for which the algorithms are still LO and AO, cf. Appendix
A3, also establishe~ a non-vanishing input signal-to-noise ratio, <a~)*,

for all n,*and particularly, large n, such that 0 < (a~)~in ..1:(a~~in]'TIax«<l),
Where[(a~)min]max is determined by our selection of the quantitative
meaning of 11«11 in the above condition. This is physically consistent with
our notion of input signal, which is, of course, always nonvanishing.

Accordingly, instead of minimum detectable signal we can equally well
ask for the corresponding maximum detectable range, r~:~x' of the desired
signal. This is obtained in Sec. 3.1 from (3.1), (3.2) and the definition

<2)(*) _ ..( >/ I >. _ (S)2 1
ao min = IS (IN - N TR -(r--'(-:-*~) -.--=)2~y

d-max

a2(i2)/2) 1/2 a2(G2/2) (c /~ )2y
(S)2 0 = a 0 0
N TR = (IN) 2\ n2+<JG

(6.7)

which incorporates the various elements of the propagation law, interference
scenario (Sec. 3.2), fading, beam-pattern structure of desired source and
receiver, etc. Thus, (S/N)~R' in contrast to (S/N)~ut in (6.6), i~ a signal­
to-noise intensity ratio which. is a measure of the desired signal level
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at the transmitter output, in terms of the noise or interference level at
the output of the (linear) front-end stages of the receiver. From (6.6),
(6.7) we see that rJ:~x may be obtained from the relation

so that once la02)(~), or cr(*) and rr(*) are specified, along with the function
'\ mln 0

f, maximum detectable range can be calculated, as well. This has been done
in a recent study by Middleton [34], and will not be pursued further in the
present investigation.

In order to determine rr(*) and a~ ~~~ in (6.6) we need the specific
results of Appendices 2, 4. We begin with

I. Optimum Coherent Threshold Detection:
From (A.2-14), in (6.6) we have (for henceforth stationary noise

processes) :t

*2 - 2 * (. 2\* - 2~( L(2)) (1 ~ < )2) E (A 2 14) .(Jo-coh- TIcoh aotmin-coh - n 2n ~ aois i ,q. .. - ..
1 (6.9)

•..

with

(6.10)

(6. 1Oa)

------------------------------
t See footnote, p. 102.
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= (rr* )-1{c(*)2 or C(*)2},
·coh N. P. I .0.

and f*( ) in (6.6) is clearly ( )1, i.e., the first power of the indicated
argument. Noting that here the sampling process may be adjusted for narrow­
band signals so that (si) = smax = 12 and with no real restriction as to
generality in regarding ~ and ~ to be statistically independent, so that

(aos i) = ao 12, we see that (a~)~in-coh = a~: regardless of the fading
law, only the mean amplitude is relevant. [This is not the case for the
maximum range, however, where both ao and a~ (rva2) are required, cf. (6.7).J
We also obtain, on solving (6.2), or (6.5), for o~, and then using (6.9),
the following useful expression for the minimum detectable signal:

(rr~Oh)-l{ 0-: ~2PD-l~+0-l (l-2aF)}2: [N.P .o:]~ Po=Pol'.

20 (1-2P) .[I.O.].p-l.e .
(6·~1)

(6. 11~}

with

(6. 1.1 b

This relation shows how the minimum detectable signal depends on sample size
and the background noise (via II*) and on the II controls" of the decision process
· d t t· * * p*1n eec lon, e.g. PD' aF, e.

For binary signals we use (A.2-50a) in (6.6), to get in these sta­
tionary cases

binary: (21)* 2 _ (21)*( 2)(21)*
(oo-coh) - 2rrcoh ao min-coh
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so that

•, .

(6. 13)

We have also, cf. (S.lla), the equivalent expression

(6. 13a)

With equal amplitudes (a~2) = a~l?, a usual condition of operation,
the effective minimum detectable signal becomes now

(6.14)

By inspection, it as once evident that choosing antipodal signals,
e.g. s~l) = -si2), and selecting the t i such that si = smax =~ (at least
for narrow-band signals) maximizes the minimum detectable signal here [as
well as a~21)*], and hence further minimizes P~. Thus, from (6.14) we
have

antipoda 1: 2 (21)* _ -2
(ao)min-coh - 4ao · (6. 15a)

Similarly, for orthogonal signals, e.g.

S1~ 2) = 12 cos w t. ; s ~ 1) = 12 sin w t. ,o 1 1 0 1

we see that the sum in (6.14) becomes
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= 2a~ , (orthogonal), (6.15b)

which is thus maximized by choosing the sampling times t i =k{4i-l)TI/wo' where
k/wo = 1/2nB = T/2n, in which B is the bandwidth of the signals, which are
"on" during (to,to+T) intervals. Of course, for 1I 0n-off" signalling, s,P)::'O

/ 2) (21 )* ( 2\* - 2 ·here and ,ao min-coh + ao/min-coh = ao' cf. (6.l0) et seq. Accordlngly,
we have obtained quite readily the well-known results that for the same total
signal intensity, binary antipodal signals are superior to binary orthogonal
signals, and are equivalent to "on-off" operation (this last, since

aoIbi nary +,. 2aolon-off under the same power condi ti ons) · By "superi or" here
is meant smaller error probabilities (or larger PD's, cf. (6.2)), since
a~2l)* is increased in the antipodal cases vis-a-vis the orthogonal signals.

II. Suboptimum Coherent Threshold Detection (Cross-Correlators)
From (A.4-52a) we obtain in the case of the suboptimum cross-correlators

for lIon-off li operation in the usual stationary regimes:

2
ao-coh (6.16)

:. IIcoh = n (6. 17)

Comparing (6.17) and (6.10) we see at once that here

~* _ L{2r '(_<1)- d-coh- , where L(2) = Eq. (6.l0a).
(6.18)

The quantity ~d* h is the degradation factor for these cross-correlation-co
detectors (4.7f vis-a-vis the optimum (threshold) detector (4.1), for the
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same input signals, observation periods (n), and coherent (mode ofJ observa­
tion. Thus, ~a~coh is, not unexpectedly, determined by the statistical
character of the noise alone, through L(2}, (6.10a). For gauss noise

L(2) = 1, cf. A.1-3, but for the usually encountered non-gaussian noise,
L(2) »1. [See Sec. 8 for various values of L(2), etc. ]

With binary signals we use (A.4-20) to write similarly

n <s~2}):.<s~l}>
:. n{21} = . <2)(21) \ = -2 \ (1 1 )2 (6.20)coh n, ao min-coh ao L

i=l I2n

(with a~2) = a~l}, usually}, and, again, the degradation factor becomes

n{21}/n(21}* = ~{21}* = 1/L(2}
coh coh d-coh ' (6.21)

unchanged from the lIon-off ll cases above. Similarly, expressions like
(6.11), (6.13) for the minimum detectable signal in these suboptimum cases
are

<2) -1 2 2
a = TIcoh{CN.P. or CI .O!o min-coh

(6.21a)

where eN•p. = e- 1(2PD-1}+e- 1{1-2C1.F}, etc. are the suboptimum versions of

the controls for the N.P. and 1.0. cases, e.g. PO -+ PO' P: -+ Pe , Sec. 6.1.

III. Optimum Incoherent Threshold Detection:
We proceed as above for the coherent cases. Here we apply (A.2-40)

to obtain for lIon-off ll signalling (in the stationary regime):
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(6.22a)

= 2rr* ( 2)* )2- inc ao min-inc '

so that

(s~ = 1, by norma1i zati on).

Accordingly, applying (6.23) to (6.22a,b) gives directly the processing
gain for these incoherent, lIon-off ll threshold signal detectors:

where

(6.22b)

(6.23)

'(6.24 }

; m.. := / a .a .) / a2 ; p.. := (s. S .) •
1J ~ 01 oJ 0 ' 1J . 1 J

(6.25)

Here L(2) has been specified in (6. lOa), while L(4), cf. (A.1-19b), is given by

(6.26)
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and is also expressed numerically in Sec. 7. We now observe that the proces­
sing gain (6.24) depends on signal structure, as well as on sample size (n)
and noise statistics, unlike the .coherent cases, cf. (6;16).

The minimum detectable signal (6.23) may also be written, by (6.22b)
in (6.2) or (6.5), as

(
2)* _1/2{e-1{2Po-1)+.. e-1(l-2CXF).)· : N.P.O.
a.. =: (II~ ) p*-P* P
o mln-lnc lnc 2e- 1{1-2P*) : 1.0. ' D= D/'

e (6.27)

- (* )-1/2{C* C*}
- II inc N.P. or 1.0. '

cf. (6.11): note the different exponents on n* and {e-1.•. }, etc.

(6.27a)

(6.28)

For binary signals we next use (A.2-56) with (A.2-52a), to write (in
these stationary regin~s)

bi nary:

-{{L (4)-2L (2)2)0 ..+2L (.2)2}
lJ ,

so that, parallelling (6.22a)-(6.25) we get in these binary cases the following
expresssions for the minimum detectable signal and associated processing
gain [(a~2)2)r <a~1)2>]:

(a2){?1)~ :: {.l ~ (/{a (2)s ~2) )2)_ ({a (l)s ~l) )2»2}1/2'
o mln-lnc on t \' 0 1 0 1

= (a~2»_<a~1 )2), (r 0),
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since «si2),(1))2) = 1 by normalization, and

(4) (2)2
n{2l)* = nL {l + 2L [Q(2l)_1]}

lnc 8 L(4) n '

where specifically

(6.30)

(6.31a)

(6.32)

where we have used the definition of mij in (6.25) above.

In the important special cases where the signal amplitudes are equal,
a~2) = a~l) = ao ' e. g. (a~2)2>= (a~l )2)=(a~) UO), (6.28) simplifies to

a(l) = a(2),
~~

2"2 (2)2
(cr(2~)*)2 = 2n{2l)*<a2)~21)* = __ao__L --

O-lnc lnc 0 lnc 2

so that

(6.33)
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which defines ij~21), e.g.

(6.33a)

In all instances we have the binary analogue of (6.27), viz:

(6.34)

IV. Suboptimum Incoherent Threshold Detection (Auto-correlators}:
From (A.4-58b) we now obtain for lIon-offll signalling and stationary

r~gimes when the (generally suboptimum)auto-correlators (A.4-56) are used:

4-[(x -3)0 ..+2] ,
lJ

cf. (6.22), so that

(
2 _ 1 (2)2 1 2\2 1/2 _ 2

ao)min-inc = {n ~ ao ~ \si } } - ao ' cf. (6.23) ,
1

and
2 2 2

n2 (.I. mi jP i j ) nQ 2
• II I = lJ n n., inc correl =------

2 L m?p?[(x4-3)o ..+2] 2[(x4_l)+2(Qn~1)]
ij lJ lJ lJ

(6.35)

(6.36a)

(6.36b)

for the minimum detectable signal and processing gain for these auto-correlation
detectors. Analogous to (6.27) we have
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<
2\ _ _1/2{e-l(2Po-1J+e-l(l-2aF)} :N.P. _ -1/2

a L· · - II. 1 - II. {C 0 rCI .o.} ,o mln-lnc lnc 2e- (1-2P
e

) :l.Jh. lnc N.P.

(6.37)

where again CN.P.' etc. is the suboptimum version of the control CN.P.' etc.,
(6.27).

Comparing (6.36b) with (6.24) gives us the degradation factor for these
(simple) correlators in nongaussian noise

lIon-off ll
:

, (6.38)

where L(2), L(4) are given by (6.10a), (6.26) respectively. As expected, when
the noise is gaussian, L(2) = 1, L(4) = 2, and,:, \Pd- inc = 1: the (simpler)
autocorrelator is itself threshold optimum now. Unlike the coherent
cases, however, cf. (6.18), \Pd. depends on signal structure and sample
size (n), as well as on the noi~~Cstatistics, L(2), L(4).

With binary signals we use (A.4-72b) in these (stationary) suboptimum
incoherent situations, to write similarly, cf. (6.35):

_ (21) <2)(21) 2 ( )= 2ITinc ( ao min-inc) , 6.39b

and paralleling (6.29)-{6.31) we have
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<2)(21) _ <(2)2) I (1 )2) .
ao min-inc - ao -,ao ;0,

(21)2
(21) _ nQn

ninc - --4-··---(-?l-)--
2[(x -1)+2(Qn~ -l)J

(6.40)

where Q~21), a(2) ; a(l), is given by (6.31). However, for the important
situations whe~e a~2)O= a~l) = ao' the above simplify to

n(Q(21)_1)2
II ~21) = n__--

1 nc - ()
2[x4-1+2(Q 21 -l)Jn

(6.41)

(21). A(21) <2\(21) .and Qn ' (6.31), 1S now replaced by Qn ' (6.33a); aoJmin-inc 1S also
given by (6.34),.where C*N P + CN P , etc., cf. (6.21a) et seq.

.. .., (21)
Finally, the degradation factor $d-inc becomes from (6.30) and (6.40)

[a~2) ; a~l)J, and (6.33) and (6.41), [a~2) = a~l)J:

which reduce for gaussian noise (x4=3), to unity, as expected. Equations
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(6.42a,b) are,to be contrasted with <p~21)* = 1/L(2), (6.21). Like the lI on- off ll

cases, the degradatlon factor also depends on the noise statistics, on
sample size, and signal structure. Finally, note that (6.34) applies in this
suboptimum situation:

(6.37)

It is convenient to sumarize the various results of this section 6.2 in
the following two Tables: The Notes to Table 6.la apply equally to Table
6. 1b, 6. 2ff. Note that the results analogous to those shown in the·
text and summarized in Tables 6.la,b:, and- for the clipper correlators
Sec. A.4-3,are provided in Table 6.2.
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TABLE 6.1a SUMMARY OF THRESHOLD DETECTION PARAMETERS: IION-OFF II INPUT SIGNALS*

Coherent Threshold Detection

~nL(2)a2
o

[Eq, (6 e 9); Eq _I [Eq s.. (6. 16) ,
(A.2-14).] (A.4-8).]

liOn-off"
Input
Signals

(J {*)2
o

Optimum

t(2)f/a .5.)2. \1 01 1
1

Cross-correlator

n 2_2
~ (ao;5;) ~nao
1

Incoherent'Threshold Detection

Optimum I Auto-correlator

(~(a.a .5.S .)2)2
1 n . 2 (2)2;j 01 OJ1J
if J(ao;aoj5;Sj) {2L 2 4"

1J 2 I fa ·a "S'SJ"> ex -3)0 'j+2)
(4) (2) . ~,\ 01 oJ 1 1

+[L' -2L . ]o .. } lJ
IJ

[Eqs.(6.22a),(A.2-40)] I[Eqs.(6.35),(A.4-16)]

1

=(same) ; Eq. (6.,17) V1 Ila2 .5?\2}2~a2
. n ;\' 01 1/ 0

..............
<

2\ (*) 1 1 n 2
ao" mi n- () 2n ~<aoi 5 i)

1

~ a: 2o
mi nimum 1_ (* )-1 (c* 1-'fT"1 (detectable - IIcoh N.P.' -"coh CN•P• or
si gnal

= (same); Eq. (6.36)

1

=(ntnc)- I{c~.p.or Cl.o.) I = n~~~2{CN.P. or Cr.o.)

or c* )2
I. O.

Eqs. (6. 10) ,
(6.11)

* See "Notes", p. 73.

2
CI •O.)

Eqs.(6.17),
(6.21a)

Eqs. (6.23),(6.27) Eq. (6.37)



.........
N

TABLE 6.1a. (Cont1d.)

IIOn-offll Coherent Threshold Detection Incoherent Threshold Detection
Input
Signals Optimum Cross-correlator Optimum Auto-correl ator

2 nQ2nL(4) 2L(2)
n(*) nL(2); nn 8 IIi (4) (Qn-l)};

( ) L 2[(x4-1)+2(Qn-l )]
Eq. (6. 10) Eq. (6. 17) . Eq. (6.24)

Eq. (6.36)n
-1 I 2 2Processing Q -1=- I m..p •• (>1)

gain n n.. lJ lJ -
lJ

EQ. (6. 25) .

/ (2)2
1/L(2); Eq.(6.l8) 1 4Q2 1 (4) (1+ 2L Q-1»

~~- ( ) 1 n' L(4) n

Degradation
-I(1f-1)+2(Qn-1J], Eq. (6.38).Factor

B( )=, (*)2 Eq. (A.4-55) (*)2 Eq.(A.4-55)inc-' -oo-coh /2 -oo-inc/2

Bias Terms



* NOTES: (i ) .

TABLE 6.la (Cont'd.)

c~~~. = e-l(2P~*)-1)+e-l(1-2a~*)) ; C(;~o. = 2e-l(l-2P~*)) ; Eq. (6.11)

with p~*) =p~*)/p ;

'-J
W

(ii). Stationary noise; independent noise samples (n); symmetrical pdf1s of
the instantaneous noise amplitudes (x);

(iii). Data acquisition per~od (~n) is large, so that the various detection al­
gorithms, g~ ~ , are asymptotically normal under Ho' Hl .

(iv). The LOBO's here (i.e. "optimum algorithms ll
) are AODA's as well. The

generally suboptimum correlation detectors are optimum only fn gauss

noise. [See Appendix A.3.]

(v). For signals with incoherent structure, Qn i: 1. For signals with completely
coherent structure, Qn IV O(n); in particular, for sinusoidal wave trains,
Qn ~ n/2, cf. (A.2-42e).



TABLE 6.1b. SUMMARY OF THRESHOLD DETECTION PARAMETERS:

I. Binary Input Signals: cr~:l)~*)2

Coherent Threshold Detection Incoherent Threshold Detection

.........
~

Optimum

L(2)I{/a(?}s~21­
· \' 01 1·)
1

-/a(~Hl) }2\4: 01 1

Cross-correlator

I{fa (?) s ~2» _(a(l)~ P)}2
i \01 1 01 1

Optimum

1 I ({(a(~.)a(~}s{2)s(2)
4 ij . o~ OJ 1 j

-('aq)aq)sP}sP}).}2)
01 oJ 1 J

2.1 (L (4)- 2L (2) ) <5 • •
lJ

Auto-correlator

a(2L a(l).
o r 0 ·

«a~2J)_ <a~l )2) )2nQ~21 )2

(~~11+2(Q~21}-1)

Eq. (6.40)

21+2L(2}
----------------------------~--------------------------~----~------- -------------~----------------------------

a (2) =a (l ) :
0: 0

L(2)ii2 L{<s~2»_(sP\}2
o · 1 1 /1

[Eq. (6.12)]

a: 2 \{<s~2}\_I$Ph}201 1 /\'/

[Eqs. (6.19),(6.20)J

a(2)=a(1). la(2)=a. (1).
00· 00'

8,2
2
L(2)2 n • I same as above; Q(2l)~'(2l)

o L('~?'(p~?s) n
2 ij 1 J 1 J

/(ls) 2-
-Pij ) [Eqs. (6.28), ~ [Eq. (6.41)]

(6.33)J.



TABLE 6.lb. SUMMARY OF THRESHOLD DETECTION PARAMETERS:

II B· ItS·' 1 <2)(21)(*).. lnary npu 19na s: ao mtn-( )

Coherent Threshold Detection Incoherent Threshold Detection
~

Optimum I Cross-Correlator Optimum Auto-carrel ator

same; Eq. (6.39a).

[Eq. (6.13)].

.L
2

II/a(?)s~2h_/a(~)sP»}2 I + same, cf. Eq. (6.19)n . '\ 01 1 / '\ 01 1
1

t1ll('Ca (?}s ~2}}2\
.. n i 01,. /

1

-«a~l }sf1}) 2) }?~2

2 2
=(a~2) >_(a~l) >;

(a~2}ra~1}) ,IEq. (6. ~t]

:i;)~:i;):-~-~~~;<:i;;------r~-::~~-~~~-:~~-~~~;~;~---r-~-:i-~-~;f;)-~-:~;~~-----~-~-::~~-:~~-~~~~;~-----------
1

_<s~l» }2 I I Eq. (6.33)

........
01

Eq. (6. 14) .

=( (21)* -1 * *2 I (2l)-1(C or C }2 1=(II(2l}*)-1/2 C * *)1_ (21) -1/2.
\IIcoh ) (CN.p.or CloD.) = IIcoh N.P. 1.0. t inc CN.p~rCI.O. -(JIinc ) (c'N.p.or CLO.)

[Eq. (6. 13a) . ] [Eq. (6. 13a) ] [Eq. (6.34)] [Eq. (6.37)J



TABLE 6.lb. SUMMARY OF THRESHOLD DETECTION PARAMETERS
III. Binary Input Signals: TI~21)(*): Processing Gain

Coherent Threshold Detection Incoherent Threshold Detection

'-J
m

Optimum

nL(2)

[Eq. (6. 10) ]

Cross-correlator

n

[Eq. (6.20)]

Optimum

a(1)=a(2).
00·

n2L(2)2 n l m~j (2s)
4 L2 (p · ·• • ·n.· lJlJ

_pPS»2= nL~2}2(Q(21tl)
lJ n

[Eq. (6.33), (6.33a)]

a(l }ra (2) :
o 0

2
nL(4). {1+2L (2) (Q(21L1D

8 L4 . n

[Eq• (6 . 30), see

Eq.(6.31) for Q(21}]
n

Auto-corre1ator

nQ~21)2/2[ (x~-l ).

+2(Q(2l)_l)]
n

a~l)ra~l}: [Eq. (6.40)]

[Eq.(6.41)]: a~1)=a~2):

- n(Q~12)_l)2

2I(~-11+2(Q(21 L1}]n

, _._ .. _. ,



.......

.......

TABLE 6.lb. SUMMARY OF THRESHOLD DETECTION PARAMETERS:

IV. Binary Input Signals: ~~2})~ t Degradation Factor

Coherent Threshold Detection Incoherent Threshold Detection

1
(2)

1 Eq.(6.42a): a~l)fa~2)l/L ,Eq. (6.2)

Eq. (6.42b): a~1)=a~2)

V. Binary Input Signals: B~ ')(*): Bias

_ L(
2

) I {(a (?) s ~ 2) 2 _1 I{(a(?)s~2»2 - 1 I {<a(?)a(2,)s~2)s{2»2 _1 I{«a(?)s~2»2)
2 i 01 1 2 i 01 1 8 .. 01 oJ 1 J 2 i 01 1, 1J

-(a (~)sP»2} - (a (~)s ~1»2}. -(a q)a (1 )sP)sP»2} -<(a (! )s P))2) }~ .~
01 1 4 ..

01 1 01 1 ' 01 oj 1 J lJ·

• {(L (4t 2L(2.'f) <5 •• +2L (2 )2} I • {(a (?) a(2,) s ~.2) s ~2»2
1J 01 OJ 1 J

...\a~Va~~)s~l )s~l »2}

[Eq• (4. 3a ) ] [Eq. (4.9)] [Eqs.t (4. 5a) ,( A. 2--52b) ] IEq. (4.12b)J



TABLE 6.2 THRESHOLD DETECTION PARAMETERS: (SUBOPTIMUM)-CLIPPER-CORRELATORS

I. Detector Structure: g(x)
~

Coherent Threshold Detection Incoherent Threshold Detection

"On-Off" Signals

A. n
log ~+BI h+12 2 (e.)co .,,

-sgn x·,
[8;=ao;si]

Binary Signals

A n
log ~+B I h+12 Ico ·,
•(eF~ - (e~l» )sgn Xi

"On-Offll Signals

log ll+B~ + 2 (e.e .)sgn x,., nc .. , J
lJ

-5gn x·
J

Binary Signals

log 1l+B~21}1+2t.p~~l)sqnx.
, nc ;"j JJ 1

-5gn x·
(21) _J

t.Pij - Eq. i2.13a)

'-J
00

I I. Detector Vari ances: ~~

n
2I {<e~2»2_<eP »2} n 2

II«(e.e }(2»-«(e.,e·l(l»J22 ~ (e;)2 2(e.e.) (2-0 .. )., , ij , J lJ tj 1. j 1: J, ,

Eq. (A.4-68) Eq. (A.4-73) Eq. (A.4-68) • (2-0;-'1);

""

Eq. CA.4-731
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TABLE 6.2 THRESHOLD DETECTION PARAMETERS: (SUBOPTIMUM) CLIPPER-CORRELATORS

I I I. r Detector ,yari ances: ,?~

Coherent Threshold Detection Incoherent Threshold Detection
...~~

II

"On-Offll Signals Binary Signals IIOn-Off ll Signals Binary Signals

2 n 2 4w (o)2I(e~2»-(ep,)2 -- . 2 2
-+ same wi th4w1E(0) ~ (e; ) (I(e.e.) {9NlE (O) (l-o'j)1E • 1 . 1 •• 1 J 1

1 1 lJ

I -l2w, E(0) o.. })?
( )2 ({?)-ei ej +(e,e j) £. ')

- lJ
. (1) 2

4 ~ (e.e.)2(2_ 0•• ) - «(6; ej) ) )
•. l·J 1 J1J .

Eq. (A.4-69a) Eq . (A. 4-74a ) Eq. (A.4-69b) Eq • (/\ ~ 4-74b1

IV. Minimum Detectable Signal: a~ min-( )
.. r

n 2 2 1, -2 r 1 n -- (2) ,
~ {l H(e~2) )-(e(1) )]2}2ao 2n ?[(ao; s; ) ao

1 n i 1. 1

-(a .s.)(1»)2 <~ ~01 1

-1 ( )2 ~(2l)-1 2 ~1/2 (rr~2l)}-1/2(C or C )~coh CN.p.orCI.O. Hcoh «:N.P .or C1. 0'> IT. (CN ~ o~ CI 0 )1nc ... . . \. 1nc ~ N. P• ~, -I •O.
l
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TABLE 6.2 THRESHOLD DETECTION PARAMETERS: (SUBOPTIMUM) CLIPPER CORRELATORS

V () P .. G-.... II, \ .. rocesslng aln
\ /

Coherent Threshold Detection Incoherent Threshold Detection

1I0n-off ll Signals Binary Signals "On-off ll Signals Binary Signals

n 2 2 2
2 2 (Im..p ••{Bw1E(0) 0-0 .. ) ,. (ao1rao2):4w1E (0) n 4w1E (0) n · - lJ lJ lJlJ

-12 w, E(0)0 j j } )
2 same:

n 2 2 (2) (J )
8 I m..p. · (2-0 ... ) p •• -+ p .. -p ...
1j lJ lJ lJ lJ lJ lJ

nI-12 W;I E(0)+8w1E(0)2 n[- l2Wh (0 )+Bw1E(0)2),
. . . (I }]2 • (QC21 >-1 )]2f Qn~1 . n=

8(2Q(2l)_l)8{ 2Qn-l} n

ao1 =ao2 :

~n [W1E(0)4(Q~21)-1]

Q
n

+ Q~21)

----._..._-
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TABLE 6.2 THRESHOLD DETECTION PARAMETERS: (SUBOPTIMUM) CLIPPER CORRELATORS

VI. Detector Structure: q;~_ ( ) (=IT ( /ITt )), Degradation Factor

Coherent Threshold Detection Incoherent Threshold Detection

1I0n-Offll Signals Binary Signals IIOn-Off ll Signals Binary Signals

2 2 [-I:2W1E(O)+awlE(O)2(Qn-l)]2;I4w1E (O) 4w1E (O)
(ao1=ao2=ao) :L(2) L{2) '(2-J2

E E L(4)(1+2L (4)[Qn-1JI1+2(Qn-l)] (2) (1 )
p •• + -p •• -p ...

L ' 1J 1J lJ

[=1: F+E; (A.4-36)-(A.4-46)
Q ~ Q(21)
n n •

in (A. 4- 31 ). F+E: = 1

~

VII. Detector Structure: Bias: Be 1

n 2
.-l2wlE(o)a~ n 2)-212"w1(0) La. - (l-l2wlE(O))~ (a i same:

· 01
1 1

=-212 a~wlE(o)n -I « s ~ 2) - (sp )J2 1 n 2 ·2 (a~)-+ 6P (.~l)- "4 l(a i aj } {Bw1ElO)· 1 ,. 1
1 lJ 11

Eq. (A.4-66a) - (1-0 .. )-0 .. 12wh(O)} (a.a) = 6P~~l), etc., 1J . lJ . '".- ~ 1 J' 1J

Eq. (A. 4- 66b ) .
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TABLE 6.2 THRESHOLD DETECTION PARAMETERS: (SUBOPTIMUM) CLIPPER CORRELATORS

(Contld.)

NOTES~ 1). Stationary noise regimes

2). When F -+ E: the detectors are IImatched ll to the noise; i.e. are now lthreshold)
optimum for the Class E pdf wlE{x)o,wemust use the optimum (LOBO) results of
Tables (6.1a,b).

n
l

I

3). Q -1 == 1 I m~.p~.{>O)· Q(2l) = 1 t m~.{p~~)_p~~»2 • (a(2)=a{l)=a )
n n. · 1J 1J -' n-l n.. 1J . 1J 1J ' 0 0 o·lJ lJ



v. Genera1 Rema rks :
From the results above we can make the following general observations:

(i ) . Processing gain for coherent threshold reception (rr(*h)' LOBOco
or cross-correlator) is proportional to sample size (or obser-
vation time), i.e.,

(i i ) .

(*)rrcoh ~ n ; [Eqs. (6.10), (6.13), (6.17),(6.20)].

Processing gain for incoherent threshold reception
LOBD or auto-correlator), on the other hand, is rv,

1 i:. II ..s. 2, e.g. :

(6.43a)

rr~~~ 'lJ nll
, 1 2. II < 2: [Eqs. (6.24), (6.25); (6.30),

(6. 31 ); (6 . 33 ), (6. 36b ), C6. 41 )]

If the received signal is sUfficiently decorrelated that
(6. 43b)

cf. (6.25) for example, is O(no), i.e. at most there are n s.ignificantly con­
tributing terms in the double sum, then ]1=1 in (6.43b). On tne otfierha,nd, for
correlated signals (observed RF- incoherently here), Qn ts O(n}, and 1l=2.

Examples of the former type are independently (inconerentl.y observed and}
generated pulsed carriers, such as those modelled ;-n Sees. 20.3-(2J, 20.4-3'­
[12], where each received signal element s1 is independent Df the ot~rs, so
thatPij = cSij in effect, and l, Qn = 1. For the latter type, we have coherent
pulse trains (observed incoherently), where Pij=cOS woCti-tjJ, ct. {5.13} (no
doppler), !or instance. Then Qn-l, (6.25), becomes I[l+OO/n}];' %, (nl>l>lI,
so that n{n~ ~ n2• Intermediate values of 11, (l<p<2), ar1se wfien the recetyed
signals are partially' decorrelated, as happens, for example? when tn-ere, \'S
carrier spreading (in frequen~y and therefore in time) because of r~ndomly

moving scatterers in the path of propagati'on, which generates a consequent
doppler II smear" of the original signal waveform; Eq. (5.131, A.tild~O, shows a,

typical signal correlation function i'n the usual case of narrow-band s.tgnals
subject to carrier doppler spread.
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(iii). The minimum detectable signal for coherent threshold
detection, similarly, is -_J

. 2\(*) -1(aolcoh ~ n , (cf. Tables 6.1a,b).

(iv). The minimum detectable signal for incoherent threshold de­
tection is, alternatively,

<a2)~*) ~ n-~/2 (1 _< ~ _< 2), (cf. Tables 6.1a,b),
o lnc '

again depending on whether the received signal has an in­
coherent (~=l) to coherent structure (p=2), as determined,
quantitatively by Qn' cf. (6.25), (6.31), (6.36b), (6.41).
Thus, notethat it is possible for the minimum detectable
signal in incoherent reception to behave like that for
coherent reception, viz. <a~) ~ n-1~ when ~=2, i.e., when
completely correlated signals can be used (and observed).

(v). Maximum detectable signal range, r~:~x, whether for LOBD
reception or the suboptimum correlation receivers, follows
from (6.8) and (6.43c,d). We see at once that

(6.43c)

(6.43d)

r(*) I ~ n1/ 2y ; r(*) I. ~ n~/4y , 1<~<2.d-max h d-max · - -co lnc
(6.43e)

Thus, the larger the power law (y), the larger must sample
size (n) be to achieve a given maximum detectable range.
Again, the coherent structure of the signal, if available
and used, importantly aids the detection process and extends
:T*)
r d-max.

(vi). In the important limiting situation of gaussian noise our
general results do indeed reduce to the earlier, "classical ll

results (cited in [12J). We have
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ell. On-off Coherent Detection

O'~-COh = 2na~, Eqs. (6.16), (6.17); (L(2)=1);

-2Sec. 20.3-1;[12] : ~- = L s. = 2n ;
s · 11

-2 _ -2 _ (*)2 ) ( )
,f. aoti - 2nao - O'o-coh' in Eqs.{20.79 , 20.120

of [12]

4-" Eqs~ (6.3)" are identical with Eq. (20.79), (20.120)

of [12] when the noise is gaussian.

(2). On-off Incoherent Detection:

-2
O'~-;nc = .~ na~ (Qn=l: incoherent signal structure)

L(4)=2; L(2)=1; from Eqs. (6.32)-{6.24);{6.35)

O'o-inc =~~ a~ for instantaneous amplitudes; in
Eqs. (6.3).

When envelope detection with independent envelope signal samples
is used, we have

-2 -
I 2 I = 2. • = In.. 2ao- inc envelope n ao ".ao- inc n ao

and hence {20.131} of [12] agrees with (6.3). [Comp~'re

the envelope form of the threshold a1gori_~~m.,.(29,.1.~~)., .[12J ,
with (4.12) for-amplitude cases.] Withamp1itude'detection
a . = In/2 a

0
2 in (6.3) gives precisely (20.:91J, 112J,

0-1 nc . "
as required, where (iPG>= n.

[(3). Equations (20.93, p. 876,[12J, are incorrect in their fac­
tors 2, following the incorrect relation' between 9G and ~oG

in the footnote on p. 875, [12]. The correct relation is
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~G=~oG/2, cf. (20.29a), [12], not ~G = 2~oG. Thus,
wherever ~oG appears in (20.93), divide by 4.]

(vii). Corrections:
Ref. [47]: Eq. (3.27), delete factor containing L(4); Eq.
(3.27a), replace 112 11 by 12 in second factor of 8; Eq. (3.28),

rewrite as ~inc = o~_in/12 = liI*(a~>:in-inc; Eq. (3.29),
replace 2einc by ~*; Eq. (3.30), replace argument of e by
0*. /212={1/2)~a2 ~O-lnc lnc 0 lnc·

VI. Decibel Forms:
A convenient way of expressing our results in I-IV above is to use

a decibel representation, so that factors are additive and powers are
factors. This is particularly useful in numerical calculations where it
is necessary to determine individual terms separately, initially before
combining in the full relation. We have

v (*)2 _ + v{*) + /~)(*) v
0o-coh - 0.3010 IT coh ~o coh ; A ~ 10 10910 A;

~(*~2 = 0 3010 + ~~*) + 2/;2>~*) .
0-lnc· lnc \ a lnc

e.6. 44a J

(6.44b)

Similarly, we get

(
'¥2 >.(*) _ v{*) V(*} or CV {*} ]a.. - -IT + 2[C 0o mln-coh coh N.P. I.. (6. 45a)

(6.45b)

(These relations hold for both the "on-off ll and binary broad-band and narrow­
band signal cases, of course.)
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6.3 Performance Measures of Optimum vs. Suboptimum Threshold Reception:
Since performance, as measured by suitable probabilities of correct

or incorrect decisions, P~*), can be expressed functionally for general,e
input signals (broad- and narrow-band) by the general relation

cf. (6.2), (6.4), etc., and (6.6), we have at least three principal ways
of comparing performance, for the same signal waveforms against the same
interference for the same mode of reception:

(6.46)

(I ) .

(I I ) .

(III).

Given nand ta2). the same in both optimum and'\ o· 'ml n
sUboptlmum cases, compare Po e to P*O e;
· _ * "2 2 * .Glven PD,e - PD,e' same n, compare (ao)min to (ao)min'

Given Po = P*o ' same input minimum detectable signals
2 ,e ,e

(a). = la 2)*. ), determine the increase in sampleo mln \1 0 mln ,
size (n) of the suboptimum processor vis-a-vis that of
the corresponding LOBO.

(6.47a)

(Ia)-(llla): Same as (1)-(111), but for optimum coherent
vs. optimum incoherent detection.

(6.47b)

The first ¢omparison (I). gives a probability measure of the suboptimality of
the suboptimum system compared to the optimum, for identical signal, noise,
and observation conditions (period of observation is n and mode, e.g.
coherent, incoherent, etc.). The second and third methods of comparison
(11,111) require the same performance, but now with different input signal
levels or sample Sizes. Again, the noise conditions are unchanged in each
instance, and the signal structure is unaltered, but the input signal level
(~ao) or sample size may be changed.

Other modes of comparison are clearly possible. For example, for the
same signals, sample sizes, modes of reception, we can compare performance
for systems optimum in nongauss vs. those optimum in gauss. In fact, that
is what we also do here, since the correlation detectors (with the correct
biases) are themselves opti.mum in normal noi'se. A'meas'ure of superto,ri~y
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of the proper processors in nongauss vis-a-vis gauss under these condi­
tions is, of course, given by the degradation factor ~a, cf. (6.18), (6.38),
(6.43), for example. Equivalently, we can measure this superiority by

the extent to which Po,e are changed vis-a-vis PO,e (for the corre1ators),
or performances can be compared based on different sample sizes. Still
other possibilities arise, in the manner of Sec. 4.3 above, when algorithms
optimal in one class of interference are used suboptimally against another
class of noise. For the most part, we will consider the comparisons of

(6.411), as well as ~a directly.
Accordingly, from (6.47) we have

6.3.1 Comparisons, Eq. (6.47)Optimum vs. Suboptimum:

(n. Fixed Sample-Size (n) and Input Signals «a~)minl=­
From (6. 18), (6. 38) ,

~_( len) ~ (rr/rr*)coh/inc' (sa~ n = n*),

we have directly the canonical relation

(6.48)

for both coherent and incoherent reception. This, in turn, in (6.2) gives

di rectly, with

(* ), A (6.49)

on eliminating a*, the canonical formo
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p*
Po ~ ~{l+e[lid{e-1(2 ~ -l)+e-1(1-2aF)}-e-1(l-2aF)]} (6.50)

(6.50a)

for both coherent and incoherent on-off or binary signal detection. With
(6.50) we can compare Po with Po directly, where usually aF= aF. Clearly,
since 0 ~ ~d ~ 1, Po ~ Po here, as expected.

Similarly, in the steady-state communication regimes, where P~*) is

the more natural measure of performance once the desired signal has been
initially established, we have from (6.48) in (6.5) for the symmetric channel
(ll = 1):

P 'V 21{l-e[~d e-1(1-2P*)]}e- e (6.51)

where now, of course, Pe ~ P~, (~d ~ 1), as expected.

(II}. Same Oecision Probabilities (PO,e = Po,e}' Sample Size (n):
Here the comparison is made between minimum detectable input signals

when the decision probabilities [(6.2), (6.5), {6.6)J are equated. Thus,
we have

P - p* .. - ~*D,e - D,e '. -I (J0 - v 0

for all modes of operation here.
get di rectly

(6.52)

From (6.9), (6.16), or (6-.22b), (6.35), we

89



<2)* * 2)
ao min-coh = td-coh(ao min-coh

which in db become

( 2)* _ .; * ( 2·
ao min-inc - t d- inc ao>min-coh'

(6.53)

"2)* _ 1 v* ("2)
(ao min-inc- 2 ~d-inc+ ao min-inc ,

(6.53a)

all of which apply equally well for the on-off and binary cases, in fo'rm:
of course, the specific structure of 4>3 depends on whether or not lIon-offll
or binary signals are employed, and the mode of reception, cf. Tables
6.1a,b.

(III). Same Decision Probabilities and Input~Signals:

Here the input signal levels are the same, as are the probabilities of
decision, so that comparisons are naturally made in terms of sample size:
n vs. n*. This starts with ao=a~, cf. (6.52), and using (6.9), (6.16),

and (6.22b), (6.35) we obtain now, with (a~)min = (a~)~in:

rr*{n*) = rr{n)

generally, for coherent, incoherent, lIon-offll
, binary signal reception,

etc. Applying (6.10), (6.17) specifically gi'ves for both "on-off'" and
binary operation:

(Opt. vs. Cross-correlator):

n* - ~* n - n /L(2)coh - d-coh coh - coh

90
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for the simple correlator, and for the clipper correlator [cf. Sec. A.4-3
and Table 6.2J:

(opt. vs. clipper-correlators):
2

n* - 4w1E (O) ncoh
coh - L(2)

E

(6.55b)

in these stationary regirres.
For the incoherent cases we obtain similarly, from (6.38), (6.40),

(6.42), and Table 6.2~, with Sec. (A.4~3), the more complex relations where
n*, n may appear implicitly, viz:

(opt. vs. auto-correlator):

(6.56a)

( i i ). bi nary :

(i). lI on- off ll

cf. (6.30), (6.31), (6.33), (6.33a), (6.40), (6.41). A:lso, we have (6.24)
vs .. Table 6.2, and (6.30), (6.33), vs. Table 6.2 (binary) and Sec. (A.4-3):

(opt.vs. clipper correlator):

,* (4) (2)2 n[-l2wlE(O)+8wlE(O)2Qn*-l)]2
n [LE +2LE (Qn*-l)] = 2Qn-1

(6.57a)
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(i i ). bi nary:
2

n*[L(4)+2L(2) {Q(21)_11)
E E n*

(6.57c)

The relationship between n* and n in these incoherent cases is clearly not
so straightforeward as in the coherent cases (6.55), and depends noticeably
on the degree of signal correlation, cf. remarks in V, Sec. 6.2 above.

6.3.2 Comparisons-Optimum Coherent vs. Optimum Incoherent Threshold Detection:

Just as we have compared optimum vs. suboptimum threshold detection algo­

rithms in the same modes (i.e., coherent, incoherent) of reception in 6.3.1,
(1)-(111) above, so also is it instructive to compare optimum threshold detection
for these different'mo"des. Thus,-accc)r'ding to Eq. (6.'47b) we repeat the
comparisons of (6.47a), but now for coherent vs_ incoherent detection,. re­
spectively. Accordingly, we have

(Ia). Fixed Sample-Size (n) and Same Input Signals

<a \* =
0/mi n-coh <)*a . :

o min-inc

From (6.11b,6.27a) with (6.9) and (6.22a) we can write directly

so that we can define

(6.49)1
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-+ 1 (stat. cases) ,

o < n ::

where

_I (a .$. )2/2n a2
-+ a2/a2 :: 1

i' 01 1 0 o· . 0

var aoI a~ «1)
1/2_(~ 4~iS~>2/ n a~ 2)

· 2 1S1nce si = ·

- n (stat. cases);
{6.49a)1

{6.49b)1

Here n represents the IIfading factor ll whose anatomy is examined in somewhat

more detail in II, Sec.7.' ff. Therefore, we have directly (in these

stationary cases)

and

Binc = ~{B~Oh)2 , [cf. (6.11) - {6.11b)J

{6.50)1

{6.51)1

Using {6.48)1, {6.49)11 in (6.2), (6.5), and (6.27) enables us to write these
probability measures of performance respectively as

* 1 1 * 2{ ~ n- - ( - 2 P ) J}Pe- i nc ~ 2 1 - 8L2 'k 8 . 1 e-coh
1

(p = q = 2) {6.53)1

* *Alternatively, we can express Pcoh in terms of Pine

*a =F
*(aF)coh
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1
(p = q = 2) , (6.55)1

where ,¥* in the common stationary cases is given by, (6.50)1 above.

(IIa). Same Decision Probabilities and Sample Size:

In this case we may expect different values of the respective (minimum) input
signal (-to-noise ratios). Thus (6.52) is modified to

* * * * * * * *
Po h = Po- · ;. •• a h = a · ;... Bcoh = B,. nc; ncoh = n,. nc,e-co ,e-lnc o-co O-lnc

so that from (6.48)1 it follows directly that

(6.56)1

(6.57a)

(6.57b)1

In the case of coherent signal waveforms (large n), we have [cf. (A.2-42e)J

Qn:!:l (slow fading) ; Qn :!: l (1 - n)2 (rapid fading) (6.58)1

2
and since L(4) = O(2L(2) ) in the highly nongaussian situations [cf.

Figs. 7.7,7.8 (Class A), and Figs. 7.11,7.12 (Class B)], we see that (6.57)'

reduces to

8(1 - n)
nL(2)

( /. 2) * )1/2
\ao coh

(6.59a)1

(~2\*
'\o/coh

1/2
(6.59b)'

respectively for slow and rapid fading.
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(IlIa). Same Decision Probabilities and Input Signals:
For this case, the comparison is between processing gains, or in more

* *detail, between sample sizes n h' n. ,needed to achieve the same performanceco 1 nc
in the two modes of threshold detection, when the minimum detectable signals
are required to be the same. Accordingly, from (6.48)1 again we have now

Since

'aCOhII~Oh = <a~>:Oha~ncII~nc ' or B:Oh = ('£i*) -1, cf. (6. 51 ) 1

/a2) * _ * I A

*
\

0. - Bcoh acohIIcoh' cf. (6.48)1, we get finally
coh

n* = 1 1n~ B* [L(4) + 2L(2)2(Q -1)]
coh L(2) lnc coh * .n -lnc

I 1/2
8(l - n)2

(6.60)1

(6.61)1

With slow or rapid fading and coherent signal waveforms (n » 1), as before,
cf. (6.58)1, (6.61)1 reduces to

(We note that slow fading \~orks to the relative disadvantage of coherent
vis-~-vis incoherent detection.)

(6.62)1

6.3.3 Asymptotic Relative Efficiences.:.

It is a comparatively simple matter now to determine another frequently
used measure of performance, namely, the Asymptotic Relative Efficiency
(ARE), (for example, see [14], p. 242, Eqs. (78b, 80).) This is defined
for nonzero signal (e>O) and the same decision (i.e. probability) controls
[CN. P.' Cl .O.' etc., cf. (6.11b) etc.], as the limit as sample sizes be-
come infinite, of the ratio of the normalized IIdistances" of the two recetver
characteristics under comparison when the same input signal~ are employed,
in the same noise backgrounds. Thus, for receiver 1 vs. receiver 2 we have

(i n the II on-offll cases):
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(6.58)

where cr~1),(2)are defined in (A.4-12), (A.4-13) [(A.4-72), (A.4-74) also]
for general (roost of the time) suboptimum systems, where a~l), (2) are the
respective variances of the receiver algorithms gel), g(2) under Ho' cf.
(A.4-9), (A.4-29); (A.4-71), (A.4-73). For binary signals (6.58) becomes
di rectly

(21 )
ARE I · = 1i m ( a 01 )

blnary,6>0 nl,n2~ cr~~l) · (6.58a)

Applying the general relation (6.6) in its canonical form (6.48) here
to (6.58), we see at once that the ARE for comparison against the optimum
detector become simply

ARE*I :: lim to) - lim ..~(*) (_<1),6>0 n,n*~ cr~ - n,n*~lqd-( ) (6.59)

for lIon-offll and binary signalling. In the case of suboptimum system com­
parisons (6.59) becomes

1
....;..

ARE I = lim ~*2
1/2 6>0 nl ,n2~ d- (
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where systems 1, 2 are so chosen that this limiting ratio is always equal
to or less than unity., (Of course, if systems 1 and 2 are both optimum,
the ARE is unity.)t Aga:~n, we remark that narroW-rband as well as broad­
-band signa1 types are i ncTuded canoni ca 11y here.

From the text above (cf~ Tables 6.1a,b, 6.2) we easily establish the
following useful examples:

I. Coherent Reception:

( i ) .

(i i ) .

(iii).

simple correlator:
optimum
clipper correlator:
optt~um

simple correlator:
clipper correlator

ARE~oh =~/l (2) (~l);

ARE~oh =,4wlE (O)2/L(2) (21);

[Uon-offll;binary]
\ 6. 60a)

[Hon-offll; binary]
(6.60b)

[lion-offll, binary]
(6.60t)

II. Incoherent Reception:

(i). simple-correlator:
optimum

ARE~ -f = lim{ 4Q2/(L(4)+2L(2)2{Q -l})'
1 nc on-off n-+oo n' 1 n

• (x4-1+2{Qn-1})}2 , cf. Eq. (6.38);

~1)ra~2): ARE~ I = lim{4Q(2Tr~L(4)+2L(2)2{Q(21)_1})
, mc binary n-+oo n 1\ 1. n

4 (21) "2 ( )·(x -1+2{Q -l})} ,cf.Eq. 6.42a
n

1/2

cf. Eq. (6.42b).

(6.61a)

(6.6lb)

(6.61c)

fN~~~~-h~~~~~~~-~h~~-ARE = 1 does not necessarily mean both algorithms are
optimum, cf. last ~ of!II.
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(ii)~ clipper-corr~lator
optimum

(6.62c)

Here the signal factors Qn,Q~21), Q~21), are defined specifically by

Eq. (6. 31 ) ;

( 6 •63a)

( 6 •63b)

(6. 63c)

The noise parameters are L(2) = (t2), ~(4) ~ «t2+t l )2)0' cf.. (A.1~15, 19b),
as before.

We have also the comparison of suboptimums here, cf. (6.60c):
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(iii). simple-correlatol~,
clipper correlator~

= Eq. (6•61 a )/ Eq . (6. 62a) ;
. (6.64a) .

1

= Eq. (6.61b}/Eq. (6.62b) (6.64bl

= Eq. (6.61c)/Eq. (6.62c). (6.64c)

(We remember that when the clipper correlator is optimum, i.e. when the
noise is Laplace noise, cf. Sec. A.4-3, we must use the optimum forms

A(4) (4) (4)LF: E + LE, etc., cf. (A.4-39}-(A.4-46}~wherel + L + LE ' etc., so
that in the incoherent cases specifically the ARE* = 1, as required.)

As some simple examples, let us consider coherent reception (for
general s~:gnals) when (1), the noise is gaussian, and (2), wile.n· t.t i'~

LaPlacian, e.g.:
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2 {(2) 2-x/2 L =l;x=l;,
w (x) = e • E
1E ga uss I2:rr ' Eq . (A. 1-22) .

{L
(2)-2. (x2-l)

1 -I xI/2 E -, -.
w (x) =-- e ·

lE Laplace /2 ' Eq. (A.4-65a) .

We have at once from (6.65) into (6.60) the simple results

(6.65a)

(6.65b)

(i ) . simple l correlator: ARE* I =1; ARE* I = 1//2 (6.66a)
opt. coh gauss coh laplace

(i i ) . clipper correlator: ARE* I =~ ARE* I =1; (6.66b)
opt. coh gauss IT coh Laplace

(iii). ;simple-correlator )-1 .
ARE* I =f

simple correl. =1
coh gauss clipper correl.\clipper correlator Laplace n.

(6.66c)

Equation (6.66) shows that there is not much difference 0«,2db) between
simple and clipper correlators in these threshold cases when they ope,rate
in gaussian and Laplace noise, to which they are respectively optimum.
However, when the usual Class A or B interference is the principal noise
mechanism, the simple correlators (although optimum in gauss) have been
found to be very suboptimum here 0(20-40db or more), [13J, whereas the
superclipper correlators (at least in the coherent regimes) remain only
slightly degraded 0(1.0 dB) from the proper optimum processor [42], [45J.

We recall from Sec. 6.3, Vabove, that depending on the l coherence of
the signal during the data acquisition period (O,T), the signal factors
Qn' etc. ,cf. (6.63), are O(n~), O~~~l. Thus, for incoherent reception
and signals made comparatively incoherent (by combinations of rapid fading
and doppler or by the mode of observation: independent signal samples,
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for example), we have p~O, i.e. Qoo is essentially independent of n, and then
the results (6.61 )-(6.64) remain unchanged. However, whenofothe signal re­
mains highly correlated during the observation period, Qoo + O(~), and
(6.61)-(6.64) reduce to the somewhat simpler forms:

III. Incoherent Reception; Coherent Signals:

(i ) . simple correlator. 1/ (2)
optimum · AREinc = L

(on-off and binary) (6.67,a)

(i i ) .

(iii).

clipper correlator.
optimum ·

simple correlator .
clipper correlator·

ARE~ = [4w (O)2/L(2)] (on-off and binary);
1 nc 1E

(6.67b)

2AREinc = [1/4wlE (O)] (on-off and binary).
(6.67d)

Comparing these results (6.67) for the incoherent cases with those for the
coherent situations (6.60), we see that the AREls for the former are just
the square of the AREls for the latter in their respective comparisons,

when the desired signals are fully coherent in structure and are so observed.
On the other hand, when this coherent signal structure is partially or totally
destroyed, the corresponding ARE1s, Eqs. (6.61)-(6.64), are further reduced,
as we would expect. We also observe that signal level symmetry [a~1)=a~2)]
considerably simplifies the result, cf. (6.6lc), (6.62c), (6.64c), vis-a-vis
the aSyll1Tletric cases [a~1)~a~2)], including the 1I 0n-offll situation. The
AREls for coherent reception are larger (and sometimes much larger) then
their incoherent counterparts: (6.60) vs. (6~67).

Finally, we remark that although the ARE1s, like output s;gnal-to-noise
ratios (a~*»)2, (6.6), processing gains (IT( )~and minimum de~ctable signals
«a~)min)' are useful measures of receiver performance and'performance com­
parisonos, they are not directly (or linearly) related to actual performance,
as meas ured by the appropri ate deci sion probabil i ti es (P0' Pe' etc.).
Furthermore, the AREls are limiting forms (n-+oo), whereas in practice one
deals with finite n (»1).
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Moreover, closely related to the essentially second-JIlOment character
of the ARE's (cf. 6.58», is the fact that they can be ambtguous measures
of performance. This may be demonstrated, for example, in the case of
coherent threshold detection, Sec. 6.2, I, II, where for the suboptimum
detector we choose the optimum form (4.1), but without the btas,S*.

2_ *2 I I. (*) 2 n-coh
Thus, ao-ao ,(,9)1-,9)0) = a~ , so that the ARE = 1. This says that
on the basis of the ARE the two algorithms are equivalent. But <g>l
=a*2+10g ~, <g)o = log ~, so that (2.32) becomes (~=l) p ~ J{1--

2
1 e(a*/I2)}

h· h· b·· 1 e 1. 0
W 1C 1S to e compared w1th P: ~ ~1-e(a~/212)}' Since e(x/2) < 2 eex},
x > 0, clearly P > p* in this example. In fact, P ~ 1/4 for the usually* e e ,__" e
large 00. Thus, on the basis of the more comprehensive probability measures,
the algorithm without the (correct) bias can be clearly inferior. Further­
more, this suboptimum algorithm is not asymptotically optimum (AO), since it

is (~=l) G (a~2,o;a~2), under Ho' Hl , which does not obey the n.+s. conditions
(A.3-8,9).

For all these reasons, then, these latter quantities (i.e., P5, etc.)
are the more complete and unambi guous descriptors of performance and are .-.

ul timately to be preferred to the ARE- s when receiver perfonnance ;-s to
be assessed and compared under the practical constraint of finite sample
size (l«n<oo), not only for the threshold conditions postulated here, but
for all input signal levels.

6.4 Input Signal Conditions for (Optimum) Threshold Algorithms and Performance

There are two conditions on the maximum level of the input signal
a~(>o) which mU~be obeyed~ if the detection algorithms g~ are to remain
not only LOBO's but AOOA's as well (as sample size becomes larger).

As we have already noted (cf. Sec. 2.4, Secs. A.2-l,2,3,4, etc.), the

first condition is to insure that varl,eg~ ~ var go,og~, cf. (2.29), (A.2-l4),
(A.2-40), (A.2-50b), which in turn is required for asymptotic optimality
(AO), cf. (Appendix) Section A.3-3, as well as consistency of the test

. A

(detection) as n~ and for providin~ the associated proper bias, B~.

tI~-th~-~i~i~i~;-~~~~-~f-~~~~i~~~~~-~~~~ii~~-~~-theobservation interval! we
shall discuss this point and ,ts relat,on to the discrete sampling cases of
our current analysis in Sec. 6.4 III, following.
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The second condition stems from the fact that the coherent LOBO is

a truncated expansion of log 1\.n' which omits the "incoherent" term 0(8
2),

so that it is possible in some nongaussian noise situations that, mathemat­
ically, incoherent LOBO's perform better than coherent LOBO's. Of course,
physically this appears to be a contradiction t : coherent detection should
always be at least no worse than incoherent detection under otherwise the
same conditions, since the former employs the additional relevant information
about the signal phase (or epoch). Consequently, there can also be an upper
1imit on input signal level (i) beyond which the truncation [i .e., omission

-0
of the incoherent terms, 0(82)J of the coherent algorithm leads to this
contradiction in performance, and hence beyond which the associated perform­

ance measures are not used.
Of course, the algorithms themselves are employable at all signal

levels (O<a~), but are no longer optimal as a~ is increased outside the
lesser of the two limits indicated. Their performance must then be re­
evaluated: if n»l, the Central Limit Theorem still applies, but at~ ~ a~~,

i.e., varl,og~ ~ varo,og~, and it is then pos?ible for "coherent" detection
by these now suboptimum algorithms to be inferior to the corresponding
"incoherent" detectors.

I. "Don-off" Detection:
Let us look further at the "second condition ll noted above: viz., from

(6.2), (6.5) (as well as (6.5a), (6.5e) in the binary signal cases):

(Opt.) Coherent Det ~ (Opt.) Incoherent Det:

0* > 0*. ,o-coh - O-lnc' (1 arge n). (6.68a)

This insures (for sufficiently large n, where (6.2) etc. apply) tnat
(optimum) coherent performance is never worse "than (optimum) incoherent
performance under otherwise the same conditions. For the lIon-off" cases

f------------------------------------
See footnote, page 102.
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from (6.9) and (6.22b) we can write (S.68a) as

~
2)* 2*IT* a. > ~ ••coh~ 0 m1 n-coh - 1nc (aO )m1 n-1 nc '

and, using (6.10), (6.24) we get at once

(6.68b)

* (4) (2)2
. 2 nine 2*2 fL +2L (Qn-l) l;2 *2 .
(ao)~i.n-coh ~ n~oh (ao>min-inc = t 8L (2) f ,ao)min-inc • (6.68c)

Equation (6 ..68c) is to be used in conjunction with the first condition
(on a~), i.e., that varl,eg~ ~ varo,og~, here (A.2-15a), which is speci­
fically in the stationary noise regime:

Eq. (A.2-l5a): coherent:

(6.69)
(6.69a)

Eq. (A.2-42): incoherent:

2
L(4)+2~2) (Q -1)

<a~>:in-inc -.:< y~ == (6) n 3.
I-L - +6L (2\ (2,2)Q +L (2)R I

2. n n

(- --z 2
In the important special cases of slow and no fading aoi=ao,aoi=ao;
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~ -4l'

.~ mij = l), or rapid fading {aOiaoj = aoi aOj),Eq. (6.69) simplifies
directly to

x* =o (6. 71 )

Similarly, with incoherent signal 'structures (A.2-42b) , or totally coherent
signal structures (A.2-42f), we have

(Incoherent). y* = ---,..-__L_{_4_)__
structure · 0 (6)1-'2 +6L (2)L(2,2)I

(coherent ).
structure ·

L(2)
y* =-----~
o 3L(2,2)+2L(2)2

(6.72)

where we take the maximum value of F~l in (A.2-42f), for the strictest
condition on o<a~ «1. [Some numerical values of (x;,y;) are shown in
Figs. 7.20-7.22 ff.]

'Then, as the second condition, (6.68c) is used to set additional upper
bounds on the input signal (~a~). Letting

x - (a2)* · y _. (a2)*= 0 min-coh' = 0 min-inc

we have for (6.68c)

n* = rr* /rr*- inc coh ' (6.73)

2nd condi ti on: x ..~ TI*y2
{
x«x~, E:qs.(6.69), (6. 71)

; with: 1st. condition:
y«y~,Eq~.{6.70),{6.72)

(6.74)
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The points y=x, or l/~* > x =y, which at (l/~*) or below the curve
x = 1T*y2, and which are within the region of individual constraints on
(x,y), e.g., the dotted lines in Fig. 6.1, are all permissable values of

(a~)~in-coh,inc. The curves y21T* = x represent the limiting condition
P:-coh = P:- inc ' or P5-coh =P5-inc. When we require coherent and in­
coherent performance to be equ~l~, i.e. when we specify the limiting
probabilities (P*o oh = P*O· , etc.) which we can accept, that portion-c -lnc
of the parabola x = 1T*y2 which lies within the rectangle (x,y) [«(xo,yo)]

determi nes the acceptab1e va1ues of (a~>:i n-coh, inc ·
Accordingly, to use the various relations in Section 6.1-6.3 to obtain

minimum detectable signal (or maximum range, cf. [34]), when either a purely
coherent or incoherent threshold detection algorithm is employed, we
calculate the appropriate quantities, cf. (6.74), for both the coherent
and incoherent regimes, in order to obtain physically acceptable results,
even though we may be interested in only one or the other mode of detec­
tion. Thus, we may proceed as follows for minimum detectables;gnals(in these
stationary cases):
A. Minimum Oetectable Signals:

(1). Calculate (a~):in-coh from (6.11) for coherent reception;

(2). Calculate (a2)* from (6.27) for incoherent detection;o min-inc

(3). Use (6.69) or (6.71) for xo; (6.70), or (6.72) for Yo' to deter­
mine the coherent/incoherent conditions for equal threshold
variances;

(4). Compute x = 1T*y2, (6.74), for the various (a~>:in and locate
the results of (1), (2) within the region x ~ 1T*y2, cf. Fig.
6.1. Physically acceptable results here are (usually) those for which
the calculated values fall within the bounded (i.e. shaded)
region [but see remarks in III ff.].
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*
Yo - -- -- - - - - - - -

Case Ia-{6.48)1

'\

*Ymax(<<Yo) 1- -- -- ,- _. -

Case

~
y=x

1T*y2<X
Y <x

I
-r

I

I
I
,I
I
I
I
I
I
I
I

Figure 6.1.

l/IT* X «<x*)max 0

Skptch of t, he relat)ionshi P between x (= /a,2)*,. 'h) and

( (
2)* ~o mln-co

y = ao 'min-inc ,showing the domain (~haded) wherein
"coherent reception" ..:. "incoherent reception," for physical
applications (same sample size, n).

107

x*o



II. Binary Signal Detection:
The same considerations apply for optimum binary signal reception

as above for the cases of lI on-off li detection, e.g., in addition to the
condition of equality of variances (varl 8g(2l)*~varo····ogn(2l)*) we must

, n , (21)*
satisfy (6.68a) as well. Here, of course, we replace TI~oh by TIcoh '
etc.,(a~);in by (a~)(2l)*, etc., and Qn by Q~2l) in (6.68b,c), where
specifically we employ (6.12), (6.13), (6.29)-(6.31). The first
Itsmall-signalll (or equal variance) conditions, analogous to (6.69) etc.,
are now given (in the stationary regimes) by

{<
a2).(~l)* «x(21)*
o m1n-coh 0

Eq. (6.14)

2 . .. ". . (2) (1)
+L (2) ~ I <'118 :>ILl6 }.' (5. oS .) (2), (1) {a .a·. '

~. 1 V J 1 J 01 oJ
1J

_[ (a .>)(a .>)](2) , (l) } I
01 oJ '

<~8.) == la (?~. (2))_ ~ (~ \ ~l»
1 \ 01 1 \C 01 1 '

cf. (6.69), (6.69a), and
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(6.76)

for slow or no fading and stationary noise, in which Q~21), R~21) are given
by (A.2-60a,b) 'explicitly.

For the important special cases of signals with no fading, in symmetri­
cal channels, we have (A.2-50e) for x~21)*, viz.

and from (A.2-62), for both coherent and incoherent signal structures

(6.78)

cf. (6.71), (6.72) above. Still other forms can be obtained from (6.75),
(6.76), depending on channel conditions. In any case, (6.73), (6.74)
apply generally, with x~ + x~21)*, etc., now. The domain of input signal
levels for applicability of the optimum algorithms is likewise sketched in

. . _ /; (2) 2)* (' (1)~* .
Flg. 6.1, where, of course, x - \aO min-c h or a !min-coh' etc ..
there are thus a pair of {x,y)'s now, when a~2) ~ aJ1), but only a single
set (x,y) when the channel is symmetrical: a~2)=a~1) = ao. The general
procedure for determining rninimum detectable signals is again given by A.
above, suitably modified, e.g.:
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A. Minimum Detectable Signals:

(1). Calculate (a2)(?1)* h' from (6.14),·o mln-co

(2). Calculate <a~)~~~~~nch from (6.29); (or 6.33);

(3).

(4).

Use (6.75) or (6.77) for x~; (6.76) or (6.78) for y~, (e.g.,
the equal variance conditions on both coherent and incoherent
recepti on ;

COfll>ute x = n(21 )*y2, (6.74) n* + n(21)* where n(21 )*=II ~21 )*/II (21)*, , lnc coh'
cf. (6.13), (6.30).

III. Jhe Second Input Signal Condition -- Optimum Incoherent vs. Coherent
Detection: Discussion

Our starting point is Figure 6.1. For the moment let us impose the
II coherent-vs-incoherent" condition posited in (6.68a) above, here, of course,
for discrete sampling such that the noise samples are statistically
independent--our universal condition in this study, cf. Sec. 2.4 et seq.

Then, we can make the following observations about Figure 6.1:
(i) The parabola (6.74) is the contour of Case IIa, Eq. (6.56)1

et seq., for optimum incoherent threshold performance being
equal to optimum coherent performance.

(ii) The straight line (y=x) embodies Case la, Eq. (6.48}1 et seq.,
where coherent performance is better (i.e., smaller error
probabilities) than incoherent performance, with the same

sample sizes, when ~~>m~n-cOh(=x)=y=~~>m~n-inc~l/n*. For
x=y larger than x111=YIII=1/n* coherent performance is inferior
to incoherent performance.

(iii) At x=y=l/n*=xIII=YIII we have Case IlIa, (6.60)1 et seq., where
n~ >n* h (»1) usually.lnc co

(iv) Here x~, y~ are bounding values obtained from the basic Condition
I, namely the lI equa l variance ll condition which is necessary to
insure asymptotic optimality at small but non-vanishing signals.

(EXPli~t e)xamPles relating x~,Y~ to the associated minimum detectable
signal \a~ ~in are given by Eqs. (6.69)-(6.72) above.) If xmax'Ymax are
the largest input signal values permitted, the allowed minimum detectable
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signals (x,y) must obey the inequalities x<x «x* or y<y «y*. Here- max o· - max . 0
the usual quantitative choice of the inequality "«<) is 13 dB or 15 dB
in practice. (Of course, the value given to 11«11 is arbitrary, dependent
on a reasonable choice of what is meant by "smallil signals.) Accordingly,
the rectangular (shaded) region bounded by x ,y) in Figure 6.1 ismax max
the domain wherein the AO, or equal-variance condition holds practically.

Now, from Figure 6.1 it is clear that it may be possible for these
threshold algorithms to be AO (as well as LOB) and have coherent detection
with larger minimum detectable signals, or larger error probabilities
(inferior performance), or~ both, than (AD) incoherent detection. When
this happens, we call the region of (x,y) values an anomalous region,

with respect to the conditions (a2) *. .. h < ~2)*. . ,and coherent\ 0 mln-co - '\0 mln-lnc
performance ~ incoherent performance. Thus, in the region formed by
y=x and the parabola (within x ,y ) we have the "anomalous" situationmax max
y>x, with incoherent performance better than coherent. The region bounded
by the line y=x, the parabola, x ,and y=o is the non-anomalous region,max
as shown in Figure·6.1.

The results of Figure 6.1 show that for both optimum coherent and
incoherent threshold detectors which are AO (as well as LOB) one can have
any combination of minimum detectable signal and performance inequalities
for the same data sample size. This, in turn, means that the so-called
Condition II, defined by Eq. (6.74) is not (for discrete, independent noise
samples) an ultimate constraint on the validity of "practical" optimality:
we can disregard Condition II as long as Condition I--the equal variance
condition--is obeyed. Thus, there is ultimately only Condition I, which
sets a bound on the largest value of input minimum detectable signal for
which the AD still obtains (cf. Appendix A3). Moreover, we may expect
Condition II to be automatically satisfied in the limit of continuous
sampling. The formal use of Condition II in the discrete case, however,
is helpful in identifying the apparently anomalous regions of behavior.
Of course, with continuous sampling only the "regular" region is occupied,
because then coherent detection cannot be any less effective than incoherent
detection for otherwise the same conditions of operation.
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This follows in as much as more signal information (i.e., epoch) is
used in the coherent cases than in incoherent reception, while all the noise
data, viz. those contained in the n-th order pdf's wn(~)N as n~, are employed

in either observation mode. [We note that the derivatives of w (x)N' as n400 ,n 'V

contain no additional noise information.]
The explanation for the anomalous behavior of the optimim incoherent

vis-a-vis the optimum coherent detector lies in the different effective
amount of relevant signal and noise information available under independent
(noise) samples. Although all signal (i.e., waveform) information is used

in both detection modes, with only the epoch information lacking in the
incoherent cases t , more relevant noise information is available in the

incoherent cases. This is app. arent from the fact that for coherent z\
detection we require ~(=~x log w,(x)) in the algorithm and L(2)(=~ ~o) in
the performance measure, whereas both ~ and ~I are needed in the incoherent
algorithm, and L(4) (= «~2+~, )2;> 0) as well as L(2), in its performance.
In addition, there is further information embodied in the way L(2) and L(4)

appear in a~-inc' along with their combination with signal structure (Qn)'
cf. (6.24); for example, the functional form ofTIinc' as well as its
individual L(2), L(4), and Qn components.

Whether or not the use of this added information is enough to offset
the loss of epoch information in the signal will depend, of course, on the
specific nature of the nongaussian noise, signal structure, the signal IS

interaction with the noise, and on the probability controls (PO' CYvF, etc.)
under which the receiver is set to operate. For signals which maintain their
structure (e.g., no doppler smearing) we may have "anomalous" behavior, i.e.,
the incoherent minimum detectable signals are smaller than for the corresponding

t
For simplicity, we confine the argument to the important limiting cases
where total waveform information is available to the receiver. This,
however, is not a restriction on our general argument. We note, also, that
with proper choice of epoch and sampling intervals in the coherent cases,
discrete signal sampling is fully equivalent to continuous signal sampling

on the observation interval (O.T.).
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coherent cases (under the same performance measures). On the other hand,
incoherent reception of Iliincoherent ll signals is always inferior (in the sense
of larger minimum detectable signals for the same controls) to coherent
reception of coherent waveforms, as we would expect. Specific examples
of these behaviors are presented in Sec. 7.4 ff. Finally, even in the
gauss noise cases (L(2)=1, L(4)=2) we may expect anomalous behavior for the

same reasons. [An academic exception is the case of the completely known
signal, for the reasons cited in Sec. A.3-6, I, e~p. p. A66.] The general
magnitude of the anomalies in ~2> *.. appear~ to be 0(2-3 dB), cf. Sec. 7.4 f1f.

~o mln
All our comments here apply equally to the earlier results Sec. 5.1, V, [34J.

11 · Remarks on SUboptimum Receivers:
Similar conditions on the largest "small-signal ll inputs to suboptimum

receivers, giving equal variances under Ho' Hl , etc. are derived in Appendix
A.4, cf. (A.4-l0) for the coherent cases and (A.4-30) for the incoherent
detectors, generally. In the case of simple correlators these equal variance
conditions are given by (A.4-59), and for energy detectors, by (A.4-63),
while for hard-limiting or IIsuper-clipperll correlators, these conditions
are given in (A.4-70). For binary signals, see the remarks in Sec.
A.4-·4.

However, when these receivers are suboptimum [as they will be in most
instances unless they are operating in the noise for which they are Il ma tched,"
i.e.', become optimum, viz., gauss noise (A.4-50a) for the simple correla­
tors, IILaplace noise ll

(A.j~-50b) for the hard-limiter correlators], there
is no reason to assume that coherent reception will necessarily always
be better than incoherent reception for otherwise the same reception con­
ditions. Such a situation will depend on the detectors themselves vis-a-vis
noise and signal. Consequently, we do not impose the second condition,
cf. Eqs. (6.68), on the magnitude of the input signal, so that only the
conditions on equal variances referenced above are needed in the evalua­
tion of performance using the (suboptimum) results of Sect'ion 6.1, etc.
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Of course, these suboptimum algorithms can be used at all input signal
levels, but then varl,egfvaro,og and the large-sample (n»l) expressions
for PD' Pe , etc., cf. Sec. 6.1, must be appropriately modified, along
the lines of (2.23)-{2.27), cf. (2.26), (2.27) specifically.

6.5 The Composite LOBD:
We have shown (in Appendix A.3-6) that the composite LOBO, _ ...

which includes both coherent (~ ~ 0) and incoherent processing (e2
> 0,

a = 0), is also an AODA, and in the lIon-off li cases is given explicitly by

g* = log ll+S* + 21 f [-2R..(e.)cS ..+{i.i.+i!cS .. )(e.e.)Jn-comp camp ij 1 1 lJ·· 1 J 1 lJ 1 J

= log ~+LOBDcoh+LOBDinc '

where the bias is

A A

= B* + B*n-coh n-inc'

and the variance cr;~-comp (=varo,o g~-comp) is given by

The equal-variance, or "small-signal" condition that cr,~ ,; cr;~ here is
given by (6.69) or (6.70), whichever is the stricter. Note that there
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is here no IIsecond-conditionll,cf. Sec. 6.4, ~I , II above, since there
is now no question of a purely coherent processor in possible competition
with an incoherent algorithm to produce possibly inferior performance

~

vis-a-vis the incoherent algorithm: there is just a single, albeit com-
posite algorithm.

Performance J as measured by the probabili.ties. POI or P:,cf. (6~2)

-(6.5), follows at once on applying a* therein; (cf. Footnote p. S5).. on-comp
With binary signals [c.f. II, Appendix A.3-6] we have the extensions

of (6.79), viz: .

I' ) (2) ~' )(1)+[R, • R, •+R, • <5 •• ] [(a ·a ·s ·s · - a ·a ·s · s · ] },1 J 1 1J 01 oJ 1 J 01 oJ , J

in which the bias and associated variance cr~~~~~~ are specifically

= B*(21) + B*(~l)
n-coh n-1nc
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(6.80b)

cf. (A.3-35,36). The "small-signal" condition (cr1n-comp ; cr~n-comp) is
given here by the stricter of (6.75), (6.76), or the more special cases,

(6.77) vs. (6.78). Performance (P5, P~) is obtained by applying (6.80b)
to (6 . Sa ), (6. 5e) .

Various suboptimum composite algorithms are suggested as extenstons
of the previously developed simple and clipper-correlators discussed
earlier in this Section (and in Appendix A.4). Thus, parallelling the
optimum examples above, we have from A, ~ of Sec. 4.2 above:

I. Composite Simple Correlators (Hl vs. H~

where

A 1 n. <)2 2 ~ \2B = - -4{ L(2{ a. +/a.)}o . .+/ a.a.; ).n-comp · · 1 '\ 1 1J 1 JlJ

The Ho-variance of gn-comp is the sum of the Variances (A.4-57), viz.
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"2
(J =on-camp (6.8lc)

II. Composite Clipper-Correlators (H, v'!'. Hob-

where

The Ho-variance is the s~ of the variances (A.4-68), viz:

"2 n , , 2 ~ 2)'2 ~' 2
(J = L({2/e.\ -.6. }C ••+2 6.6.) ) .on-comp ij \ 11 . 1. 1J 1 J

(6.82b)

(6.82c)

The IIsmall-signalll condi.tions here are the stri'cter of (A.4-59) for the
simple correlators, and the stricter of (A.4-70) in the case of the cltpper­
carre1ators.

1)2
For perfonnance in the above (and generally), we need both qon-comp and

the quantity O"o-comp' defined by

(gcomp>l-<gcOmp!O =lnumerator of (A.4-12a,b}+numerator of A.4-31a,b)1
" .... A2 1/2

12 O"on-comp 12 [{Eq. (A.4-9)+Eq.(A.4-29)}=cron_compJ

== O"o-comp(F)
12
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and

(6.83b)

Then, in particular, for these composite correlation detectors we use the
results of Appendices A.4-2,3 to obtain the sp~cific values of L(~?E' [~~~,
etc. which appear in both ao ,(6.83a,b),and in a2 (cf. (6.8lc),on-camp
(6.82c)). Performance is then calculated using these values in (6.2)-(6.5),
as appropriate. [We recall ,[D, Sec. A.4~J that these suboptimum algorithms
become optimum against the appropriate noise, e.g. gauss for the stmple
correlators, IILaplacelinoise for the clipper-correlators.

All these (optimum) algorithms are, of course, LOBO's: each: gi.Yes tne
minimum error probabilities for all values of input 5igna,1 (0 =.~a:z ) in
some finite range 0 < e < e«<l). But each LOBO has a di,fferent ra,nge, e.g.

€coh r €inc r €comp; in fact, €comp ~ €coh ~ €inc' since LOBDcomp(e~O} is
never worse than LOBDcoh ' which in turn is never inferior to LOBDtnc,for
the same common channel conditions, provided the input 5igna,1 level ('Va,~l
is not too great (i.e. the IIsmall-signalll condi'tions). For very sJ1J~ll

signals we maLexpect that LOBDcomb + (LOBD)coh' (e>O), since the tncoh.erent
component (o<s2«e) is now negligible vis-i-vis the co~rent contribution.
On the other hand, if 8=0, .~ (LOBO) h=O, and LOBO =(lOBD)., with theco camp lnc
range €inc.

Finally, the composite LOBO is generally recommended, provi dedthe com-
plexity of the processing occasioned by the additional algorithmic component
(LOBDinc ' or LOBDcoh ) can be tolerated practically. Otherwise, in the
coherent cases we omit th~ (LOBD)inc-component; hence the considerable atten­
tion to the coherent algorithm (~>O) 'now and previously. [It is, of course,
analytically much simpler than (LOBD)inc' which can be an additional rea,son
to focus on (LOBD)coh when e>o.] As noted in Sec. A.3-{1,rrL a, rare specta,l
situation arises in the gaussian case for the completely R.nown stgnals: th.e
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composite LOBD is replaced by the exact, (LOBO)coh form. When the noise is
non-gaussian, we proceed as above.

III. Composite Threshold Detectors: Minimum Detectable Signal~:

We conclude Sec. 6.5 with a derivation of the minimum detectable signal for
these optimum composite threshold cases. Combining (6.9) and (6.22b), for example,
remembering from (6.79c) that ~*2 = 0*2 h + 0*2. , we can define at onceon-camp on-co on-lnc
(i n these "on-off" cases with stationary noi se) la2\ * . by

~ 0 / ml n-comp "

(6.84)

From (6.2) or (6.4) we get directly

0*
on-camp = 2e-1(1-2P*)

e

- lSI.o.

respectively for the Idea'l Observer or the Neyman-Pearson Observer, cf. (6.1lb).
Applying (6.85) to (6.84), we obtain the desired expression for the minimum
detectable signal associated with this lI on-off u composite detector, viz.

2 2
B* = Cl .O. or CN.P.

"'2 *
1+4B*~inc ~inc -1

acohIIcoh .
(6. 86 )'"

or, using (6.10), (6.24)'1 with {6.49)1, we get explicitly in these stationary
cases
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(6.86a)

2
B*{L(4)+2L(2) (Q -l)}

1+ n - 1
. )2

2nLl2

For example, in the case of signals with incoherent structure, 0n=l'"
and ... rr~oh+'o:

· 1 2)* {lB*· · \ao min-comp = ~ =
lnc

( 2)*a ..o mln-lnc (6.87a)

= IB 4
/--2L-(-'-'4)-n

(6.87b)

Similarly, for signals with coherent structures, e.g., sinusoidal pulse
trains where Q ; n/2, or ; n(1-n)2/2, cf. (A.2-42e), for slow or rapid fading

n
respectively and large sample (n»1), we get from (6.86a)

Coh. struct.:

· ~2\*. ;: 4(1-n)_ lv'1+B*/2(1-n)2 _1 1 (6.88a)
\~o/mln-comp L(2} 1 !

slow n

4 j~ (1)' B*»2(1-n)2,
- nL (2) 1 "2 - - n ~

( a2\*. ;: (2j {11+B*!2 -l}:: (2j (~2B -1),
o/mln-comp nL (l-n) nL(l-n)

rapid (6.88b)

8*»2 .

Note the expected relations <a~);in-complincoh.struct'V l/In, while

<ao
2)*. h t t 'U l/n ...cf. remarks in Sec. 6.2, V, (iii), (iv).mln-comp co .s ruc .
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The above relation (6.86) also applies for minimum detectable signals
in the binary signal cases when a(l) = a(2} = a , and no or slow fading
with suitable adjustments for n* °h + n(2~h}*' et~., cf. Table 6.1b. Weco co
have explicitly

Binary "SyJ11l1e tr;cal ll Signals:

<
"2)(21)* _ 2(1-, n)
ao min-comp - L(2)[Q(21)_1]

n
-1 (6.89)

· 1\(2'1)with reductions similar to (6.87b), (6.88), dependlng on Qn ' cf. (6.33a),
(A.6-5c) ·

Finally, we observe in these optimum threshold cases that the only condi­
tion on the AD character of these LDBDls is the equal-variance condition:

xmax « x;; y~ax « y;, cf. Fig. 6.1 and Sec. 6.4. Usually, Ymax « y~ is the
stricter constraint; i.e., y; < x;. (This observation is also consistent with
our discussion of III, Sec. 6.4.)

A. Remarks on Suboptimum Composite Threshold Detectors:
This situation is mOl~e complex than in the optimum cases above. To

obtain the minimum detectable signal when the composite threshold detection
is not optimum, we start with (6.83a), to write

2 [(A.4-12a}numerator+(A.4-31a}numerator]2
ao-comp/2 = 2 A2

2[(A.4-9)+(A.4-29}] - (2ao-comp)

~comp>1 - <9cornp) 2
= "2

2ao-comp

2which defines ao_comp. Specifically, for the stationary cases we have
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L(2) t<e~2 + 1 ~(e.e~ ~(4) _ 2L (2)2)0 .. + 2L (2)2]
a 1M2 F:E 1 1 4 lJ 1 jl \L lJ F:E, (6.91)
a-camp' v~ = I ~~ 2) 2] I12" L(2)I<e.)2+1~/e.e.\2 L(4tiL(2) 0..+2[(2) F·E

F:Ell . 4 1J \\ 1 j / 1J ·

where 0o_comp/12 is used in (6.2) or (6.5) to obtain performance for these
suboptimum composite cases. [See Sec. ~ of Appendix A.4-1 for the LF:El s .]

Now, since (e) = aol2" , <eie~ = a~mij Pij , here, Eq. (6.91) can be
written

-2
a a2A + a2 Aa-camp = _~a_l__a 2~~ JF):f; ( )

12 - - 2 )1/2 = VO" , cf. 6.11 ,6.11a,b ·
12 a~B1 + a~ B2

To obtain the associated minimum detectable signal <a~~min-comp (=a;)
we must solve (6.92) for z = a~, e. g.

(6.92)

(6.93)

which we leave ta a subsequent study. The associated processing gain here is

now defined by

IIcomp := sf<a~)~in-comp
since

2 = 2\,. 2)2 IIaa-camp -aa min-camp camp ·
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7. QUANTITATIVE EXAMPLES: DETECTOR PERFORMANCE

In this Section we examine some specific examples, to illustrate the
general results of the prec,eeding sections, in particular, Section 6. Our
general aim is to provide a reasonable catalogue of common signal types,
channel conditions, reception modes, and noise models from which to select
representative applications.

We begin with a (partial) summary of the results of Sec. 5.3 pre,ceding:

7. 1 Sta tisti ca l-Phys ical Components' of' the" Recei'ver' A1gorfthms:.
Both to implement the various optimum and suboptimum detection ~lgo­

rithms and to evaluate and compare thei'r performance, we need the structural
elements. of signal and noise which determine how the received data are to
be processed and how these various recei'vers perform. Accordinglly, we
note the following typical relations:

I. Common Signal Types

(i ) . s~2)=J2 cos(w t.-p )=12 cos w t.
1 .' 0 1 0 0 1

(7.1)

( i i ) . 0rtho go na1:

(iii). Antipodal:

s~2) = 12 cos III t. ;
101

sP )=12 sin w t. (=12 cos(w t.-1f/2)
10101

for
coherent CJ ~ 21
reception

For incoherent reception we cannot use these RF phase distinctions, and
most simpl~ we change the frequency:

s ~1) = 12 cos w , t. ; s ~ 2) = 12 cos w 2t .
1 ' Ou 1 1 0 1
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II. Corrmon Channel Conditions:

(1). Fading

(i). no fading:

(7.4a)

(ii). slow fading (one~sided):

(7.4b)

(iii). rapid fading (one-sided):

= [a 2 o..+a2(l-o .. )](G2)/I ).2Y
1J . 1J' ·o.N

(tv). rapid fading (two~side~l:

(7.4c)

O.4dl

O,4el.

cf. (5.8), (5.8a), and where the fading effects are represented by the s.tq...

tistics of ~ [cf. (3.3) for rayleigh fading]; IN is the mean tntenstty of the
accompanying noise (cf. Sec. 3.2). Fading is usually the result of unre­
solvable multipath effects. [For random signal source locations we replace
>..-2y by (>..-2y>in (7.4), cf. (3.4),(3.5).]

(2). Doppler:

si = 12 cos[(wo+wd)ti-~o] ; (7.5a)

- (~w t. )2/2
:. si = 12 e d 1 cos(woti-~o); ~wd=woAV/Co ' (7.5b)

-[~wd(t.-t.)]2/2
Pij = SiSj = e 1 J cos wo(tctj}' cf. (5.13], (T.5c)
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these last two relations.on the assumption that the doppler shift (wd) is
governed by a gaussian process, cf. Sec. 5.3, Eqs. (5.12) et seq. Without
doppler, (7.5) reduce directly to simpler forms, where wd=O; L\wd=O.

(3). Propagation Law (y):

This will depend on the mean propagation conditions~ including
the relevant geometry. For instance, simple spherical spreading fs ref3re­
sented by y=l, whi 1e cyl indri cal spread,; ng (associ ated with "wave-gui de"
modes of propagation) is usually y= 1/2. Resolvable multi'path effects
give y>l: y=2 is typical of rough terrain, cities, etc.; for very rough
terrain with multiple reflections, y>2. [See Sections 3.1-3.3 above.]

I I I. Common Modes of Reception:
We distinguish: (i), coherent; (ii), incoherent; ~nd (iti)., Jlrotxedll

_OM W

or IIcompositel~ IICoherent ll reception here fmplies complete knowledge of the
signal epoch (€) [or phase (wo€o) in the narrow-band cases] at the recelver,
and is usually achieved after the desired signal has been o~fginally de­
tected, and IIlock-on lR in phase has been accomplished. fnitial si'gnal
detect; on, of course, is done incoherently, w'here the ignorance of ~.tg~a1

epoch or phase is such that (s> =0, with p.- ~ 0 generally. Th~ tomposttee lJ . ,
mode of reception combines both coherent and incoherent processi)lg wheneyer
~ ~ 0, i.e., whenever there is enough phase coherence to provide a non­
vannshing mean signal. This occurs both at the intermediate stages of
detection and after the coherent mode has been established by successful
IIlock-on li

• If one is will:ing to support the added complexity of the
incoherent processi ng after coherency has been achi'eved, then Ilcomposi tell
processing (of the kind di:scYssed in Sec. 6.5) provides improvedperform~nce

over purely coherent (or incoherent) detection alone, cf. the examples (Sec. 7.5)

below. Various schema of signal processing are shown in Sec. 5 earlier.

IV. Common Noise Models:
The principle noise or interference models of practical importance

are the Class A and B noise models, described in some detail in Sec. 3.3

preceding. The former is IIcoherent ll
, i.e., produces negli"gible transi.ents
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in the receiver, while the latter is lIimpulsive ll
, generating essentially

nothing but overlapping transient responses. Included with both these
primary nongaussian noise mechanisms is an addi"tive gaussian component,
partially internal and partially external. The gauss noise model is itself
a limiting case of either the Class A or B sources, when the number of
independently emitting sources becomes large, or when no individual
source stands out above the general gaussian background. It ts the Class
A and B models which most effectively represent real-world EMl environ­
ments and which we consider here specifically below in the appltcatton
of our general threshold theory to typical EM! eX8mples, both for detector
design, i.e. specification of the optimum threshold algorithms, and for
the evaluation of perfo.rmance, including that of suboptimum systems li.ke
the simple- and cl ipper-correlators of conventi'on~l. pra~~tce.

In a compact way, we can summarize typi'cal received' narrow-Band s.tgnal
waveforms"i.n cOrmJOn use by the norma1; zed expressi'on

(7.6)

where

cf. Eqs. (7.1)-(7.3), in the coherent cases when if~O, only.
(7.6a,)

ad(t;) = 1 [no doppler spread), wd=O or ~d~O.J

-(t.t.wd)2/2
= e 1 (gauss doppler spread, ~d=O). (7.6b)

The effects of fading (cf. B above) are embodied in the first· and second __(
d 1· t d t t· t· - 2 - 2 () h ( ) - ('( ( ) ( )~ / 2or er amp 1 u e s a 1S 1CS ao' ao' V1Z., aomij , were mij . = ~oi aoj I ao

In all the binary signal cases henceforth we shall employ the same s,ignal
levels,so that a~2) = a~1) = ao' [but s(2) t- s(1), of course]. Thus, from
(7.4) we have
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(7.8)

(7.7)

. '

(doppler spread, coherent or incoherent reception; wd=O)

, 2= exp{-[~wd (t.-t.)] /2} cos w (t.-t.):
1 J 01J

= cos wo( )(ti-tj ): (incoherentrecepti6n~n6doppler);

mij = 1: (no fading, slow, one-sided fading)

mij = 0ij+(a~/a~)(l-oij): (rapid fading);

m.. = 0 •. : ( ..rapid,' two-sided fadino).lJ lJ - - . r

Also, ~r the signal correlation function P~j) we have various posstbflfties:

P~j) = i~ )i~ ): (coherent reception, no doppler, ad=l,wd=O);

Various combinations of (7.6)-{7.8) provi'de a wide range of typical received
signal structures, to be used in obtaining both the algori'thmlc structure
(Secs. 4, 5) and performance results (Sec. 6) when specifi'c numerical
results are desired.

7.2 Optimum Structures:
These are descrtbed in canonical form in 'Sections 4, S.Ust.ng &..;., "0.

above in these structural forms, along with R,(x;IA},"£xtJ, gtvesthe de.str~d

algorithm when combined with a suitable threshold. Thus, ~iexh;bits

the basic input-output relation ~r the sa~led dati {xi}.
For Class A interference we have directly

t(Xi IA)=~x log wl (X)A+Glx=x. '
1

(7.9)

where wl(x)A+G is given by (3.13) or (3.14).
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Class B interference requires some adjustments, to account for the fact
that the parameter~· QB' cf. (3.15), normalizes the data to the Jilecisured
value of the (total) intensity, rather than to the calculated value (Q2B+cr~),
which is not obtainable in finite magnitude from the approximation w1(x}B+G'
(3.15). Thus writing .

(J.10J

A

wehhave x now the normalized data (X) with respect to the measured inten-
sity. The pdf (3.15) becomes

(7 . 11 q)

(7. 11 b)

The (macro-) parameters here are Aa tV A~-a/2 , cf. (3 .16b}, and t1, (=; 2~Pl,

cf. (3.14c), where (ll,y) are parameters associated with theEMI scenarto,
cf. (3.6). The basic input-output relation Ii is now

l(Xi IB) :: ~x log W1(X)B+Glx=x.,
(7 .12)

for these Class B cases.
Figures 7.1"and 7.2 show l(Xi IA), l(Xi IB) for typical parameter values:

~A(AA,rA)' 1'2B(Aa,a); see Sec. 7.5 for some further comments.
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x.
1

Figure 7.1. The LOBO nonlinearity for Class A noise for the canonical (3.13) and
quasi-canonica"l (3.14) models ..
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7.3 Optimum Threshold Detectors: Performance Elements:
Rather than attempting an exhaustive (and expensive) enumeration of

all combinations of typical signal, noise, and observational procedures
(reviewed in Sec. 7.1 above), we shall adopt the following general approach
to obtaining specific numerical results: We snall calculate various canoni­
cal relations and IIbasic ingredients ll (e.g., L(2), L(4), etc.), including

processing gains (per unit sample) and the appropriate (upper) IIbounds ll on
the magni tude of the input si gna1 associ ated with both coherent and ;'nco­
herent detection, as well as such special relations as appear necessary to
enhance the usefulness of these results. This procedure we repeat in
Section 7.4 for the two classes of suboptimum receiver discussed here, viz.,
the simple correlator and the clipper~correlator. Thus Section 7.5 is devoted
to selected numerical illustrations of performance, including detector com­
pari sons, for typi ca1 EMI and signa1 s i tua ti ons, show'i n'g how one ma,y' use
the canonical results and IIbasic ingredi'entsll computed i,ntttally.

I. Various Useful Canonical Performance Relations:
Independent of the particular noise and signal structures are the prob­

ability measures of optimum threshold performance (in large sample r,egi'mes},
given in Sec. 6.1. Accordingly, we have [cf. footnote, p. 55].

~=p=l ) (7 . 13)

· (*) _ (*) ·1/2 ."from (6.2), (6.5), (6.5e), where the quantlty aon [-(varo9n) J 15

determined in detail according to Sections 6.2-6.5, for both optimum'and
,suboptimum detectors (* =opt., (-) = sub-opt.), and where the particular
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signal and noise structures are specifically introduced. Examples of the
latter calculations are given in Sec. 7.5 ff. Fi"gures 7.3, 7.4 show typical

" * (*)curves for (PO/2) (= Po/p) and Pe ' respectively. Binary as well as
the "on-offll signal cases are included. As expected, decreastng the false
alarm prob~bility (a.~*)) increases the magnitude of cr~~) needed to obtain

a given P~ ). *
* Another set of canonical relations are the probability controls, c~)~

C(I~O.' cf. (6.11), (6.21a), (6.27) etc., which appear in the varto'us ex..
pressions for the minimum detectable signals (Sec. 6.2 et seq.). These are

(7. 14)

respectively for the Neyman-Pearson and Ideal Observers. Figures 7.5, 7.6
illustrate these quantities.

II. IIBasic Ingredients":
These are the var; ous non-l inear 5 tati sti"cs of the accompan,yt.ng (non­

gaussian + gauss) noise, which are particular elements of the processi~ng

gains (rr(*)), minimum detectable signa~, cr~~), etc. and bounds on the
acceptable size of the input signals (a2«1). From (A.2-42a) we haveo
specifically

Wi
L(2) == 1(_1)2) =

\W l 0
(t

2>0 = l: t
2wl (x)dx (>0); t == ~x log wllX), etc.;

(7 . 15a}

(7.l5b)

(7.1Se)

(7.l5'd)

133



All these quantities are positive, except the last, which for certain noise
parameters can be zero or negative. These relat;'ons (7.15) hold for Class
A, B noise, or for any noise, with pdf wl :E' for that matter. Figures 7.7­
7.10 show L(2), •.. ,L{6), (7.l5a-d), respectively (in db), for ~trictly qnd
approximately canonical Class A noise,* cf. (3.13). Similarly, Ffgures
7.11-7.14 give L(2), ... ,L(6) forthe Class B noise of (3.15), (7.ll) qboye
(in db) for various a[=(2-~)/y], as a function of A.. . a

In the Class A cases these lIelementsU all approach thetr gaussian
limits as·AA-+<xJ, viz:

(gauss): L(2)=1 ; L(4) = 2; L(2,2) = 6 ; L(6) = 8 , cf. (A.1-22ql. (7.16}

For the Class B noise, we have the results of Figures 7.11-7.14, for
A

example. Of course, when AB {tV Aa , cf. (3.l6c))400, we have again gaussian
noise, so that (7.16) applies here equally well tn the limit. See Sec. 7.5 for

further comments on Figs. 7.3-7.14.

* Preliminary calculations show that these results are not appreciably dif­
ferent when quasi-canonical Class A noise is used, with a~-<-<l, cf. (3.14)
et seq. A complete investigation of this phenomenon, however, remains to
be carr; ed out.
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III. Processing Gains/per Sample:
The processing gain per sam~le, rrC*)/n, are also needed in the evalua­

tion of (optimum) performance. From (6.10), (6.13); (6.24), (6.33) we can
write [cf. Tables6.la, 6.1b]:

rr* = L(2) = rr(21)*/n
coh/n coh

rr~ncln = ~{L (4)+2L (2)
2

(Qn-1)}, = ~~4), (Qn=l: incoh. si gna1 str{Jcture)

. . 2 .
~ nL (2) /8 , (Qn= ~ (»1);

s;nuso;-ds; Eq. (A.2-42e))
[J.17a,}

(binary symmetric):

rri~~)* = L(~)2 (Q~21)_1) = 0, (Q~2l)=1: incoherent structure)

~ nL(2)2/4, (Q~2l)=n(»1),

sinusoids, Eq. (A.2-61al

----.............................._---- ...............---------------------..

explicitly for no, or slow-fading, e.g. mttl, cf. (7.4a,b)aBoye, and btna,ry
symmetric channels, when indi'cated. We also note -from (6.14), (6.15} tnqt tn-
the coherent cases the minimum detectable Signal<a~>~~~~:on ts tncreased
vis-a-vis that of the lIon-offll cases; by a factor 4 for orthogonal s.tgnals
(7.3) and by a factor 2 for antipodal signals, (7.2), according to the defini­
tion (6.13), while the processing gain (rr~~~)*) remains unchanged. On the



other hand, for incoherent detection, <ao2\(?l)~ == a2, (a2), (symmetrical
~ln-lnc 0 0

channels), cf. (6.33), and the processing gain is increased vis-~-vis the
lI on-off ll cases by a factor 2 to the extent that the binary signals have
coherent waveform structures, cf. (7.17b) vs. (7.17a), n»l. Figures 7.},

7.11 show rr~oh/n (db) for Class A and B noise respectively in the coherent
cases. Figures 7.8, 7.12 show (rrfnc/n) (db) + 9.0 db (= 10 10910 8),
also for Class A and B noise, when Qn = 1 for the "on-off tl cases. Figures

7.15, 7.16 illustrate rrfnc/n for Qn = 10, Class Aand Class B noise
respectively. The limiting cases (n»l, coherent signal structure) are
readily calculated form (7.17a,b) with the help of the data of Figs. 7.7,

7.11. Generally, as the' noise becomes more gaussian, these processing
gains approach their gaussian limits (as expected) where now L(2J+l ,
L(4)+2. (See Sec. 7.5 for comments ~n Figs. 7.15, 7.16.)

IV. The Optimum Ho- Variances a:~-l
These quantities, a~~, appear as the argument of the probabtltsttc

performance measures, PO' P~, cf. (7.13), and are consequently a prtnctpal
goal of our computations. Specifically', from Tables 6.1a,b we can write
in summary:

A. Coherent Detection:

*2 _ -2 (2) I 2 *
aon-coh - aonL == 2\ao)min-cohn:~oh' [Eq.{6.9)J:'on-off ll signals

{

(a{2l)*h)2 = 2a2nL (2) orthogonal signals, [Eq. (6.15b)Jon-co 0

II = 4a2nL (2) antipodal signals, [Eq. {6.15a)Jo
(7 . 18)

these last for symmetrical channels (a~l) = a~2) = ao)' (Pl = P2 = 1/2),
and no or stationary fading small or large, rapid or slow (ao = ao' aoi =ao)'
a11 n(~ 1).
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B. Incoherent Detection:

2 *2 *
2/a ). · II. : lIon-off ll

\ a m1 n-1 nc 1nc
(7 . 19a)

hi nary symmetti'ca1 , (7 . 19b)

where mij = 1, a~2)=a~2)=ao' etc., now for slow or no fading, whtch is JOOre

restricted than the above, (7.18). Here we have

A( 21 ) 1 n I ( 2) .. (1) 2
• Q ~1 :: - ~ [p.. =-p.. ] n>1
, n n f. 1J lJ ' -'

lJ
(7.19c)

cf. (6.25), (6.33), (6.33a), and Table 6.lb. Special results are

(i). incoherent signal structure:

(n 2: 1)

(iii). coherent (sinusoidal) signal structure: lIon-off ll signals

(7.20a)

and in the case of the binary symmetric channel above, these are [cf.
(7.l7a,b) in (7.19a,b)]
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(i). incoherent signal,.structure:

((J:~:~~C)2 = 0: [detection of two equalener~y signals:
no distinction between Hl and H2.]

(ii). coherent (sinusoidal) signal structure: IIbinary signals ll

(7.20b)

The advantage of operation with coherent s,ignal structures in the
incoherent, lIon-offll mode of detection vis-a-vis incoherent s,ignal struc­

tures is at once apparent from (7.20a):

((J~n-incfcoh st.
* 2

((Jon~inc) inch. st.
(7.211

2 2 ·
Although 1>L(2) /L(4)~0, L(2) ~ L(4) \'l(jthtn 0(10 db}, so that for. the.

customary large values of sample-size n, the advantage of bel.ng able, to
employ coherent signal structures, i.e. havi'ngchannels with ,little or no
doppler spread and/or rapid fading, is essentially tVn, which i's consi'derable

where n is at all large. cf. V, Section 6.2 above. With binary (symmetrtc)
signal operation coherent signal structure is critical, cf. (7.20b), if we

are to avoid having to distinguish between two essentially equal lIenergy
signals ll

, whose original frequency structures are no longer distinct,
because of the time- and frequency IIsmearingll (i .e. spreading) produced i'n

the channel. Thus, for sufficiently IIwidely-spread ll channels i't becomes
necessary to employ the 1I 0n-off ll transmission mode, cf. (7.20aJ, where now

at least, we are required to distinguish a non-vanishing (desired) signal,
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however distorted, from the condition of noise alone. Quantitatively,
the larger the magnitudes of Qn' Q~2l), the larger the 'variance (0:n)2

and the better the detector performance, cf. (7.13).

C. The Composite Detector:

0*2 = 0*2 +0*2.
o-comp o-coh O-lnc

-22.
= n{a~l(2)[~n f(Si)2]+t a~ {L (4)+2L (2) [Qn-1])}: 1I 0n- off"

(7.22a)

(0(2l)* )2 = n{a2L(2) _1 H/s~2)_/s~.1"]2
0- cOJl1> 0 2n i '\ 1 \; 1 /

2 2

+Iao L(2)2(Q"(21Ll)}
2 n IIbinary symmetric ll

'.

(7.22b)

Here the' sum in (7.22b) reduces to (2,4), respectively for completely
coherent received orthogonal, or antipodal binary signals,. cf. (7.18). The
sum in (7.22a) li'kewise reduces to unity. Again, we assume no or slow
fading here, and stationary. noise and channel characteristics. Frequently,
we do not have full coherence at the receiver, so that Pij =<SiSj>~

SiSj' (si,j ;. 0), and we must use both first- and second-order staUstics

of the signal, as indicated above. We shall use (7.22) in {7.13J in Sec­
tion 7.5, when we come" to calculate performance.
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v. Bounds on Input Signal Size:

The bounds (x~,y~) on the maximum input signal for which varlg~

~ varog~, required both for the LOBO and ADD character of these optimal
threshold detection algorithms, are given in Section 6.3. We summarize
the results for the usual conditions (above). We start with the 1I 0n-off ll

signal cases:

A. Coherent Detection:

x~ = L{20 L{2,2)fi _ (1_n)L{2)2) =<t~o
varot 2

[rapid fading, for no or slow fading, n _ 0, Eq. {6.71)J.

B. Incoherent Detection:

y~Iincoh. si g. struct.= IL~6}+6L (2)L (2,2)I;

(7.23)

_ L(2)

Y*I -. 2o coho sig. struct. 3L{2,2)+2L{2)
, [Eqs. (6. 72) ] . (7.24)

For the binary symmetric channel, with no, ~low or rapid, fading, we refer back

to Eqs. (6.77), (6.78). FinalJy, when the composite detector is used
[cf. Sec. 6.5], we choose the stricter of the two bounds (x~,y~), usually
that for incoherent detection. Figures 7.17-7.19 'show (7.23), (7.24) ·for
Class A noise, while Figures 7.20-7.22 give (x~,y~)for various Class B
caSes.

7.4 Performance Elements for Suboptimum Threshold Detectors:
Just as we have established the lIelementsll needed to determine the

performance of optimum threshold detection systems in Sec. 7.3 above, we
can proceed to do the same here for suboptimum systems. As before, we
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no, slow, or rapid fading); Eq. (7.24).
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Figure 7.21. The bound, y~, for incoherent detection of signa1i with fully incoherent

structure in Class B EMI (Qn = 1, Rn = 0), Eq. (7.24), arbitrary fading.
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seek a combination of canonical performance results with specific elements
whereby particular numerical values may be obtained, as in Section 7.5
following.

I. Canoni cal Suboptimum Performance Measures:
Analogous to (7.13) we can write directly from Eqs. (6.50), (6.51)

in suboptimum threshold situations [cf. footnote p. 55] ..

and

1 1
Pe ~ ~1-e[21iJ Ci.o)}' [Eq. (6.51)J ,

(7 .25)

(7.26)

respectively for correct signal detection, and errorproBabiltty tn tne
subsequent "col11Tluni cation ll pttase of detection deets-tons. F.i'gures7. 23 a,nd

7.24 give the canonical relations between PO' ~e and the degradation factor,_
iPd, cf. Tables 6.la,b, 6.2; (6.l8), (6.38), (6.42a,b), etc. The relations
(7.25), (7.26) are canonical equivalents of (7.13).

II. Various Degradation Factors, iPd~

In order to use (7.25), (7.26) in .relation to spectftc s.tgnql, noise" .
and reception conditions we need the explictt forms of the degr~d~tton factor,
<Pd' These are readily summarized below, from Tables 6.1a,b,6.2. We have

A. Simple Correlators: iPd, 1I 0n-off ll signals:

(i). coherent reception~

<pJ = l/L (2) , [Eq. (6.18)J.
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(ii). incoherent reception:

~*I = 4/L(4)(x
4
-1); [Qn=l];

d incoh.struct.

~*Id coh. struct.
= 1/L(2)l ; [Q ~ n/2 »1, sinusofds] .

n-

(7.27b)

(7.27c)

[For intermediate values of Qn use Eq. (6.38).] For binary signals, we get

. (iii). coherent reception

*ip~2l)= l/L (2) , Eq. (6.21)] •

(iv). incoherent reception

(7.28a)

ip~21fl. = 0; [Eq. (6.42b)]: (degenerate case:
lncoh.struct. indistinguishable signals) (J.28b)

* 2
ip~21) I = l/L (2) , [Q(2l) .~ n; sinusoids.] (7.28c)

coh.struct. n

[Again, for intermediate values of Q~21), Q~21), use (6.42a,b).]

B. C1i pper-Corre1ators : ~~d' II on-o ffll signa 1s :

(i). coherent reception:
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1*1 !~lE(O) l2 ~d eoh. struet = -. L(2) ~ , [Qn 'U n12» 1, sinusoi ds]. (7. 2ge)

(ii). incoherent reception:

~dl. = [2w" (0)]2/L(4); [Q =1];
incoh.struct. lE n

(7.29b)

Again, for intermediate values of Qn' see Table 6.2. Similarly, from
Table 6.ld, 6.2 we get for binary signals

(iii). coherent reception:

J4W (0)2

1
.2

~l=l ~~2) , [E = A,B, here], ef. (7.29a)

(iv). incoherent reception:

(7.30a)

~dl = 0, cf. Sec. 2.4-4 [indistinguishable s.ignals]
ineoh.struet. (7.30b)

[
4W1E (0)2] 2 (21)'1*1 - [Qn % n » 1, sinusoids]. (7.30e)

d eoh. struet. -. L(2) ,

To imp1ement the ~ IS numeri eally we need next x4, and w1A (0), wl BCO},

and, similarly w1'A(0), w1B(0). These are, for the 4th moment of Class A
and B interference

/fl -3 { (24A,B }+ 2
A,B - 8 g2 (l+r l )2

2A,B A,B
(7.31)

where we may use the EM! scenario (3.6) to determine (24' viz~
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From (3. 11) we get directly

(7.32)

. '_a4y+~-2

( .41 \ = C(4) = ( 2-11 ?)( 2 ) ao2-4Y-llA-,4y; ao=Ao/'A, [cf. f·;ig. (3.1)J
A yj - 1l,Y 4Y+ll-~ l-a-ll

o (7.33)

for this general class of scenario. With the help of (3.10) we can then
write

[For example, with the scenario of Sec. 7 O.LRef.~], where .! (or Go)
is rayleigh distributed, say.! is, we have a4 = 2a2 , (G~) = (G~)2, etc.,
with y = 2, II = 0 and (7.34) reduces to

Similarly, we get from the noisepdfls (3.13), ,(3.14), (7.1:1):

-A 00 Am (1+f , )1/2
(Canonical): w1A (0)A+G = e A I A A 1/2 ' cf. (3.13)

mFO m!!2-rr(m/AA+f ' )
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(guasi-canonical):

d +~(O)(O), cf. (3.14),(3.14a).

"4TIa~m (7.35b)

For the Class B noise we have directly

The second derivatives of the pdf1s,'wl above, are found similarly
to be, for example,

(canonical):

(7.36)

(7.37)

~ (_l)n An r (na+3)
L n1 a, 2n=O

(7.38)

Figures 7.25, 7.26 show w1{O)A+G (canon.)' w1(O)B+G' Eqs. {7.35a}, {7.36},
for various ranges of parameters of these EMI models.

I I I. ARE IS:

These are the Asymptotic Relative Efficiencies (ARE1s) de.fined an.d
derived in Sec. 6.3, IV above. We give here only the more important,
1imi ti ng cases:
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TABLE 7.·' ASYMPTOTIC RELATIVE EFFICIENCIES.

.~ ARE~: incoherent receptionARE; coherent reception
(<pa) [" on- off" + binary] '. [1.lon~offll]

(1 ) simple correlator 1/L(2) { 4/L C4} (x4_l): incoh. sig. structuresoptimum

1/L(2)2 : coh.sig. struct. (n»l)

(2) clipper correlator 4w (O)2/L(2) (2w1E (O)2/L (4): incoh. sig. struct.optimum lE

. {4W
1E

(O)2/L(2)}2 : coho s;g. struct. (n»1)

simple correlator 2 ( 2/w1E(O)2 Cx4_1}: incoh. stg. struct.(3) clipper corre1ator 1/4w1E (O)

coh. sig. struct .. (n» 111/[4w
1E

CO}2J2 :



In the case of (symmetrical) btnary recept"ion (no or slow fading) in
the incoherent detection mode, (1) and (2) above are zero, and (3) is 0/0
(indeterminate). For coherent signal structures, however, these AREls are
the same as for the lI on-off ll cases. We note, also, that here the CARE)inc
= (ARE)~Oh' and further, that in these limiting situations of large sample
size (incoherent reception), the (ARE). = q)d*'ch'h' (n»l)" as yJell, cf. (7.27)-, nc , v 21)
(7.30) above. (For intermediate cases where Q , Ql >1 but are less thann n
(n/2, n) we must use the more complex formulae of Sec. 6.3, rv directly.)

Finally, Figures 7.27-7.30 show the (square ~f the) ARE's(=~a's) here,
for (1) a~d {2) of Table 7.1, for (canonical) Class A an~ Class B noise. The
ARE (=~) for (3): [simple correlatorjclipper correlator] may be obtained at

once ~ subtracting, viz: ARE(3)Cdb) = [ARE (1 )-CARE)C2)] db. tn general
the clipper-correlators are much closer to optimum performance than are
the simple correlators, when, as is the case here, the EMI is Class A or
B noise. [But, regarding the use of AREls as comparati"ve performance
measures, see the caveat at the end of Sec. 6.3.·3, III.J

170



AA = 10-4 ,10- 3 ,10- 2

I10
2

~

~
10

~
c::(

...........
0

r--
:3

0.1

. 10-8

Figure 7.25. The probability density function, evaluated at zero, for Class A
noise, Equation (7.35a).
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noise.
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7.5Brief·R~~atk~:6~·Fi9~t~s7.1-7.30:

Figures 7.1,7.2 show the (zero-memory) dynamic characteristics of the
LOBO's for several specific Class A and Class B noise cases. Both Class A
and B noise require a combination of linear amplifier, and clipper-suppres­
sion (negative gain) for the larger amplitudes~ The Class A character­
istics are, however, somewhat more complex, with a second amplifying-limit­
ing region, cf. Figure 7.1 vs. 7.2. In the Class B cases the character­
istic is a clipper-suppressor which is rather insensitive to the nongauss-

A

ian nature (rvA ) and to the source distribution and propagation conditions
, a,.

(rv a,) of the noise.
Figures 7.3-7.6 are essentially self-explanatory: increasing variances

(a~2) lead to smaller error probabilities and larger probabilities of cor­
rect signal detection, wit~ smaller false alarm probabilities (~) requlrlng
larger a~2, all of which is entirely. expected. Similarly, the tighter the
controls the better the performance, as shown in Figures 7.5, 7.6.

In Figures 7.7-7.10 all these Class A nongaussian noise statistics
Li2), L14), etc., approach their respective limiting gaussian values as
AA-¥YJ, as expected (fA>O); i.e., L12L~1, L14L~2, L12,2t6, Li6ta, cf. (7.16).
Moreover, when AA+O, fA+O, we also obtain the gaussian limits, as expected,
due to the nonvanishing gaussian component a~>O (i.e., fA-¥YJ). And, of
course, the more highly nongaussian i~ the noise AA ~ E(>O) the larger is
the magnitude of the statistic in question.

The behavior of the corresponding Class B statistics (Figures 7.11-7.24)
is similar, although plotted differently. For Aa('VAs)-¥YJ'2the curves for L~2)
etc., fold back on each other, approaching zero db for L~ )+1, 3 db for

L~4t2, etc. ,cf. (7.16). Similarly, as Aa+O (i.e., As~) wit~2a~>0, one

again has a gau~sian pdf, cf. (7.lla), whith becomes wl (x)G=e-x /IIT, as
expected, with x+X/aGvTIS' (7.10). Smaller values of a represent more effec­
tively nongaussian interference; i.e., larger values of L~2), etc., consist­
ent with the more radical departures of the pdf form gaussian behavior as

A

Ixl-¥YJ [cf. Figure 3.4(II) of [6], for the APD P1B (OE
O

)].

The processing gains (per independent sample), as shown in Figures
7.15,7.16, for signals with partially incoherent structure (Qn=10, n»l)
show the same type of behavior as the various nongaussian noise moments
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Li2), L~2), etc., in Figures 7.7-7.14, and for the same reasons. [For
coherent threshold reception, see Figures 7.7,7.11.]

Figures 7.17-7.22 show various bounding values for minimum detectable
signals under the equal variance condition (I), Sec. 6.4, for coherent and
incoherent reception; see also Figure 6.1 and the discussion of III, Sec. 6.4
above. In general, as the noise becomes more gaussian, these bounds become

looser, and vice versa as the interference becomes more nongaussian; e.g.,
A

AA' Aa , r~, a, etc. This is consistent with our general observation that the
more nongaussian the noise, the smaller, i.e., the tighter the upper bound on
the maximum minimum detectable signal (a2)*. permitted under the AO oro mln
equal variance condition.

Figures 7.23a-7.24 compare suboptimum performance against the corre­
sponding optimum performance measures, with the degradation factor, ~d' as
parameter. These curves are entirely canonical in that they apply for any
nongaussian (and gaussian) noise, common mode of reception (i.e., coherent,
incoherent, or composite), cf. (6.48), and (6.84) vs. (6.90), as long as
sample size (n) is large and the AD condition (equal-variance conditions)
is obeyed. Thus, once ~d is properly determined, specific performance
measures are at once obtained from these figures.

Figures 7.25,7.26 show typical pdf1s at x=o for Class A and B noise,
needed in the calculation of the performance of clipper-correlators and
comparisons with other optimum and suboptimum threshold detection algorithms,
cf. Table 7.1 above.

Finally, Figures 7.27-7.30 show typical Asymptotic Relative Efficiencies2

(ARE's)~ viz. ~d'S, of suboptimum detectors vs. the optimum for the noise
in question and the particular mode of observation, in these threshold situ­
ations, discussed throughout this study. Characteristically, since the
simple correlator is optimum in gaussian noise, as the noise becomes more
gaussian, the AREls for the simple correlator in both Class A and B noise
becomes larger (i.e., closer to unity), cf. Figures 7.27,7.28, including
a+2 in the latter (i.e., larger a means less nongaussian, with a fold-over
effect in Class B noise as A~ (not shown in the figures). The AREls for

a
the clipper-correlator, however, display a fold-over effect as the noise
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becomes more nongaussian, until for small AA' 0(.::.10-1), close to the maxi­
mum value (0 db) is attained. This maximum cannot be reached here, of
course, since the clipper-correlator is never optimum in Class A as gauss
noise, although the difference is small, viz., ! = -2 db, cf~ Eq~ (6.66).

. TI
A similar behavior is also noted for the clipper-correlator in Class B
noise, cf. Figure 7.30, although the range of the fold-over effect as the
noise goes from very nongaussian to gauss is much smaller, on the scale of
a lOth the amount of the corresponding Class A effect. This shows that
the super-clipper (i.e., clipper-correlator) is much less sensitive to
impulsive noise (Class B) than to the IIcoherent ll (Class A) noise. Thus,
the clipper-correlator makes a comparatively robust processor against
Class B noise, and can be fairly close 0(4 db to 1.5 db) to the optimum
processor in performance, cf. Figure 7.30.

7.6 Numerical Examples (Threshold Detection):
In this (sub) Section, we present a few numerical examples to illustrate

the use of the general results of the preceding text. Typical Class A and
B noise parameters ·and scenarios are selected; our attention here is given
mainly to the on-off-cases, for comparative simplicity. Thus, we have

Class A Interference: AA = 0.35; fA = 5 x 10-5

(canonical, [g])

Class B Interference: A = 1.0; a = 1.2; n = 0.00207,a
C'Saipan Noise," [33J)t

(7.3ga)

(7.39b)

with the various other parameters of observation being n = 104, p5 = 0.90,
P: = 10-4, aF= 10-4, typically; symmetrical channels are also assumed:

p = q = 1/2, ~I.O = 1. Typical results follow below.

'fThe value of L(2) in [33J is 4.5 db higher as a result of different
intensity normalization and scaling."
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I. Optimum 'Detection

Example 1: Performance Probabilities:

From Figures 7.3,7.4 we find at once for the values of PO' P~,

elF above that

0~2II.O = 17.3 db (p~ = In-4); 0~21 = 14.2 db
N.P.

(a~ = 10-4, P5 = 0.9); n»l

(7 .40)

These results apply directly, also, to suboptimum detectors (o~, etc.),
for values of P = P*~ etc., again, provided the sanlple size i's large

e 2 e 2
(n»l) and that 01 ~ 0

0
= the equal variance condition holds {so that Eq.

(7.13) remains valid).
Related to the above are the results of Figures 7.5,7.6, for ~ = C*,

etc. For the performance measures of our example above, we find at once that

~ = CN..~P. = 5. 6 db (= 3. 63) ; Ci. a = 7. 2 db (= 5. 25) (7 •41 )

Example 2: Coherent Detection in Class A Noise:

Here we wish to establ ish the minimum detectable signal <a~ );in-coh
associated with the above operating conditions when the Class A noise of
(7.39a) above embodies the interference. From (6.10) in (6.11a,b) we get

directly

~~> ~in-coh =
B* (7.42)

For no or shallow fading, i.e., n ~ 0, but complete signal coherence
(si = 12"), the upper bound, xmax « xOA on the permitted values of minimum
detectable signal which still preserve the AO character of this optimum

threshold algorithm is given by (6.71)
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(7.44a)

.(7 . 44b)

~max = X5A -15 db ; ~5A = 10 log 3 x 10-5 = -45 db (Fig.7.17), (7.43)

so that the upper bound he 1re is ~ = -45-15·= -60 db. [The 11«11 inmax
xmax«x5A is usually taken to be 15 db.]

Next we use (7.42), X = 40 db, with L!2) = 41.5 db from Figure 7.7 and
B* = 11.2 db for the N.P. detector from (7.41), so that

(~~}:in-coh I = 11.2 -40-41.5 = -70.3 db,
N.P.

which is substantially below the xmax bound (-60 db}, so that the AO con­
dition is amply satisfied. Likewise, from (7.41) for the 1.0. we obtain

(X~). I = 14.4-40-41.5 = -67.1 db.
'mln-coh I..O.

If the fading is moderately deep, e.g., n = 0.99, (lYn) = -20 db, then
the x5A obtained from (6.71) using L(2) and L(2,2) from Figures 7.7 and 7.9,
L(2) = 41.5 db, L{2,2) =90 db, is x5A = 2.8 x 10-5 or Imax =-45.5-15 = -60.5

db. Again from (7 .. 41) and (7.42), with (lYn) = -20 db, we obtain

and

J~2"
\: 0 ~in-coh

N.P.

I. O.

= 11.2-40-41.5+20 = -50.3 db,

= 14.4-40-41~5+20 = -47.1 db ,

(7.44c)

. · !2Vwhich are above the xmax bound,so that the estlmate of ~o/min may be
suspect. .

Example 3: Coherent Detection in Class B Noise: *
For this example we repeat the calculations of (a~)mjn Z b' *

(7.42), in the manner of Example 2, but now with the values OfL~ " ~o
appropriate to our particular Class B case (7.39b). From Figures 7.11 and
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7.13 we get L~2) = 25 db and L~2,2) = 56 db. For no or shallow fading

(n = 0), ~~ = -25 db (Figure 7.20), and for moderate or dee~ fading
(n ~ 0.99), ~~ = ~28.2 db. From (7.41) in (7.42), with n = 104, we obtain,
for no or little fading

<a~)~in-coh N.P. = 11.2-40-25 = -53.8 db,

/a2\*. = 14.4-40-25 = -50.6 db,
\ 0 fnn n-coh 1. O.

(7.45a)

(7.45b)

with ~max = -25-15 = -40 db. With even moderately deep fading [O(20db)],
v 2 *xmax = -43.2 db and ao min-coh = -33.8 db and -30.6 db, respectively, for
N.P. and 1.0., so that even moderate fading cannot be tolerated.

Example 4: Incoherent Detection in Class A Noise:
We parallel Example 2, for the conditions as before, but now

using (6.24) and (6.25) in (6.27), or (7.19a) with (7.20a) above in ~onjunc­

tion with (6.27), to write for the minimum detectable signal, in Class A
noise, when threshold detection is incoherent:

Now, from {6.58)1 we have for coherent sinuso;d~l waveforms

Qn ; ¥(slow fading) ; Qn ; ¥(l-n)2 (rapid fading).

(7.46)

(7.46a)

For incoherent signal waveforms, Q . - 1 ~ O. Accordingly, for the large
n

samples (n»l) required for (AD) threshold detection, (7.46) reduces to
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(i) coherent signals:

and

la2\* = ~/nL(2) a'\ofmin-inc l'OD~ ~
slow

= ~/nL(2)(1-n), ~(1-n)2»1 ,
rapid

(7.47a)

since L(2)2A.(4) = 0(1). (In fact, from Figures 7.7 and 7.8, L(2) = 41.5 db,

Li4) = 86 db, so thatL(2)2/L(4) = -3 db.)

With incoherent signal structure (Qn = 1), (6.46) reduces, for both
slow and rapid fading, to

(ii) incoherent signals:

/2\ ~ vt * (4)\ao/min/inc - 88 /nL (7.47b)

Specific numerical results may be obtained at once for the postulated
observation conditions above. We have [cf. {7.41)J:

Ie 2\*
\ao/min-inc

= 4.5+5.6-40-41.5 = -71.4 db,
coh.sig.
slow
N.P.

(7.48a)

( 2)*a
o · ·nlln-lnc coh.sig.

rapid
N.P .

= -71.4-(1~n) db, and (7.48b)

. ~2~*a..o mln-lnc = 4.5+5.6-20-43 = -52.4 db .inc.sig.
any
N.P.

(7.48c)

The corresponding results for the 1.0. are 1.6 db greater (=7.2~5.6) from
(7.41). As expected, incoherent signal waveforms result in truly incoherent
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(7.49)

detection, with a In -dependence on sample size vs. the n-dependence
obtainable with" coherent waveforms. Thus, a channel which destroys signal
coherence greatly reduces.the detectability of the resultant signal
(0(20 db) here), as is well-known.

To complete our analysis, we need to establish the bound Ymax«y~.

From Figure 7.19 for coherent waveforms, and Figure 7.18 for the incoherent
waveform cases, we get respectively for y*,o

YOAI. = -52.5 db ; YOA I. . = -54 db ·
COh-S1g 1nc-s1g

Our results (7.48a,c) above for the coherent signals fall acceptable below
Ymax = -52.5-15 = -67.5 db, as long as the rapid fading is not too deep,
but for the incoherent signals sample-size is not sufficiently large to

put (a0*\ *1· . 1·" below Y* to insure the AD character of the algorithm (and11m n- nc 0 ----
that the performance measures are themselves the required good approxima-
tions). Thus, this last result, (7.48c), really represents a suboptimum

threshold algorithm, with a suspect estimate of «a~>min' and performance.
Finally we note the lIanomalous" behavior here of (optimum) coherent

versus incoherent detection: <a~):in-coh >~~t:in-inc for otherwise the
same reception conditions t . For a discussion of this effect, see Section
6.4,111 and Figure 6.1.

t We note that the "anomalies" are not due to the particular values of L~:~,
but rather reside analytically in the quantities BN. P. or Bi.a.; i.e., from
(7.42) and (7.47a),

/.2)* I 2\* (8* v'm3*)/nL (2) (l-T)) •\ao min-coh - \ao/min-inc = -
From*Figures 7.5 and 7.6 we see that B* - 18B* < 0, i.e., (a~>:in-coh <

la2). . , for those p* or p*O where c*=~<18 = 4.5 db, i.e., when\0 m1n-2nc e
P~>2xlO- , or when P5<0.62{aF=10-4). Physically, as discussed in Section
6.4, III, this lIanomalousll behavior stems from the different amounts of
signal and no~se information lost and gained for incoherent vis-a-vis

coherent detection.
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Example·5:····Incoherent Detection in Class B Noise:

The analytic results (7.47) apply equally well here, with now
L~2) = 25 db and L~4) = 53.5 db from figure 7.12. From Figure~ 7.21,7.22

we get the limits

y5B = -35.5 db (inc.sig.) ; y5B = -36.6 db (coh. s1g.) (7.50)

We summarize the results for the corresponding minimum detectablle signals:

la
o
2\* --'\ )/ -54.9 db

= -54.9 - (l~n) db
= -36.1 db

(coh.sig.,slow,N.P.),

(coh.sig.,rapid,N.P.),
(inc.sig.,any,N.P.),

(7.50a)

again with the 1.0. results 1.6 db greater. With Ymax«YOB' or
Ymax = -50.5 db for coherent signal structures, the minimum detectable is
acceptably below Y . On the other hand, larger sample sizes (~re neededmax
to make the minimum detectable signals fall within acceptable AD limits

when the signal waveform is incoherent.

Example 6: Composite Detection in Class A and B Noise:
From the results of Section 6.5 (6.88a,b) we may write for the

minimum detectable signal when an (optimum) composite threshold detection
is used, the following special results for coherent signal waveforms:

~2>*. I ~~- 4 (l-n), B*»2(1-n)2,
'\0 mln-comp . slow nL(2)

~ 2\* I ;-I8B* - 4 B*»2 Q »1
~o/min-comp rapid nL(2)(1-n)' , n

(7.51a)

(7.51b)

[For incoherent signal waveforms (n~oh+o), the composite detector, of course,

reduces to the purely incoherent detector of (7.47a)·, discussed in Examples
4,5 above.]
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Comparing (7.51a~b) with (7.47a) we see that ~~):in-comp<~~}*in-in~
always for slow or rapid fading: there is no uanoma10us" behavior ~~g:co
Moreover, it is easy to demonstrate this; for example, let x=B*, so that
(7.51a)· vs. (7.47a) becomes

~-4(1-n) l ~
- l-n

2
o < . x ·2 + 16(1-n)2~ all x ~ 0 ,

- (l-n)

(7.52)

and similarly for (7.51b).

One important feature of the composite (threshold) detector to be
noted is its insensitivity to slow fading, vis-~-vis the coherent detector,
i.e., (7.51a)vs. (7.42). A second is the possibly strong superiority over
either the coherent or incoherent detector, as expressed by smaller minimum
detectable signals, particularly when there is significant fading. This
superiority vs. the incoherent detector is Ul.5 db) and is 0 (3 db) vs. the
coherent detector with no fading, as the numerical results below indicate,
and is 0 (10-20 db) when there is moderate fading (n=O.99).

For the specific noise and signal examples assumed here we have for no
fading:

Class A: ~
2)··* 2.83 x 3.63 - 4a. = 4 4 = -73.6 db (N.P.),
o "mln-COmp . 10 x 1.41 x 10

(7.53a)

with the corresponding result for the 1.0. of -71.1 db.

Class B: 1.:'2\* 2.83 x 3.63 - 4 = -57 db
~o/min-comp = 104 x 3.16 x 102 (N. P. )

(7.53b)
= -54.7 db (1.0.)
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These figures are to be compared with (7.44a,b) and (7.45a) for the corre­
sponding coherent detector results and with (7.48a) for the corresponding
incoherent detector results.

For moderate slow fading (n=O.99), (7.5la) gives:

Class A: /ao2\/m~1.n comp = 2.8~ x 3.63 - 4(4°1) = -71.4 db (N.P.)
~ - . 10 x 1.41 x 10

with the corresporlding result for the 1.0. of -69.8 db.

(7.53c)

= -53 ~~3 db (1.0.)

Class B: ~2\* =
,\o!min-comp

2.83 x 3.63 - 4{.Ol) =
104 x 3. 16 x 102 -54.9 db (N.P.)

(7.53d)

The corresponding fading results are given by (7.44c) for the coherent
detector (Class A).

In general, the composite detector is to be recommended for its com­
parative insensitivity to slow fading. Observe that the stricter of the
two possible bounds (x~,y~) is that for incoherent detection, i,.e., from
examples 2,3 and (7.49),{7.50) we have YOA = -52.5 db (coh.sig. structure)
and YOB = -36.6 db, similarly. The results {7.53a,b} are accordingly

withtn the limits Ymax-A = -52.5 - 15 = -67.5 db, and Ymax-B = -36.6 - 15
= -51.6 ',db.

Still other numerical examples can be readily constructed along these
1i nes.

II. Suboptimum Detection and Comparisons:
Here let us use the results of Section 7.4, especially {7.25}-{7.38}

and Table 7.1. We shall consider only a few examples here~ by w~Y of
illustration.
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For the two specific Class A and B noise cases, and reception condi­

tions postulated here above, we begin by obtaining specific degradation
*factors (~d) and AREls from Figures 7.27-7.30 for coherent waveforms.

Class A:

Class B:

~* = -41.5 db (Figure 7.27, simple correlator),d
~* = - 3.5 db (Fi'gure 7.29, clipper correlator),d

~* = -25.0 db (Figure 7.28, simple correlator),d
4?* = - 1.3 db (Figure 7.30, clipper correlator).d

(7.54)

(7.55)

Now, ~a measures the increase required for the (input) minimum detectable

si~nal (n»l) in suboptimum coherent threshold detection to obtain the
same performance as the corresponding' optimum threshold detector. Thus,

we see that simple correlators are strongly degraded in Class A noise:

41.5 db in ~~)min-coh for our particular example. On the other hand, the
degradation is a much less severe, though a noticeable 3.5 db,when the sub­
optimumclipper-correlator is used. Similar behavior is noted in our Class
B example here: 25.0 db and 1.3 db, respectively.

When incoherent reception (of coherent signals) is employed, the

degradation in 4~/min is halved (in db) cf. (6.53), viz. -20.8, -1.8 db
(Class A), and -12.5 db, -0.7 db (Class B), respectively, again for the

same performance and sample sizes.
On the other hand, the more .limited ARE's, (Sec. 6.3.3),. (III,

2
Sec. 7.4), (6.60), and Table 7.1, show that (ARE)inc = (ARE)coh = ~a-coh

(for coherent signal waveforms). ·For example, in the coherent cases, ARE

of clipper-correlator to optimum = }(-3.5) = -1.8 db, cf. (7.54) in Class A
noise, and is -0.7 db in our Class B noise above, cf. (7.55). In contrast,
the ARE of the simple correlator is -20.8 db, and -12.5 db, respectively,
in Class A and B interference [cf. (7.54),(7.55)]. Of course, the more

complete and revealing measures of performance are the error probabilities

(P=,Pe) and the probabilities of correct signal detection (P5,PD) themselves,
or the associated minimum detectable signals (which are implicit functions

of these probability controls, through B* or B,cf. (7.41), or (6.11b), and

Figures 7.5, 7.6.
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Other related comparisons may be made the same way. For example,
for the same minimum detectable signal and probability control [Case III,
Sec. 6.3J we can determine how much longer data acquisition must be for
various suboptimum algorithms vis-~-vis the corresponding optimum algorithm
(i.e., how much larger sample size n is vs. n*). For our particular
example above (coherent detection) we find that:

(7.56)

(7.'56a)

Likewise,

(ii.) Optimum vs. Clipper-Correlator:

ncoh = 2.2 14 x n*coh
and

ncoh = 1.35 x n~oh

(Class A),

(Class B).
(7.56b)

Again, the simple-correlator is much inferior to the corresponding optimum
proc~ssor, requiring a much larger sample (or observation time), whereas
the clipper-correlator is considerably closer to optimum, requiring only
about a factor of two (or less) increase in sample size (n). Similar
behavior is encountered in the noncoherent cases, cf. (6.56),(6.57), where
we must implement Eqs. (7.31)-(7.38) for specific numerical results.

Many other comparisons between optimum and suboptimum threshold algo­
rithms can be carried out in similar fashion based on the .analytic and
computational results in this study. We reserve such to a subsequent

investigation.
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8. SUMf\1ARY OF RESULTS AND CONCLUDING REMARKS:

Here we briefly summarize the principal general results of this study,
reminding the reader that the detailed quantitative, analytic results are

developed principally in Sections 2 through 7, and in the various Appendices
following, as a review of the Table of Contents reveals.

Sections 2 through 4 are mainly an overview of recent earlier work,
needed for the subsequent developments of Sections 6 and 7, containing
some new material on suboptimum detection algorithms. Section 5 focuses
on the structural form of the various optimum threshold detectors, which,
like the analytic theory herein described, is canonical; i.e., independent
of specific signals and noise. The principal result here is the observa­
tion that these threshold algorithms require a double matching process--the
earlier, and more familiar linear matched filter for the signal, against a
nonlinear transformation of the input noise (and possibly weak signal)--and
an initial matching of the receiver to the noise itself: namely, the above­
mentioned nonlinear transformation of the (sampled) input data x. The

.,..."...,.

specifics of this transformation dynamics depends, of course, on the pdf of the
noise. The overall character of the receiver is adaptive--to the noise,
and to the desired signal, as we note more fully below in (11).

Sections 6 and 7, alon9 with the appendices, contain the bulk of the
many new results, in particular for incoherent and composite detection.
Let us now briefly list the principal general results:

(1) The optimum coherent threshold detector is superior (in the sense
of smaller minimum detectable signal, etc.) to the corresponding incoherent
detector when thesi9nal waveform is incoherent, as often happens, for
instance, when there is a doppler spreading produced in the channel. On the
other hand, for coherent signal waveforms, these coherent and incoherent
detectors are essentially comparable in threshold detection [cf. Section 6.4,

III; Examples 2-5, Section 7.6J.
(2) Threshold optimum systems are superior to (threshold) suboptimum

systems, as expected. The former can be very much better 0(20 db or more)
than conventional detectors, optimized against gaussian system noise; e.g.,

simple correlation detectors. They are less dramatically superior 0(2-6 db
or so) to clipper-correlation detectors (which employ, hard limiters). The
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degree of superi ori ty is al so .greater for Cl ass A,noise than it is for the
lIimpulsive ll Class B interference (cf. Section 7.6). These results support
the use of simple, approximate,detect~rstructures, like the clipper-corre­
lation detector, vis-~-vis the exact characteristics (cf. Figures 7.l,7.2a,b)
in many instances, because of the much greater complexity of the latter.

(3) We remark that the optimum threshold detectors themselves become
suboptimum for input signal levels above some limiting value, where the
condition for asymptotic optimality (AD), namely, (approximately) 'equal
variances of the test statistic under Ho and Hl , is no longer satisfied.
It is then not guaranteed that they will remain superior to the aforemen­
tioned (or any other) suboptimum detector. ' However, performance, on an
absolute basis, improves for both as the input signal level rises. This
means, of course, that even if the AD condition no longer holds, we can
still adequately use the originally optimum threshold algorithm.

(4) For these threshold detectors to maintain their optirnality for
the large data sample sizes (n»l) needed to achieve adequately small
decision error probabilities for the very small input signals which are en-

A

countered, it is critical that the algorithm include the proper l)ias term, B~.

This bias is obtained by terminating (under Ho) the basic expansion of the
generally optimum likelihood ratio about the null signal (8=0), cf. Section 2.
This bias is solely a function of rms input signal level (a~), sample size
(n), the bastc noise statistics and second-order signal statistics. In fact,
it is s.. hown. that B* is - 1 var g* =1 [ ~*2\ - /g*,2 ] = _1 0*2 cf.n 2 0 n 2 '~:n /H p \ n/Ho 2 0'
Appendix, Section A.3-6. Without this proper bias term (lacking in most
analyses of the threshold detection problem [48J, performance can be far
from optimum [cf. end of Section 6.3J.

(5) For best operation, the composite detector is proposed: this is
the sum of the coherent and (purely) incoherent algorithms [cf. Section 6.5].
When it is possible to take advantage of the coherent mode as well as the
incoherent one, the result is an improvement in performance 0(2 db or more)
over incoherent reception, and markedly so 0(10 db+, n=O.9+) aga'inst fading
to which (slow or rapid) the coherent detection is particularly vulnerable,
as is the incoherent detector to rapid fading, cf. Example 6, Section 7.6.
These observations apply generally to both the optimum and suboptimum
threshold detectors.
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(6) A" very important feature of the analysis generally is its
canonical character: this is true equally of the statistical-physical
noise models employed and of the (optimum) threshold forms of detection

algorithm. The formal structure of both algorithm and performance measure
is independent of specific physical models. This gives the threshold
theory its very considerable breadth: it is possible to indicate the basic
functional elements of the algorithms' operations without having to choose
a specific physical, numerical example.

(7) Another important feature of the present approach is its
definition and use of the concepts of minimum detectable signal and
processing gain [cf. Section 6.2 et seq.]. These, in turn, require a
nonvanishing input signal, which is certainly the case practically. The
AO condition-[cf. (3)J is really a condition of small but nonzero input
signals, sometimes referred to as Il van ishingly small ll

: we call it here
"practically small"; i.e., small enough that the AD condition is practically
approximated; e.g., ~ ,y = ~*,~* - 15 db, say, so thatmax max 0 0

af2 : a~2, where af2 = a~2 + f{n,8) and •.• ~F(n,8)t«(a~)2 or IFnl/a~2«1 ,

cf. Sections 6.2, 6.4. The minimum detectable signal and processing gain
permit a variety of useful system comparisons, both between optimum detectors
in different modes of operation and between optimum and suboptimum receivers.

(8) The concept of Asymptotic Relative Efficiency (ARE), cf. Section
6.3, IV~ though useful here, is not a complete nor necessarily reliable measure
of system comparisons. A more effective measure is the degradation factor,

~a-coh' ~a-inc' etc., which specifies the increase needed in the minimum
detectable signal of suboptimum (threshold) detectors to achieve the same
performance as the corresponding optimum detector [cf. Section 7.6, II, also].
Since the minimum detectable signal is an implicit function of the performance
probabilities, as well as sample size, noise statistics,etc., it is itself
a "complete" performance measure also, while the ARE is not. Error proba­
bilities (and/or probabilities of correct signal det~ction) are likewise the
corresponding "complete ll measures of performance, vis-~-vis signal-to-noise

ratio, and the ARE, which is of the same level of statistical incompleteness.
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(9). The rOle of discrete vis-a~vis continuous sampling i's also
examined here, in sufficient detail to explain the often JJanomalousJl

.- •..

behavior of incoherent threshold detectors (for the sameP: or p6 and
sample size, n), giving smaller minimum detectable signals than the corre­
sponding coherent threshold detectors, under discrete sampling, cf. Section
6.4, III. Although these effects are noticeable, they are small 0(1-3 db).

(10) Another canonically important feature of the threshold theory
is that it provides both structural and performance limits in the optimum
cases. Such limits are critical if one is to decide what practical
(usually rather suboptimum) systems are to be employed, within the available
economy. Often the sacrifi ce of a few db in /a2). is more than compen-\ 01nc
sated for by the resulting simplicity and comparative inexpensiveness of the
realization of the algorithms.

(11) In the larger sense, as well as in the particular, these
threshold detection algorithms represent adaptive systems: the often very
considerable superioY'ity of the optimum algorithms over their various
corresponding suboptimum alternatives stems from the fact that the former
are basically adaptive. The principal area of adaptivity is the noise. In
practice this takes ;the form of establishing (i), the class of noise--Class
A vs. ClassB, for example; and (ii), the three (or more) statistical-physical
parameters of the particular noise environment of the class in question. Of
course, in practice only estimates based on finite samples are possible, so
that it is also important to determine how sensitive both the algorithms
and their performance are to departures from the actual (infinite-sample)
values of the parameters. This involves a robustness study. Preliminary
analysis [42J,[45J indicates a reasonable lack of sensitivity to small and
moderate changes in paramE~ter estimates. A second area of adaptivity 1ies
in the signal domain: estimation of various signal parameters (amplitude,
waveform, frequency, etc.) which may only be known statistically at the
recei ver, or even estimati on of such stati sti cs themse1ves. Some prel inli nary
work employ;'ng locally optimum Bayes estimators (LOBEls), which are also AO,
is now available [51J.

A concise (and incomplete) overview of the material of this report is
given in [49J; a much more comprehensive, invited review paper is scheduled [50J.
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Many further topics need to be studied in the context of the present approach:
for example~ along the lines of using appropriate estimator-correlators to
simplify the realizations of these AD LOBD's, [52], including the proper
biases (4) above; and the effects of weakly-dependent noise samples,
cf. [53], but along the present lines of IIparametricU models, rather than
non-parametric ones, [21]-[24]. A parallel derivation for AO LOBEls of
specific signal elements, extending the work of [51] in detail, is also needed.
Finally (but not necessarily only), is further work along the lines.of [54],

specifically addressed to multiple-element arrays and beam-forming in
nongaussian noise fields. Still other, associated threshold reception
problems will suggest themselves in the course of the above, among them
the further development of analytical and numerical results for the binary
signal cases, which are initiated here.
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GLOSSARY OF PRINCIPAL SYMBOLS

Asymptotic Relative Efficiency

overlap indexes

Class B parameter

(peak) signal amplitude

fading amplitude

minimum detectable signals

normalized signal amplitudes

(conditional) probability of false ~larm· a, also, a
Class B noise parameter, cf. (3.l4c) ,

probability control = (C,C*)2

biases

Class B noise parameter

(conditional) probability of false signal detection

binomial coefficient

probability controls

signal epoch.

pdf of (signal and) noise

detector characteristic
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Class B noise parameter

beam pattern

detection algorithms

propagation law (exponent)

ratio of intensities of gauss to non-gauss components

hypothesis states

weighting function of matched filter

source signal intensity

average noise intensity

thresholds

(1st-order) statistics of the noise

likelihood ratio

likelihood ratio

transfer characteristic, cf. (4.2a)

distance

boundaries of source domain

second-moment function of signal amplitudes

ratio of a priori problems; also, power law
of source distribution, cf. Eq. (3.5).

number of (independent,time) samples
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p1rocess i ng ga ins

a priori probability
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Wn pdf of noise

w1(x) pdf of noise

x normalized data sample

x* coherent bound
0

y* incoherent bound
0
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APPENDI.CES

Part I Optimal Threshold Detectors

(David Middleton)

APPENDIX A-l

Optimum Threshold Structure and Bias Terms: 'The "On..;.Off" 'cases:

Here we develop the general LOBO structure, i"ncluding dependent samples,
leading to Eq. (2.9) and its various coherent and incoherent spectal forms
(2.1l), (2.12). We focus our attention initially on the "on-off'1I orl ys.

Ho) cases, as the extension to the binary signal situation (H2 YS. H,J
follows immediately from"these resuJts, cf. '(2~13),,:;:et seq. We~consi'der

only the g~nera1, and usual,case of additive signals and noise, cf. S~c.

A.3-4) ff. however, so that

(A. 1-1 )

is the likelihood ratio to ,be expanded accordi,ng to the' thresnold concept
described in Sec. 2.2.

Al-l: The General LOBO:
We begin by expanding the numerator in appropriate powers of

~ = [aojsjJ,cf. (2.9a),through 0(a4), to. obtain

A = l..lt- ~ ta.) awn +_1 f (a.a) _1 d~n
n ,". \ 1 W ax. 2!. · , J w -ax. ax., n, lJ n, J

- ~! iJk~iaja~·~n d~::~jdXk +l! ij~t <eiejakeJ~rt· d~~~~dX • .},

CA.1-2}
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where

i
_ a 1 _ 1 aWn _ wn

Y; = ax. og wn - - -a- = -
1 Wn Xi wn

i .e.

z..+y.y. ,
lJ 1 J

(A. 1-2a)

e.g.

, etc. CA.1-2b}

Our next step is to expand log An' using (A.1-2) and the relation

log(l+x)= x - (x2/2) +(x3/3) -(x4/4) ... ; Ixl<l:

log An = log 11 + log [l-A«~)+ ~I A((?~)-11 A((~~k}+ 4ll·A(C~Jkft}·••• J (A.1-3a)
1 • 1J · 1J ,JB. .&

2 2_1 [A(l) + __1 __ A(2) +
2 2· · ·21
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+' _1[A(4) !L A(2)2 4 ! A(l )A(3)+ 4! A(l )2A(2) ... 4!/1 (1)4]+
4! - 13 - 3T 2T p ... ,

2. (A.1-3c)

which becomes, more compactly

n n '
:. log A = log II - 2: (e.)y. + 21 , r {(a.a.)(y.y.+z .. )-(a.)(aJ')Y'YJ'.}

nil 1 · ij 1 J 1 J lJ 1 1

5)+03 + 04 + O«a ),

where now, specifically

n wijk
83 :: - -311 L {(a.a.a,) _n_ - 3(a.)(a.ak)y.(yeYk+ZekJ

· ijk 1 J W Wn , 1 J 1 J J

n wijkt

°4 :: l! i j~t {(a i ajaka t> =n - 3(a1aJ>(akal)(Jjjt'!f~3Hzkt+YkYt)

wjk~

-4(a i) Yi (6 j aka~ ~n +12(a i) (a j)Yi Yj(eka t> (zkt+YkYt)

(A.1-4)

(A.1-4a)

(A.1-4b)

For ,~ohere.nt re-cepti on, as: exp lai:.ned.)·inSec. 2.2 -above ,we:ret~tn onlY'i,ttiose
terms in (~ which are O«a») and replace terms 0«a 2») by the resulting

average (of x) over Ho' e.g. the LOBO here is now
vv
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or

g~oh = [log Jl + ~.I .I. {/e.e.)(y.y.+z. ')H - (e.)(e.)/y·y·)H }:J-~(e.)y.
lJ \ 1 J 1 J lJ 0 1 . J \ 1 J 0 1 1 1

(A.1-5a)

= [log II + -21, L {(y.[(e.a.)-(e.)(e ,)]y')H +(e~e .)<z~ ·)H }]-r(e.)y. ,
· ij 1 1 J 1 J J o 1 J lJ 0 ill

(A.1-5b)

where the expressions in the square brackets are now the'bias term, ,8*' •---.- n-c
Similarly, for purely incoherent reception, we require (0;)= 0

and (eieje k) = 0, at 1east,* for the LOBO, so that 83 = 0, and the LOBO
now becomes

1 n
+ -21 r (e.a .){y.y.+z .. },

• .. 1 J 1 J lJlJ

where the terms independent of the data ~} constitute the bias ,B~-inc'
here.

To summarize, then, we have the LOBO's for coherent and incoherent
detection, respectively

n '
g* =8* - L /e.'.y, = B* - ('S'\y ,c n- c . \ if 1 c ~l ""

1

CA.1-6}

(A~ 1-71

wi th
Pe.=198) = (a.e.), (A.1-7a)
"" ~-v 1 J

* This second condition, (eiejek)=o, is certainly satisfied for narrowband signals,

si=12 cos[wo(.trs)-cJ>i],',whenthe first condition (e;)=o holds. For broad-band

signals, however, we require that ~jekei=o, as well as \8 i)=0, for this

so..;called IIpurely" incoherent reception.
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and

where

* = B* + _1[tV -L!~ '8\]9inc n-inc 21 ~.2a~ ~4I'z~ , (A.1-8)

(A.1-8a)

which are the results exhibited in Sec. 2.2 above-. Here we have explicitly

(A.1-9)

The results above hold for dependent_ or uncorreJ~ted'sample.s,-~.g.

generally.

A. 1- 2: Independent Samp1i '09:

When the noise samples a-re independent(but not necessarily stationary)-
the ljm; ting s; tuation,.:of our~'~resent ·ariaibjtsls~ -uety .soBsidera1Tle simpl ifications
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in our general results (A.1-7), (A.1-8) above are possible. Now we have

n .
wn(~N == Wn(:;,IHo) = TT w1(xiIHo} (A.l-10)

, ;;= 1

so that

a a 109 wi
Yi = ax. log wn + ax.

1 1
:: ,Q,i

8
2 a2

z1· J' = a 109 (w.w.) = [ -2' 09 w. J<5 •• = ,Q,! <5. •x. ax · 1 J ax. 1 1J 1 1J
1 J 1

Wl a2 wi 2 2
.', (-) = -2 log wl ·+{-)· = ,Q,! <5 • •+,Q,.

W1 i ax. 1 Wl 1 1 1 J 1
1

W(i j}
f 1 I.' = y.y.+z .. = ,Q,.,Q,. + ,Q,.<5 •••wliW1j 1 J ·1J 1 J 1 1J

Accordingly, the LOBDls (A.1-7), '(A.1-8) become now

(A. 1-11 )

1 n
9inc = B~-inc+ 2T J. [R,.R,.+R,~o •• ](6.6.) , (A.1-12)

1J 1 J 1 1J 1 J

cf. (4.1), (4.2), (4.4).
Our next task here is to obtain the biases (A.1-7a), (A.1-8a), for

these independent samples. We begin with the coherent case, (A.1-7a) and
observe that

I a. ·(Y·Y·)H = l: a. '(Y~)H + l:'a"(Y')H (Y.)H '
ij lJ 1 J 0 i 11 1 0 ij 1J 1 0 ,J 0
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since xi,x j (irj) are independent, so that

2 a. '(Y'Y')H = La ..<Y~>Hij lJ 1 J 0 i 11 1 0

IY')H = {C»t.Wl.dX. = fC»W l
l .dx. = wl ,' .C» = 0 ,

\' 0 J_c»' " _C»', _C»
(A.1-13b)

(regardless of whether or not wl is symmetrical!). This last follows from
the necessary condition on the proper pdf wli that Wl(+C»)i = 0 always.
Similarly, we have

2 i oo

2 b..(z. ~)H = 2 (e.e .)(t~<S. ')H = 2 (e.) R,!w1·dx.
ij lJ lJ 0 ij 1 J 1 1J 0 i ' _00' 1 1

(

00 wit Wi 2
= L (e?)r( [_1 _ (_1) ] WldX)

i " '.J _C» W1 W1 i

since Wi (+C») = 0, also, for a proper pdf. Writing*

(2) _ fC» wi 2 _ ( 2)
L. = (r.;-).wl·dx. - i,. 'H

1 ' -00 w1 1 1 1 1 0
(A. 1-15)

and observing that aii =pe1ii-(ei)2 = (e~)-<ei)2 bii = (e~) in the above,
, we find that the bias (A.1-7a) becomes

*Incidentally, note that L~2) is equivalent to Fisher1s Information,
I .;:' ate=0, cf. Eq. (225 ) , [ 12], i. e. ,

Ii 1
8

-
0

= I([dln W1~;i-ei)] 2 wi(xilei)dxi le=o
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B* = 1 - 1 ~ (e)2L(2) = 1 + B
A

*n-coh 09 p 2 f i . i 09 P n-coh·
1

(A.1-16)

When the noise process {~ is stationary, w1i = wl' all i and :. l/J; = l/J,
L~2) = L(2), all i, etc., further considerable simplification occurs. We
obtain for the coherent LOBO, g~oh' from (A.1-7), (A.1-16), t i = ti(xi)+~(xi)

and

(A. 1-17)

........... • A." ••••• , ••

Our next task is to evaluate the bias, (A.1-8a), for incoherent-de-
tection, now with independent sampling. Let us consider the first term
of (A.1-8a), viz.

I. (irjrkr t ):

(
w(ijkt) wei) w(j) w(k) wet)~

.'# n =(_1. _,,,-._1 • _1 =(t.) It.) Itk) ~ \ = 0,
W H wl · w. · w. k w. H 1 o\' J 0 \ 0 Vvon 0 1 lJ 1 1 0

I I . i =j (r kr R,) :

cf. (A. 1-13b) ; (A. 1-18a)

\

W(;jkt) w(ii) w(k) wet) w"
n ~ = <1 • _1 • _,) = /(_1)\ <~k) {) = 0,
Wn Ho w1; w1k w1 H \W1 IH o'~t 0

o 0

cf . (a. 1- 13b) ; (A. 1- 18b )
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There are NCN_(E_l)c~binations of the above, where N= no. of indexes
(= 4 here) and E no. of indexes that are equal, i.e. k=j,.~ E = 2, so that

4C4-1 = 4C3 = 4 combinations of the above. (For I, E = 1 (identity),

:. 4C4-0 = 1.)

III. i=j; k=t (irk):

cf. (A.l-11), (A.1-14).

Similarly, we have

IV. i= j =k(i1):

(A. 1-18c)

v. (i=j=k=R,):

<
W~ijkR,) __ ~(w~4)).) __ 0, , 00since (i<Xlw(4)dX) = w(~) . = o.

wn Wl 1 0 1. ·11_00 1 _00

Ho

Accordingly, the first term of (A.1-8a)~ (apart from log 11) vanishes.

The second term, however, has a defini te, nonzero contri buti. on. We
distinguish the following combinations of terms, on expanding:
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(A. 1-19)

(1) . ( i tk) :

(2). (i=k):

cf. (A. 1- 1Be ) ;

(3). (i~j)~(k~~):

(4). (i~j); (k~~):

(A.1-19a)

(A. 1-19b)

(A.1-19c)

(A.l-19d)

(A. 19c)

Combining (A.1-19a-e) we get for (A.1-19), and in fact, for the entire bias
term, finally,



B*. = 10g}l - 1 {I d4)<e~)2_2d2)2<e?)2+2 Id2\ ~2)(e. e .)2}n-1 nc . 8 ., , , 1 .., J 1 J
, 'J

A

= log p + B~-inc ,
(A.1-20a)

and when the noise process is stationary, e.g. d4) = L(4), L~2)= L(2),
1 ' 1

etc. the simpler result

It••

Accordingly, in the stationary cases the incoherent LOBO (A.1-8) now
becorres explicitly

+ -21, L (t.t.+t~o .. )/a .a .s.s.),
· 1j 1 J 1 1J '\ 01 oJ 1 J

(A.1-2l)

~. = ~(x.) =dd log w1(xlH )1 ' etc.,-
, 1 X 0 x=xi .

where the term [ ](=B;-inc) is the b~as and L(2) =(t2>0; L(4)= «9- '+R,2)2) .

cf. (A. 1-15) , (A. l-19b) .

A.1-3: Gauss Noise and Independent Sampl ;n9:
Our results (A.1-17):, (A.1-21) for g* should reduce to the previously

obtained fonms when the noise is gaussian. Here we have (for independent
noise samples)
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Additional quantities needed later (cf. Appendixes 2, 4) are (for the
gauss pdf (A.1-22))

gauss

L(2,2) = 2(t4) = 21m

x4w {x)dx = 2x41 = 6x2 = 6 , (x2 = 1);o . 1 gauss
_00

Consequently, we have

so that (A.1-17) and (A.1-21) reduce now to

CA.1-22a)

tA.1-23)

n 82 n
g* I = [log ~- I 2

0
] + L a.x.

coh gauss i ill
(A.1-24)
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These results demonstrate that the LOBO's for coherent and incoherent re­
ception in gauss noise are, respectively, the cross-correlator l eixi,and
the autocorre1 ator, ~: (a;a j)X;Xj ' specifi cally here for indep~ndent noi se
samples. (With corr~1ated noise samples the corresponding structures are
given in Sec. 2.3 above.) These results also agree precisely with the

-1earlier developments (20.72), (20.81) or (20.11) of [12],when~N =oij
therein (independen,t noise samples). Note that these results apply for
non-stationary as well as stationary noise processes: provi dedw1(xe is
normalized to t~e mean intensity of the i th sample, so that"L(2), L 4) are
·then invar,iant of i. If a fixed normal ization (over the observation. .
period) is used, then w1 -+- wli ' and we must explicitly account for the
scale of the i th sample. In the following analysis we shall, in the
nonstationary'cases, generally assume that the latter conventton 1'5 chosen,
so that the L(2), etc., must be indexed, e.g., Lt2), etc., as distinct
from the stationary cases.
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APPENDIX .A-2

Means and Variances of the Optimum Threshold Dectection Algorithm:

Here we calculate the first and second moments of the LOBDls g~oh'

ginc' in order to obtain the desired performance measures (PO' P:), as
described generally in Section 2.4, for these threshold detection regimes.
Again, independent noise samples are postulated, cf. Sec ..A.1-2. We
begin with the "on-off" cases (Hl vs. Ho) in the coherent detection mode.

A. 2-·1 : CoherentDetection
Let us consider the Hl-average, <)l,a of g~oh' (A.1-17), for in­

dependent samples, viz:

n 00

= B* - ~ (8:>«( t(x.)Wl(Xe-ee)dXe) .
n-c i=l ' )_00' , 1 1 e

Expandi ng wl about 8 i , we see that now for symmetri ca1 pdf's, wl '

(A.2-1)

(A.2-2a)

(A.2-2b)
. {III)

since ifllwl is synunetric (about X=O), wi, W1' , etc. are anti-synunetric,
while w1 ), w1 4), etc. remain symmetric. We have for (A.2-l), accordingly
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(A.2-3)

where
(III)

00 Wi W
L(l,3) :: 1 _1 • _1_ w dx (~O) etcw w1 T , •

-00 1 1

The Ho-average, <)o,a=o' of (A.1-17 follows at once from (A.2-2a) on

setting a=O therein (before <'>a)' e.g.

( * \ - B*'9cohl 0 - ·n-c ( all 'a). (A.2-4)

We 'proceed in the same fashion for the second Jiloment:

(i=j) :

(A.2-5)

00 w1
1 2w111d2,2) :: f· ( )( ). d)

1 . W- 'W- w1 xi;
-00 1 1

(A.2-6)
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(i~j):

3 3

( ) _ I(J > J: ) \ _ I. . (2) a; (1 ,3) (2) aj (l, 3) ),
R,;R,j l,a - ,R,; l\R,j l/a - ,(-ail; -3T l ; ... )(-ajlj -Jtlj ... ) 8

(A.2-7a)

# I~.~.) = <a.a.)d2\~2)+ _,<a~a.)dl,2)d2)+ 1 /a.a~)dl,3\~2)+ .
•• \ 1 J 1,a 1 J 1 J 3! 1 J ,_' 1 J 3T'\ 1 J J 1 • • • ,

(A.2-7b)

The result for the last term of (A.2-5) is

\~ )~ >< ) _'\ It )2 (2) <a~) (2,2).4,a; ,a j R,;tj l,a - ~ ,a; [l; + -2- l; +••• J
lJ 1

I ~ " (2) (2)+ L (a.) a.)[(a.a.)L. 'L. +..• ].
.. 1 J, 1 J 1 J
IJ

Since we ultimately want the varian~e, varl~ag~, rather than the
second moment alone, we can write

(A.2-8)

(A.2-9)

a simpler result, independent of the bias B~_c' as expected. Since from
(A.2-2b)

<) _ < ) (2) (a~) (1 ,3)
Q,; 1,8 - - a; l; - ---rr- l; ... , (A.2-10)

we obtain from (A.2-8), (A.2-l0), in (A.2-9)
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* 2 _ * \~)2 (2) <a~> (2,2) (2)2( )2(°1) = varl a9 =J; e. ,(L. +...:,r-t.2 · +•.• -L. a,.. .. )
, c ; l' 1 ,

I ~:) '> ~ (2) (2) ~)~ > (2) (2 )+ \' a. /a. ( a. a .)L. L . +1.. - a. a. L. L. ... ) .
•L. 1 \ J 1 J 1 J . , J '1 J
'J

(A.2-11a)

In. a similar way we obtain

From (A.2-2) <~.) = 0 and, 0,0

so that

(A.2-12)

((A.2-13)

(A.2-14)

exactly.

From a comparison of (A.2-11) and (A.2-14) we see at once that because

of the consistency condition on the threshold expansion by which the bias

is determined [cf. Sec. (2.4)], which also requires that crf2 ;, cr~2, we have
specifically the requirement on input signal level <a>, or <e>2, that
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+ II /e.)/8o)l~2)l{2)(/808 )-/e.)/e.»)1 «0*2 = IlSo)2d2) .
.. \' 1 \ J 1 J \ 1 j \' 1 \ J O. \", 1
1J ,1

(A.2-l5a)
This reduces in 'the stationary regimes [where now (8 i ) = ao 51 = ao '
since because of coherence si = smax= 12, etc.] to

- (2)
I{a2 l (2,2)12l (2)_a:2l (2)}+l_ I' (a oa.- a2) I « 1

o 0 n. · 01 OJ 0
lJ

(A.2-l5b)

and clearly there is a dependence on sample size (n). For slow and rapid
fading (A.2-l5b) reduces further to

(i). slow fading-and no fading:

(ii). rapid fading:

222

(A.2-l5c)

(A.2-l5d)



(iii). no fading:

(A.2-15e)

cf. (A.2-l7a) ff.
In the strictly coherent regimes (no fading), we have (6 i 6j >=

(6i>(6 j I here. Moreover

CA.2-16a)

(A.2-16b)

Accordingly, the condition on (6 i>, (A.2-l5a), becomes

CA.2-17)

for 0*2 :: 0*2
1 0 •
When stationarity obtains, in addition, L~2)=L(2), etc., (6 i) = aos,

all i, so that (A.2-17) reduces further to

, ao ' s > 0 ,
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which is independent of sample size (n), as is (A.2-17) essentially, if
~i does not vary too much (i=l, ... n).

A.2-2: Incoherent Detection:
Here we seek the mean and variance of gioc' (A.1-21), when (A.1-20a)

is the general bias in the non-stationary cases. We proceed as in Sec.
A.2-1 and consider first the H1-average of grnc:

CA.2-l8)

Specifically, we have (cf. A.l-ll):

(i=j):

(A.2-l9a)

where

(A. 2-19b)

00 wll w( 4)
d2,4) :: (f (_1)(-'l_)w dX) ,

1 . -00 wl w,' ; (A.2-l9c)

and we have used the symmetry property of w1' wf'), etc., and the antisymmetry
f I (3) ta w" w, ,e c.
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Similarly, we have

(titj+tiOij)l,a = «ti )l(tj )l>a = <aiaj)L~2\j2)+O(e4}, Eq. (A.2-7b),

(A.2-20)

so that combining (A.2-19b) and (A.2-20) in (A.2-18) yields specilfically

I , ,(a?i - )
<g~ >, ' = B*. + 1 {L (a.a .)2d2\ ~2)+ \ 1 L(4)+o(a~) ,

lnc 1,a n-lnc 2 ij 1 J' 1 J f 2 1

which now combined with (A.1-20a) for the bias B~-inc gives directly

2
Ig~ \ = log ).1+ 1 r/a.e .)2[d4)_2d 2) )0 ..+2d2)L~2}J
\ lnc/1,a . 8 ij~ 1 ~ 1 1 lJl J

;..

= log ~ - B~-inc '

cf. (A.1-20a).
The Ho-moment of 91nc ;.s found at once to 'be

(ginc}o,o = Bh~inc + ~ i~ (ti~j+~iOij)O,O<aiej)'

where
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(A.2-22a)

(A. 2-22b)
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(i =j ) : (A.2-24a)

(A.2-24b)

so that

<ginc1o,0 = B~-inc = Eq. (A.1-20a) = log p + Binc·

We proceed similarly for var, ag~ ,cf. (A.2-9). From (A.1-21), ,nc
specifically we write

where

F(x,. , x· I8 • , 8 .) == ( R, • R, •+R, ~ <5 • .) ~ • e.) .J , J 1 J , lJ~' J

Let us consider the first average in (A.2-26). We have

(A.2-25)

lA.2-26)

(A.2-26q)

(A.2-27)

cf. (A.1-19). We proceed as for lA,1-191'.e.t seq. ~nd di'sttnguish the following

terms [through 0(8 6) in (A.2-27), or equivalently, through OCe 2) in the
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coefficients of <a~), etc.]:

(~). (irk):

e2
.w" 2 e2

w" 2 ),
= 1[0-0+ .i «_1 i) ) +.. J[O-O+ i I(..l!s.) ~\ +.•. ]\1 2 ~li 0 2 \1 w1k 10 e

(2). (i=k):

where

(II)
(6) -foo w1i 3L. = (-) w1.dx ..
1 -00 W1i 1 1

Next, 1et us cons i der the product terms J 4 ::: <fj I ai j ~9, I akR) 1,e
(where the prime, as before, indicates that terms j=1, etc.~ are omitted
in the summations). Let us rewrite J4 as
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= L <a'.J.akn)l_e - 2 I (a,.,.aJ' n )l· + ··L(a ..a. '>1 '· ·kn )(J • • n N -0 · · , 1 JJ. -0lJ N lJN lJ
(A.2-30a)

where aij = (eiej)R.iR.j , etc. Of fourth-order product. averages J4/ 4, we
have from the leading term of (A.2-30a):

(3) (irj) r (kr~):

(A.2-30b)

which accordingly do not contribute 0(a2), i.e. 0(e6) in J4 when we include

the (eiej)(eke~ factors in aij , akt , etc. Of third-order products, J4/ 3,

we need to consider the first two terms of (A.2-30a), where now

(4). (irj);(kr~): (a). and k=;, or ~=i, or k=j, or R,=j, _~4x(k=;.) contri.butions

(A.2-30c)

(A.2-30d)
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Now

\
•[W, j-ejW; 3+ 00] [wl t -e t W; /0 0]dxi dxjdxt ) e

so that J4/ 3 becomes

For second-order products J4/ 2 we have directly from J4 as a whole:

I 2 • 2' 2
2 2\" <£00 f w1· w. · a·It. t ;)x2 = 2 000 (_.-') (.....!.J..) [w1·-a.w1··+ -2' w1

1l .+ .. ]
'\, J ,w1,· w. · ", ,

-00 'J

(A. 2-31 )

(A.2-31a)
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(A.2-32b)

In addition to the sets of terms (1)-(4) in the product (A.2-27) there
are also the following:

[(x2): for (irj): k=;, or k=j, or k;irj:]

We have

(5a) krt: i=k:

wll
00 wll Wi w· 1

<-li > = <i f-li.Ji~ [ ...-. 1 ...+ ]W • titt 1 6 ••. w···. w .. W t W'l 6,wl 1 ••
11 ' -00 1, 11 1

(5b). k;t: i=t:

( W'i 11,. R, '> = 0+d2,2\ (2) Ie. e )+0 (~) , similarly.
wlilk 1,elk \: 1 k
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(5c). krJl,: irk(rt):

(A.2-36)

From (A.2-33) we repeat the above, equivalent to multiplying by a
factor 2 in the relevant summati.ons.

Combining the results of (1 )-(5) for the aver.age {A.2-27} then yields:

From the above it is seen directly that

cf. (A. 1- 2Oa ) •
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From (A.2-l9b), (A.2-20) we obtain

0+ Ie .ey )2d2)d2)(1-0 .. )
~ 1 J 1 J . lJ

= L
ij <e~)2 (4)

0+ 2 L. 0 ..
1 lJ

so that this average is always ignorable IO(e6)] in (A.2-26).
Accordingly, applyi,ng (A'.2-37) - (A.2-39) to (A.2-26), gives us

2 • A

a* = var g* = -2B*l-inc - l,einc n-inc

2 • 2.. a* = rr* [= va·r g* cf (A 238)]... l-inc va-inc -. 0,0 inc' · · - ·

8"=O+O(e ),

(A.2-39)

(A.2-40)

This last relation, viz. <r;=inc ;, <r~:inc' as required by the nature of
the LOBD expansion [cf. Sec. 2.4J, puts the necessa.n: condition on the small-
ness of the input signal ~y de~nding that te~s O(e6) in varl,egfnc' viz.,
in (A.2-37) be small vis-a-vis <r~:inc' Specifically, this condition is
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2 • 2ra* = a* ,.
J..: l-inc- o-inc~

,d6) .
I Lla~)/a_a.)2[(_1_ e.. +. 6d2)L~2.2h
--'l~lJ 2 lJ 1 JlJ "

(i;j;k) (2)(2) ("2) .... . 2X / 2
+ l: L. L- Lk [4(a.e.)(a.ek)(aka.)-2(e. a.sk) ]

i j k ' J , J. J. 1 .,' J

(A.2-41)

The condition (A.,2-41) i"s considerably more complex than (A .. 2-l7) for
the coherent cases, as we might expect from the generally complex nature
of the correlated signal samples (SiSj)' etc. Writing

(A.2-41a)

"R' - 1 \ Itl {4 2 2 2'}=- L m. -m·kmk-p • -P-kPk--·m-kP·k 'n n ijk 1J J 1 1J J , 'J J

with

m. - = a _a -/""a2 ,. p - - = /s". s ·\
lJ - 01 oJ 0 'J - V, J}

as before, cf. (6.25),(in the stationary
etc.), we get directly for (A.2-41)
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~ (6) ( 3 l .a~ _L_ +6L 2\(2,2)Q +L (2) R
a 2 . n n 1

2 « ,
L(4)+2L(2) (Q -1)

n

(A.2-42)

Which is the (essentially) general condition on input signal (a~) that
ai2 ~ a~2. Here we have, from A.1, A.2 above, in summary

Eq. (A.1-15);

Eq. (A. 2-16J;

Eq. (A. 1-19b] ;

Eq. (A. 2-29b) .

(A. 2-42a)

We remark that whereas L(2), L(2,2), L(4) are always positive, L(6) can

be negative {and zero~ [In this last instance, we may have to include
an addition~ term B a~ in the numerator of (A.2-42), e.g. (L(6)/2) +

(L(6}/2}+B a~ , when Qn' Rn vanish.]
For purely incoherent signals, we have Pij = 0ij; such signals can

result from scatter mechanisms, heavy doppler IIsmear", and/or rapid fading,
or combinations of all these mechanisms. Then, Qn = 1, and Rn = 0, cf.
(A.2-4la), so that (A.2-42) becomes
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incoh.signals :
TIncoh.receptionI

{A.2-42b}

At the other extreme of purely coherent signals, (e.g. sinusoidal
wave trains), we have Pij = cos wo(ti-tj ) etc., with mi j=l, etc. Letting
T = nLit,'ti=i~t=x, etc., we have (n large)

II' 2. r1 2
12 =2 L pOk = 2n (T)

ijk J
IfTcos2wo(y-z)dydz

o

CA.2-42c)

Expanding and integrating gives, after some a,lgebra:

1 1 ([ 3 '3( l-cos 2nwo~t sin 2nWol\t) ]Rn = -n(l l -1 2) = - n +2n . 2 + 2 dt I
n (2nw

o
dt) nwo ,

[
3 3(1-COS 2nwo~t)J )

- n +2n 2
(2nwodt) 12

,(
sin ,2nwo~t)

= 2n· 2woAt

n ( ('-COS 2nwol\ t ))Q = - 1+2 .
n 2 (2nll}ol\t)2 .
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Consequently, the condition (A.4-42) becomes here (n»l):

Coh. signals .
IIncoh. receptionr·

a2 F-l = a2 3L(2,2) + 2L(2) sin 2nwo~t
o n 0 L(2) 2wo~t

«1, n » 1, (A.2-42f)

and we can drop the I I, sin~ L(2,2)_2L(2)2 = 2 varo!2(>o). As required

(and expected), Fn-+oo is effectively independent of sample-size (n). Finally,
both ~n,Rn are O(n~, 0 ~ ~ < 1) when the input signal structure is partially
incoherent; A=O usually.

A.2-3: Binary Signal Detection: Optimum Coherent Detection:
Here we extend the analysis above for non-off ll operation ISecs.

A. 2-1,2] to the important cases of (optimum) binary s.ignal detecti'on, where
the optimum algorithm is given generally by (2.15) and (A.1-7), viz:

(A.2-43)

where

e(1,2) = {a .so}O,2)
.V' 01 1 (A.2-43a)

(A.2-43b)
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cf. (2.14), with Pe(l,2):: fa .a .s.s.)(1,2), etc., andy, z given byA.1-7,
.tI' ,( 01 oJ 1 J oN V\I

A.1-9 etc. Note that the bias is obtained once more by taking the average
<)H

o
with respect to Ho: N alone, since these binary detectors are the

difference ofa pair of lIon-off ll detectors, cf. (2.14).
Specializing again to independent (noise) sampling, according to

(A.l-10) et seq., we get directly [cf. (4.3)]

(A.2-44)

Our main problem now is to obtain the bias B~~l)*. Having'.already
obtained the bias in the lion-off" cases, cf. (A~1-16) above, we i.nvoke
the fact that these binary' a1gori thms are the di fference of two lion-off"

.. .

algorithms, cf. (A.2-43,44), and (2.13)-(2.17) to get directly

(A.2-45)

(This may also be obtained using (A.1-13)-(A.l-15) directly on (A.2-43b).)
Thus, the LOBD for coherent reception: in the binary 'cases (independent noise
sampling) can be written explicitly

(A. 2-45a)
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Note that with gauss noise (A.2-45a) reduces to, cf. (A.1-22):

g~21)*1 gauss = {log 1121- !~ [<e~2})2_(e~1)2]}_ ~ [(eF})- (ep) )Jxi ,
1 1

(A.2-46)

which shows, as expected, that the (cross-) correlator is now the LOBO
once more, with a weighting and bias appropriately structured for these
binary cases, cf. (A.1-24).

Our next problem is to obtain the means and variances of g~21)*,
now under (H2, H1) respectively, in place of(H1, Ho} for the 1I0n-offll

situations. We take direct advantage of our :precedin
C
' r:sults tn-Sec.

A.2-1 for the average H1 and appropriately apply it gc21} _, (A.2-45aJ,

chang; ng H1 to H2 as demanded.. Fi rst, we see that CA. 2-1) becomes now'

(A.2-47)

= B(21)* _ r<~e.)/{. cot(x.}w (x._e~2},(l}) dX.)
c i 1 V-co 1 11 1 N 1 2, 1 : e

for H2, or H1 averages (over e(2), eel} respectively}. Comparing CA.2-47},

(A.2-1), and (A.2-B), we have at once

_ . 1 ~ I ,2 (2) 4 .
- log 1121 + 2 i~l\~e;J L; +o(e} ,
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where (+,-) refer respectively to the (H2, H1) averages, and we have used
(A. 2-45).

The second moment is obtained in the same way. We have

(A.2-49)

() _ I (2), (1) (2) < >Here, as before, R- i 2,1:8 - -\.8 i Li • For the moments .ti.t j 2,1:8
we simply parallel the analysis of (A.2-6)-(A.2-ll) to get finally

(0(21)* )2 ~ var g(21)*
oc-2,1 2, 1:a c

+ ( 1M .>(118.) {(8~2), (1)8 ~2), (1 )L~2)L ~2)+ ... ·
•• \4 1 J 1 J , J
lJ

CA.2-50a}

Note that the leading term of (0~:~~~)2 is independent of the particular
hypothesis state H2, or H1. More important, we see tnat
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(21')*2 ~ .. (21)*
a - -28oc-2,1 ncoh

asis evident from (A.2-45) and the leading t~rm(o(a2)_in (A.2-50).
In the stationary cases where a(1) = a(2) = a and sP) ;. s~2)o 0 0' , 1

because, of course, we must have different signals.- in order to convey
information), we see that (A.2-50a) reduces to the conditions

(A.2-50b)

CA.2-50b)

for s(2) ,s(1), respectively, which are to be compared with (A.2-15b}
earlier. Clearly, there is dependence on sample size Cn) and on the sta­
tistics of the signal amplitude (ao). Thus, for slow, rapid, and no
fading we get directly the following simplified condition~- (for each
s(2), s(l}):

(i). slow-fading:
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(ii). rapid fading: . aoiaoj = a~(l-~ij):

(iii) . no fadi ng:

la~{L(2,2)/2L(2)_L(2)} r (i~2)_ifl))2i~2),(1)1

----------------- «1 ,
~. (i{2)_-s.P))2
1 1 1

(A.2-50d)

(A.2-50e)

which are to be compared with (A.2-l5c-e).
The extension of tbe consistency condition here [cf. Sec. (2.4) and

(A.2-15a) et seq.] to the bias associated with these threshold binary cases,
which puts one condition on how large the input signals (S2'Sl) can be

[cf. Sec. 6.4 also], requires that (j~:~~~)2 be invariant of the hypothesis

states Hl' H2.Accordi ngly, the higher-order terms in (A.2-S0a) must be

suitably small vis-~-vis the leading term. This gives a pair of joint
conditions on (sF)' (l) now, viz.

~ 2 (2):: ~<~a.) L. ,
1

11
CA. 2-51 }

where we have used the stri ct (no fading) coherence condi tion of recepti'on
(S~Sj) = (Sy(Sj)' which eliminates the fj' terms in (A.2-SQa). Similarly,

\8i) = (Si) , and so (A.2-Sl) is modified with the help of (A.2-l6) to the

condi ti on,
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{0(21)*)2; * 2
c-2,1 (ooc) :

I <~e.)2/e~2),(1)2var i?/ I (ae.)2var i. « 1
i 1 \'1 01 i 1 01

(l ,2) .

(A.2-5la)

With stati onary regimes, LF) = L(2), etc., ,e i)(1 ,2)
i, so that (A.2-5la) reduces further to

= (a 5)(1,2) all
o

(a(2),(1)S(2),(1))2[var ~2/var t] «1 as> 0
o 0 0 '0"

which not too surprisingly is just our earlier condition CA.2-l7aJ, now
for each input signal separately. Equation CA.2-51b) ;-s independent of
sample size (n).

CA. 2-51 b)

A.2-4: Binary Signal Detection: OptimUTillncoherent'Detettion:
We may proceed as above, now for opti'mum incoherent threshold detec­

tion of binary signals. The optimum algorithm is given by (4.5J,wnere
now the bias is found most simply by again observing that detector struc­
ture here is the di fference of two lIon-offn types of incoherent a,l gorithm.
Accordingly, the binary LOBO is now (for independent noise samples)

(21)* _ A (21)* 1 n (21) I
g. - log 112l+B. + -21 L ~p •• (t.,Q,.+R,.o .. ),lnc . lnc. · ij lJ 1 J 1 lJ

[cf. (2.16) for dependent samples], where specifically
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The reduction of the LOBO (A.2-52) when the noiie is gaussian is
inrnediate: ~i = -xi' R.i = -1 and L~2) = 1; Li4J = 2, cf. Sec. A.1-3.
We get

g~21 }* I = [log }l . - 1 r {Ie ~2)2)_(e ~l})} - 1 L{Ie ~21a ~2)2
1ncgauss . 21 2 1 \ 1 1 4 tj \ 1 J

n
-(e ~l)e~l)2}] + 2\ L x.x. M ~~l} ,

1 J • ij 1 J lJ

(A.2-52a)

(A. 2-52b) .

CA.2-53}

cf. (4.11), (4.12), as required.
We make the same kind o.f modifications of the resu"ts of Sec. A.2-2

here, for the incoherent binary cases, as we did above in the coherent
cases. We find directly that the means (under H2, H1) become,
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(A.2-54a)

i . e.

<
(21)*) _ . 1 n (21)2

gi nc 2, 1:e - log }.I2l + 8 ./... (lip i j .)
lJ

(A. 2-54b)

where (+) refers to the H2 and (-) to the HI averages.
We proceed similarly for var2,1:eg~~~). Using (A.2-52) we see that

Equation (A.2-26) is now modi'fied to

n
(21)* _ 1 \" < (21) (21)' ~ (21 )> ;1, (21 ) ,

var2,1 :e9inc -"4 iJkR-{Fij FkR- 2,1 :e-,Fij 2, l:a {k~ 2,1 :e} , ,

(A.2-55)

where

(21) _ (21 ) _. I (21 )F.. .. =F(x.. ,x .. l!1p"" ) = (R, .. R, .. +R, .. 0.. ..) Llp.. ~ •lJ 1 J lJ 1 J 1 lJ lJ

By inspection, from (A.2-27)-,(A.2-29) we get
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The condition on the smallness of e(2), e(1), i.e., the "cons istency
condi t i on ll on the bi as , here becomes from the appropri ate extens i on of
(A.2-4l), (A.2-42):

(A.2-57)

This is to be compared with (A.2-50), (A.2-5l) for the coherent cases; it
is considerably more complex, which is not unexpected ion view of the consider­
ably greater complexity of the incoherent detection algorithm CA.2-50)
vis-a-vis the coherent algorithm (A.2-45a).

In the case of narrowband signals, with slow fading (i.e. mij=l, etc.)
and stationary noise, cf. (A.2-4la), we find that the conditton CA.2-57}
now reduces to
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(A.2-58)

where specifically

(A.2-59)

in which

where

2 2
~p~~l) =<a(2»p~~) _ (a(l) )pP) , cf. (A.2-52a).

lJ 0 lJ 0 lJ
(A.2-60)

[In the most general cases, mij~l, L(2)+L~2),etc., we use (A.2-57) directly~
remembering that ~p~jl) is given by (A.2-52a).]

In the important special cases of symmetric channels, where p=l and
where a~2) = a~l) = ao' (A.2-58)-(A.2-60) are modified to
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(A.2-6la.)

since p~~) : p~1), over the sums with proper choice of At, viz. A~kAt'=~e2-wol·
For example, for signals w'ith an entirely coherent structure, e.g . .
p~~) = cos oo02{ti -tj ), etc., and the proper choice of At, in [ti=iAt],
etc Q(21) ~ 1 R(2) = 0 and F(21) (A 2-59) becomes., n 'n ' n':- '

coh. si gnal s: ) F{2l) : L
4

incoh.signa1s: n ll~6) + 6L{2\(2,2)1 '

cf. (A.2-42b). For other choices of At (vis-a-vis 0002-0001) we have

Q~2l) = O{nO), R(21) = O{nO), so that the complete relati'on (A.2-59) is

required for F~2?). Equation (A.2-62) also applies for signals. wtthan

entire1yincoherent structure, e.g. pg),{2) = 0ij' regardless of the

symmetry of the channel, as we can see directly from (A.2-60a,b) in
(A.2-59).
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APPENDIX A-3

The Optimal Character of the LOBD:

In this Appendix we demonstrate that the canonical LOBDls derived i·n
this study [cf. Sec. 2.2] and by Middleton earlier, in 1966 [14], and re­
cently [34J, cf. also [lJ, [la], are indeed opti-mum for small (but
nonzero input signals) and all sample sizes (particularly for large samples,
n»l, and in the limit n~). This is in contrast to the conventionally
defined locally optimum detectors, whose optimal character is limited to
small-sample conditions. The practical as well as analyti"c superi.ority
of these LOBO algorithms stems from the addition of a suitable tibias"
term and the associated condition, consistent w·ith the way the bias term
is derived t that the variances of the test statistic (g*runder (~tH.l)

be the same (and similarly under (HltH2) for binary signal reception).
Thls equality of variances, in turn, insures that the input signal be
suitably small but nonvanishing, essentially independent of sample-size
as n ~ 00, under conditions readily achieved tn practtce~

The LOBO is not unique: there may be other algorithms WhlC~ gtve tne
same optimal performance [cf .. Sec. A.3-4], but most such ..are s.tructura,lly
(i.e. operationally) more complex, or converge more slow·ly to the ltmi'tt.ng
IIglobal ll optimum, or both. The LOBO is canonical (i.e. exhibits an in­
variant form) vis-~-vis both signal and noise statistics and structures.-- --
In fact, the LOBO is determined by the appropriate pdf of the interference
and by the lower-order moments of the input signal, and in this fashion
is different in some important respects from the Asymptotically Optimum
Detectors (ADDis) developed recently ( 1976) by Levin [39J and his col­
leagues (1967- ), [25]-[28], as we shall see below.

A.3-1. Introductory Remarks:
Conventional locally opt.imum de·-te:cto·rs.' (L001s) are defined by the

term linear in the signal parameter (8), in the expansion of the Iglobally
optimum] likelihood ratio An(~;a) (= ll(Fn(~la»a/Fn(~O))t or its
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logarithm log A (x;e), about the null signal state e =0, viz:nV\l

(A. 3-1 )

where the decision that a signal is present,(Hl ) vs. noise alone (Ho)'
is made when

(A.3-2)

with K some appropriately chosen thres·hold. This threshoid is usually

determined by the false alarm probability ~F' e.g.

CA.3-3}

The detection algorithm based on (A.3-1) is called'locallY'optimum

{or lI e-optimumll
} if it gives the minimummissed-signal probabtl tty 6~"O)Ce}

for all values of e in some finite range (0 < e c e) for spectfted ~ =~F'

In the usual cases e is taken to be small, so that local optimality' a,pplies

to ,those cases where the input signal is small and'sample-size en) 1S
finite. In this situation (i.e. local optimality) it is requir,ed that

as*(o*)n n
ae e=O ae e=()

(A.3-4)

where o~, o~io} are respectively the decision rules .for the strictly (or
II globally" , i.e. all signal levels) optimum and locally opti'muJ111 a.lgortthros.
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Similarly, the locally optimum approach is extended to the more
general Bayes decision formulation by replacing log A(tO) by the condi­n
tiona1 risk r(e,on), so that if o~ is a Bayes rule (i.e. one minimizing
the conditional risk), then the locally optim~ Bayes rule (a(tO))"isn
determined from the conditions (obtained on expanding r(e,on) about
e=O):

(1
0

) (1
0

)

ar (e,on )
de e=O

= ,
e=O

(A.3-5)

where the decision that a signal is present is again made on the basis
of the inequality (A.3-2), where now K depends on the various cost ass.tgn­
ments. A more general Bayes formulation, based on the minimization of
average risk, employs the same approach, with r*, r(to) replaced by the
average risks R*, R(lo) in (A.3-5), and K dependent not only on the cost
assignments but also on the a priori probabilities .associated wi-tho the
signal and its presence or absence (p,q) in the data sample. See, for
example, Sec. II of [14J.

A critical problem with the conventional LODls is that ~t·gh.er order
terms in the expansion of log An(1S;e) about e=o can be discarded for weak
input signals only if the sample size (n) is small. Thts 1's eastly se.en
from the following argument: for the mth-order term in the expansion, one
has a contribution (em/ml)O(nm) = 0([6nJm/mI}. Thus, for terms m>2. to be
discarded vis-a-vis m=l, for instance, one requires en » (ep)2/21, or
en « 1 essentially. Even for small input signals [e=0(10-3 or less], n
must also be comparatively small, say n=20, to satisfy the inequality
e,n « 1. [Cl early, i f the mth-order i nequa1ity is sati sfi ed, so a1so will
all rn+l, etc.] But for this situation the correct-signal detection pro­
bability," P~IO)=l-aO,O), is the same order as aCto) =aF. Then, in order
to achieve a correct detection probability p~lo) which is close to unity
for weak signals, it is necessary to increase the sample size (n) by a
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suitable amount. This inevitably brings in higher order terms (beyond
the linear one in a), which now cannot be ignored' if opti'mal performance
is to be maintained. These more complex algorithms are no longer close
to the LOD's, either in structure or performance, nor can 'they be made
so generally.

Accordingly, we must seek an appropriate modification, and extens,ion,

of the locally optimal (i.e., weak-signal) detection concept, which

preserves the comparatively simple structure embod'fed in (A.3-1) and

which at the same time permits the use of large (and ultimately very
large (n-+oo)) samples, which are required in prac·ticefor detecti'.ng weak

signals.. This must be done without destroyi.ng the optimal nature of the
algorithm itself. As we shall see below sUDsequently, the canontcal
LOBD algorithms derived by Middleton [14] in 1966 for optimum threshold
signal detection, under ,some simple condi·tions, do indeed provide, such.
desired extensions andgenerali za tion. We emphasize that we are. constdert:ng
here fully canonical developments, whose general form Icf. (2.9J,(2.ll),
(2.12)] is invariant of the particular waveform and statisttcal structures
of both the signal and noise.

A. 3-2 Asymptotically OptimumSi gna1 .Detecti on 'A19ortthriJs .. (AODA~'s 1:
General Re'marks:

To develop the desired LOBD algorithms, whi'chare to remain locally

optimum for all sample sizes, with suitably small but nOnzero input s.tgnals"
we shall parallel the~ recent approach of Levin [39] and his col1e.agues
[25J-[28] and employ the concept of an Asymptotically Optimum Detection
Algorithm (AODA). This, however, unlike the AODA's used by Levi'n [39J, is
modified to admit nonvanishing input signals' (as n + cn).andhence to
provide consistency, (i .e. 6~ + O,n + (0). of the LOBD algorithm, as well.

One class of aS~Y'mptotically optimum detection algori.thm (AODA) for
signals in a general noise background is one for which stru~ture and per­
formance approach that of the appropriate (stri ct'ly) optimum algorithm
for fixed (non-zero) error pro~abilities [aCto), s(to)], as sample size
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(n) becomes infinitely large and the input signal-to-noise ratio approaches
zero. This is the class considered by Levin [39J. Another, related class
of AODA is that for which structure and performance again approach that of
the corresponding (strictly) optimum algorithm, but now for error proba­
bilities [(3*, or qa,*+PS*, etc.] which vanish as sample-size becomes in­
finitely great and at the same time the input signal-to-noise ratio remains
non-zero, although necessarily small. Itis this latter class of AODA
which we consider here, and to which the LOBO belongs, as we shall demon­
strate.

The principal idea on which the theory of as~ptoti'cally optimum
detection algorithms is based is to find"an asymptoticallY"sufficient
statistic in the sense that its distribution converges in probabiltty to a
normal distribution when the sample size (n) increases without limtt and
the input signal amplitu~ (~ao) is suitably small. For the class of
AODA's considered by Levin [39J the signal!!!]plitude Anaos(t)+Q, An+O.
For the class of AODAls examined here, 0 < a~«l: the input signal is
small but never vanishingly so. In any case, the reason.able assumption
is that if such asymptotically sufficient statistics are substituted for
the known optimum decision rule, or are otherwise shown to be equivalent
to it, for normal distributions, the result is an AODA which, as n + 00,

becomes strictly optimum. The canonical character of the resulting AODA
then stems from the generic form of the noise distribution alone, as
expressed formally by an appropriate expansion of the (always optimum)
likelihood ratio about the null-signal (Ho) condition. The explicit fo.rm
of the expansion, however, is not unique, and therefore it is destreable
to choose those expansions which: (i), converge rapidly to the (strict)
optimum (as n~~); and (ii), which are not excessively complex in structure.

In more precise fashion let us give a defini"tion of the notion of
"asymptotic optimality", for the class, o<a~«l. As an example, let us
consider a detection algorithm, ~n=6~O), to be the strictly optimum
algorithm, which for fixed false-alarm probabilit~ ~o and fixed sample
size (n) minimizes the missed-signal probability Sn(on;ao(t)), that
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signal aos(t) will not be detected (the Neyman-Pearson Observer). Then,
for some sequence of algorithms {on} we denote the correspondingl missed­
si~na1 probability by Bn(on;aos). We next call the sequence of algorithms
{onao)} asymptotically optimal if :for'anyother sequence of"a1gori'thms' Un}
the relation

(A.3-6)

is valid for fixed false alarm level a =a, where ~ = 'n1im a (on;O)=a.
00 00 -+00. n

In the case of the Ideal Observer, the corresponding· relation is

(A.3-6a)

Of course, for our class of AODA's being examined here, l3n(o~aol,aos} + 0
as n +00, (aos>O), to insure the required consistency of the AODA: a neces­
sary condition for a properly chosen sequence of algorithms' {Q~ao}} is

that they provide a consistent test of the hypotheses states Ho(noise
alone) and H1 (signal and noise), with en < 1 - an' all n.

A.3-3 The LOBD as an Asymptotically Optimum Detection Algorithmi~AODA:

Here we shall show that the LOBD is an AODA, as well as bei'ng locally
optimum for all sample sizes, n. [In fact, the latter follows at once
from the former here:, because of the convergence of the LOBO with finite n
to the 1imi,ti ng AODA:, as n -+ 00.]

Remembering that the (generalized) likelihood ratio(.4~l)}, cf.. (2.l),
or any monotonic function of it, e.g. l~g A~l) for instance, is always'
.(strictly) optimum, 'for all n, including n~,.we see that (cf. 2.2, I14]) it
i's entirely reasonable to seek acceptable candidates for an AODA by an appro­
prate expansion of the (logarithm) of the likelihood ratio about the null
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signal (e=o). The LOBO, g~, (2.9), here for additive signal and noise,* and
specifically for coherent and incoherent reception, as descri'bed by (2.11),
(2.12), is one such class of expansions. Thus, we write

cf. (2.1), where

(A.3-7a)

A A

is also a generalized likelihood ratio, and g; is the LOBO g;=g~-log p,

without the a priori IIbias term ll
, log 11. Here the necessary and sufficient,

A A

condition that the LOBO, g; (and hence g; {=gn+ 10g p) itself) is an
AOOA (as n~), is that the "re,mainder""~n" coverge to zero with respect to
the seque~ce (n) of pdf's governing the flull (HoIN) and.alternattv~, 1H1IS+NJ
hypotheses, viz., with respect to Hl : F~(~;e)~(Fn~~I~)e' and Ho: Fn(!~O),
as n~. The general problem is to find suitable expansions for which the

A

above is true. Our particular problem ~ere is to show that the LOBO, g~,

is an AODA. It is clear that the LOBD g; here i's not a unique locally optt­
mum or asymptotically optimum algorithm. Other, more complex structures
can give equivalent results, but they can not be any better than the LOBO
and its AODA form, and they suffer from the operati,onal defect of complextty
and possibly slower convergence (as n~) to the limiting' AODA here.

Our next step is to establish specific conditions for which the ure~

rnainder" term tn vanishes as n~, on Ho' Hl . For this we shall use (a
limiting form of) Le Camls theorem and his concept of the asymptotic equt..
val enceof sequences of di strtbutions [40], [liOa]:. Here, two sequences of::'pdf 1 s,'

* The general approach of, Sec. A.3-3 is not necessarily limited to purely
additive cases. The results for nonadditive cases are reserved to a later
study.
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}fn{~a)} and {Fn{~;O)} are termed as,ymptoticall,yeguivalent CAE) if the
c?nvergence in probability of !nl statistic (say, t n above) to zero, i.e.
~~ tn+O (in prob.), for one sequence of pdf IS, e.g. {Fn(!;O), n-+co} here,
entails the convergence in probability of that statistic (tn) to zero,
for the other sequence, {Fn{~;a) , n-+co}. As Le Cam has shown I40~], the

necessary and sufficient condition for the asymptoti'c equivalenc:e CAE) of
two sequences of distributions (pdf1s) is

where wl{zIHo)oo is thus the limiting pdf (as O-+co) for z = ~~ log tr)
under hypothesis Ho{N), e.g. a=O. [Note here that the sa~le values' {xi}
in ~n need not be independent!]

For the two pdf's F.A(~;a) and Fn(~;O) to be asymptotically equivalent,
it is sufficient that the logarithm of the likelihood ratio .f,~l}~;eJ,
cf. (A.3-7a), be asymptotically normal (G) u~der hypothesis Ho' with"

the parameters Go{{-cr~2/2),cr~2) with cr~2 = ~;: cr~~ ' where cr~~I=varog~
= (g~2)0-(g~)~] is the variance of g~ under Ho'· Furtherroore, from Le
Cam's theorem it follows that if the pdf of log t~l) under Hois asymp-
totically nor~l with Go{-cr~2/2, cr~2), then the pdf of 1~1) is also .
asymptotically normal, for the IIclosealternativell, with the parameters
~1{+cr~2/2,cr~2l.. )~~n, i!, th~abQve (sufficient) conditions on,ogR,~ll :;=:

~ are satisfied and g~ is theasymptoticall,y normal form of" ..
log t~ I) '. it is· at o.nce evident that tn~. under He ' Fl:land' tfiat -9ri
.isan AODA'·. That the conditi'on lA~3-8} ·issatisfied ber.e.(;,js egsily
shown: i f ~~. g~ == z is Go (-cr~~/2 ,~o2), then (A. 3-8) becomes

2 2' 2

1
00 -(z+o* /2) /20*

AEIHo = eZ.e 0 0
-00

1
00 -{y-cr*/2)2/2 d

= e 0 ~=l.
-00 ~
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[Similarly, for z to be G1(a~2/2,a~2), (A.3-8) becomes under H1, [40a]

( 2)2 2

L
oo - z-a* /2 /2a*

AEIH
1

= e-z.e 0 0 dz
_00 _r::=:2

121Ta~

2
=100

e- (y+a~/2) /2 ....Q.l = 1 .]
-00 I21T

(A. 3-9a)

The IIdistance ll between <g~)Ho,<g~)H1 in the IIc10se a1ternatives ll (Ho,H,)
here is given asymptotically by

with the normalized IIdistance ll

lim«g~)1-<9~)O)= *
n~ a* ao ·

o

CA'. 3-1 O}

CA. 3~1 Oa}

We emphasize that the above results [(A.3-8) et seq.] apply for correlated
samples, as well as for the independent samples' {x.} of our detailed analysts

1.
here.

In the above we have ~ssumed that a~2 < 00. The above conditions and
results still apply when ~~ a~~ :: a~2-+ 00, provided we replace the li'mtts
(_00,00) in (A.3-9,9a) by (_00_,00+) where (_00_) and (ro+) are such that 1tmc-oo~r

1· n~
-a < 0- and lm[(oo+)_a ]>0+, lim a -+ a*2/2(-+oo). Thus, letting z - a*2/2n - n~ n - n 0 p
= x, we have (cf.(A.3-8) and (A.3-9))
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x2/2a*2r>0+ - on >(1+
= J( ~1: e . dx = (-- o(x-o)dx = 1,

(_00_) _I 2 )..00
121Ta~n

and similarly,

_x2/2a*2 00

__ foo+ 1im e 4 on f
n~ dx = o(x-o)dx = 1.

~O- -'21TO*2 ' <0­
., on

(A.3-11)

CA. 3-11 a}

(For fint.te cr~2 these limits clearly reduce to th0ge of (A.3-9,9a), as
required.) This extension of the limits (_00,00) insures that the in~egrand

always remainswithin the suitably (infinite) domatn of integration (_00_,00+).

Thus, a sUffi~ient condition that the LOBO g~, w~en ~~ cr~~~ ~~2+oo, be an
AOOA is that g~ be asymptotically normal, with ~~ (mean/variance = -112:Ho' .
=+1/2:Hl ). The "distances" (A.3-l0), (A.3-l0a), of course, are infinite
0(cr~2 or cr~): (A.3-l0a) with cr~ ~ 00 expresses the fact that the means under
Ho,Hl become infinitely separated, while the spread of each pdfincrea~es less
rapidly as n~,cf. Figure A.3-l. That the "distances" [cr~2, or 6~] are
greater than zero (and greater than the spread ('V(J~) of each pdf) reflects
the fact that 0 < Sh < l-a, all n-700, and when 0,0* -+ 00, then S ~~ S -+ 0:n n 00

the test of Hl is consistent as well as asymptotically opti~um.
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Figure A.3-l. The asymptotically normal pdf of the test statistic, g; = Zn' as nl <n2<n3-+oo·



The LOBO's here ias derived by Middleton (for additive signal and noise)
[14], cf. Sec. 2.2 and ·,A·ppe·ndix, A.1, are clearly AODA's, as well as locally

optimum (all n), when we note the results of Appendix 2 and Sec. 6. Speci­

fically,we have g~ asymptotically normal Go(-a~2/2,a~2), Gl(+a~2/2,a~2),
for both coherent (2.11) and incoherent threshold reception (2.12), cf.

Eqs. A.2-3,4 for the coherent means and Eqs. (A.2-14) for the coherent

variances, and correspondingly, Eqs. (A.2-22b,25) for the incoherent means

and Eq. (A. 2-40) for the incoherent vari ances. [These results a,re surmnarized

in Table 6.1, Sec. 6.] The full LOBO's, 9*n = g*+log ~, are of course,
A. n

AODA's also, with all the properties of g~: the various means under Ho,Hl
now have an added term, log ~, e.g., Go(-a~2/2,a~2)-+Go(lOg~-(j~/2,(j~2I,
and G1{a~2/2,a~2) -+ G1{10g ~+a~2/2,a~2); the "distance" (A.3-10) etc. rematns
unchanged. The condition a;2 ~ a~2, cf. (2.29), (A.2-15), (A.2-41), etc.

required for the AODA,'s here, in turn postulates a nonzero .inPut signal-to­
noise ratio, a~ (>O), which is always suitably small, e.g. a~ -)<;1. These

LOBO's are not uniquely optimum, since it is posstblethat otner'expansions

of log R,~l), cf. (A.l-7), may possess the desired properties, Go, 1Cf~2/2,et~2},
in the limit. However, such other expansions usually includehllgher.order
terms (in e) and are therefore much, mO're complex in structu'~e ,thantne .

present LOBO's. In any case, there are no LO algorithms which are better
than these LOBO's.

A.3-4 Rema rks on A Compari son of Mi ddl eton 's LOBO' sO!] and Levin's
AODA's, [391:-

There are certalin distinct differences between Levin 's ~pproach [39J',

to the optimum thr~~hol d detection and that of Mi'ddl eton[14]. The prtnctpa1
one is that the former is concerned with the asymptoti'c opti',mizati'on of

one type of expansion of the conditional likelihood ratio R,~J~leJ ;;
Fn(~la)/Fn{~lo), while the latter (Middleton) is concerned with the asymp­
toti c optimization of the uncondi ti ona1 1i ke1 ihood ra ti 0 R.~l) ca; e}=
(Fn{~la»a/Fn{:5JO), cf. (A.3-7a), (2.9) etc. This may be SlJrrunartzed by
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Levin (p. 128, [39]):

Middleton (Sec. 2.2) :
(Sec. A. 3-3)

log aVe asymptote expan. of conditional
likelihood ratio

asymp expan. of log aVe condit.
likelihood ratio

(A. 3-12)

In the approach of Levin et al., [39], the input signal samples a .s.
01 1

are replaced by a decreasing set of signal samples, y a 1·S./~ , (1)0),o 1
so that the input signal vanishes in the asymptotic\limit (n~J, and the
error probabilities remain preset and nonvanishing, e.g. 0 < S = s;

n~

o < an = as etc. s with S < l-a. This leads to finite values of a~2 in.

the 1imi t.
On the other hand, in Middleton1s development (2.9) etc., whtch in-

A.

eludes a proper selection of bias terms B~(=B~-log ll)~ the input stgnal-

to-noisera~io always remains nonvanishing s so that ~~ B~ -+ Os for a*>Os

etc. (and ~~ qa~+ps~ -+ 0 in the communication examples where the Ideal
Observer is appropriate). To assure the AO character of this LOBO it ts
required that ai2 ; a~2s i.e. the variances of the LOBO under Hl and ~

be essentially the sames which means s in turns that, (a~).n « ls suitably,
cf. (A.2-l5)s (A.2-4l). In additions the variance ~~ a~~ -+ a~2 -+ OOs
cf. A.3-3 above.

The two approaches above give equivalent results if we set (3~= B(ao) I

(>0) of Levin (in the Neyman Pearson cases, ct fixed, for instance)'. Thi's
determines the unspecified constant, y, and relates the various ltmittng
parameters of Levin1s approach to those in the LOBDls of Middleton. In
particular, one can equate the missed-signal probabilities of detection
of Sections 3.1.3-3.1.10, [39], to the corresponding results ~ere (t.e.,
coherent, incoherent reception, post-detection optmization, Ilmtsmatch ll

, .

etc.), and determine the corresponding values of y.
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It should be pointed out that Levin's approach is not restricted to
additive signal and noise situations, only to those, where the noise does
not vanish when the signal does. Ou'r present analysis can be extended to
include such more general cases. Moreover, the present LOBO approach pro­
vides a natural distinction between various modes of reception (coherent,
incoherent, mixed), and since (a~)in > 0 here, the useful notions of pro­
cessing gain (n*), cf. Sec. 6. ,and associ'ated minimum detectable 'signal
«a~>:in)' likewise appear naturally. Both approaches provide a processing
structure, but the LOBO structures of the present analysis appear to be the
more appropriate in actual applications. [These points will be dtscussed
in more detail in a later study.]

A.3-5. Extensions of the AODA to Binary Signals:
We may readi 1y extend the earl i er resul ts of Sec. (A.3-3) on the

AOOAls for lIon-Offll cases to binary signal reception. Analogous to
(A.3-7) we now write

CA. 3-'13I~
where

CA. 3...13aI

and now g~2l)* is the LOBD for binary signal recepUon (coherent or tn­
(21)*coherent) = gc -log P21'

The extension of Le Cam ls ·theorem for asymptoti'c equival ence ,E40(J, now'
under Hl , H2 (i .e. AE1,2)' of the two sequences of dist~ibutions· IfnC!.;621
{=(Fn{:ila2»2)},{Fn{~;al)(=(Fn{~ral»l)} as n-+oo, i.e. ~':t(~1}+ 0 (in
prob.) underHl andH2 is immediate. The necessary and sufftcient
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conditions for AE1,2 here are

(A.3-14)

(i.e. AE l i~li~s AE2 and vice-versa), where wl {zIH l ,2). are the limiting
pdf's for z{= ~~ log t~2l)) under Hl and H2.

For Fn{~;el)' Fn{~;e2) to be asymptotically equival'ent, i.e. to have
the "rema inder term", t~2~) vanish under Hl' H2 as n~, it is again suf-.
ficient that: (i), z =~~ t~2l)(~;e) be asymptotically normal under Hl ,
wi th parameters

{c/2l)*)2
G[- _o~2-- ( (21)*)2] . ( (21)* = lim (21)*).

, ao ' ao n~ aon ·

Tht.s also insures that (ii), t~2l){:;e) is asymptotically normal under H2,
wi th parameters

Now, from Section A.2-3,4 prece,ding we see that, indeed (for any sample
size n)

<
"(21 )* ) _ 1· (21)* Z .}gc,inc 2:e - + 2" (oo ) .' Eqs. (A.2-48), wlth (A.2-S0a.)

1 C,lnc
Eqs. (A.2-54b), with (A.2-56)

(A. 3-15)
as required, where {cr~2l)*)2 is the appropriate variance (as n -+ oe».of
~c~~~~*' Applying the above to {A.3-l4} along the lines of (A.3-l1),
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(A.3-lla) at once sHows the desired sUfficiency. Thus, not unexpectedly,
the LOBOls g~~~~: are AOOAlshere, in the binary signal cases, as well as
in the lI on-off ll detection situations examined initially. [Again, see the
remarks following Eqs. (A.:3~lO,11).] The comments in Section A.3-~ alsQ qpply

here, as well.

A.3-6' Role of the Bias in the "OOAls: The Composite LOBO:
In the preceeding sections of Appendix A.l-A.3 we have seen that the

bi as, ~~, must have the proper structure in order that the LOBO in question
be an AODA as n~. In fact, from the suffici'ent conditions ,that the
1I 0n-offll LOBO, g~ (= 9~+109 Il), be asymptotically gaussian, Le. ~~

( - *2 2) 2 ( (- )G log Il+oon/2,0~n ' where o~n = varog~, +:Ho,Hl in Ho' Hl respectively,
we can at once obtain the conditioris on the bias that the resu1ttng LOBO
is an AODA.

Thus, from G(log Il+O:~/2, o~~) for g~ [or G(+0~~/2,O'~~) for g~J
we have directly

*2
!in-=- <g*\ = B*+/H (x)*) = -0on
-v~- 10 ,0 n ~ n ~ 0,0 2

CA .• 3-16l

where the terms 0(e
4 or ~) are negligible vis-~-vis 0~~/2 (as a result

of the II small-signal ll condition that 0'*2 ~ 0*2 cf. (2.29)). Here speci-on on'
fi ca lly

n (1) 1 n (2)
H (x)* = L h. (x.)+ 2 L h.. (x. ,x.)
n "" · 1 1 .. lJ 1 J

1 lJ

= \ -(e.) R, •+ 2
1 ~ {/e.e.) (Jl., • R, •+Jl., ~ cS. .) - (e ·\(e .) R, • ". • }:t \ 1 1 i~ \' 1 J 1 J 1 lJ 11 J 1 J

CA.3-17a)

IIcomposttell LOBO
Eq. (2.9) (e)'> 0
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Hn(x)* = I_la.)R... \, ,,

= L{(e. e .) (R,. R, .+R,! <5 •• )}:
· · , J , J "J
'J

coherent LOBO (. ')
E (2 11)' a > 0;q• •

;ncoherent LOBO ('s) = O.
Eq. (2.12) ,

(A. 3-17c)

CA.2-17d)

Applying (A.3-17) to (A.3-16), we see that two conditions jointly involving
A

the bias and the AO character of g~ must be satisfied simultaneously. These

are

II. CA. 3-181

For both purely coherent and incoherent detection, cf. (A~3-17c~d),

we have already shown that I and II, (A.3-18), are satisfted, subject to
the I sma11-signal" condition cr~~» IF~(ao),or(a2»I, cf. (2.29), which

insures that cri~ ;, cr~~. [See, specifically (A.2-14), (A.2-40), and CA.2-50bl,

(A.2-5b) in the binary signal cases.] However, as a preliminary to examin~ng

the composite LOBO, (A.3-17b), in regard to satisfyi'ng conditions f,f1,

(A.3-l8), let us briefly outline the evaluations. We have

Coherent Reception:

CA'.3-l9aJ
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(A. 3-19b)

which establishes (A.3-18) for the coherent LOBO, as expected. Similarly,
for (LOBO)inc' (A.3-17d), we get

Incoherent Reception:

I. '\ (e.e.)[(Q,.i.+i!O·,)l 8 -(R,l·tJ:+il~OiJ·)O oJij 1 J 1 J 1 lJ,. "

Eq • CA. 2-21 J;.(A. 3'-2oa'I

*2 1()2 (4) (2)2 .(2) (2)
cr • = -4 I 8.8. {(L. -2L. )0 ..+2L. L. }, Eq. (A. 2-40) ,on-lnc ij 1 J 1· 1 ·1J 1 J

so that I, (A.3-18), is clearly obeyed. We have also directly

II.

. . 2

B* = ~ 1.(1 L <8.8.)2{(d4)_2d2\~2))o ..+2d2\~2)}+O) = -~n-inc ,
n 2 4 1j 1 J 1 1 J. lJ 1 J. 2

(A.3-20c)

which again establishes the desired conditions (A.3-l8) for the purely
"incoherent LOBO, (A.3-17d). ~reover, the proper bias, B~, in these cases

is also eguivalent to the average under Ho of the next nonvanishing term
. after Hn(~)*' cf. (A.3-17) in the expansion of the original likelihood ratto
(here log ~), as demonstrated in detail in Appendix A.1 above. In fact,
this choice of bias was originally taken~ [14] to ensure consistency of tne
test (H1 vs. Ho) as n~. We have shown above (and in Appendixes A.1, A.2)]

that, with the appropriate Ilsmall-signalll condition on the·.inp~t.~i.~~a1.

(~o)O) ~ese biases are also theproperbiasestoinsu~~th~AO thar~tter

of such LOBD's!
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I. Detection of the Completely Coherent Signal (Case I):
We must distinguish two general cases of IIcompositell recepti'on: Case

I represents the situation where the signal to be detected is completely
deterministic, i.e., entirely specified at the receiver; the only thing
unknown to ~he detector is whether or not the signal is present in the
accompanying noise. This means that (ail = ai ; (a~) = (a i )2 = a{, etc.,

viz., (aia j ) = (ai)(a j ) = aia j , etc. Reception is then fully coherent.

Case II is the usual practical situation where the signal has random
features vis-a-vis the detector, e.g., random fading amplitude, partial
phase uncertainties, doppler, etc., so that (a~), (a i'/; a~, (aia j ) 'f
(ai)(a~, etc. In the coherent detection cases signal epoch is ~till

fully, or at least partially, known, but now the signal itself is only
partially deterministic' as seen at the detector.

Case I is rare in practice, while Case II represent essentially all
p,ractical applications. Nevertheless, before we can proceed to establtsfi
the LOB and AD conditions for the "compositell algorithms consisting of a
suitable combination of purely coherent and incoherent LOBO's [cf. III,

below), we',:must exami ne Case I for the two subcases (1'), general nO,ngau5s
noise, (ii), gauss noise.

For th'ls' purpose, let us use (A.1-4), (A.1-4a,b) modified, as usual,
for independent (noise) samples (cf. Sec. A.1-2), to write first the
general expansion of the optimum algorithm (A.1-4) (cf. (2.9) et seq.,
also)

n . 1 n ( ><= log ll- L ~.<e.) + -2 L[<8.e.)-(~.R,.+~!Q .. )- 8. ei)R,·t.]
i ' 1 ij 1 J 1 J 1 lJ 1 J 1 J

(A.3-2l)

where explicitly,



841. . = Eq. (A.1-4b)~ Independent samples;·
,ndep

(A.3-21a)

rA. 3-21 b}

and t n is a remainder term.
Now, in the ful~y coherent (deterministic) Case I de~crtbed above

we may drop all the averages ( >on 61' etc., in (A. 3-2l}-(A. 3-21bI.

Clearly, 83, 84 do not vanish identically when the noise is no.ngausslan,

i.e. R,i ;. -xi' R,i = -1. Consequently, for nongaussian noise the expansion
(A.3-21) does not terminate (tn being a series itself). Next, we use as
our algorithm the first two terms of (A.3-2l), (e i 6j ) = 6i 6j , etc.} with

the bias B~ chosen as before (cf. Sec. A.1-3)

n 1 n 2 )
g* I == log 11-' ~ R,.8· + -2 .I, 8,.R,,!+[(83)o or (84 oj,
n-comp :Case I , ". 'J. . Case r

CA.3-22)

where the bias is established as the first non-vanis·hing term tn the ex...

pansion of log An after the term 0(62» when the average (over the data' {Xt }}
is taken with respect to the null hypothesis (Ho ).

Let us evaluate (83)0' (A.3-21a) here, without invoking the strtctly

deterministic conditions of Case I. Since (ti)o = 0, (tf+ti)o = (w]/w1>0

= 0; (tr>o = 0, we see at once that each term~,of (83)0' (A.3-2la), vanishes,

so that (83)0 =0, without recourse to the condition (6 i Sj 6k) =O,cf.

(A.1-6) and footnote. Accordingly, the bias term is always ,(84)0 (rO},.

here, cf. Sec. A.1-3, Eqs. (A.1-20a,b). For Case I (non~gauss)here

we get ·accordingly
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g* I 1 + { 1 \ 8~8~[(d4)_2d2)2)o ..+2L~2\{2)]}n-comp = 09 II - 8 .L. 1 J 1 1 1J 1 JCase I 1J

\ 1 \ 2 I
- ~ 8.R,. + -2 ~ 8·R,. •

1 1 1 1 1 1
CA. 3~23)

Our next step is to show that (A.3-23) does not satisfy the conditions

(A.3-18) for LOBO and AOOA's. To demonstrate this we evaluate (g~-case 1)1,0
and varog~_Case I. Accordingly, we have

where

CA. 3-'24J

IR,.') = o· <R,~) = _d2) ·
\10 ' 10 1 '

oowll
• e~-1 (_11 1)2) [ 8' t + 1. II + ]dx- ~-. --)Vi'· W1t- iWlt 2 w1t · e .. i

-(X) 11 .

82 . 82
=-i L(4)_L(2)~ -i L(2,2)+
2i i 2 ; · e

(A.3-24a)

; and CA.3-25a)

(A.3-25bl

Accordingly, Condition I., (A.3-l8), becomes here



Next, we evaluate

(r n~' 1 2 .J 2 < 1 2 )2varog* I = ' ~ (-l.a~+ -2 l~a.) \ -I (-l.e.+ -2' 1,!e.,)n- . 1 1 . 1 1 /0 • , 1 . . 101 .,

_ ~ .~.( I 2 1 I I 2 2~" 1(r e2L(2 J)2- L 1.l,.a.8.-1.1.8.e.+ -4 1.1.e.e. - T l - · ~ ' •
· · 1 J, 1 J 1 J 1 J 1 J" 1 J .0 't 1· 1 1
1J

We observe that

00 wll

~ 2 f " 22= R, ~ \ = (- ~t ) wl dx
~ /0 _00' wl

(A.3-26)

(A.3-27)

CA.3-27a)

(
4 L(2,2)

[ R. )0 = 2 ' cf. (A.2-l6a)]:

so that

(A.3-29)

Comparing (A.3-29) and (A.3-26), O(e4), show; indeed that (g*)",e-(g*)o,o ~
a~~_I' so that Condition I, (A.3-l8), is violated. Moreover, Condition II'
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(A.3-18)'"iS also clearly not obeyed, since from (A.3-25a,b) on removing
log ~(g*+g*) we get

A

where B~_I is the bias term of (A.3-23), without log p.

The upshot of the above is that for nongauss'~oise~ under Case I
(entirely coherent signal) ,~onditions, we m~s~ f~l.l~w t~e .s.c~~m~ :fqr the
Compos i te LOBD I S' (II I f'f.: ):, the p'r~pe~:. to~po~tte:~~r~.'. t~ '.u~~ ,: ~~r~ .. i:'~,;.

the sum of the (purely) coherent LOBD'and'acomtilet~l'~iri~oh~r~nt'LOBD

form, a$ for case II in practical situations.
On the other hand,when thenoise'is gaussian, the general expansion

(A.3-21) terminates, e.g. 83 = 84.•• ;tn = 0, and, since Rri = -Xi' ~i = -1

here, we get

log l\. I

n det-Case I

1 n 2 . n
= {log ~ '- -2 ?ai } + ?a.x. ,

1 1 1 1
(A. 3-31 )

which is the well-known, eX,act result in this very special, limiti,ng sl'tua­
tion. The reason that we get ~ifferent results i~ the two dtfferent noise
situations (same completely specified signal) is that the si'gnal andnoi'se
interact in a more complex fashion in the nongauss cases, so that adding
the lIincoherent ll term (properly) increases the information at't'he detector
relevant to the interaction and hence improves detecti'on.

II. The General Composite (IiOn-off ll
) LOBO: (Case II)

Our next step is to determine whether or not the composite, or IImixed"
LOBD, (A.3-17b), also obeys the fundamental AO conditions (A.3-18), or
(A.3-16). Here for this LOBD there is enough phase coherenc.eat the
receiver to obtain a coherent (6) > 0) as well as an incoherent contributton.

270



Let us begin with Condition I., (A.3-18), writing

y~2

Hc*omp = Y* +y* -~coh inc 2

y* h = L -(e.) R,. ; y'i! =Jr L <a. a.) (R, • R, •+R, !o. .)co i" ,nc ~ ij , J , J , lJ

• gA* = s* + H* = S*+( * +[ * _ *2 /2])•• camp n comp n Ycoh Yinc Y inc

., v r A * - (H*2') IH* \ 2•• a o,o9camp - camp o,o-~ comp1o,o ·

Expanding (A.3-34) gives

(A.3-32)

(A. 3-32a)

(A.3-33")

(A. 3-34)

Proceeding, we have
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(A.3-36b)

n
~~~h)O = ;j\R. (e;)(ej)(ek)(eJl,)<R.;R.jR.kR.R.)O = 0 unless ;=j=k=R.;

II (i=j);(k=,t) in
various combinations.

i .e. {. 2x( i =j}r (.k=t): Ci=j ,j~i) :2xlt=j J etc.
2x(;=k)r(j=JI,)
2x(i;::R,)r(j=k)

• var * - \' <e:\ 2L(2) - V gAo*•• Ycoh - f . if i - ar coh ·,

n d2,2) n
= I le.)4 1 +6 II (e .)2/e~d4\{2t L(e .~2<e .')2L~2\ (2)

· '\ 1 2 · · 1 '\ Jl 1 J ... 1/ J 1 j, lJ . lJ'

n L(2,2) 2
- I (e )4 {( i L(2)} n
-;; 2 -; +5 I I Ie. )2<e~>L~2\{2) ·

ij \' 1 J 1 J (A.3-36e)
= var R,2

o

Also, we see that
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<V <ytnCY*~Oh)O = ilkt(aiaj)~titj+tioij)<a~)(at>tktt)o = 0

i~j~kfR,}
i = j (~Id R,)

(i=j);(k=R,)

= 4 ~ (a.a.)(a.)(a.)d2)d2) ~ 0;
ij , J 'J , J.

(i=k)~(j=t)x2 )
(i=R,)~(j=k)x2

and

Consequently, (A.3-35) reduces to

Next, we have
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(9*), ,8-,9*)0,0 comb = <Y~oh+Yinc-Y~~h/2), ,8-~~oh+Yinc-Y~~h/2>o,o
(A.3-39a)

= var "9* + var 9"* _/~ *2 /2) -a-a+! "*o coh 0 inc \Ycoh 1,8 2 varo9con·
-t -t

Eq.(A.3-19a) Eqs.(A.3-20a,b)

Also, we obtain

(
*2) _ ~< )~ )/1 -' _n /1)2 (2) <8~1 (2,2) .Ycoh ',8 - .L. 8; ,8 j \R-;R-jll,8 - ? \8 i {L; + -2- L; +... }

lJ 1

n. <) (2) (2)+ ~ 8.) (8 ·(8 .8.)L. L . +••. ,
.. 1 J 1 J 1 J
lJ

(from (A.2-8).

Inserting this into (A.3-39b) and using (A.3-36d),'we get'-ftnal.JY

(A.3-39b)

CA.3-39c)

" "
= varo9coh+var 9inc
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Clearly, comparing (A.3~38) and (A.3-40) shows at once that condition I,
(A.3-l8), is not obeyed here for the composite LOBD, (A.3-17b).

Mor~over, Condition II, (A.3-l8), is seen from (A.3-39a)-(A.3-3~c)

to·be

- 1 [I (a .\4 var t 2+ I (6 .\(a .\ /a.a .\d2\ {2) J ,
2 · 11 0 • · 1 / J / \ ~ 1 j/ 1 J

1 1J

CA. 3-41 )

var
which is also not"equal to -cr~~/2 (= -,'2 0 g~omp)' Eq. (A.3-27), unless

~i=O, (whereupon gcoh = 0, of course).

Thus, we reach the important conclusion that when § > 0 the general
composite LOBO =g~omp' (A.3-33), which includes the component C-Yt~c/2J
in the incoherent position, is not an AOOA as n~.Hence when (it > 0) it .

is a'lways alternatively better to use the coherent LOBO alone,' [wtthoutthe,
full coherent term, (Yinc-Y~~h/2) for small input signals, and_h~nce·l~tg~
n(»l), for a~~eptably small error probabi'lities. However, as we note tn III

----_._---~.---

below, it is possible to find a' comp6site LOBD which is better,than~either

the LOBDinc or LOBOcoh and the above general composite form CA. 3-331:

III.' The Co,mpqsite- (1I0n-atfU
) :LeBO: C'ase ,ll~ I

Although the general composite LOBO = g~omp' (A.3-33), which includes

the term (-Y~~h/2) in the incoherent component, cf. (2.9), is not an AOOA

as we have shown abo¥e (I), we can easily find a composite LOBD which has
the desired AO qualities and is better than either the cohe~e~~ ~~ ~~c~~erent

LOBO's. This is accomplished inunediately bysetting ('at) ::: 0 tntnetn...

coherent portion of the algorithm, viz.

A

g~ol'flP
A

= B* + . y* + y*camp cah inc'

275

CA.3-42)



cf. (A.3-32,33).We call this composite LOBO a composite LOBO, or

simply a composite or "mixed" LOBO, as distinct from the IIgeneral \.:()mposi'te"

LOBO discussed in I preceding. Accordingly, from (A.3-38) and (A.3-40),

(A.3-4l), we see that with (Si> = 0 in the Y~~h/2 term (which then vanishes)
that

= -2B~_comp = -2(B~-COh+B~-inc~ (A.3-43)

Thus, conditions I and II, (A.3-l6), or (A.3-l8) are fulfilled, and con-
A

seguentl~9~omp is LOBO and AOOA. Accordingly, this composite or mixed
LOBO is simply the sum of the separate strictly coherent and strictly

incoherent (~l=O) LOBO's of our principal analysis, with a composite b~s

which is the sum of the separate biases. Thus, this composi.te or
IImixed" LOBO is specifically (in these lI on- off" cases)

g* = log }l+fi- l'P (s.\2d2)_.l ~ /s.s.)2{(L~4)..2L~2)2)o ..
n- camp 2 L

1
• 1 / 1 8 .L. '\ 1 J 1 1 1J

lJ

+2L (.2)L(.2)}] _ ~ ~) 1 ~ ~ )[' I ~ ]La. ~ ·+ 2 La. e· ~ · t ·+R,. u.. ,
1 J i 1 lij 1 J . 1 J , lJ

= log }l+LOBOcoh.+LOBOinc.= log }l+LOBOcomp
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These are 'the optimum canonical forms for the mixed threshold cases, for
general signals and interference, which become AODA's as sample-size
f}+oo •

Several remarks are in order: (i), the IIsmall-signal" condition here is

essentially that which applies to the essential equalityoftheHl and Ho var­
iances; there i's now no purely coherent or incoherent algortthm", cf. r~arks ff.
(6. 79c); (ii), we can obta'i-n the variou~ (opttmum)jperfoY'mance(l'.e. error

probability) measures [Sec. 6.1]·directly, by approp"rtate use of the

variance Cf~~ ; (iii), extension to the binary signal cases is direct, cf.
(6.12), (6.28), for Cf~~~)*2, Cf~~~)*2 used in (A.3-44). However the

notions of processing gain and minimum detectable ·signal [Sec. 6.2J .~~e~.~~. be
redefi ned"a ;, task we haveb~i efly Qutl inea .in fSec': .6.5 ; (tv), fOlr' succ>pttrouJi)
systems, ttieconditions (A.3-16,18) are not obeyed, and these·a.lgortthms

are neither LOBDls or AODAls, since ff = ff, f2 r f~, cf. CA.3-381, i.e.
they are not derived from the expansion of a·~}.lik~lihood ratio.

We note, also, that the composite results (A.3-44) apply, as well,

for completely deterministic signals [with (e i) = ai' (aiB j ) =eBte j , etc.]
Case I, cf. I above, as long as the noise'is nongauss;an (w'hich means that

g~ is not the full expansion of log An). In the gaussian si'tuation (Case

I}, log An = g~lgauss terminates after the term O(e2} in the expanston, as
required, cf. (A.3-31). The improvement gained in the Case I sttuations _
(when ,the noise is nongaussian) arises from the additional tnformation

""relevant to signal and noise interaction in the composite LOBO form vi"s--a-'vts
the purely coherent LOBD form. For example, let us suppose that the notse
is IILaplace li noise (P~.4-50b); then fo'r these Case r si"tuations we have
explicitly

log An = log expo { /2- I(Jx.J-lx.-e.l)
· 1 1 11

g~-comp , CA. 3~44cl

and clearly the signal-noise "interact;on~~1 embodied inlxo-e.l, ;s not at
__ 1 1

all simple, resulting in a non-terminating series of the fOlnm, (A.3-2l).
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Finally, we note that g~_compis never less effective (in performance)
than g~-inc and is always better than g~-coh when coherent reception is
possible at the receiver. This follows at once from the fact that, cf.
(A. 3-32) :

0*2 = ~*2 + 0*2. > 0*2 or 0*2
o-comp o-coh O-1nc - o-coh a-inc'

where explicitly

with bias

A = 12 2 _ 12 - 1 ( J
B~-comp - "2(a~-coh+a~-inc) - - "2 (j~-mixed - ~ "2 oEq. A.3-34a._.

(A.3-33)

CA.3-34a}

CA.3-34bl

Using (A.3-33), (A.3-34a) in (6.2), (6.5), (and (6.5a), (6.5e) for binary
signals), at once establishes the above statements.

IV. Binary Signals:
In the case of binary signals, we have at once from (6.12), (6.28),

generally
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(bi nary) :

(A.3-35)

However, bias is now from (4.3a), (4.5a)

(b'inary) :

(A.3-36)

which with the appropriate averages [()l,S' etc.] over y~~~)*, y~~~)*, cf.
(A.3-l7), is required to give the correct variance (A.3-35) to this level
of "small-signal" approximation, which insures that <1~:~~:p ;. <1~:~~:p. The
actual IIsmall-signalll conditions are given by (A.2-l5a), (A~2-42) •. ':flo"'l'e.ye.r,

we note agai n that the only con.clition here':.is ··t·hilt,o-f equ.al <·,vartan¢es;.. ~cf~.
'remarks after (A.3-44).. The LOBD (and AODA) in,thes'e 8i.na.ry':cas,ests,. of

'2.19



course, like (A.3-27) in the lIon-offll situation,

9(21)* = log p+LOBO(21) + LOBO~21)
n- camp coh 1nc

cf. (4.3),{4.5). (Optimum) performance, again, is obtained from (A.3-35)

in (6.5a, 6.5e) directly. [For an example, see Part II, Section II, C of

[1], and Figure 2 therein, ion the specific binary case of narrow band

signals with partially known RF phases.]
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APPENDICES (cont-d):

Part II. Suboptimum Threshold Detectors

(David Middleton)

APPENDIX A-4

6anonical Formulations:

In this Appendix we shall derive both general and ,particular forms of
suboptimum threshold signal detection algorithms, and thei'r associated means
and variances under (Ho,Hl ), [or Hl'H2) in the binary signal cases]. Again,

we postulate independent noi'se samples, although our canonical approach i's
not in priilciple affected by this (not serious) constratnt. In the fol­
lowing we first consider'thecanonical treatment of suboptimum receivers and
then specia1i ze the resul,ts to two .parti clila r 1im; ting cases of suboptimum
d~tectors, namely, clipper-correlators, using IIsuper-clippersll, and simple
correlation detectors (i.e., without ¢lipping) .. In'th~se 'Subo~timtim cases
we cannot, of course, expect the algorithms to be AODA's~ [cf. Sec. A.3-3)],
n()r are they LOB optimum for any finite sample size (n>oo). However, an
exception to this arises when this particular class [cf. (A.4-l,2) ff.] of
detectors is employed in th'einterference for which they are optimum, as we
shall see in what follows, cf. Sec. A.4-1 ff.

A.4-1. A Class of Canonical SUboptimum Threshold Detection Algorithms:
Guided by the optimum canonical forms above [cf. (2.9) et seq., and

in particular, (4.1) and (4.4)], we can specify a broad general class of
generally suboptimum detection algorithms, defined essentially t~ their
similar dependence on input signal structure [through (ai >, (aiaj)J, viz:

I. Coherent Detection: .

(A. 4-1)
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II. Incoherent Detection:

(A.4-2)

where F, Hare (real) functions of the data elements {xi,xj }, subject to
appropriate constraints (to be discussed presently, cf. A.4-l,D) to in-'
sure that these algorithms do not produce singular results on finite sample
sizes (n<oo).

A

For the moment, the biases, Be )' are arbitrary, while it is assumed
that F and Hare specified. It is desireable, however, that under appro­
priate circumstances these algorithms become LOBDls. This means, then, at
once by direct comparison with the canonical LOBO forms (4.1), (4.4), that

H(x.,x.) ~ I F·1F' .+IF' .8 .. ~ F.f.+F!& ...
1 J 1 J 1 lJ 1 J 1 lJ

(A.4-3a)

(A.4-3b)

[A sometirres useful extension of this is Fi + FijOij , cf. Sec. A.4-3 for
an example. One simply replaces Pi by FijOij , etc. in the results below.]
The bias is unspecified, and the algorithms contain no higher order terms
in ai' so that we cannot apply the usual technique of the optimal cases
of determining the biases by Ho-averaging of the next h,igher-order terms
in a.

However, our requirement that g(x) be optimal (all n) when the back-
~

ground noise has the pdf wlF such that F = i F[= (d/dx)log wlF(x}J, i.e.
derived from an appropriate log An' suggests how to determine a b'ias, such
that gF + g; is LOBD and AODA, cf. Sec. A.3-3. This is the observation
that for symmetric channels (~=l,K=l)

(A.4-4)
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and hence in the optimum cases p~ reduces to the canonical form (6.S). [We
retain here only the leading terms in a, of course.] Also, when gF:+9F'
then ;~:+ 0F2, i.e. for the noise pdfwlF , these are now the optimum
variances and biases. When the actual noise obeys wlE ~ wlF ' the algo:
rithms"are suboptimum, including the biases. Consequently, to obtain o~,
and B(}, we must use (A.4-3) in our previous calculations of the means
and variances of g*, AppendixA.2 ,above, to obtain the new means and
variances (which take the optimum canonical forms of the text (4.1),

(4.4), etc.). We then use (A.4-4) to obtain a bias with the desired
limiting optimal properties.

A. Coherent Detection:
Accordingly let us start with Sec. A.2-1, replaci.ng R,(x} by Flx}

in (A.2-1)-(A.2-4). We get

CA. 4-,5a)

At this point and subsequently we restrict F to be anti symmetrical , e,.g.
F(-x} = -F(x}, and wlE to be syrrmetrical. This is no real restri'ction,
since we are using both positive and negative,values of the amp1it tude, d~ta

(-oo<x<oo). Then, (A.4-'5a) becomes

with

(gcoh\,a = B~oh - ~ (a i )2(Fi>0+o(a
4)}I;

. )

LA. 4-5b}

CA. 4-6)

Similarly, we obtain the variances from (A.2-5)-(A.2-12'). Since
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and setting

.: (F) - L(2) · (F!2+F.F,.') :: 1 L~2,2) · (F?\ == C~2)
~ I' i 0 == - iF: E ' 1 1 1 0 ~ 2 1 F: E ' 1/0 1F: E

we obtain the following suboptimum forms for (A.2-11),(A.2-12):

A2 = \ (a.\2{/F2) + <e~) L~2,2)_<e.\2<F!>2+ }
(J1 ~ , I \i 1 0 2 , F:E 11 , 0 •••,

The condition that ~~ ~ ~~ ' i.e. "closeness" condition on the maximum
size of the input signal (ao) is

I\(e .) 2r(e~>L~2 ~ 2)- (e .>2L(:) 2) + l: I (e .) /e .) ( (e . e .)f 1 l2 If.E 1 F.E ij l\J lJ
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cf. (A.2-15a), and (A .. 2~51),

From (A.4-5b), (A.4-6) we can write directly

(A. 4-11 a)

and from A.4-4 now specify the bias (~=l):

(A.4-11b)

where terms 0(a4») are omitted. Note that when F1-+t ' , (Fi)o = -L~~~ = -L (2),

since

cf. (A.1-15) and B~Oh~~Ob= - ~ ~(ai)2L (2) = _(J~2/2, as required, cf. Sec. A.3-3.
The IIdistance ll (A.4-l0) becomesA(J~2, also as required, cf. (A.3-l0). We ob­

serve, that although the bias (B~oh) does not appear in the II distance ll ,*
it does show up implicitly when one sets the false-alarm probability a.~ ),

via (2.25).
Finally, let us observe that the resulting arguments of the eror func­

tions in the probability measures of performance (2.31),(2.32) in this
(coherent) suboptimum class, are here from (A.4-8), A.4-10)

, (A. 4-l2a)
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n
(gCOh)1 _" _/gco \0. 1·I.l(e i)2 0

~ hi ::. o-coh(F)
I2;COh - 12 ;COh -212-2-C--nI -<a-.\-2-L-(2-~-)-1/-2- 212

. i=l 11 1F.E

(A.4-l2b)

[Clearly, when F+tF, these reduce to (L~2)(ei)2)1/2//2 = o~/I:2, and

o~/212 , respective1y,cf. (6.2), i6•5), as required, i.e. 0o':'coh + o~-coh'

cf. (A.2-14); generally, (j h r (j h' (A.4-9).]a-co o-co . .

B. Incoherent Detection:
We proceed as above, according to (A.4-3) applied to Section A.2-2.

Thus (A.2-l9) becomes now

(i =j ) :

<F~+F~)l e = (rOO(F~+F~)W1E(Xi-el·)dXi)e1, J_ oo 1
(A.4-13a}

= /F~+FJ) + (ei> /(F~+F~)II). +o(e~)\1 1 i 0 2 \1 1 1 ',0 1

~F2 Fa> (ei> roo

(F2 Fa) II ( )d= ~ i+ i 0 + -2--- )_00 i+ i w1E Xi Xi '

CA. 4-13b)

(A.4-l3c)

whichever is defined (e.g., (F~+FPII or w1E ); W,' E is usually defined, 1<001.
Similarly, we have for (A.2-20) the general result
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so that combined with (A.4-13) in (A.4-15):

cf. (A.4-36) in (A.4-2)~ We get directly

n L~4)

~ ) - B'II + 1 \ ~ ){L(l) ~ :~~ )( IF:E (FI)2)~g· 1 e -.. -2 La.e..E·F U .• , •. t .~ · ~.. 2 - .. 'u· •1nc, 1nc i j 1 J 1. lJ ' ':', 1 :, 'J 1 0 1J

where

[(4) z«(F?+F!)lI) = ioo(F?+F~)WII dx.· L(l) == IF?+F!) ·iF:Ell 0 1 1· 1E l' 1F: E \1 1 1 0'
-00

and l:~4) = d4) = /w lI /w )2) = (A.l-19b) in the optimum cases (F+E) .
1EIE 1 \' 1E 1E 0

Moreover, also, we have

· (1 ), (2) (2)here, wlth F; 0 = -L1E :E= -L; , cf. (A.4-11) et seq.
In the Ho-case,(A.4-16) from (A.4-13) reduces at once to
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The bias is now chosen according to (A.4-4), (~=l), which from (A.4-16),
(A.4-l7) becomes directly, with terms 0(e6») omitted:

(A.4-17)

From the optimal fQrms [cf. (A.4-16b) ff.] we see that (A.4-16) reduces at
once to (A.1-20b), which is now exact s~ince Bi~c is calculated under Ho'
The same observation holds for the coherent cases (A.4-11) under opti'mality
(F -* E).

Our next step is to obtain the variances ~~,l' byappropriatemodifi­
cation of the results of Sec. A.2-2, according to the 5ubstituti'on CA.4-31
in (A.2-26)-(A.2-41). We indicate the results of (1)-(5) therein:

(1). (irk):

(2). (i=k):

- I 2
,e.) 100

-

Ie. F~+F~ )2) = «F~+F'; )2) + -' (F~+F'. )2W" dx.+O(e4)
\ 1 1 l,e 1 1 0 2 1 1 lE 1

-00

(e~> ---
= .«F?+F.')2> + -' L(6) +o(e 4)

, , 0 2 F:E '
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where

CA.4-19c}

(3). (itj)f(k~t):

CA.4-19d)

(4). (ifj); (k;t):

(A.4-20a)

CA'. 4-20b}

where the number of terms is as indicated in (A.2-31), (A.2-32) above.
We continue with (A.2-33)-(A.2-36):

(5a) .

= (e.e >L(2) L~2,2)+O(e4), ~ ~F:E ,F:E '
(A.4-21 )

where

L{2,2) - _/{F3+F ' F' )') = _/3F2FI+FI2+FFII)' =foo,(F?+F,~)F.W11.dX •• (A.4-21a)
iF: E:::' '\ .0 ~ 0 _00 1 1 1 1 1
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(5b). kf~: i=~:

« F?+F~)F. F ) = (a e a)L (2)[ ~2 ,2)+O(~)
1 11k 1,8 1 k .k 1 F: E ·

Now we combine (A.4-19a)-(A.4-23) according to the above and the
IIcountingll of (A.2-28)-(A.2-36):

n ~ 2 (4) "(2)2 "(2) "(2) .
+ 2 a.a.) {(L·FeE-2LeF-E)&e e+2Le F_EL -F-E}ij 1 J 1 e 1. lJ 1 - J-

(A.4-22)

CA. 4-23)

+
d6), "

}/e?)3 , F: E +6 L (a?)/e.6 .\ (d2)d2,2)) .
e \' 1 2 e • 1 "\ 1 j/ 1 . J F-E
1 lJ
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, Similarly, we have

(A.4-25)

cf. (A.2-29). We need to investigate (A.4-13) for terms 0(e4" in order
to obtain terms 0(e6) in (A.4-25). We have

<e~) f 00 2 I (") _ ~ei) "(6)41 (F.+F.)w1E (x.)dx. = 4' L· F·E ,
• _ 00 11 1 1 . 1 1

(A.4-26}

so that the cO,ntributi ons. of CA .. 4-25} be"c:eme

Accordingly, since

(A.4-27)

varl ag· = (;21 . ) = 41 I{IF . .Fkn)l a-/F··)l eIFknJl e}~·-ef~fA.2~26I,
, 1nc -1 nc i j kt \! 1J x, , \. 1J ,,\ x, , I

(A.4-28a)
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and

CA. 4-28b)

CA. 4-29)

exactly.
" The :smallness" condition on the input signal (ao) t.Ldete~ined by

(J~-inc ~ (J~-inc~ which requires accordingly that terms 0(e
6

) in O'f-inc be
much less than (J~-inc' as before, cf. (A.2-4l). From (A.4-24), (A.4-27)

we obtain specifically

L(6) ·~·4k

<
2" \ 2 i (2) A ( 2,2 ) 1r JrI{I e.>(e.eil ({ -2-} 8 •.+6L. L )+ 2 [4/e.e.)(e.ek)/eke.\

.. 1 1 J lJ 1 J ··k \1 J J \ V
lJ lJ

·f·fk
-2(e?)/e'.e )2]d2\~2)L(2)} +2'!· {te.e )2/e?)

, '\Jk , J k F:E ijk ~Jk \',

'L~2)L(2)L~1)_/e?>~la~>/e~\C(4\P)8.}I
J k 1k ~ 1 \1 J \1 K/ k 1 J k F: E

~ )
2 (4) "(2)2 "(2)"(2)«1: e.e. [{L. -2L. }cS •• +2L ... L. ]F'E·

· · 1 J 1 1 1J 1 J :
lJ

(A. 4-30)
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We can now parallel the coherent cases (A.4-l2) and write

(1) ~ /e.e.)2({L~4):;'2d2)2}. o..+2d 2))
'4h'1 J 1, l' 1J' l' F:E

12 ~(4l) I (e.e .)2({L~4)_2L~2)2}o..+2L~2)L~2)]lF!.E2
•• 1 J 1 1 lJ 1 J.
lJ

(9i nc)l- (9i nd0 •
-----=~-------~----~-

12 ~ .0-1nc

:: <1 o- inc (F)

12

(9i nd 1 = - (9inc >a
12 ;o-inc 12 ;o-inc

= °o-inc(F)
212

(A.4-31b}

which defines <1o-inc now. When (F+E), Le. F+,tE: ttte system 1's optimum,
we have [F) = LF) '= <,t~)o; [(4) = Li4) = (,ti+tp2>0; (also, L~~~ = 0),

and <10_, , + <1~-'nc' Eq. (A.2-40), cf. (A.4-39)-(A.4-36). Since
[(2), it~J r L,(2J, L(4), etc., generally in the suboptimum cases, we have

the more cOJq)licated but symmetrical forms above for <1o- inc (f. ;o-inc)'
For the usual stationary regimes we simply drop the (i,j) subscripts on
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the various Lis, as before.

C. The Canonical Parameters L(2),L{2), etc.: Robustness Formulations:
Our results above are quite general for these broad classes (A.4-l),

(A.4-2) of suboptimum (threshold) detectors. They not only permit an
examination of vartous linear' and nonlinear detector elements/-They also
allow us to study the robustness [see, for example, [42]-[45JJ of one
type of detection algorithm, optimum in one class of interference, when
employed against another, as noted earlier in Sec. 4.3 above.

Here we summarize the canonical parameters {L~~~, L~;~, etc.} em­
ployed in both the structure of these algorithms and in the parameters of
their performance measures, with an appropriate expansion of the notatton
to indicate the specific character tif the suboptimum state involved. Thus,
we write (for a particular i,.t1l sample):

L~:6IE' etc: £. refers to the basic detector data processing element,
F(x), cf. (A.4-l,2); Of'E denotes the D-classof noise
parameters used in an E-class noise pdf. The E-class
pdf represents the actual noise in which detection is
taking place [cf. Sec. 4.3J.

From A and B above we can write, remembering that F(x) = -F(-x}:

(Eg. (A. 4- 1Gb) :

L(l) :: <F2+F I
) =foo [F{x)2+FI {x)Jw (xl D) dxF:DIE 0 ~ -00 'lE 0

(A.4-32)

Eg. (A.4-7e):

L~~6IE:: -(1=1)0 = -i:F{X)'W1E(xID)odX

A(2) _ (2\ -foo 2LF:D1E = F/0 - -ooF{X) wlE{xID)o dx
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Eg. (A.4-19c):

L(4) = I(F2+F , )2\ =i oo

[F(X)2+F1 (x)]2w (xID) dx •F:oIE - ~ ~ ,-00 lE .. 0 '

Eg • (A. 4- 1Gb) :

L(4) = /(F2+FI)I~ = i oo

[F2(X)+F'(X}]W" (xIO) dxF:oIE - ~ /0 _00 lE 0'

= Loo

(F2+F ' ) ..w (xl D) dxlE 0
-00

(A. 4-34a)

(A.4-34b)

Eg. (A •4- 7c) :

L(2,2) == 2/F 1 2+FFI~ = Loo

F2(x)w" (x ID) dx ·F:oIE ~ /0 lE 0'
-00

Eg. (A. 4- 19c) :

II 00

L(6) == /(F2+F , )2) = f [F2(x)+F 1 (x)];" (xl D) dxF:oIE ~ 0 ~. lE o·
-00

(A.4-35a)

(A •.4-35b)

To examine the II robustness" question, say, of using a detector al­
gorithm which is opt'imum in Class A noise, when actually the interference
is 'Class B and the Class A, B parameters are exact, for example, we have
F -+- R,A(x), E:w1B , etc., so that from (A.4-32), (A.4-33), etc.:
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(A.4-37b)

Another robustness problem of interest arises when the correct operator
is used, say a Cla~s A operator (in Class A noise), but only necessarily
inaccurate estimates (AI) of the true Class A parameters are employed.
Then, we have F+ AliA: F(x) -+- R.A(xIA I

), and wlE -+- wlA(xlA)o:

Still other possibilities can be constructed: Class A noise, with parameter
estimates (AI), in Class B noise, with Class B parameter estimates (B 1

),

(1) (1) ..
e.g. L -+- LA'IA:B'IB' F(x) -+- R.A(xIA ' ), wlE -+- wlB(xIB"o' etc. [Usually,
however, we wish to refer the vari'ous suboptimum situations to the Utrue"
or limiting population statistics, where the estimates AI, B1 become
(some) II true" or limiting values.]

Finally, it is clear that when F -+- E, i.e. F(x) -+- H'E(xIE}, for

wlE(xIE)o' the above canonical parameters must reduce to the optimum (or LOBO)

values. Thus, from (A.4-32)-(A.4-36) we get .

(A.4-40)

LA ( 2) -+- L" (2) = 100

n 2w dx = L(2)
F:D E E:E ~El E '

-00
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(A.4-43)

cf. (A.2-16a) , (A.4-44)

00 00 "w" Wi 2
L(2,2) + L(2,2) = f (t2+t I)t Wi dx' =f (.J.I)(.J.I) W dx = L(2,2)= 2~4),

F:DIE E:E -00 E E E lE -00 w'E w'E lE E VE

(A.4-45)

00 wll 2 wll
00 W.. 3

L(6) + L(6) =f (-') (.J.I}W dx =f (-') w dx = L(6),
F:DIE E:E -00 w, E w'E'E ~ wl E lE E

cf. CA. 2-29b). (A.4-46)

D. Optimum Distributions for Specified "Detector Nonlineatities:
The question here is, given a (thr~shold) detector structure CA.4-1 ,2,3),

e. g., gi yen F(x), wha t is the pdf, w, F(x IF)0 for whi ch these detector a.l go­
rithms are optimum, i.e. are LOBDls and AODAls jointly. This is easily
established formally from (A.4-3), since

(A.4-47)

which is readily integrated to

BfF(x)dx ( )
w (~IF) =Ae = AEBG xIF 0
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with A the normalizing constant, since wlF is a proper pdf, e.g. wlF>O,
wlF (+») = 0 if.ast enough that)f:cowlFdx = 1. The constant B is chosen to
insure that x2 = 1, i.e. x is normalized to the mean intensity (x2).

We remember that F(x) = -F(-x) = -F(lxl), x < 0, so that fF(x)dx
~ G(x} [=G(-x)] ~ 0, all (_00 < x < 00), i.e. G is negative t even. We
also requ~re that l~i~G(X) + _co at least as fast as log Ixl l+n, n > 0+,
so that f (expG)dx < 00, i.e. (O<)A < 00.-00

Let us consider two simple but important~examples:

(i). F(x) = -x: a (simple) corr~lati6rt det~ttor (A.4-49a)

(ii). F(x) = -12 sgn x: a IIsuper";"'clipperll [46] or'hard limiter
(normalized in accordance with (A.4-50b)).

CA,. 4-49b)

[Other detector characteristics are handled in the same way, cf. [43J"[44J.J
Applying (A.4-49a,b) to {A.4-48} gives directly

(Corre1ators ):

2
w (xl F). = __1__ e-x /2

1F 0 I2iT

(lisuperclippersll) :

w (xlF) =__1 e-I~11:2
IF 0 12

(x2=1 (by original normalization));

A=l/lZrr , B=l ; (A.4-50a)

(x2=1, as required: A = 1/12, B = 12),

CA. 4-50b)

As we expect, the optimum noise for correlators in threshold detection is
gaussian, while for the IIsuper-clipperll it turns out to be IILaplace ll noise,
cf. (A.4-50b), [a result obtained by the author about 1967 in ONR studies].
(Note that the addi'tion of a gaussian component in Case eft), (A.4-49b],
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destroys the optimality of the super-clipper.)
Finally, if F is not available but H(xi~Sj) is specified, we can find

F(x) from the fact that H(xi,xi ) == h(xi )2 and the consequent·Riccati egua­
tion from (A.4-3b):

For F one solves the associated equation (I41], Sec. 2.15, p. 24)

u"(x) - h2(x)u = 0; where F = ul/u ,

at all non-singular points (of u, u' ,u") i'n _00 < x < 00.

(A.4-51 )

(A.4-52)

A.4-2. Suboptimum Detectors, I: Simple'Correlators'and'Energy:Detettors:
In these important cases, which we have already shown to be LOBO when

the interference is gaussian, cf. Sec. A.1-3, we see at once from (A.1-24,25)
that in (A.4-1,2) we set

F(x) = -x ; ~ FI = -1

and accordingly from (A.4-32)-(A.4-36) we have for the associated structure
and performance parameters (the Lis):

(1) <2) 2LF:E = x -1 0 = x -1 = 0, cf. (A.4-50a)

L(2) =n) = 1 ·F:E \ 0 '

[(2) = <x2). = 1 ·F:E 0 '

L(4) = I.,(x2_1)2\ = x4 _ 2x2 + 1 = x4-1F:E \)0 '
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L~;~ = «X2_l)'~ 0 = (2)0 = 2 ;

L(2,2)= 2~) = 2 · [ (2,2) = -«(-X3+X)'\ = /3x2_1~ = 2.
F: E \ I 0 ' F:E I a \.. '/a .,

(6) (. 2 2
11 < 2 )LF: E = (x-l) >0= 12x-4 0 =8.

Substituting (A.4-53,54) into A.4-1,2; and [A.4-l1, A.4-18 for the
biases], we get at once

CA. 4-54)
(cont'd.)

B~oh
1 n 2

= log II - "2 ~<6i)
1

1 n.! . )2
B~ = log II - -4 l \e.s

J
•

1nc .. 1
lJ

(A.4-55)

cross-correlators:

auto-correlators:

1 n < J2 1 n .~')g(x). = log Jl - -4 L a.e. + -2" I (x.x.-<S ... ) e.e j ,
~ lnc ij 1 J. t 1 J lJ 1

1 n 2 1 n~. )2 1 n ~ ~= {log]J - -2 L(a.) - -4 L a.8. }+ -21 ' l a.6. x.x. ,
· 1 .. 1 J ... 1 1 J
1 lJ lJ

which are precisely our previously d"ertved results (A.1-23), (A.1-24),
respectively, for the LOBDls here in gaussian noise.

In the same way, we obtain ~o fram (A.4-9), (A.4-29), viz.:
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and 00_( ) from (A.4-l2), and (A.4-3l), viz.:

.
(j =o-coh (A.4-58a)

• n I 2 n ( 2 4 1/2
(J • = L,a.a.) /(L a.a.) [(x.-3)o ..+2]) .

0-1 nc .. 1 J .. 1 J 1 1J
lJ lJ

[Generally xi ~ 1, so that all variances are positive as required.]
The conditions (A.4-l0), (A.4-30) on the max;-mum "small il values of

ao (>0) permitted to insure ~i ~ ;~ are:

(A.4-58b)

n ~ 2 4« L a.e.\ {(x.-3)o ..+2}.
· • 1 j/ 1 1JlJ

A. The Energy Detector:
The energy detector is a special case of (A.4-2), wtlere now we set

F. + F.. = -x.c ..
1 lJl ' IJ

in (A.4-2), since theenelf'gy detector is physically a quadratic devi'ce
with no memory. We write from (A.4-3b), accordingly
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"where the proper bias B! , is from (A.4-18) and CA.4-54), (j=i) now,nc

B~ ~ - 1 I (e?)2 ,, nc 4. ,.
1

so that we can rewrite (A.4-61a) in the equivalent form

" 1 n/t2 1 n/ 2 ·2 . 1 n(2 2'
g(X)incl = {log )1- 2" ~\ei)- 4 ?\6 i ) }+ "2? e.)x ••
~ energy l' , , ,

(A. 4-61 a)

CA.4-61b)

CA. 4-61 c)

The variances ;~-inc and (J~ are (from (A. 4-57) , (A.4-58b}, on setttng
2+20 .. :

'J

"2 • 1 ~ /8 2) (x4 1) ,. a, _. ;. ~ (a?'2/·{ ~ ~~)2(,'X~~l'}}1/2 •ao-,·nc =-4 ~ ~,. i- 0 lnc L lil , , 1, i,'

The controlling condition on the maximum value of the input s,t'gnal,
for which ~i ;. ;~, cf. (A.4-30), becomes from (A.4-60) therein:

(A.4-63)

Finally, we observe that for correlators (of which the energy detector__
is a special case) in the threshold regime, only the fourth-order JOOments (xi)
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(relative to the intensity (x2), e.g. x2 = l) are significant, because of
the fundamentally second-order ('VxiXj) nonlinearities of the detectors, cf.
(A.4-6la). This is in sharp contrast with optimum detectors (LOBO's),
which operate against the whole noise pdL(i .e. all moments, when tneyextstl,

via F ~ R-F(x). From the fact that only X~ appears in the argument ('V~o-inc)
of the probability measures of performance, rather than the appropriate func­
tional of the entire pdf, indicates that performance of correlation detectors

can be very suboptimum vis-a-vis the LOBO's appropriate to the noise in

question, as is, of ..course, well-known [cf. [ta,b], [13], [33J, [34J for
the original work, employing empirically established statistical-physical
models of the real-world EMI environment, cf. Sec. 3.J

A.4-3 Suboptimum Detectors II: Hard Limiters' (IiSuper~clippers"tand.

II Cl i pper-Corre1ators II) :

Here the detector characteristic is given by {A.4-49b}, 'viz.,

F = -12 sgn x, and·.~ F1 = -2/2 o(x-o), where the 'factor 2 rep~esents· the
weig.ht (2) of the jump at.x=O, for the superclipper. From (A·.4-39,}-(A·.4~461

we obtain accordingly (remembering that F is odd and wlE is even) when
F~E:

(A. 4-64)

and

L~;~ =1.:[2(sgn x)2-2I2o(x-o)]2wlEdX = 4+8o(x-o)wlE (0) ; (sgn 0 = 0);

(A. 4-65b)
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A (2 2) Loo

2 . 100

,LF:E =- 1:2[2sgn x-21:2 o(x-o)]sgn X.W;E(x)dx =41:2 w;E(x)dx-O
_00 . 0

= 41:2 w1E(0);

L~~~ = fooG2 sgn2x-2v'2 o(x-O)]2W;' E(X)dX = O...:O+8o(x-o)w;'E(O) .
_00

(A.4-65c)

(A.4-65d)

(A.4-65e)

(A.4-65f)

[When F=E: i.e. w1E(x) is given by (A.4-50b), we have the optimum case in
which the receiver is IImatched ll to the (Laplacian) noise, and we use
(A.4-39)-(A.4-46) for the parameters.]

In this case we must discard the sf~gular component of detector
structure and of any LF:E [which occurs here when x = 0] when we apply
the above results both to the detection algorithm and the evaluation of
performance. This is to ensure that detection on a finite sample (n<oo)
is not perfect in the presence of finite (posi:ti've} noise, intensi>ty'. Of
course, physically, the IIsuper-limiterU characteri"sti'c F(x] = ...l2sgn xl
is a mathematical idealization: in actual practice one uses a processtng
element where IF1(x)1 < 00, i.e., there are no infini'te slopes, and hence
no singularities in the,. structure or the assocated ,performance parameters.
Accordingly, with the above in mind, we may substitute (A.4-64J~(A.4-65)

into (A.4-l,2), and (A.4-l1,18) for the bias to get

(A.4-66a)
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CA. 4-66b}

and the a1gori thms for coherent and ; ncoherent detectio,n, respecttvely,
are thus

coherent:

incoherent:

this last where we have omitted the singular term Fi.oij =..-:2~(x-:o}, which
is zero (all XfO), fo'r the reasons cited above. ·'TflE:!se.'algott,thms (A.4~67a,bI

represent IIclipper-correlators ll
: tne former a clipper crosscorrelator, tne

latter, a clipper autocorrelator.
"-

In a similar way we obtain the various 00 [from (A.4-9,29)J and 0"0

[from (A.4-l2-3l)], viz.:

and

CA.4-69a)
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(A.4-69b)

[Since w~E{O)i ~ ~, wlE(O!i > 0, we see that Go-coh ' GO-inc are always
positive, as are Go-coh ' Go-inc~ as required ~r proper variances.]

The conditi.ons (A.4-l0), (A.4-30) on the maximum allowed 'values of the
(small) input signal (ao)' to insure ~~ ;, ;~ are specifically here

coherent:

(A.4-70a)

when (SiSj) = (Si>(Sj) in these coherent cases. We have also

incoherent:

n ~ 2« 4 I a.a.) (2-0 .. ).
· • 1 J 1 JlJ
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Unlike the (suboptimum) correlation detectors of Sec. A.4-2 above, these
clipper-correlators, (A.4-67), are considerably clo~er to the optimum [42]­
[45], bec~use much more than the (second and) fourth moments of the pdf of
the interference is employed, Viz. the "zero-crossings" of the noise (and
signal) via the {sgn Xi}. This fact is also exhibited in the arguments of

the probability measures of performance, namely (A.4-69a,b) specifically
when our real-world noise models (cf. Sec. 3) are employed.

A.4-4 Binary Signals:
The algorithm~ for binary signals employing suboptimum detectors of

Class (A.4-l,2,3) above are readily obtained fr~m the genera'l- 'relati'ons
(2'.13)-{2.17), esp. (2.15), (2.16). These relations, in turn, .are,.specialized
to the important special subclasses of simple correlator~ [Sec. (A.4-211J
and clipper-correlators [Sec. A.4-3], as given tn Sec. 4.2 above.fn general,
we replace (e.). by lle~2l) (= le~2}_(e~l)\, and le.e.) by ll(2l)e"e .. =

(2) l.~ 1 (l ? '\ 1 ) 1 / \' 1 J 1 J
({e.e

J
.) .. - (e.e.)· == llp~~l etc., in the lIon-off ll results. Thus, we

1 1 J . lJ
have, for these binary signal cases:

A. Simple Correlators:

Eg. (A. 4- 57) :

~(2l)2 ;,r (/e~2h_/e~l»)2; ;2. ~ 1 I [/(e.e.){2h2_/(lL6 .)(l).)2.]
o-coh · \1 1 I \1 O-1nc 4 .. '~ 1 J / ~ 1 J

1 1J

Egs. (A.4-58):

,4
•{{x.-3)o ..+21,

1 lJ
[/e. e .\(2)= .<.a (?)a (~h p ~~) etc]·
~ 1J l 01 ,oJ / 1J' .,

(A. 4-,711 1
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CA. 4-72b)

!he l~ma11ness" conditions on the input signals (a~l),a~2)), permitting
a~ ,;, a~, are obtained directly from (A.4-59), on maRing the substitutions
· · ,. I) < ') ~' (2k I. (1) / . > (2) (1)' _,(21)lndlcated above, V1Z. \a. ~ M i , = )~. ')·,a i )"aia. ~ p •• -Pij~ilP:tj ,

etc., with <a~) ~ <aFJa~2),and (a~l all ), <aRai) ~ ~a~2)al2~ etc., in
(A. 4-59b), cf. (A. 2- 57) . '

B. {"Super"} C1ipper-Corre1ators:

Eg. (A.4-68):

CA. 4~73)
Eg. {A.4-69}:

(A.4-74a)

Again, for the "smallness" condition on the input signals (a~1l,a~211we mak.e
the indicated substitutions, (a;) ~ <a~2)-<ep)), <aia~2 ~ «(e i ej )(2»2
- «(aia j ) (l »2, etc., in (A.4-70a,b) above. [Spettfically, for (A.4-70b) we
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APPENDIX A5

~21), B~21)*, R~21)* for Incoherent Reception. with

Binary Symmetric Channels

For ~inary symmetric channels (a~2)=a~1)=ao; Pl=P2=1/~) we*need to
evaluate Q~21)~ which appears in the processing gain, and B~211 , the associated

bias, cf. Table 6.1b. We also need R~2l)*, (A.2-61b), to help establish the

upper bounds on input signal size (and the equality of <!f~l)* ,; (j£~1)*). We

shall do this for the basic type of common binary signals: si'nusotds of di'f­
ferent frequencies, cf. (7.3a), when there is either no fading or slow

.~ ,

fading (e.g., mij = 1, cf. (7.7)), in the stationary noise regimes.

The quantities to be evaluated are:

where

p~~),(2) = <s~l),(2)sP),(2» = cos w ,(t'.-,t.J
lJ 1 J . 01,02 1 J.

(A. 5-1 )

CA. 5-2)

CA.5~31

Let us examine Q~21) and use T = nA.t; t i = iAt = x, etc., so that we

have to a good approximation:

T

Q~2l) -1 :t ~2J! [cos 0002 (x-y )-coswo1(x-y) J2dxdy
o
T

= ~2 !![cosw02(x-y)-cos 0001(x-y)]2dxdy:
4T -T



n i 2T
. 2=-2 (2T-z)(cos w02z-cos wo1z) dz ,

2T • 0

where we have the identity

T 2T
~Jf f(x-y)dxdy = 2 j( (2T-z)f(z)dz
-T 0

The evaluation of (A.5-4) proceeds directly:

. f2T cos W z+cos w z
~n{1+ ~ (2T-z) {. 02

2
01 - cos (w

02
-w

o1
)z

2T 0

(A.5-4)

(A.9-4a)

(A.5-5a)

(A.5_5b)

(A.5 -5c)

as expected. Note that Q~2l) is twice Qn' (A.2-42e), n»l~ which is to

be expected, since here the binary signals have twice aS,much energy as. the
( ) tV .~ (21 J tV .

lion-off: cases. [Wi th purely i ncoh~rent structure Pij '" Qt j' :. Qn '" 1, and
and so Q(21)_1 ~ 0, which gives zero processing gain -cf. Table 6.1b. This

is also to be expected, since now we have two indistinguishable, equal energy
signals, with no coherent structure.]
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We proceed similarly with the bias, (A.~-2), which we can write
directly here for these symmetrical channels

L(2}2 2"2 n 2 2
- - 4 ao .L. [cos w 2(t.-t.)-cos w 1(t"ll- t j JJ

lJ 0 1 J 0 1 "

L(2}2 2"2 n
8 ao .I. [cos 200 2(t.-t.}-cos 200 1(t.-t.)]

lJ 0 1 J 0 1 J

2-"2
L(2) a2 n2i 2T

~ - ~ (2T-z}(cos 2~2z-cOS 2wo1 z}dz
16T 0

CA.5-6a}

(A.5-6b)

CA. S-6c)

(A.5-7)

when we sample such that wo1T = wo1nb:t = kI21T, w02T = w02M:t =k" 2'11', or
~t = (21TA1}/wo1 = (21TA 2}/w02 ; A1 == kIln, A2 = kll/n, where k l

, kll , n (»11

are integers. Thus, (A1/wo1) = (A2/w02)' or

k I Wo1 . .
--kll = --- = ratlo of lntegerswo2 CA.5-8)

This means that one should choose the carrier f~eguencies fo1~2' such
that (A.5-8) is satisfied. Otherwise the bias B~2l)* is not strictly zero,
although it can be quite small.
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'APPEN8IX A6

Computer Softwar~

In this appendix we simply list the computer programs used for the
calculations given in the report and required for similar calculations. The
prograrns are essentially self-explanatory via the comment statements, but
some further explanation may be 'helpful.

The first program given, NORMB,is used'to compute the normalization
parameter, n. The IIbasic" Class B model is normalized to the rms level of
the gaussian portion of the noise process since the 2nd (and other) moments
do not exist for the Class B model. In NORMB, the parameter n is computed
by truncating the Class B model, either at an envelope level of 80 db (on
the original scale, gauss rms = 1) or at a level for which the probability
of exceedance is 10-6, whichever occurs first. In any particular case,
the ~ would be computed b,Y comparison of the Class B model with actual
measured envelope data or by other appropriate means. The program NORMB
integrates the truncated envelope distribution to obtain the rms level.
Since the envelope power is twice the actual noise power, the proper
corresponding normalization for the instantaneous amplitude is obtained by
using 2S1. For example, in (3.15a) the parameter S1B is given by 2S1, S1 from
NORMB. This program requires the subroutine CONHYP for the confluent hyper­
geometric function and the function routine GAMMA for the gamma function.

The next programs given are LOBDNA and LOBDNB. The routine LOBDNA
computes the LOBD nonlinearity for Class A noise for both the canonical
(3.13) and quasi-canonical (3.14) models (Figure 7.1). The routine LOBDNB
computes the nonlinearity for Class B noise (3.15) (Figures 7.~~a and 7.2b).

The three programs PC1, PC2, and PC3, compute the general performance
results and probabilistic controls given on Figure 7.3-7.6. The programs
require complemental~y error function and inverse error function routines
given by the function routines CERF and ERFIN.

The programs PARA and PARB compute the detection parameters, processing
gains, and bounds for input signal size, Fig~res 7.7-7.22, for Class A
(PARA) and Class B (PARB) noise. The program PARA requires the subroutine
FUNl and FUN2 and the program PARBrequires the subroutine FUN.
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The pro~raJn pDVPDS computes the probabi 1i ty of detect ion compared to
the optimum probability of detection results of Figures 7.23a and 7.23b,
and the program PEVPES computes the probability of error versus the
optimum probability of error characteristics, Figure 7.24.

Finally, the programs WOA and WOB compute the pdf, evaluated at zero,
for Class A and Class B noise~ Figures 7.25 and 7.26.

In some of the programs SYSTEMC and IRAY are used. This is to
suppress an exponent underflow error message for the particular computer
used (CYBER 170/750) and are not, in general, required.



PROGR,AM NO,R·.MB (,·INPUT.,OUTPUT)
C THIS PROGRAM CDMPUTES THE NORMALIZATlnN FACTOR OMEGA
C FOR THE TRUNCATED CLASS B MODEL SO THAT THE ENVELOPE RMS
C VALUE IS EQUAL TO 1. SATURATION(TRUNCATION)IS ASSUMED
C TO BE AT 80DB(ON ORIGINAL NORMALIZED TO GAUSS POWER
C SCALElOR AT P.l.E-6, WHICHEVER OCCURS FIRST.
C NOTE. THIS PROGRAM NORMALIZES TO THE ENVELOPE RMS. THE REAL
C NOISE POWER IS ONE HALF THE ENVELOPE POWER. FOR COMPUTATIONS
C WHICH USE T~E INSTANTANEOUS AMPLITUDE PDF, THE PROPER
C ~nRMALIZATION IS OBTAINED BY USING 2.*OMEGA, OMEGA BEING
C THE ~nRMAL!ZATION PARAMETER OBTAINED HERE.

DIMENSION IRAY(6),AALPHA(Q),AAA(6)
~AT~ IRAY/-l,-l,-l,O,-l,-ll
DATA AAlPHA/O.2,O.4,O.6,O.8,1.O,1.Z,1.4,1.6,1.81
OATA AAA/O.OOl,O.Ol,O.1.O.5,1,.O,2.01
PRINT 6

6 FORMAT( IH1)
DO 80 I=l,Q
Al.PHA-AALPHA(I)
00 70 J:rl,6
AA=AAA( J)
SS=O.
PE2-1.
DO 60 K=1,25
E=lO.**«-22.+K*4.)/20.)
°El=oE2
SSl=O. $ FNcl. $ 552-0.
F?=lO.**«-20.+K*4.)/20.)
DO 40 N=1,25
FN=FN*M
CAll CONHYPCl.-N*AlPHA/2 •• 2.,E2*E2,S,IOVFLW)
T=«(-AA}**N)/~N)*GA~MA(1.+N*ALPHA/2.)*S

TFc!nVFLW.NE.l) GO TO 24
SS2=SS2+T
Gn TO 40

24 SSl=SSl+T
4 0 CON T-1 NUf

F P =o.
I F ( E2*E2 • IT • 6 7'5 .) ,F P :I: EXP( - E2 *E2 )
PE2=~P-E2*El*(FP*5S1+SS2)

SS=S·S+E*,E*C PEI-PE2·.)
IF(DE2.LE.l.E-6) GO TO 64

60 CONTINUE
64 RMSSsSS+PE2*E2

RMS=SQRT(RMSS)
QMSDR=20.*ALOG10(~MS)

O~EGA·l./RMSS

PRINT 7, ALPHA, AA, RMS08, OMEGA
70 CONTINUE
80 CONTI~UE

7 FORMAT(5X,3(lPE9.2,2X),2X,lPE12.5)
END
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SUBROUTINE CONHYP(A,8,X,S,IOVFLW)
C••••• COMPUTES IFlfA,B,X) FOR REAL A,B,X
C••••• IF X GREATER THAN 741. AN OVERFLOW WILL OCCUR. see
c••••• COMMENTS BELOW.

ScI. $ Y-l.
IOVFlW-O
KUNOEF-O
IFCA.GT.O.)GO TO 101
Kc-A
ENA--K-l
VA-A-ENA
IF(VA.EQ.l •• 0R.VA.EQ.O.)GO TO 110

101 IF(8.GT.O.)GO TO 130
J--B
ENB--J-l
VB=B-ENB
IF(VA.EQ.l •• 0R.VB.EQ.O.)120,130

110 KUNOEF-1
Gn TO 101

120 IF(KUNDEF.EQ.l)PRlNT1000,A,B
IF(KUNDEF.NE.l)PRINTl001,B
RETURN

130 IFCKUNDEF.EO.l)GO TO 10
5 IFCX.GE.I00.) GO TO 60
6 IF(X.GE.I0.) GO TO 10

NN-100
GO TO 15

10 NN=300
15 IF(KUNDEF.EO.l) NN=-A+l

00 2.0 N-l,NN
DzN*«B+N-l.O)**Z.)
Y=(A+N-l.O>*(Y/D)
Y.Y*(~+N-l.0)

y-y*x
IF(S.EQ.(S+Y»GQ TO 50
S=s +y

20 CONTINtJE
50 RETURN

e••••• APPROxIMATES IF1(A,B,X) FOR REAL A,B,X BY USING THE
C••••• ASYMPTOTIC EXPANSION. SEE PAGE 1073, INTRODUCTION
c••••• rn STATISTICAL COMMUNICATIONS THEORY, MIDDLETON.
C••••• IF X.GE.61~. AN OVERFLOW WILL OCCUR FROM EXP.
C••••• TO AVOID T~IS, THE VARIABLE IOVFLW IS SET TO 1 AND
c••••• THE FUNCTION VALUE IS CALCULATED WITHOUT THE EXP(X) FACTOR.
c ••••• SO THAT THE VALUE RETURNED IS S/EXP(X)

60 NN-20
DO 100 N=l,NN
Y=V*(B-A+N-l.)*(N-A)
Y-Y/(N*X)
IF(S.EQ.(S+Y»GO TO 150
S-S+Y

100 CONTINUE
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150 S=S*CGAMMACB)/GAMMACA»*(X**(A-B))
IFeX.LT.675.)GO TO 190
IOVFLW=l
GO' TO 200

1 q0 S., S*EXP ( X' )
200 RETURN

1000 FORMATCII,lX,* CANNOT EVALUATE EXPRESSION SINCE BOTH*,
1* A AND B ARE NEGATIVE INTEGERS OR ZERO, A••,FIO.2,. , e•• ,
2F10.2,11)

1001 FORMATCII.IX,. RAD VALUE FOR B GIVES INFINITE RESULT FOR S*,
1 ., R=*,FIO.2,11)

FND

FUNCTInN GAMMA(X)
C RETUQNS THE GAM~A FUNCTIn~ FOR REAL ARGUMENT.
C NOTE. THE GAMMA FUNCTION IS NOT DEFINED FOR A NEGATIVE INTEGER OR ZER
C INPUT
C X = THE REAL ARGUMENT.
C OUTPUT.
C GAMMA(X) • THE GAMMAFU~CTION OF ARGUMENT X.

75 FnRMAT(66H GAMMA FUNCTION OF A NEGATIVE INTEGER, OR OF ZERO, IS NO
IT DE~INEn.)

5 II=()() 10,80,,15
10 Nc-X

EN--N-l
V=X-EN
IF(V.EQ.l.)80,20

15 N·X
EN=N
V=X-EN

20 GAMMA=1.+V*(.422184337+V*(.411A402518+V*(.08157821878+v*
1(.07423790761+V*(-.0002109074673+V*(.Ol097369584+V*(-.002466747981
2+V*(.00153Q768105-V*(.0003442342046-V*.00006711057117»»))))

IFCEN-2.) 37,25,30
25 RETURN
30 ~.N-l

DO 3; I=2,N
Fl-I

35 GAMMA-GAMMA*(FI+V)
RETURN

37 N=2.-EN
DO 40 I=l,N
Fr-2-1

40 GA~MA=GAMMA/{FI+V)

Rf TUR N
80 PRINT 75

CALL EXIT
ENn
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PROGRAM LORDNA(INPUT,OUTPUT)
C THIS PROGRAM COMPUTES THE LOBO NON-LINEARITY FOR CLASS A
C NOISE FOR BOTH THE CANONICAL AND QUASICANONICAL MODEL.
e THE PARAMETERS AA,GAM,ALPHAO,U(FOR MU),SGAM,AND GO ARE INPUTS.
C THE DERIVED PARAMETERS,DSQ,AlPHA,AND GAMH ARE COMPUTED.
C PC IS THE CANONICAL NON-LINEARITY AND POC IS THE
C QUASICANONICAl NON-LINEARITY.

DIMENSION IRAY(6),AA(4),GAM(4)
nATA IRAY/-l,-l,-l,o,-l,-l/
DATA 4A/O.35,O.1,O.Ol,O.35/
DATA GAM/5.E-4,O.OOl,5.E-4,O.1/
CALL 5YSTEMC(115,IRAY)

6 FORMAT(lHl)
AlPHAO-O.Ol
u=o.
SGAM=2.
GO-l.
PI-3.1415926
SRP!=SQRT(PI)
ALPHA-(2.-U)/SGAM
OSO-ALPHA/«2.-AlPHA)*CAlPHAO**«2.-ALPHA'*SGAM))
D=SQRT(OSQ)
DO qO I =1, 4
GAMM=GAM(I)
GAMH-GAM(I)*OSQ
,~·AA(I)

PRINT 6
PRINT 7, GAMM, GAMH, A
DO 80 J-l,,51
zoe--62.+J*2.
Z=lO.**(ZOB/20.)
ZSQ=Z*Z
FMc l.
SIGCQ=GAMM/(l.+GAMM)
SIGQO=GAMH/(l.+GAMM)
SUMCB=EXP(-ZSQ/(Z.*SIGCO»/SQRT(2.*PI*SIGCO)
SUMCT=SUMCB*Z/SIGCO
SUMQB=O*EXP(-ZSQ*DSQ/(2.*SIGQO»/SQRT(Z.*PI*SIGQO)
SUMQT=SUMOB*OSQ*Z/SIGQO
DO 70 M=1,15
FM-F~*M

SIGC=(M/A+GAMM)/(l.+GAMM)
SIGO=(M/A+GAMH)/(l.+GAMM)
TCB=(A**M/FM)+EXP(-ZSO/(2.*SIGC»/SQRT(Z.*PI*SIGC)
Tcr·TCB*Z/SIGC
F-«A*GO)**M)/FM
TQB=F*O*EXP(-ZSO*OSQ/(2.*SIGQ»/SQRT(Z.*PI*SIGQ)
TOr-TQB*OSQ*Z/SIGO
FN-l. , 5B-0. $ STaO.
FI-PI/(2.*GAMMA«3.+AlPHA)/2.)*«M+GAMM*A*OSQ)**(ALPHA 12.»)
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DO 60 N-l,M
FN-FN*N
FMN-l.
KK=M-N
IF(KK.EQ.O) GO TO 21
00 20 K-l,KK
Ff-1N=FMN*K

20 CONTINUE
21 CM~.F~/(FN*FMN)

F2-GAMMA«1.+N*AlPHA)/2.)*Fl*·N
ARG=ZSQ*OSQ/(2.*SIGQ)
CAll CONHYP(-O.5*N*ALPHA,O.5,ARG,BS,IOVFLW)
IF(IOVFlW.EQ.l) GO TO 31
S-(-1.'**N)*CMN*EXP(-ARG)*F2*aS
GO Tr.l 32

3]. S=«-1.l**Nl*CMN*F2*BS
32 SB=SB+S

CALL CONHYP(-O.5*N*ALPHA,1.5,ARG,TS,IOVFLW)
IFCIOVFLW.EO.l) GO TO 33
SS=«-1.)**N)*CMN*(1.+N*AlPHA)*EXP(-ARG)*F2*TS
GO TO 34

33 SS-«-l.)**N)*CMN*(l.+N*AlPHA)*FZ*rS
34 Sr-ST+SS
60 CONTINUE

H-O/SQRT(2.*PI*PI*SIGO)
HT-H*Z*OSQ/SIG,Q
SB=F*H*SB
ST=F*HT*ST
SUMC B:a SUMC B+ TC 8
SUMCr·SlJMCT+TCT
SUMOB-SUMOB+TOB+SB
SUMQT:SUMOT+TOT+ST

10 CONTINUE
PC·SUMCT/SUMCB
PQC-SUMQT/SUMQB
PR IN T 8, ZD.B, PC , PQC

80 CONTINUE
90 CONTINUE

7 FORMAT(2X,3(lPEIZ.5,2X),/)
8 FORMAT(5X,F5.1,2X,lPE12.5,2X,lPE12.5)

END
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PROGRAM LOBDNB(INPUT,OUTPUT)
C THIS PROGRAM COMPUTES THE LOBO. NON-LINEARITY FOR
C CLASS B NOISE. THE INPUT PARAMETERS ARE AlPHA,AA,AND OMEGA.
C THE NON-LINEARITY VALUES ARE GIVEN BY ZZ.

DIMENSION IRAY(6),AALPHA(3),AAA(3),OOMEGA(Q)
DATA IRAY/-l,-l,-l,O,-l,-ll
DATA AAlPHA/O.8,1.O,1.21
DATA AAA/O.2,1.O,2.01
DATA OOMEGA/2.0087E-4,4.0202E-5,2.0115E-5,9.9889E-4,

11.99Q6E-4,1.OOOOE-4,5.1565E-3,1.0357E-3,5.1816E-41
CALL SYSTEMCCl15,IRAY)
DO 80 1=1,3
ALPH,A-AALPHA( I)
DO 70 J=1,3
AA=AAACJ)
OMEGA=2.*OOMEGA(3*(!-1)+J)

C TO NORMALIZE TO REAL NOISE RMS.
PRINT 6
PRINT 7, ALPHA, AA, OMEGA
DO 60 K-l .• 25
ZDB--65.+K*5.
Z=lO.**CZOB/20.)
ZN=Z*Z/OMEGA
SUM=O. $ FN-l. $ SUM1=O.
DO 20 N-l,26
FN=FN*N
CALL CONHYP(-N*AlPHA/2.,1.5,ZN,S,IOVFLW)
T=«(-AA,**Nl/FN)*GAMMA(.5+N*ALPHA/2.)*S*(1.+N*AlPHA)
IF(IOVFLW.NE.l) GO 'TO 14
SUM1=SUMl+T
GO TO 2,0

14 SUMsSUM+T
20 CONTINUE

FP-O.
IF(ZN.LT.675.) FP=EXP(-ZN)
TOP-FP*(SUM+l.772453Q)+SUMl
SUMM-O. $ FM-l. $ SUMM1=O.
DO 40 M=1,26
FM=FM*M
CALL CONHYP(-M*ALPHA/2.,O.5,ZN,S,IOVFLW)
TT-«(-AA)**M)/FM)*GAMMAC.5+M*AlPHA/Z.)*S
IF(IOVFlW.NE.l) GO TO 34
SlJMM1=SUMM1+TT
Gn Tn 40

34 SUMM-SUMM+TT
40 CONTINUE

FPP=O. ,
IFCZN.LT.675.) FPP=EXP(-ZN)
Bor-FPp*(SUMM+l.772453Q)+$UMMl
ZZ=2.*(Z/OMEGA)*rOP/BOT
PRINT 8, ZOB, ZZ

60 CONTINUE
70 CONTINUE
80 CONTINUE

6 FORMAT(lHl)
7 FORMAT(2X,2(F4.1,2X),lPE12.5,/)
8 FORMAT(5X,F5.1,lPE12.5)

END
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PROGRAM~ PClfINPUT,OUTPUTl
C TO COMPUTE THE GENERAL PERFORMANCE CURVES,
C FIGURES 7.3 AN,D 7.4, EQUATION' 7.13.

oTMEN SI ON A'L PHA ( 9)
DATA AlPHA/l.E-l,1.E-2,1.E-3,l.E-4,1.E-5,1.E-6,1.E-8,

11 • F-~1. 0 , 1 • E-1 2/
PRINT 6

6 FORMATCIH1)
00 20 r-1,25
STGOA=-22.+2.*I
SIG=lO.**(SIGDB/20.)
DF=O.5*CERF(SIG/(2.*SQRT(2.))
PRINT 7, SIGDA, PE

20 CONTI~UE

7 ~ OQ M~ T ( 10 x., F5 .1;, 2)(, 1 PE12. '5)
PRINT 6
no 60 J=1,,9
TI-ERFIN(1.O-2.*AlPHAtJ»
DO 40 K=1,,25
SIG08=-2?+2.*'<
SIG-10.**(SIGDB/20.)
T=SIG/SORT(2. )-'Tl
IF(T.LE.O.) GO TO 30
PD=1.-0.S*CERFCT)
GO Tn 3 5

30 T=-T
PD=O.,*CFRFCT)

35 PRINT 7, SIGDA, PO
40 CONTINUE

PRINT 8
60 CONTINUE

8 FnRMAT(II)
FNf)

PRnGRhM PC3(INPtJT,OUTPUT)
C Tn CQMPUTE TYE RESULTS GIVEN ON FIG 7.6, EO. 7.14.

DIMENSION PE(13)
DATA PE/O.4,O.2,O.1,5.E-2,1.E-2,~.E-3,1.E-3,5.E-4,1.E-4,

15.E-5,1.E-5,5.E-6,1.E-61
PRINT 6

6 FORM,ATC1Hl)
DO 10 1=1,1.3
C=ERFIN(1.-2.*PE(I»)
CDB-IO.*ALOG10(C)
PRINT 7, PE(I), C, COB

10 COt\JTINUE
1 FORMAT(lOX,3CIPF12.5,2X»

END
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PROGRAM PC2(INPUT,OUTPUT)
C TO COMPUTE THE PROBABILISTIC CONTROLS ON DETECTION,
C FIGURE 7.5, EQUATION 7.14.

DIMENSION ALPHA(9), PDET(16), Pl(9), P2(16)
DATA ALPHA/1.E-l,1.E-2,1.E-3,1.E-4,1.E-5,1.E-6,

1 1.E-8~1.E-IO,1.E-121

DATA PDET/O.02,O.04,O.06,O.08,O.1,O.2,O.3,O.4,O.5,O.6~

lO.7,O.8,O.9,O.95,O.98,O.9QI
PRINT 6

6 FORM.ATCIH1)
DO 10 1=1,9
Pl(I)=ERFINCl.-2.*AlPHA(I»

10 CONTINUf
00 20 J=1,16
P2(J)=ERFI~(ABS(2.*PDErCJ)-1.»

IF(2.*PDETeJ)-1 •• LE.O.) P2(J)=-P2(J)
20 CONTINUE

0040 K-l,9
PC=Pl (K )
00 30 L=1,16
0['1:\=0.
P=PC+P2(L)
IF(P.LE.O.) GO TO 29
PDB=10.*ALOGIO(P)

29 PRINT 7, PC. P2(L), P, PDB
30 CONTINUE

PRINT 6
40 CONTINUE

7 ~ORMhT(lOX,4(lOE12.5,2X»)

END

FUNCTION CERF(X)
C SEE APPROXIMATIONS FOR DIGITAL COMPUTERS
C BY C. HASTINGS, PRINCETON U. PRESS, 1955,
C PAGE 169. ALSO IN ABRAMOWITZ AND STEGUN.
C NOTE, VALID ONLY FOR X.GE.a ••

E-l.O/(1.O+O.327S911*X)
s=( (( ( (0 • q 4 06 4,6 07 0*E ) -1 • 2 87 8 2 2 45 3 )*E+1 • 2 5 q 69 51 3 0 ) *E- 0 • 252 12 866 8 ) • E

1+0.225836846)*E
XSQ=X**.2
EXPFX-O.O
IF(XSQ.lT.709.0)EXPFX=EXP(-XSO)
CERF=S*EXPFX*1.12837Q167
RETUR N
END

FUNCTION ERFIN(C)
C COMPUTES THE INVERSE ERRO~ FUNCTION, USING
C 26.2.23 OF ABRAMOWITZ AND STEGUN.

P=(l.-Q)/?
T=$ORTCALOG(l./CP*P))
Xl-2.515517+0.802853*r+O.Ol0328*r*T
XZ=1.0+1.432788*T+O.18926Q*r*T+O.00130e*r*T*T
XP=T-XI/X2
ERFIN=XP/(SORT(2.»
RETUR~

ENO
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PROGRAM PARACINPUT,OUTPUT)
C THIS p~OGRAM COMPUTES L(Z),l(4),L(Z,Z) AND l(6)
C FnR VARIOUS COM8INATIDNS OF CLASS A NOISE
C PARA~ETERS.

C THE COHERENT PROCESSING GAIN, PER SAMPLE, IS L(2).
C THE INCOHERENT PROCESSING GAIN, PE~ SAMPLE, IS
C IS A FUNCTION OF LC2',l(4) AND THE SIGNAL PARAMETER ON.
e THE QATIO o~ THE COHERENT AND INCOHERENT PROCESSING
C GAINS IS ALSO CALCULATED ALONG WITH XO AND YO.

cn~~n't/OQO/A,GA'"

DIMENSION IRAY(6),AACIO),G(7),ON(2)
nI~E~~InN PIINC(Z),PIDB(2),RATIO(Z),RADB(Z),YO(2)
DI~ENSION Zl(7),Z2(7),Z3(7),Z4(7)
DAT~ AA/l.E-4,1.F-2.0.1,O.5,1.O,2.0,3.0,4.0,5.0,lO.OI
DATA G/l.E-8,1.E-7,1.E-6,1.E-5,1~E-4,1.E-3Jl.E-2/

DATA ON/I.,IO.I
nATA IRAY/-l,-l,-l,O,-l,-ll
CAll SYSTEMC(115,IRAY)
PRINT 6

" FnRMAT(lHl)
no An L-l,lO
A-AA(l)
on 70 Ll=1,7
GAM=G(Ll)
SU~ 1 =() • <t SUM 2 =0 • ~; SU~ '3 =0 • ~ SUM 4 =0 •
no 50 1-1,36
ROB=-160.+5.*C!-1)
CnB=-1~O.+5.*I

Q=10.** (QDB/20.)
C-l0.**(CDB/20.)
IF(I.EfJ.l) 9=0.
O)(=(C-~)16.
Dr:' 40 J=1,7
X-B+(J-l)*DX
CALL FUN1(X,ZltJ),Z3(J»
CALL ~UN2(X,Z2(J),Z4(J»

40 CO~TINUt

Sl-O.3*DX*CZl(1)+5.*71(Z)+71(3)+6.*Zl(4)+Zl(5)+5.*Zl(6)+Zl(7»
S2=O.3*OX*(Z2(1)+5.*Z2(Z)+Z2(3)+6.*Z2(4)+Z2(5)+5.*Z2(6)+Z2(7»
S3=O.~*DX*(Z3(1)+5.*Z3(2)+Z3(3)+6.*Z3(4)+Z3(5)+5.*Z3(6)+Z3(7»

S4·0.3*OX*(Z4(1)+5.*Z4(2)+Z4(3)+6.*Z4(4)+Z4(S)+5.*Z4(6)+Z4(7»
SUMl-)UMl+Sl
SUM2=SUM?+S2
SUM3=SUM3+S3
SlJM4=SUM4+S4

50 CONTINUE
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SUMl=2.*SUMl
C SUMl IS l(2l

SUM2=2.*SUM2
C SU~2 IS L(4)

SL4DB=lO.*ALOGIO(SUM2)
SUM3-2.*SUM3

C SUM3 IS l(Z,2)
SL2?DB=lO.*AlOGIO(SUM3)
SU~4:a2.*SUM4

C SUM4 IS L(6)
SL6DA=10.*AlOGIO(ABS(SUM4»
Sl.2=5UM!
SL~D8=10.*ALOG10CSl2)

XO-SL2/(SUM3/2.-Sl2*Sl2)
on 60 K=1,2
F=?*SL2*SL?/SUM2
°IIN~(K)=(SUM2/8.)*Cl.+F*(ON(K)-1.»

PI08(K)-lO.*ALOGIO(PIINCCK»
RATI~(K)=PIINC(K)/SL2

RAOB(K)=10.*ALOGIOCRATIOCK»
60 CONTINlJE

YO(ll=SUM2/ABS(SUM4/2.+6.*SLZ*SUM3)
YO(2)=1./ABSC3.*SUM3/Sl2+2.*Sl2)
PRINT 7, A, GAM
PRINT 8, SL2f SU~2, SUM3, SUM4
PRINT 9, XO, yo(!), YOCZ)
PRINT 10, PIINCCl), PIINC(2), RATIO(l), RATIO(Z)
PRINT 11, SL20B, PIDBCl), PID9(2), RADB(l). RAOB(2)
PRINT 12, SL4DB, Sl220B, Sl608

70 CONTr~UE

80 CONTINUE
7 FORMATC2X,2CIPEIO.3,2X»)
8 FORMAT(5X,4(lPEIO.3,2X»
q FORMAT(5X,3(lPEIO.3,2X»

10 FORMAT(5X,4(lPE10.3,2X»
11 FnRMAT(5X,5(lPEIO.3,2X»
12 FORMAT(5X,3(lPE10.3,2X),/)

END
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StJ BR 0lJ TIN E FUN 1 ( X, Y, YY)
C THIS SlJBROUTINE COMPlJTES THE L(Z) AND l(2,Z) INTEGPANDS
C FOR CLASS A NOISE.

COMMnN/QQQ/A,GAM
PI=3.141592654
S~1·0. $ SM2=O. $ FM=l.
on 10 MM=1,26
M=MM-l
IF(M.NE.O) FM=FM*M
SIGSQ=(M/A+GAM1/fl.+GAM)
Tl-«(A**M)/FM)*EXP(-X*X/(2.*SIGSQ»/«2.*PI*SIGSQ)**O.5)
T?=T1/SIGSQ
)Ml=SM1+Tl
S~2·S~2+T2

10 cnNTINUE
TE~P=Y*X*SM2*SM2/SMl

Y>FF XP ( -A ) *T EM P
C y IS THE L(2)· INTEGRAND.

VY~2.*EXPI-A)*TEMP*TEMP/SMI

C YYIS THE L(2,21 INTEGQAND
RETURN
E.ND

SU~RQUTINE FUN2(X,Y,yY)
C THIS SUBROUTINE COMPUTES THE L(4) AND L(6) INTEGRANDS
C ~OR CLASS A CANONICAL NOISE.

CC1MMON/QQQ/A,GAM
P!::3.1415Q2654
SMI-O. $ S~2=O. $ SM3=O. , FM=l.
~n 10 MM=1,26
M=MM-l
IF(M.NE.O) ~~=F~*M

SIGSQ=(M/A+GA~)/(l.+GAM)

Tl=((A**M)/FM)*FXP(-X*X/(2.*SIGSC»/(SORT(2.*PI*SIGSQ))
T2=Tl/SIGSQ
T3=T2/SIGSQ
SMlcSMl+Tl
SM2=SM2+T2
SM3=SMi+T3

10 CfJNTlt\lUE
G=)(*X*SM3-S M2
Tt~P=G*G/SMl

Y=EXP(-A)*TEMP
C Y IS THE l(4) INTEGRAND.

VY.EXP(-A)*TEMP*G/SMl
C YY IS THE L(o) TNTEGRA~O.

~FTUQN

E~JD
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PROGRAM PARBfINPUT,OUTPUT)
C THIS PR."QGRAM COMPUTES l(2),L(4),l(2,2),AND L(b)
C FOR VARIOUS COMBINATIONS OF CLASS B NOISE
C PARAMETERS, AL?HA,AA,ANO OMEGA.
C THE COHERENT PROCESSING GAIN, PER SAMPLE, IS L(Z).
C THE I~COHERENT PROCESSING GAIN, PER SAMPLE, IS A
C FUNCTION OF L(2), l(4) AND THE SIGNAL PARAMETER ON.
e THE RATIO OF THE COHERENT AND INCOHERENT PROCESSING
C GAINS IS ALSO CALCULATED ALONG WITH THE BOUNDS XO AND YO.

COMMnN/OQQ/AlPHA,AA,OMEGA
DIMENSIO~ IRAY(6),AALPHA(9),AAA(6),OOMEGA(54),CN(2)
DI~EN5ION PIINC(2),PIOB(2),RATIO(Z),RAD8(Z),YO(2)
DI~E~SION Zl(7),Z2f7),Z3(7),Z4(7)
DbTA AALPHA/O.2,O.4,O.6,O.8,1.O,1.2,1.4,1.6,1.8/
DATA AAA/O.OOl,O.Ol,O.1,O.5,1.O,2.01
DATA OOMEGA/6.551E-4,6.564E-5,6.659E-6,l.419E-6,7.b83E-7,

14 • 502 E- 7_ 2 • 0 r; 1 E- 3 , 2 • 0 62E-·4 .,2 • 06 7 E- 5 , 4 • 176 E- 6, 2 • 11 5E- 6 ,
Il.OA5E-6,8.51QE-3,8.588E-4,8.59aE-5,1.723E-5,8.631E-6,
34.333F-6,1.078E-l,4.001E-3,4.016E-4,8.037E~5,4.020E-5,

42.012E-5,7.396E-l,3.069E-2,1.996E-3,3.998E-4,2.000E-4,
51.000E-4,q.335E~1,3.080E-l,1.026E-2,2.069E-3,1.036E-3,

65.182E-4,9.572E-l,7.708E-l,1.121E-l,1.438E-2,5.507E-3,
72.761E-3,Q.618E-l,9.099E-l,4.697E-l,1.11QE-l,4.993E-2,
82.133E-2.9.636E-l,9.456E-l,7.584E-l,3.656E-l,Z.255E-l ,0.01

DATA ON/l.,IO.1
DATA TRAY/-l,-l,-l,O,-l,-l/
CAll ~YSTEMC(115,IRAY)

PRINT 6
6 FORMhT(lHl)

DO 80 L=l,Q
ALPHA=AALPHA(l)
00 70 ll=1,5
AA=AA ,~ ( L1 )
OMEGA=2.0*OOMEGA(ll+6*(L-l»

C TO NORMALIZE TO REAL NorSE RMS.
IF(O~EGA.EQ.O.) GO TO 70
SUM1=O.$SUM2=O.$SUM3=O.$SUM4=O.
DO 50 !=1,42
9DR--160.+5.*(!-1)
CD~·-160.+5.*I

B=lfl.**(BDB/20.)
C=lO.**CCDB/20.)
IFCI.EQ.l) B-O.
DX a (C-B)/6.
no 40 J=1,7
X=B+(J-l)*OX
CALL FUNeX,ZlCJ),Z2(J),73CJ),74(J»

40 CONTINUE
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S1. • O. 3*DX*(Z1 ~: 1 ) ... 5 • *Z1 ( 2 ) +Z 1 ( 3) +6 •• Z1 ( 4 ) +Z1 ( 5 ) +5 • *Z1 ( 6 ) +Z1 ( 7 ) )
S2 • 0 • 3*.D X*(' Z2 ( 1 ) +5 • *Z2 ( 2 ) +Z·2 ( 3 ) +6 • *Z2 ( 4 ) +Z2 ( 5 ) +5 • *Z2 ( 6 ) +Z2 ( 7 ) )
S3.0.3*DX*(Z3(1)+5.*Z3(2)+Z3(3)+6.*Z3(4)+Z~(5)+5.*Z3(6)+Z3(7»

S4=O.~*OX*(Z4(1)+5.*Z4(2)+14(3)+6.*Z4(4)+Z4(5)+5.*Z4(6)+Z4(7)

SUMl=SUM1+Sl
SU M 2-SUM2+S2
SU~1=SUM3+S3

SUM4=SUM4+S4
50 cnNTINUE

SUMla2.*SUMl
C SUMl IS l(;?)

SttM~=2. *SUM2
C SU~2 IS l(4)

S l4 0 q =1 o. *A l O~; 10 ( S U,M 2 )
)UM3='.*SUM3

C 5UM3 IS L(Z.,2)
Sl22D~·lO.*ALOGIO(SUM3)

SU\14=2.*SUM4
C SU~4 IS LCo)

Sl6D~=10.*ALOGI0(ABS(SUM4»

5L'·SUMl
Sl2DB=lO.*~LnG10(SL2)

XO=SL~/(SUM3/2.-SL2*SL2)

00 1:>0 K=1,2
~=2.*SL2*Sl2/SUM2

PII~C(K)=(SUM2/8.)*(1.+F*(QN(K)-1.»

PIO~(K)=10.*ALOGIO(PIINC(K»

RATInCK)sPIINC(K)/SL2
RAnB(K)=10.*AlOGIO{RATIO(K»

60 CONTI'JUF
YO(1)=SU~2/ARS(SUM4/2.+6.*SL2*SUM3)

YO(?)=1./AAS(3.*SUM3/SL2+2.*Sl2)
PRINT 7, ALPHA, AA, OMEGA
PPIN T 8, ~ l ?, SIJ M2, SUM 3 ,S UM4
PRI~T Q, XO, YO(l), YO(2)
PRINT 10, PIINC(l), PIINC(2), RATIO(l), RATIO(Z)
PPINT 11, SL20~, PIOB(l), PIDB(Z), RADB(l), RADB(Z)
PRINT 12, Sl4DB,SL22DB, SLbDB

70 CONTINUE
80 CnNTTNUE

7 FORM~T(2X,3(lPEI0.3,3X»

8 FORM~T(5X,4(lPEI0.3,2X»

q FQR~AT(5X.3(lPEI0.3,2X»

10 FnRMAT(5X,4(lPEIO.3,2X»)
11 FORMAT(5X,5(lPEIO.3,2X»
12 FORMAT(5X,3CIPEIO.3,2X),/)

END
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SUBROUTINE FUN(X,Y,YY,YYY,YYYY)
C THIS SUBROUTINE COMPUTES THE l(2)(Y),THE L(4)(YY),
C THE L(2,2)(YYY),ANQ THE L(6)(YYYY) INTEGRANDS FOR
C CLASS 8 NOISE.

COMMON/QQQ/ AlPHA,AA,OMEGA
PI=3.1415Q2654
ZN-X*X/OMEGA
FM_l.
SUMl~SUM2·SUM3·0.

SUM4=$UM;=$UM6=O.
00 20 M=1,26
FM·FM*M
CALL CONHYP(-M*AlPHA/2.,O.5,ZN,S,IOVFlW)
CALL CONHYP(-M*ALPHA/2.,1.5,ZN,SS,IOVLlW)
CALL CONHYP(-M*AlPHA/2.,2.5,ZN,SSS,IOVFLW)
r-«(-AA)**M)/FM)*GAMMACO.5+M*ALPHA/2.)
Tl-r*s
T2=T*(1.+M*AlPHA)*SS
T3=T*(1.+M*ALPHA).(1.+~*ALoH4/3.)*SSS

IF(IOVFlW.NE.l) GO TO 15
SUM4=SUM4+Tl
SU~5=SUM5+T2

SUM6=SUM6+T3
GO TO 20

15 SUMl=SUM1+Tl
SUM2=SUM2+T2
SUM3=~UM3+T3

20 CONTINUE
FP=O.
IF(ZN.lT.675.) FP=EXP(-ZN)
PT=FP*(SUM1+SQRT(PI)+SUM4
PIT=FP*(SUM2+SQRT(PI)+SUM5
Pl1T=FP*CSUM3+SQRT(PI»+SUM6
P=PT/(PI*SQRT(OMEGA»
Pl=-2.*X*PlT/(PI*OMEGA**1.5)
Pll-4.*X*X*PIIT/(PI*OMEGA**2.5)-2.*PIT/(PI*OMEGA**1.5)

C P IS PDF OF X
C Pl IS PDF PRIME
C Pil IS PDF PRIME PRIME (2ND DERIVITIVE)

Y- P l*Pl/P
YY zP l1*Pll/P
YVY=(?*Pl**4.)/(P**~.)

YYVY:(Pll**3.)/(P*P)
RETURN
ENO
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PROGRAM PDVPDSCINPUT,OUTPUT)
C PROGR4M COMPUTES THE CANONICAL PERFORMANCE RESULTS, EQUATION
C 6.50, PROBABILITY OF DETECTION VERSUS OPTIMUM PROBABILITY
C OF DETECTION, ~S FUNCTION OF DEGRADATION FACTOR PHIO,
C FOR A GIVEN FALSE ALAR~ PROBILITY, ALPHAF.

DIMENSION ALPHA(2), PHI(7), POSS(18)
DATA ALPHA/1.OE-3,1.OE-61
OATA PHI/1.,O.5,O.1,O.05,O.Ol,O.005,O.OOll
DATA PDSS/l.OE-6,5.0E-6,1.OE-5,5.0E-5,1.OE-4,5.0E-4,O.OOl,

lO.OO~,O.Ol,O.05•• 1,.5,.6,.7,.8,.9,.95,.981
PPINT 6

6 FnRMATCIH1)
Dn 60 1-1,2
AlPHt\J==hLPHACI)
on 50 J=1,7
PI-1ID=PHI(J)
PRINT 7, ALPHAF, PHIO
on 40 K=1,18
PDS=PDSSCK)
Tl=ER~IN(1.-2.*ALPHAF)

T2-ERFIN(ABS(2.*POS-l.')
IF(2.*PDS-l •• LE.O.) T2=-T2
T3=SQRT(PHIO)*<T2+Tl)
T=T3-Tl
IF(T.lE.O.) GO TO 30
DO=1.0-0.5*CERF(Tl
GO TO 15

30 T=-T
PD-O.5*CEPFCTl

35 PRINT 8, PDS.f PD
40 CO~TINUE

oRINT Q
50 CONTINUE
60 CONTINUE

7 FORMAT(5X.2(lPEIO.3,3X),/)
8 FnRMATC8X,2(lPEIO.3,3X»
9 FORMA.T(II)

END
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PROGRAM PEVPESCINPUT,OUTPUT)
C PROGRAM COMPUTES THE CANONICAL PERFORMANCE RESULTS EQUATION
C 6.51, PROBABILITY OF BINARY BIT ERROR VERSUS OPTIMUM
C PROBABILITY OF ERROR, AS A FUNCTION OF DE~RADATION FACTOR PHID.

DIMENSION PHI(lO),PESS(17)
DATA PHI/1.O,.9,.8,.7,.6,.5,.4,.3,.2,.11
DATA PESS/l.E-b,2.E-6,5.E-6,1.E-5,2.E-5,5.E-5,1.E-4,2.E-4,

15.E-4,.OOl,.002,.005,.Ol,.02,.05,.1,.21
PRINT 6

6 FORMAT(lHl)
00 60 1-1,10
P~IO:2PHI(I)

PRINT 7, PHID
Dr) 40 J=1,17
PES-PESS(J)
PE=O.5*CERF(PHIO*ERFINC1.-2.+PES»
PRINT 8, PES, PE

40 COt\tTINUE
PRINT 9

60 CnNTINUE
7 FORMAT(5X,lPE10.3,/)
8 FORMATC8X,2(lPE10.3,3X»
9 FORt.1ATCI/)

END

PROGRAM WOACINPUT,OUTPUT)
C PROGRAM COMPUTES THE PDF EVALUATED AT ZERO
C ~OR CLASS A NOISE.

DIMENSION AAflO),G(7)
DATA AA/l.E-4,1.E-2,O.1,O.5,1.O,2.,3.,4.,5.,lO./
OATA G/1.E-8,1.E-7,1.E-6,1.E-5,1.E-4,1.E-3,1.E-21
PI=3.1415Q2654
PRINT 6

6 FORMAT(lHl)
DO 80 J=l,lO
A=AA(J)
PRI~T 1, A

DO 70 K-l,7
GAM-G(K)
SUM=O. $ FN=l.
00 60 NN=1,30
N-NN-l
IF(N.NE.O) FN-FN*N
T=«A**N)/FN'*SORT«l.+GAM)/(N/A+GAM»
StJM=5UM+T

60 CONTINUE
WO-EXP(-A)*SUM/SQRT(Z.*PI)
AR E=4.* WO*WO
AREOB=10.*ALOG10(ARE)
PRINT 8, GAM,WO,ARE,AREDB

70 CONTINUE
PR.INT q

80 CONTINJJE
7 FORMAT(5X,lPEIO.3,/)
8 FORMAT(8X,4(lPE10.3,3X»
9 FORMATC//)

END
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PROGRAM W08(INPUT,OUTPUT)
C PROG~A~ COMPUTES THE PDF EVALUATED AT ZERO
C FOR CLASS B NOISE.

OIMENSION AALPHA(9),AAA(6),DOMEGA(54)
PI=3.1415QZ654
DATA AALP~A/O.2,O.4,O.b,O.8,1.O,1.2,1.4,1.6,1.81

DATA AAA/O.001,O.Ol,O.1,O.5,1.O,2.01
DATA OOMEGA/6.551E-4,6.564E-5,6.b5QE-6,1.419E-6,7.683E-7,

14.502E-7,2.057E-3,2.062E-4,2.067E-5,4.176E-6,2.115E-6,
Il.OR5E-6,8.519E-3,8.588E-4,8.598E-5,1.723E-5,8.631E-6,
34.333E-6,1.07BE-l,4.001E-3,4.01bE-4,8.037E-5,4.020E-5,
42.01?E-5,7.3Q6E-l,3.069E-2,1.QQ6E-3,3.QQ8E-4,2.000E-4,
51.000E-4,9.335E-l,3.080E-l,1.026E-2,2.06QE-3,1.036E-3,
65.182E-4,9.572E-l,7.708E-l,1.121E-l,1.438E-2,5.507E-3,
72.761E-3,9.618E-l,9.0Q9E-l,4.697E-l,1.11QE-l,4.993E-2,
A2.133F-2,Q.636E-l,9.456E-l,7.584E-l,3.656E-l,2.255E-l,0.0/

PRINT 6
6 J=ORM.AT( IH1)

no 80 J=1,5
AA=AA.A(J)
°RI~T 7, AA
00 70 K=1,9
Al.PHA=AALPHA(K)
OMFGA=2.0*OOMEGA(6*(K-l)+J)

C TO NQ~MALIZE Tn REAL NOISE R~S.

SUM-f). $ J=N-l.
00 60 NN-l,30
N=~N-l

IF(N.~E.O) FN-FN*N
T=«(-AA)**N)/FN)*GAMMA(N*ALPHA/2.+0.5)
SUM=StJM+T

60 CONTINUE
WO=SUM/(PI*SORT(OMEGA»
ARE-4.*WO*WO
AREnq=lO.*ALOGIO(ARE)
pOINT 8, ALPHA,OMEGA,WO,AQE,AREDB

70 cnNTINIJE
PRINT 9

80 CONTINUE
7 ~ORMAT(;X,lPEI0.3,/)

A FnRM~T(8X.5(lPEI0.3,3X»)

q FnRM.~T(II)

END
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