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PREFACE

This is the second in a series of studies by the present authors which
addresses the critical problem of signal detection in highly nongaussian
electromagnetic interference (EMI) environments. (The first in this series
is the Report-0T-75-67, "Optimum Reception in an Impulsive Interference
Environment", June 1975, by A.D. Spaulding and D. Middleton, for the Office
of Telecommunications - U.S. Dep't. of Commerce [Ref. [1a]], subsequently
published in somewhat shorter form in the IEEE Transactions on Communications
in 1977, [1b].

Because of the recent development (1974- ) of effective, tractable
statistical-physical models of typical EMI environment ([2]-[10a]), which
provide at least the complete first-order statistics of the received inter-
ference (as it appears following the initial linear stages of narrow-band
receivers), it has become possible to determine and compare the limiting
threshold (i.e. weak-signal) performance of both optimum and conventional
receivers in such disturbances. The latter are found to be heavily degraded
vis-a-vis the former, because of the highly nongaussian character of these
typical telecommunication environments, where both man-made and natural
"noise" can and usually do predominate. Optimality is important, since
from it one can establish the Timiting behaviour of suitably designed re-
ceiving algorithms, as well as evaluate the performance of current subopti-
mum receivers. These results, in turn, are fundamental to the technical
basis of effective spectrum use and management. Included here as well, is
the aforementioned construction of adequate EMI models and the explicit
identification of the pertinent data bases required for both empirical and
analytic applications.

These studies accordingly focus on signal detection, with particular
attention to the structure of the nongaussian EMI and its "scenario", i.e.
propagation laws, source distributions, signal waveforms, etc., as well as
the corresponding (desired) signal scenario. In this way observables of the
EMI environment are directly incorporated into the results, e.g., optimum
signal processing algorithms, suboptimum procedures, and performance measures.



Among the many topics under investigation in this series are: (1), the
role of the interference class (Class A, B noise) on detection algorithms
and performance; (2), the effects of the EMI scenario on performance; (3), the
various matched filters appropriate to different propagation conditions for
the desired signal; (4), the effects of approximate or inaccurate EMI
parameter data on structure and performance (i.e. "robustness" questions);
(5), receiver structure and performance for varieties of digital signal wave-
forms in common usage; and many related problems, which one hopes to examine
as the work progresses.

Finally, it should be stressed that, although attention is directed
here primarily to (EM) telecommunication environments, the concepts, methods,
and results of this work are quite generally applicable to other communica-
tion fields and physical systems. This is a direct consequence of the canoni-
cal formulation of the detection problem itself, onthe one hand, and of the
canonical nature of the broad spectrum of interference scenarios encompassed
by the recently-developed non-gaussian noise or interference models on the
other. Consequently, it is expected that the approaches and results ob-
tained here should have impact well beyond the particular applications to
EMI telecommunication :systems discussed herein.
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OPTIMUM RECEPTION IN NONGAUSSIAN ELECTROMAGNETIC
INTERFERENCE. ENVIRONMENTS: II. OPTIMUM AND SUBOPTIMUM
THRESHOLD SIGNAL DETECTION IN CLASS A AND B NOISE*

by

David Middleton** and A.D. Spaulding***

ABSTRACT

In this second part of an ongoing study, the general problem of eptimum
and suboptimum detection of threshold (i.e. weak) signals in highly non-
gaussian interference environments is further developed from earlier work
([1al,[1b];[34]). Both signal processing algorithms and performance measures
are obtained canonically, and specifically when the electromagnetic inter-
ference environment (EMI) is either Class A or Class B noise. Two types of
results are derived: (1), canonical analytic threshold algorithms and per-
formance measures, chiefly error probabilities and probabi1ities of detection;
and (2), various typical numerical results which illustrate the quantitative
character of performance. Suboptimum systems are also treated, among them
simple cross- and auto-correlators (which are optimum in gaussian inter-
ference), and clipper-corre]ators which employ hard limiters (and are con-
sequently optimum in "Laplace noise"). The various modes of reception con-
sidered explicitly here include:(i), coherent and incoherent reception; (ii),
“composite" or mixed reception (when there is a nonvanishing coherent com-
ponent in the received signal; (iii), "on-off" and binary signals, as well
as varieties of fading and doppler spread.

* Work supported under contract (first author) with the Institute of Tele-
communication Sciences (ITS), Boulder Colorado, National Telecommunication
and Information Administration (NTIA) of the U.S. Dep't. of Commerce,
Wash. D.C. Work also partially supported by the U.S. Bep't. of Defense.

** 127 E. 91 St., New York, N.Y. 10028
***[TS/NTIA of U.S. Dep't. of Commerce, 325 Broadway, Boulder, Colorado 80303.



Both local optimality (LO) and asymptotic optimality (AO) are demon-
strated, along with the critical influence of the proper bias in the optimum
algorithms, which maintain their LO and AO character as sample size is
increased, without having to add additional terms in the original threshold
expansion (and thus produce insurmountable system complexity for the very
large samples required for effective detection of weak signals). It is
shown that for AO, as well as LO, two conditions may be needed to establish
the largest magnitude of the minimum detectable input signal which can be
permitted and still maintain the optimal character of the algorithm. In
addition to the more general Bayes risk and probabilistic measures of per-
formance, Asymptotic Relative Efficiencies (ARE's) are also included and
their limitations discussed. A number of numerical examples which illustrate
the determination of performance and performance comparisons are provided,
with an extensive set of Appendices containing many of the analytic details
developed and presented here for future use, as well.

KEY WORDS AND PHRASES:

Threshold signal detection, optimum threshold detection algorithms,
performance measures, performance comparisons, electromagnetic inter-
ference environments (EMI), suboptimum detectors, locally optimum and
asymptotically optimum algorithms; Class A, B noise; correlation
detectors; clipper-correlators; error probabilities; minimum detectable
signals, processina gain, bias, EMI scenarios; composite threshq]d
detection algorithms; on-off binary signal detection; non-gaussian
noise and interference.



1. _INTRODUCTION

Nongaussian noise and interference have been recognized for some time
[10], [10a] as an increasingly significant factor in the degradation of the
performance of most electronic systems and of telecommunication systems in
particular [la,b]. Both natural and man-made noise contribute noticeably
here, with the Tatter becoming the dominant component in most instances,
as time goes on. At the same time, most telecommunication systems -
specifically receivers - have been designed to be (approximately) optimal
against gaussian noise (both internal and external). This has been accom-
plished by means of "matched filters" ([11],[12]), whose particular struc-
tures depend on the mode of reception, i.e., on whether or not reception
is "coherent" of "incoherent" [Sec. 19.4, [12]]. Now, because of the
growing presence of nongaussian interference of all kinds, these conyen-
tional or "classical" (correlation) receivers are found to be badly degraded
0(20-50db) typically, and new designs (or "algorithms") for optimality are
accordingly required [la,b], [13].

Analytically quantifiable procedures for optimal signal processing at
all desired signal levels in arbitrary interference are not generally possible,
however. Thus, to obtain a "general" solution either one must restrict |
the class of signals and interference, mode of observation, etc., or one
must 1imit the approach to threshold signals, where now there is no restric-
tion on signal type and interference class. Such an approach is accordingly
canonical, [14], with several considerable adyantages over more specific but
less general methods. These advantages are: (i), an explicit operational de-
velopment of the required optimum signal processing algorithms (i.e. detection
or signal extraction); (ii), an explicit formalism for evaluating error-
probability performance directly in terms of the various first and second
moments of the processing algorithm (vis-a-vis the various hypothesis states
involved, e.qg. Ho: interference alone, H]: desired signal plus Tnterferenée,»
etc.); and (iii), a similar procedure for obtaining the performance of speci-
fied sub-optimum systems in the electromagnetic interference (EMI) enyironment.

Optimality here is expressed in the general sense of minimum average
risk or cost (i.e. Bayes risk ([12], Chapters 18,19), and in the more special
sense of minimum probability of error, or maximum probability of correct -




signal detection, etc., which is, of course, ultimately embedded in the

more general Bayes formalism. Of course, as the signal level increases the

signal threshold algorithm is no longer optimum, but it is still better

on an absolute basis than it is for very small signals. Moreover, it re-

mains better, in many instances, than the original suboptimum systems to

which it is often vastly superior in the threshold régime (as noted above).
For these threshold signals optimality is achieved under the strictly

mathematical condition of vanishingly small ‘input signé]s. In the prac-

tical cases, however, as we show here, effective optimality is maintained

as long as the small desired input signal does not exceed some upper bound

(itself small). [The desired signal is, of course, nonvanishing in all

practical applications.] These optimum threshold algorithms can be shown

to be optimum in two senses: (i), locally optimum (LO), i.e. essentially

yielding the smallest error probabilities for small signalseg(o<é<e<<]),

with finite sample sizes (n<~); and (ii), asymptotically optimum (AO),

where for these same LO algorithms, the error probabilities (or average

risk, more generally) remains minimal (and can approach zero) as sample-

size increases indefinitely (m). For the latter we emphasize that the

structure of these threshold optimum (LO) algorithms remains unchanged as

n+«, provided the correct bias, B;(e), is_employed. Without the proper

bias term in the threshold algorithm, the processing is suboptimum, and

moreover, is not only not LO but is also not AO. [These questions are dis-

cussed in detail in Secs. 2.4, 6.1, 6.4, and particularly in Appendix A3 ff.]
The concept of optimum threshold reception is comparatively venerable.

Perhaps the first exposition of the concept was presented for detection by

Middleton in 1953, 1954, [15] and [16], where the approach was to demonstrate

a series development the generalized likelihood function in various orders

of cross- and autocorrelation components, mostly non-linear in the received

waveform data. Among the important subsequent works are those of Rudnick in

1961 [17], who expressed the threshold detector in an alternative closed form,

more useful in applications, and that of Capon [18], also in 1961, who intro-

duced the notion of asymptotic relative efficiences (ARE's) for performance

measures.




A further important step, including these earlier advances and embedding
the overall approach fully in the Bayes formalism of statistical communication
theory ([10]; Section 19.4, Chapter 20, of [12]), was presented by Middleton
in 1966 [14]; (see also [21]). Thomas and coworkers ([21]-[24]) have applied
these methods, particularly to non-parametric receptioﬁ, since about 1965;
at about the same time Antonov [25], 1967, and a 1ittle later Levin and
his colleagues ([26]-[28], approx. 1969 and subsequently, used these con-
cepts for signal detection and estimation. More recently (1978), Sheehy
for example, has applied these ideas to acoustic signals. [See also [48]
for some recent observations on the current status of work in this area.]

In this present study we shall use Middleton's 1966 paper [14] as a starting
point for the derivation of specific detection algorithms and performance
measures, alone the lines, to some extent, of [la,b], and particularly, [34].

Although the general threshold detection formalism has been available
since 1966, cf. [14], its practical applicability has been limited until
recently because of the lack of physically realistic and tractable nongaussian
noise models. Most of the interference models suggested have been ad hoc
attempts to represent such phenomena, without sufficient physical basis and
analytic structure to apply generally. This difficulty was largely removed
in the mid-70's and subsequently, by the development of statistical-physical
models of interference, which are both analytically tractable and well-
verified by experiment, [2]-[9]. Specifically, first-order probability
distributions and densities have been obtained, with the model parameters
themselves determined analytically from the physical EMI scenario involyed
[81,[9], or empirically [6],[7], when such information is unavailable. These
models are canonical also, in the sense that the form of the results is in-
dependent of the particular physical mechanism involved, the principal con-
ditions being; (i), that the potential number of possible sources producing the
resultant interference be large, and (i1), that each source emits independently
of the others [cf. Sec. 3 below].

Two main classes of interference are distinguished: Class A noise, which
is "coherent" in the receiver in that it produces negligible transients there-
in; and Class B noise, which is alternatively "incoherent", producing essen-
tially nothing but transient responses. The former is non-impulsive, while
the latter is usually highly impulsive. Typical examples of Class A



interference are other, man-made telecommunications for the same channel

or spectral region. Similarly, automobile ignition noise and atmospherics
are common types of Class B interference, cf. [6]. We stress the fact that
these interference models, and their classification, are not 1imited to EMI,
but apply equally well (with different numerical values, of course) in
other physical areas where the same basic source conditions noted above
apply.

In the fullest formal sense these general signal processing algorithms
(e.g.'for detection and extraction) usually require nth-order statistical
descriptions of the interference. Fortunately, we can greatly simplify
the analysis, without serious loss in either methodology or performance,
by using independent (noise) samples. Such procedures are conservative, in
that they provide upper bounds on performance, in the sense of larger error
probabilities for given input signal levels and sample sizes, or greater
signal Tevels or sample sizes, for the same:error pnobabi]ftfes, etc. At
the same time we can now use the new canonical statistical-physical inter-
ference models noted above, to provide a truly realistic account of the EMI
environment in which our signal processing tasks are to be carried out.

Because the parameters of these Class A and B models are themselves
derivable from the underlying EMI scenario (i.e. source distribution, prop-
agation 7law and fading effects, signal structure, etc., (cf. Sec. 3 ff.), we
can gain further insight into the rdle of the EMI scenario on system perform-
ance, and from this predict how changes in source distributions, propagation
conditions, etc., may affect receiver operation. In effect, what we haye
done by introducing these physically-derived interference models {s to show
explicitly how the underlying physical mechanisms and conditions can in-
fluence system design and behaviour.

In our present study we shall confine our attention to threshold
signal detection in canonical Class A or Class B interference, reserying
the extension of the analysis to general signal levels along the 1ines indi-
cated in [1a]) for a subsequent study. Our specific goals are to obtain

(i). the optimum threshold signal detection algorithms for both
the coherent and incoherent modes of reception,
(ii). the associated optimum performance for these algorithms, and




(iii). comparisons with selected suboptimum receivers, namely, receivers
conventionally optimized against gaussian noise, viz. cross- and
auto-correlation detectors, and against impulsive noise, e.g.,
clipper-correlators.

(iv).  An important fourth goal is to study the effects of "mismatch",
i.e., when approximate or incorrect parameter values and/or noise
distributions are employed in system design and operation.

Accompanying this is the concept of "robustness": how little (or how much)
is performance degraded by these various types of "mismatch".

Most of the results to be achieved under the above are new, although
a few special cases have been obtained earlier [13]; also [1a,b]. In ad-
dition to the analysis, selected numerical results illustrate typical per-
formance situations in typical Class A and B EMI environments. Aldorithm
structure is shown in a number of "flow diagrams", which indicate the organi-
zation of the various operational elements.

Specifically, among the principal new results achieved here are the de-
monstration of asymptotic optimality (AO) of the (optimum) threshold algorithms,
when the correct bias is used, various explicit results for coherent and in-
coherent detection, including composite detectors when there is a nonyanishing
coherent signal component, and upper bounds on the minimum detectable signal,
required to preserve optimality of the threshold algorithm. Parallel results
for binary signals are similarly obtained.

This Report is organized as follows: Section 2 presents a concise oyer-
view of the general threshold theory needed for both matched and mismatched,
optimum and suboptimum systems, developed mainly from [14]. Section 3 sum-
marizes the pertinent statistics and EMI scenario and parameter structures
needed for the Class A and B interference treated here, based mostly on [6],
[9], [13]. Section 4 considers threshold detection algorithms themselves,
in detail. Section 5 treats "matched filters" and the operational inter-
pretations of these algorithms, while Section 6 examines the performance of
these various optimum and suboptimum detectors in analytic. detail. In Section 7
selected numerical results are obtained and discussed, for typical classes of
(desired) signal waveforms. Section 8 completes the work with a short dis-
cussion of both the principal general and specific results, as well as sug-
gested next steps in the analysis. The Appendices provide most of the



technical details, and the computer software, needed in the main text.

We remark, finally, that the calculated great improvement of systems
optimized properly to these highly nongaussian interference environments
vis-a-vis conventionally optimized receivers (i.e. against gauss noise)
stems fundamentally from the following conditions: |

(1), the fact that the former are adaptive systems, which sense the
(parameters of the) EMI environment currently with the the de-
tection process, and _

(2), the fact that the entire density function (pdf) is then suitably
employed to give the correct threshold algorithm, while the latter
remain sensitive only to second-moment statistics (which, of
course, are sufficient when the noise is gaussian).

The degree of improvement over conventional detectors depends, as
expected, on how nongaussian (in intensity and statistical structure) the
interference is. When the interference reduces to gauss, so also does the
(optimum) detector algorithm. again as we would expect. It should be noted,
however, that the degradation of conventional (simple-correlation) receivers
is greatly reduced vis-a—vis the optimum algorithm when (sub-optimum)
clipper-correlators are employed. Nevertheless, optimum threshold algorithms
may still provide a worthwhile improvement, 0(3-10db), over the clipper-
correlators, particularly when "composite" or mixed coherent and incoherent
processing can be employed. In any case, the results of an optimality
study are always needed in any effort to assess ultimate performance and
practical departures from it. Finally, recent additional studies [49-54]

are to be noted for possible extension of present work.

2.  GENERAL THRESHOLD DETECTION THEORY:

Threshold detection theory, as is well-known [14], is a general sub-
element of the Bayes, or (minimum) average risk theory of signal reception
([19],[12], Chap. 18, et seq.), and as such carries with it all the same
general statistical structure and concepts of the latter, more comprehensive
formulation. Moreover, the general Bayesian detection theory naturally
provides the starting point from which the former is developed. We begin,
accordingly, with a very brief summary of the general formalism for both

optimum and sub-optimum detection.




2.1 Remarks on General Detection Theory:
Optimum reception, and, in part‘cular optimum detection, is well-
known to require the minimization ¢” the probabilities of decision errors.

This is achieved (in the usual context of minimizing the average risk, or
cost, of decisions) by constructinc the "test statistic", or reception
algorithm, An(éjs). Here A, is thc (generalized) likelihood ratio, defined
in the standard way [Ref. 12, Chaptrr 18] by

(1) _ P<‘Fn(2(,|§)>5

Az 3 Fn X[0 . (2.1)

where X = (X1,...,Xn) is the set of n samples of received data; $ represents
the desired signal; ()S, the average over the signal or its (possibly)
random parameters, while p,q (=1-p) are respectively the a priori probabili-
ties that a received data set X does or does not contain the desired signal.
The quantity Fn(£|§) is the probability density function for the set‘i,

under the condition of the presence of a signal () in the usual fashion.

The optimum detection process, then, consists of comparingl\n (or any mona-
tonic function of Ag]}say, the Togarithm, log Agl))) with a suitably chosen
threshold, %, e.q.

. o . 0o (1)
decide H:. no signal present", if log An < log A

decide H]: “signal, as well as interference
is present", if tog A1) > 109 % J. (2.2)

Similarly, for non-optimum systems, the reception algorithm, or pro-
cessing of the data, is some (pre-determined) function, 9(5)’ and the de-
cision process has, Tike (2.2), the form

decide H : if g(X) < log K , e.g. noise alone (2.3)

decide H]: if 9{5) > log K, e.g. signal as well as noise, -

where now the threshold K is A (K), and usually K = a#, with a some (posi-
tive) constant. '



Performance is generally expressed as some linear function of the Type
I and Type II error probabilities, (a,8), e.g.

o log %
a = a(S|N) =flog%w1(g|0)dg ; 8= 8(N|S) = f_ wy (g[S)dg, (2.4a)

which for optimal systems, (minimizing average risk), becomes

w Tog %
a* =f w1(g*lO)dg* 3 B* =f w](g*IS)dg* . (2.4b)
]Og}(« -0

The w1 (g*|0) etc. are the (Ist-order) pdf's with respect to Hy H1 of the
optimum or suboptimum test statistic or "detection a]gor1thm", g = log Aé])
or g(X). The associated average costs or risks are (cf. Secs. (2.3, 2.4,
Ref. 20)

R =X (o*, %) = /20+p(cé])—C]“))(-;i ax+gr) = A0+Bo(2ufa*+s*) (2.5a)
R =X(ae) = Agrolci-ci) (Zare) = a8 (Kare) | (2.5b)
% = [c{-c {0 ]/[c <7 (=x.1) (0), (2.5¢)

so that system comparisons are then logically made on a comparison of R,R*
for the same thresholds K = %, where now n = p/q. The convention here is that

(J) = ngeg1s1on). the superscripts refer to the hypothesis state (Hj), and
the subscripts to the decisions actually made, and errors naturally "cost"
more than correct decisions. [For a detailed development see Ref. 12,
Chapter 19, Ref. 20, Chapter 2.]

The formalism above is adapted to the common situation where the alter-

native reception situation (Hypothesis H]) is a "signal and noise" as opposed

10



to Ho: "noise alone". In many telecommunication applications the choice
is between two types of signals in noise (or interference), and the test
statistic (2.1) becomes now for these binary signal cases.

al21) . PpF(XlSal0g A2 witn 4= Eqe 2010

no PR (XI5 04 st 2.6
i = 1,2;5(51) . 2.

The decision process (2.2) is, correspondingly,
. N 4 . cn s (21)
decide H]: a signal (S]) present in noise”, if Log An < log 7ﬁ2

decide Hy: "a signal (S,)present in noise", if Tlog AéZ]) 3_log‘ﬁ52 s
(2.7)
with '

%,=(csV-c{1) /(c{2)-c2)y (o0). (2.7a)

(It is assumed that all signa]s'{S1} are distinct ("disjoint") from all
signals {52}, so that there is no ambiguity in establishing correct and
incorrect decisions. When the signal classes over]apé however, modifications
in the cost assignments, i.e. the selection of the CgJ) above, must be made:
see Sec. 2.2, [20].)

Performance in the case of alternative signal classes is obtained as
above [(2.4), (2.5)], now with the obvious notational modifications:

109‘7%2 . .
w1(g( )lH])dg( )

o

() g0 = g5 5. f

(*) [ (*) (*)
g' 1(S11S,) = wy(g' /|H,)dg ) (2.8)
1152 ];_097(12 1 2

oo

n

(%) g(2)"

11



*
where g( ), etc. = g* (=log A£21)) or g , etc., and the various Wy refer
to the optimum and suboptimum detection algorithms and their associated error
probabilities.

2.2 Threshold Detection

Thus, in the detection phase of reception - which is always the ini-
tial, or acquisition phase at least - and usually subsequently - each signal
unit is to be detected, i.e., a decision made as to the presence (or absence)
of the signal symbol, to form a stream of decisions, generating the signal
sequence, which is then ultimately decoded into the desired message (pos-
sibly corrupted by interference, etc.). However, in the majority of prac-
tical situations, the explicit development of the optimum algorithm Agl),
or log Aﬁl), cannot be achieved, only approximated. Moreover, the evalua-
tion of performance, via the error probabilities (a*,8*), cf. (2.4b), is
even more difficult. Ingenious approximations are required, and even these
are not sufficient. Only by a literal (i.e. purely computational) realiza-
tion of A can we expect to obtain the optimum processor (as is sometimes
done. )

In any case, for the important purposes of predicting performance,
analytical methods, for all signal levels, are not generally realizable, and
we must (apart from brute-force simulation) seek other approaches. Fortunately,
as we have remarked in Sec. 1 above, it is possible to obtain canonical results
analytically, in the critical limiting case of weak signals, which, also
fortunately, is of very considerable interest, as it is the situation which
establishes the 1imiting performance, i.e., the best that can be done either
for optimum processors g(X)*, or for specified systems, g(X), which are
suboptimal. In general, the limiting, optimal algorithm for any interference
has been shown [14] to be (for additive signal and noise processes) the ex-
pansions of the (log) likelihood ratio about zero signal (6=0):

(1)

. ' 2)]+B. (o)*
N )y+trace(p ) 1+B, (9)*,

(2.9)

sn1s

Tog A & g(x)* = Tog u + 65" + 57 [F(e -3

~ ~S
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where (cf. Sec. III, Ref. [13]):

6=J;g;.§.= [aojsjm b= <N2>, <N>=0\ s u= p/q
s'= [aOJ J/v 1s 65 = agS5 3 > (2.9a)

= <32>/w 3§ = [s(tj—e)] ; J

and s is a normalized signal wave form, such that <52) ; ag = input
519"31 ~to-noise power ratio; y = (N°) = (total) mean square noise (or in-

terference) power. Here, y and z are the column and square matrices

a..d . S.S.
—r_r 01 0j i . y= .
[y;1= [- 1og Wod 5 pg = [sis3I=L 7*1 s x4

3

J

[z ] = [ log W] = Z, (2.10)

N
i

ax X ;
J

with
CFalXIs)s = (i (-0 g5 Wy = Wy (X »

this last for the postulated additive signal and noise, so that wo is the
joint pdf of X (= V) when there is only noise.

Here B (e) [= 0(6 or o )] is a bias, which is determined from the
h1gher order terms in the expansion (2.9), averaged with respect to the
null-hypothesis, e.g. H : no signal. The (correct) bias is critical for
optimum performance in these threshold cases, where n>>1] necessarlly. [See
Appendix A3.] The resulting bias is also required to insure the consistency
of the test (H] Vs. HO) as sample size (n) becomes infinite (as 6-+0), or for
n<e, as 6=e=0. The quantity g(X)* we call the Locally Optimum Bayes Detector
(or LOBD), as it gives a Bayes or minimum average risk, cf. (2.5a) and
Appendix A3. | v

The general result (2.9) for the LOBD includes correlated samples, and
both incoherent and coherent reception. For the latter, strictly, we have

13



§j # 0, e.q. (%(t-e))efo, where € is the signal epoch vis-s-vis the ob-
server (receiver), which by definition of coherence, is now assumed to be
strietly given. At the other extreme, we have so-called incoherent recep-
tion, where §' = 0, e.g., (s(t-e)) = 0. In between these extremes, it is
possible to have what we call quasi-coherent reception, where w](e) is non-
uniform, such that (s} # 0, and may be sma]] but not ignorable compared
to the terms containing (5153} , i.e. 0(6 ), in (2.9). These distinctions
are particularly pertinent when dealing with narrow-band signals, where
now w](e) is defined over an RF carrier cycle, not over the whole duration
of the signal. [In such cases, feedback loops are often used to "lock-on"
from the initial instance of purely incoherent reception, to the eventual
stage of more or less exact phase tracking, which permits strict synchroni-
zation of the local oscillator of the receiver, with the RF phase of the
desired input signal. The result is then, of course, coherent reception,
vs. the incoherent reception that occurs when this "phase-learning" process

is not employed.]

The critical feature of coherent vs. incoherent detection is, of
course, the fact that the LOBD for the former is 0(6), while the latter
is 0(62), 6 << 1. The structures of the optimum threshold detector, or
LOBD, are then, respectively, [cf. Appendix A-I, also]:

I. Coherent Reception: (H] vs. H ):

(1)

coh g(x)& = [log u +B (8)% 1+ 6ys' , (2.11)

log Ay
while for the latter we have

II. Incoherent Reception (ﬁ] VS. HO):

I+ 9?-[9( )y+trace p_z], (5=0),
2- u\.wa WSW w
(2.12)

generally. For mixed modes of reception (i.e.

(1)

eine = [log w, (o)

Tog A = g(x)* ¥ e

inc

in which Bﬁ inc # Bn coh?
"quasi-coherent" cases), we must use a suitab]y modified form of (2.91, cf.

Appendix A3-6.
When there are two classes of s1gna1 to be distinguished, generally

14



according to (2.6), (2.7), the general optimum threshold algorithm (2.9) is

tog A1) - (1% g1, 1 ey, (1) (5(2) 52 51 5000y,

# trace (Ap(21)z)] = 9(21)* (2.13)
where now

Kﬂm)Eym&u>=ﬁg)%m_ggz%nj=ﬁg)_§nj

Al

21)

&(Z)VQ(Z) (1) (1) _ [<aoJ ¥ J(2) (2)> (a(l) (1) {1) (1)>] )

00 - %5 )
. (2.13a)

and §£21)* is once more a suitable bias to insure optimality and consistency

of the test Hy vs. H, here. This bias is obtained, as before [cf. (2.10)

et seq. and Appendix A-I] by averaging the next (non-vanishing) terms in the

expansion of log A(21) again with respect to H_, since log A(21) =

log A(Z) log A(]) is the difference of two "o;?off" detectorg, viz.

(
)

ek

3. ., 3.
109 UZ] 1og UZ] + <0(9(2) )>H;(0(e(]) ))Ho, or

n

4 4
o 0

}jz-l =S —T 5 — . (2.]4)

Thus, (2.11) and (2.12) now become, for S, Vs. Sy in the same interference
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I. Coherent Req;pt1on4js(] 2)740) H° Vs. ]l_

o2 (0% = Tog uyy#8F1 (@)1 + J(sP-gM) (2.15)
and
II. Incoherent Reception (§(1’2)=0): Hp_vs. Hy:
. (2.16)
o1 (0nc = 108 1y #8105 37 a0 P lyrerace(ao P00

The decision process is given by (2.7), with (2.13), generally, and with
(2.15), (2.16), respectively for the coherent and incoherent modes of recep-
tion. [Equations (2.11) and (2.13) apply in the "composite" or "quasi-
coherent" cases, when there is enough coherence (via phased-locked loops,
for example) to justify using both processing modes simultaneously, cf.
II-C (Part II), (la): These variants are reserved to a subsequent study,
cf. Sec. 8.]

Finally, for suboptimum detectors we have,

(21)(

g () = ¢ -aM 00,

O (2.7)

21 21 2
( )(§)1nc ( )(ﬁ)inc - g( )‘A 1nc ¢)1nc

with decision rules (2.7) on replacing log A£21) > g(Z])(é)* by 9(21)Q§), etc.
The decision process is, of course, carried out according to (2.3), (2.7),
with log A replaced by g*, cf. (2.9), (2.11)=(2.13), (2.15),(2.16).

2.3 Gaussian Interference

The threshold canonical forms of Sec. 2.2 readily reduce to the known
structures when the noise or interference is gaussian. This is easily seen
from (2.10) and the pdf
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1

- 5 Xky X
Uy (x) = ((2m)"2(cet k) /2y e ZONS (2.18)
where one has directly
Y
= -1 <7 = ol fy A
y= My Xyl s 2= [ axj] Ky (2.18a)

Thus, the threshold algorithms (2.10), (2.12) in the "on-off" cases
become

I. Coherent Reception (H] VS. Holi
g(0x| = [logwBy 11 48Ky s (2.19)
™ ~|gauss n gauss

II. Incoherent Reception (H, vs. Holi

* - - 1p0,-1 T n-1 -1
gauss
where
8.= [agys;ds of. (2.90) 5 pg ([0;851) = [(agya,5545]. (2.20a)

These results are just those (Eq. 20.7, Eq. 20.11a, [12]) obtained many
years ago for these gaussian situations.

Similarly, we find for the two-signal cases (2.15), (2.16), that the
threshold algorithms reduce respectively to
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I. Coherent Reception (H, vs. Hyli

W N AR L IS Ol A AL I (2.21)
gauss gauss

and

II. Incoherent Reception (H, vs. Hyli

21 2(21)% 1, m(2), -1 (2)y_ (1), -1, (1
( )(X 1nclgauss [Tog u21+Bé-i%c —-?{<§( sz 9( )>'<§( )kN 9} )>}]gauss
+ 51 f P Mgl (2.22)

with 0(2 = [<a(2) 2) (2) (2‘>] , etc. [Equations (2.21), (2.22) agree, as
expected with the ear11er resu]ts, Problem 20.12, p. 935, [12], and Section
20.4-5, [12], respectively, when the accompanying interference is gaussian
noise. ]

Thus, when the noise is gaussian, the resulting algorithms remain opti-
mum (LOBD's) with a generalized cross- or auto-correlation structure for the
processors, cf. (2.19)-(2.22). With independent noise sampling (ké'])=(dij)),
these algorithms reduce to the simpler specific LOBD structures A.1-24,25)
with the biases now obtained from {(4.9), (4.12).

2.4 Canonical Evaluation of Threshold Detection Performance:

By threshold detection we mean not only appropriately small input signals
vis-a-vis the accompanying interference, but also appropriately large obser-
vation periods, expressed as a suitably large number n'<n) of effectively
independent noise samples. Thus, for the LOBD, or g*, cf. (2.9) et seq., we
consider the quasi-limiting cases of "small signals" (62<<1) and large samples
(n>n'>>1), or equivalently, large time-bandwidth products n = BeT>>1.
Performance, in terms of the error probabilities (2.4b), is then found by
direct application of the Central Limit Theorem (cf. Sec. 7.7-3, [12]) to
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the detection algorithm, or test statistic g*. Accordingly g* is asymptotically
normally distributed, in the "on-off" cases (H] VS. Ho)’ with the first
and second moments]L

' 2
(* (*),2 _*
g »{(g" ) > var g* =0 (2.23)
e.g. * *x 2 *2 * x 2 *2
- (g*= (g% )°/2? -(g*-(9 Ju)) 1201
0
Wy (g*[H,) = 2 5 wy(g¥|Hy) % 2 -
2 2
21r03' JZHU’]" (2.24)

In fact, applying (2.23), (2.24) to (2.4b) for "on-off" detection (H]
vs. Ho)’ where the (conditional) false-alarm probability, of (or threshold

%), is preset, [the so-called Neyman-Pearson Observer, (Sec. 19.2-1, [12])],
we have

g*),-109 A g*),-Tog 7
a;lz-%{1+e[ < 2o 13 g% v 5{1-0l g;—ZJ—————— 13, (2.25)
03}72— cf’f/?'

so that the probability, Py, of correctly detecting the presence of a signal
is maximized to become

< >] < *>o 03 -1
Px = p(1-8%) o B{1ve ———2 - 2 07 (1-208)11, (2.26)
V2 o% 9q
1
on eliminating threshold . Here
2 [* -t -1
y = 0o(x) = ———f e "dt=erfx; x=0 (y) (2.26a)
™ J0

are the well-known error function and its inverse. [Equation (2.16) is, of.course,
equivalent to minimizing the error probability (g+8*), with oa=ok fixed.

T But, see the ultimate condition (2.29) ff, when for optimality c? - og, etc.
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Similarly, when the threshold is set to %=1, i.e. when (a>a*, g>g*)
are jointly minimized, we have the so-called Ideal Observer [cf. Sec. 19.2-2,
[12]], so that the total probability of decision error is

(9 >1 <9*>0
2 *

1

P& = PB*+qa* v —{1— po[ —— I+qo[ 13, =1, (2.27a)

9 20

0

which for symmetrical channels (i.e. p=q=1/2) reduces further to

3

PRGN S Ho

Px v 5{1- 500 T+ 5ol
€ sym e 2 V2 01‘ 2 V2 0“(’;

1}, X=1; p=g=1/2 . (2.27b)

The Neyman-Pearson, or fixed false alarm observer is appropriate to
the initial stages of detecting the presence of a desired signal, while the
Ideal Observer (X = 1) is the more suitable criterion (i.e. total decision
error probability) when particular elements of a signal are to be detected,
i.e. "marks" or "spaces" (in these "on-off" cases), in the course of message
transmission, where now P* is directly proportional to the bit-error rate.

Equations (2.23)-(2. 27b) apply equally we11 formally, for subopt1mum :
detectors, g(x): we simply replace g* by g, 01 ,0 by °1,0° PD’ p* by PD’

Pe in the above. Furthermore, we have exp11c1t1y for the averages (2.18)

(90,12 [ty h0¥dx + (hegug¥) (2.28)

with

wo (X [H )y = W XDy 5 wo(xIHy) = W(x-s)y (2.28b)

cf. (2.9), for the postulated additive signal and noise cases here.
The relations P§, Py, P%, Py, etc., (2.25) et seq., hold asymptoti-
cally for all input signal levels (as long as the number (n'<n) of effectively
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independent noise samples remains large). However, the LOBD's, g*, [(2.9),
(2.11), (2.12) etc.] are then no longer optimum, in the locally optimum

sense (92<<1, n'>>1), but can become drastically suboptimum as the input
signal level (v8) becomes larger. In keeping with the concept of the LOBD,
which is a truncated series developrent in 6, cf. (2.9), which depends on

the mode of observation (or reception) i.e. coherent or incoherent [cf.

(2.10) et seq.], we must be similarly consistent with respect to the ap-
propriate power of 6 in determining the above probability measures of per-
formance. Because of the asymptotically optimum (AO) conditfon, cf. Appendix
A3, which determines the bias B*(e) as the average of thé next highest -non-
vanishing (H -) average in the series development log A =g*+ .., cf. (2.9), we
must 11kew1se require that 0?2 c*2+F (e or 62) where . F*<<1 This (AO) condition,

|Fﬁ(e or ez)l << 032 s & of = 032 , n>> 1, (2.29)

in turn, requires that the input signal level remains appropriately small,

to insure that g* (=LOBD) is indeed "locally optimum" and asymptotically optimum.
We can make the condition (2.29) somewhat more explicit by considering

for these additive signal and noise cases (2.28p) the expansions

MY (CORRURIEER LT

%
t 5 () *5u /WD st s kE12, (2.30a)
so that
“Tz - °32 *Fp 032 , | (2.30b)
and
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o PR s 50[2<g*>0 g*sw /wn>o ((g* %gwn/wn> ]

2
a
- [{(g*) %fw;s/w Yo,s -2(g*), <§*sgn/w Do) +0(a ) << 0*2 , (2.30c)
with
O )J-*'—[——‘“’E—— 1, etc (2.30d)
‘wn = BX W X-la o,xn 9 ‘wn = axiax:j Wn s e . .

Thus, for coherent reception the first term of (2.30c) determines the re-
qu1red smallness of (a ), while the second term supplies the needed condition
on (a ) in the 1ncoherent cases (since,(2.30d),5=0 then, etc.). Suboptimum
a]gor1thms, g, are handled similarly, with g* -~ g in the above. We shall
encounter explicit examples of F¥ << 1, (2.30c), later, in Section 6 ff.

In any case, (2.26) and (2.27b) now reduce to

(*)y _ ¢ (%)
p{*) i%ghe[(g ) (f? 2 —0'1(1—2a§*))]: ) (2.31)
% <o CICLY
(*) (* e
(*) <1 ‘ 1 <§ ) <§ > }
Pe i"-?(1"79[/500(*)]+'2'@[/-2-00(*')o] u=’ . J (2.32)

Here, super (*) denotes optimum by super * alone and suboptimum otherwise,
i.e. a blank superscript.

For the common telecommunication situations involving the "symmetrical"
2-signal situations Ho: So+N vs. Hy: SyN, cf. (2.13)-(2.17), performance . is
ca]cu]ated as above with the help of (2.8). Now, however, we have o* - B(])*,
g* BS ;K»-k&z, cf. (2.7), (2.7a), and (2.24) is appropriately mod1f1ed
g* - 9(2) » (2.13) et seq., Hy > Hys Hy > Hyy no>> 1. Thus, for example,
(2.32) 1is extended to
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1), (2)(*) GRS,
p (%) 1§1-p29[<9 ): \;<9 217

e =7 g /2_0‘1* I P® W]; » Mp1 = Po/Py 5 PRy ?2133)
()2 ()2 : - 2 i

where o5 1 vy 7 and the higher order terms in o(or 6“) are dropp?g];?*ghe

means and variances, consistent with the order of development of g s as

explained above in the case of the "on-off" detection algorithms, cf. (2.29).

We shall see some examples of this in Sec. 6 ff., as well.

Finally, the explicit evaluation and comparison of threshold performance,
by LOBD's (g*), or specified sub-optimum systems (g), may be effected by
comparing PB VS. PD’ or P; VS. Pe’ for the same perameters: observation
time (= sample size n), input signal-to-noise ratio 6(=a‘f€§? , or ag )
and input signal and noise levels, etc. Comparisons may also be made using
the associated error probabilities (a*,8*), or (o,B), in the Bayes and average
risks (2.5a,b). Other useful ways of comparison include calculations of
the various Asymptotic Relative Efficiencies (ARE's), and Efficacies, cf.
Appendix, [14].(See also, p. 921, of [1a] and our remarks in Sec. 8.) [In
addition to the results of Secs. 6,7 here, examples of comparisons based on
the error probabilities are also given further in [la], [13], [14].]

3. A SUMMARY OF CLASS A AND B INTERFERENCE MODELS: 1st-ORDER STATISTICS:

In this section we provide appropriate first-order statistics of Class
A and B interference. This includes the general EMI scenario, from which
the principal parameters of Class A and B models may be calculated, as well
as a rather general desired signal scenario, which encompasses most practical
applications.

We shall henceforth approximate the general threshold theory [Sec. 2] by
restricting the analysis to independent noise or interference samples (n).

As explained in Section 1 above (and as we shall see in Secs. 4-7 subsequently),
this greatly simplifies the analysis, without significantly affecting the
results. Moreover, it permits us to use the recently developed (and experi-
mentally verified, [5],[6]) first-order probability models of Class A and B
interference, which canonically describe most classes of noise and interference.
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3.1 Desired Signal Scenarios:

The desired signals are here narrow-band input waveforms;*which appear
likewise as narrow band signals at the output of the front-end stages of
the receiver, i.e. before any subsequent Tinear or nonlinear processing.
These desired signals often have the same generic form as those producing
the interference (in Class A cases). One has explicitly (in sampled form)

a,110%(t,0)
S(thg') = [%—-——— cos[mo(tj-e)-(ps(tj)-%]] = [agg5;4] »
d
cf. (2.92), v= Iy (3.1)

where y(z IN) is the mean total noise intensity (measured aE the same
point in the receiver as the desired signal). Here rq = rD/ro = cox/ro

is the normalized distance of the source to the receiver, o is the
normalizing distance, o = speed of propagation, so that A is a distance
measured in units of time (secs.). The quantitygﬁ is a dimensionless scale
factor embodying the effects of fading.

In an alternative form we may write (3.1) as

a:G (t:s9)

A_.
_ 237 ] ) A
S= [ X cos[wo(tj-e)-¢j-¢o]] = [ay; sjVE] = [;%;'S(tj-e)] (3.1a)
where now
-3 ]/2"y Y
Gy (ts0) = I (ts0) " “ri/cy » (3.1b)

and the "mean amplitude", A_, over the sampling period t ,T0+t0) is obtained

0
from

0
f s(t)2dt . (3.1c)

* The canonical theory is in no way limited by this practical condition,
cf. (2.9) et seq.
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The normalized signal waveform (sj) is likewise defined by (3.1a) with the
help of (3.1c), cf. Sec. 19.4, [12], Eq. (19.49).

In many applications digital signals may be used, with no significant
amplitude modulation, so that G0 and fos are no longer time-dependent. Thus,
we can write (3.1a) as

a,6¢)/V2 AL
= | [ e)edm IS .
2 [[ N ] 2 cos[ug (t;-€)-9; ¢0]]- [ = s(tJ €)] [aonJJE],
(3.2)
which defines the normalized signal S5 now by
= - - - - = ,Y

so that (s? )e = 1, as required.

Since the location of the desired signal source is not necessarily
known at the receiver, A is a random variable, as is the fading parameter
a, and the beam-pattern function, GO(¢),as well. For most observation
periods Rayleigh fading is the expected mechanism, e.g., a obeys the pdf

w](a) = == ,a>0. (3.3)

The average effects of the (resolvable) multipath are determined by the
value of the propagation exponent (y), which, for example, is usually
larger than unity for rough terrain, e.g. vy = 2 is an often-used empirical
value; (y need not be an integer, however). Moreover, the desired source
may be moving (comparatively slowly), so that its location vis-a-vis the
receiver is described by a random walk pdf of the form [30], [31]
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2 pl

w](rd) Zrde "d"oa I (2r rd), (rd’roa > 0), (3.4a)
or
2c§ -\ (c /r‘o)2 ga
w](x)S 2 Ae I (2roacoklr ) (roa,x>~0). (3.4b)
o

When the source is not moving, but its location is unknown to the re-
ceiver, the pdf of its Tocation can be usefully expressed alternatively by
the density function [9],

wi(A)g = BUA1'“dxw1(¢)d¢ i B = ——2—:3?_—;; (0<)a

(3.5)
for the simple geometry of Figure 3.1, where the possible location of the
source is in the region Ag. Other, more complex geometries may be handled
in the same fashion, but this rather simple model often gives reasonable

and representative results.
w ()

311
pis e
<
~
>
~

-~~~ -~

Figure 3.1. Schema of w](x), w](¢), Eq. (3.5); uo(zxo/x]) ratio of inner to
outer radii.
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3.2 EMI Scenarios: Calculation of Parameters:

The EMI scenario describes how a typical interfering source radiates
and where it is located (statistically) in a domain (AI) of such possible
sources. It also provides an explicit structure for the resulting, typical
waveform as seen following the linear front-end stages of the receiver.

The scenario is fundamental in determining the explicit structure of the
various distributions of the EMI itself, particularly when strictly canoni-
cal conditions do not hold, cf. [32], for Class A as well as Class B inter-
ference, Equally important, the EMI scenario allows us to calculate the
principal parameters of these distributions, as we note below, cf. (3.10) ff.

The (first-order) EMI scenario is specifically defined by:

~ (i).  the propagation Taw [x™7, cf. (3.1a)], v>0 ;
(ii).  the distribution, og, of sources in Ar; here
Og v )\-NW] (¢)3
(ii1). the statistics of the fading parameter, a, cf. (3.3),(3.1);

(iv). the average emission characteristics of the sources, as
embodied in the "overlap index" AA’ AB H
(v). the structure of the wave-form-beam pattern factor

(3.6) < Go(t’¢)=|52RT(¢)|buo(t,9j) s

cf. (2.17), [6]

. where LZRT(¢)=composite source (T)-receiver (R)

beam patterns,
Uy =normalized basic interference waveform
ﬁ in linear receiver output, before "pro-
cessing";
~ b =appropriately dimensional parameter.

~ (vi). the statistics of any other pertinent parameters in
the typical source model.

For the interfering sources we use (3.5) again, where AI now is not

necessarily the same domain as that for the desired signal source, AS;
Fig. 3.1 shows a typical domain. [We simplify without serious loss of
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generality, by writing os(x,¢) = cs(x)cs(¢) here.] Note, for example,

that =0 corresponds to a uniform source distribution OS(A,¢) = oos/AlJ = 0o
Specifically, the envelope of a typical source at the output of the front-
end stages of the receiver (to the subsequent processing) is

aG,(9,t)

BO = __-;\_Y___ , cf. (3.]) N (307)

where now the scenario (3.6) applies.
The global, or "macro"-parameter of Class A, or Class B, interference
are 7 = {A,2,,T"'}; o, defined by

( AA B - "overlap index" = (av. no. of interferfng sources emit-
ting at any given instant) x ( av. duration of a typical
emission);

_ "y'4 _ . . . _
Qpp T [A<Bo>/2]A,B = mean intensity of the nongaussian com

(3.8) < ponent of the EMI;

FA B = [oé/QZ]A B = gaussian factor, or ratio of the mean
intensity of the gauss to the non-gauss component of
_ the EMI;
- 2 - . . .
g IN’A 5 = (92+0G)A’B = mean total intensity of the interference.

The gauss component is itself a sum of two components:
of = of + of (3.9)

the one due to (many) unresolvable external sources (oé), the other, to
receiver noise, which appears largely in the initial (1inear) stages of the
receiver.

From (3.5)-(3.7) we can now readily calculate QZ,F', and EN‘ Thus,

we have
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;§<G§> :

Q, = A —_ . (3.70)
I A
where <62} = <F2> etc., cf. (v), (3.6). From (3.5) it follows that
0 0 ¢’ 9 ! 9 . .
2 (2) _ 2 1022 e o2
N = =_¢-u_ (0 NS Gl VNla -
<1/x > h Cu,Y 2y+u-2(1_a2-u ) %o Mo % = Ao/xl (3.11)
0
with (u,y > 0). Similarly, r* and I, cf. (3.8), become
—— i 2
Vo 0 2 2 .2 ~(2) . _ 2 a° .(2) , 2

for Class A, or B interference. Clearly, the geometry and other elements of
the EMI scenario strongly influence the magnitudes of these "macro"-parameters,
cf. (3.8), and as we shall note below, the specific structure of the associated
probability distributions.

Finally, we remark that more complex channel characteristics can be
introduced, i.e. scatter channels which introduce spreading in frequency and path

delay of both the desired signal and the interfering signals which may be
developed along the Tines of [3], [35], [36], and in a much more general
way, by Middleton, in [37], [38]. For the 1st-order EMI's no correlation
structures appear (we assume independent samples, or equivalently, noise
samples taken outside the (rms) delay and frequency spread intervals). On
the other hand, the correlation structure of the signal is preserved in
our processing, so that the effects of channel "spread", if present, will
modify the received signal. (We reserve the analysis to a later study.)

3.3 Probability Densities (of the Instantaneous Amplitudes):

It has been shown [32] that the EMI scenario can noticeably influence
the form of the pdf (and APD) of Class A and B noise. We summarize the per-
tinent results established elsewhere (Class A, [32]; Class B, [5], [6]):.
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I. Class A Noise:

There are two principal developments for Class A interference [32]:
(1), the "strictly canonical" forms, which correspond to source distribu-
tions where the potentially interfering sources are either equidistant, or
approximately equidistant, from the receiver; and (2), the "quasi-canonical
cases, where the sources are widely distributed in space and g_or_go is
rayleigh distributed. For the former we have the following expression for
the first-order pdf (needed subsequently for locally optimum processing
algorithms and performance, cf. Secs. 4-6):

(1). Strictly Canonical Class A pdf:

2 ~
w AM X740,

-A
A A e
Wl(X)A+G = e ZO = = . (3.13)
m= J 4no )
where
np WA, 2 X
265, = ——— ; T! =05/ : X = . (3.13a)
mA ]+PA A G' "2A VEEKTT:FXT

Equation (3.13) is also appropriate for the "approximately" canonical cases,
where the source distribution is no longer confined to sources equidistant
from the receiver; [for details, see Sec. 5 of [32]1.

(2). Quasi-Canonical Class A pdf:

\ .
w(x). e n (Ar3)" [ de
1Y/ A+G m!

22,5 2
-xd /40om

+5(°)(xd/2oom) . (3.14)

m=0
4n00m

where the "correction term" %(0) is specifically
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w Na
+(0) _ : (-1)" c._d r(1+ %) | . n

nl m’n 3+a . 2\a/2
n=1 44“0(2)m /r 21"( )(ITH'I‘AAAd )
-X d /40
e on F (- %512 x2d2/4o§m) , (3.14a)
and where
g WA, ., 2 < 1, (3.14b)
20 0m = 1+PA 3 Ty = Tpd” 5 d ag<<l ~ 2= " _(2-a)y (>>1)
0
2- _ _ m!
(O<)a = ——Yl (<2) s OLO = )\0/)\-', mcn = m-n)InT ° (3.]4(:)

jn which (u,y,ao) are parameters of the EMI scenario, cf. Sec. (3.2) above, and
9 is a numerical scaling factor obtained by a suitably analytic "fitting" pro-
cess, described in Secs. 7.2, 8.4 of [32].

For Class B interference we have, similarly ([6]1,[13],[33]):

II. Class B Noise:
Here'we use a simplified version of the general first-order case [6],
which involves only three parameters, instead of the usual six. Moreover,

we assume a limiting form of the EMI scenario, where now % (=10/A]) -~ 0,
e.g. A, = 0, cf. Fig. 3.1: potentially interfering sources can be effectively
co-located with the receiver. This permits a considerable mathematical
simplification of the resulting pdf [6] but, in turn, gives a distribution
for which none of the moments exists (because the intensity at a point source
is infinite, in such models). This defect is readily overcome in practice
by truncating the pdf w](x) at sufficiently large amplitudes (x>>1),
equ1va1ent1y, at sufficiently small values of the APD (P1 = fwa1(x)dx),
[cf. Fig. 1, [33] and discussion therein]. [For the more complete model
(still with A0=O, but suitably approximated at large x to insure finite mo-
ments, see [5]1,[6]1,[13].]
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The appropriate pdf here is thus [from Eq. (2.10a), [13]], a

(3) (Quasi-Canonical Class B pdf (o ~»0):

o
e 1) an _ notl no .q,5..2
w'l (X)B+G ,'_\'_ e Z nl AOL r( 2 ) ]F'l(" 2 ’1/23)( /QB) L] (3.]5&)
B
or
1% 1 nan o+l T+na 2
v o= DM r (MY R (5 1725 -xS/9,) , (3.15b)
/g =0 n? otz P12 B

where o is given by (3.14c) and

g = 22 GB/NI , (3.16a)
and

A= A/2°G = by Ag/I 23 ( %y )]“/2 (3.16b)
with

= ' ‘ (3.16c)
o WRMH%)«E)>

A, = 2%y Ag/[20, (1413) 1% 5

GZ (4 o

g = (o5 * Tp)/4(i+rg) .

(It can be shown that ffww](x)A+de = 1, from the series development of 1F],
etc., and moreover, that W1 > 0, all x, as required of a proper pdf or directly
from the characteristic function, (2.38), [6], with (A+0,») therein.) Thus,
this model has three parameterS'PéB = {A »0p »a}. The parameter 2 is a nor-
malizing parameter (through Np- in (3. 16a), cf. (2.11c), [13]). As before,

the "macro-parameters" (AB,QZA,F ) are defined precisely as in the Class A
cases, cf. (3.8). In practice, one uses a value of ag which normalizes
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the x-process to the measured intensity of the process, since the analytical
second moment does not exist, for the reasons explained above. Although

the more complete model ([6],[71,[13]) removes this difficulty, using (3.15a)
in conjunction with empirical data does not at all Timit the applicability
of this simplified Class B model.

4. OPTIMUM* AND SUBOPTIMUM THRESHOLD DETECTION ALGORITHMS:

We now return to Section 2.2 above and consider both LOBD and selected
suboptimum threshold detection algorithms, under the simplifying assump-
tion of independent noise or interference samples. The correlated or
"coherent" structure of the desired signal is, of course, preserved, since
it is a critical element in enhancing the signal visfé—vis the noise. For

the suboptimum cases here we choose three types: I, correlation detectors,
which are conventionally optimum when the noise or interference reduces to
the gaussian; II, LOBD structures, where, however, there is a mismatch
between the algorithm selected and the critical class of interference in
which the desired signal is being received, or where the estimates of the
noise parameters are noticeably imprecise, or both. And III, where corre-
lation detectors (already suboptimum in nongaussian noise) are used in
similar "mismatched" situations.

We begin with the optimum cases:

4.1 LOBD Detection Algorithms:
From (2.11)-(2.16) we obtain for independent (but not necessarily sta-
tionary) noise samples the following results '

I. Coherent Reception (H] VS, Holi

~ n
g(x)* = [log u + BX .7 - j_z,_] (aojsj) 2 s (4.1)

* See Appendix A-3 for a demonstration of the optimality of the LOBD and
associated conditions; cf., also, Sec. 2.5, above.
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where now

_ _rd .
R,J. = Q(Xj) = [ dx 1og w](leO)]x=x§ H (4.23.)
and
19 (@ 2
BY coh =~ 7 ; L§ )<éoisi> ,  cf. Eq. (A.1-16). (4.2b)

Similarly, we get

Ia. Coherent Reception (H2 VS. HLLL

oD = Dos vpsi N1 - 1 1GE-6ef Dy, e

where

(2 1732 )5 (2) (Ns(IN2y cr. (a.2-a5 4.3
B 5 g {<é > <' Y1 cf. ( ). (4.3a)

n-coh

[The explicit structures of the various bias terms are derived in Appendix
A-1.]

II. Incoherent Reception [ﬂ1 vs. H J:

40_;
g(X):‘nc [Tog u + B; mc z [R, 2, + JZ,_IcSU](am OJSISJ> (4.4)
where
_ 1t (4)_, (2), (2) (2), (2)
B;l‘ inc- "8 ZJ {amao‘] J> {[L —2L_i Lj ]&ij+2Li Lj 1, (4.4a)

cf. (A.1-20a), and
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ITa. Incoherent Reception [H, vs. H]Ji

(2])(x):nc = [log “21+B£21%c] tar Z (252 +2161J)[<(ao1a035153)(2{>
<(301aOJS1SJ)(])>] ’ (4.5)
where

21)% . 1 0 2)_(2)_(2)_(2) 1).(1).(1
g(21) _gzj{<§1)()§)(> <a () )()>

n inc
2
({2 (?) )aij+2L§2)L§2)}, (4.5a)

from (A.2-5ab), andagain, the bias terms here are derived in Appendix A-1.
The quantity 2% is

2
. . _ d _d _ . . s, g
25 =% (xi) = ['af 8= log wl(x|Ho)]x=x. ; with Gij—l, 1=33=0,1#] .
dx 1 (4.6)

4.2 Selected Suboptimum Detection Algorithms: (Simple- and Clipper=)

Correlation Detectors

We begin with the simple or undistorted coherent (i.e. cross-) cor-
relation detectors, and the corresponding incoherent (or auto-) correlation
detectors, which are (threshold) optimum structures when the noise {is
gaussian [cf. Sec. A.1-3], and which may be optimum at all signal Tevels
when special conditions at the receiver so warrant. [For a discussion of
specific examples, see Sec. 20.4-1, [12], Secs. 2.5, 2.6, [20].] For in-
dependent noise samples we obtain [from Sec. (2.3), for instance, or Sec.
A.1-3):
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I. Simple-Correlators:

A. Coherent Reception [H vs. H ]:

9(x)c = Biop * Z (aOJ Py s (4.7)

B.  Coherent Reception [H, vs. H}li

coh

21 _ 21y, O 2) 4 1
9( )(39C - gl jzl [(aojsj)( )-<a0jsj ( )]xj , (4.8)

where the biases are now [cf. A.4-22] specifically

n n
' = ' (2]) = _]_ ' (2)
BCOh log p- Z: J j ) BCOh log 1121" 2[ JE]{ <(aOJ J) >
- (1)y2,4. (4.9)
<(a0jsj) > ]
Similarly, for incoherent reception we have
C. _ Incoherent Reception [H, vs. H 1:
g(f)inc B B1Inc §:<601 0J 1SJ>X ; (4.10)

D. Incohérent Reception [H2 vs. H.J:

n

(2])( ding = Biag” +%’izj [{(a 0i%§°i J)(2> (CFLIFEICS )(])MX Xy 2

»’inc inc 0i 0j7i%]
(4 11)

and from [A.4-55] the biases are found to be explicitly

<501 on1sJ>2 (4.12a)

s

: 17 2.1
Bing = 109w -3 jz <ka0J it/ e

36



nc

' n 2 2 n
8{21)" < 14 “21'%j21{<9§2’>-<9§” » _%_i;j[<e§z)e§z)>z

~eselNT (o = a5 ete). (4.12b)

For the energy detector, cf. (A.4-61a), (4.11), (4.12) are simply
modified to

gEnergx}:

n
o209, = 8"+ 1T 162158 B)- s yé (5120
i
with the bias

52" < Tog uyy- 3 1) (6 7] (6 ><e(”>) (4.12¢)
1

This shows, as expected, that for detection here, the signal energies must
be different, and the larger the difference, the better the discrimination
between the (1) and (2) states.

IT. Clipper Correlators:

From Secs. A.4-3,4 we may write specifically the (suboptimum)
detection algorithms when "super"-clippers are used in the correlation re-
ceivers, in contrast to the situation above (I), where there is no distortion.
We summarize the results:

A. Coherent Reception [ﬁq VS. Holi

n n
g(f)coh = logu - V2 ; (ei>2w1E(0)i + /2 ; <ei> sgn X; (4.13)

37



B.  Coherent Reception [H, vs. H]li

n n
0?00, = 109 w - 72T [(o{PY2- G { YoM (004 ] [<91(2))'<e1m)]59" X; -
1 1

(4.14)

Similarly, for the incoherent cases we have

C. Incoherent Recepjjon;[ﬂq VS. Heli

n n
9(8)ine = 109 v = L (D2 mgl0);) - 7 1‘zj<e1-ej>2[8w1E(omE(O)J.
-{VZ Wy (0), + 8w]E(O)§}al.j]
n
+ 0.6.)Sgn X: S , (4.15)
g% ( §05759n X5 sgn x;

and for binary signals:

D. Incoherent Reception [H, vs. Hyl:

n 2 2
02010 = 108 1 L 1(e{))-6{N D102 e 0133
n
X 1,23_ [<(919j)(2)>2-<(61.ej)(1)>2]{8w]E(0)1.w1E(0)j

-[72 wy (0)+8wy (0576, 5. (4.16)

In the above w]E(O)i is the (jth-) value of the noise pdf (A4-50b) when

X; = 0.
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4.3 Selected Suboptimum Detection Algorithms: II-Mismatched LOBD's.
Here we indicate "mismatch" by the following device: from (4.1), (4.2)
we write

_d
zj > (leE)j = gx 109 wl(leo)D|E , (4.17)

where D|E denotes D-class parameters, or parameter estimates, D=D', when
the pdf of x is chosen (correctly or not) to be E-class. Thus, we have
the following varieties of mismatched and matched conditions:

TABLE 4.1. VARIETY OF MISMATCHED AND MATCHED CONDITIONS.

Parameter !Selected Class

Values (D)= 'of Interference Remarks
'(E)=
+

1). D LD Exact (or "true") parameter values are used
' in the same postulated class of inter-
: ference.

(la). E i E Same as 1). E#D, or E = D.)

2). D' ! Class D estimates, D' (#D) used in same
: postulated Class (D) of interference

3). D . E Class D (exact) parameter values used in

: i chosen Class (E) interference.

4). D' bE Class D estimates (D'#D) used in postu-
: lated Class E interference

[Interchanging D and E clearly introduces no new forms of relationship. Later,
when performance is to be evaluated, along the lines of Sec. 2.4, we shall
need to relate the category (E) to the actual, or true, statistical situa-
tion, with respect to which the various averages of g*, g, etc. are to be
taken, cf. Sec. 6 and Appendix A-I.]

Accordingly, the various possible mismatched threshold detection al-
gorithms follow directly from (4.1)-(4.6) on replacing 2j therin by zDIE'j’
etc., and, correspondingly, g* by the now suboptimum forms gDIE’ subject to
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the combinations of Table 4.1. The bias terms in the LOBD's remain unchanged
here. The (generally) suboptimum correlation detectors are not affected by
the actual or assumed classes of parameter values or interference statistics.
Finally, in all cases, the complete detection algorithm requires that
the number(s) produced by the processing algorithm (g*,g, etc.), as given
specifically in Secs. 4.1, 4.2 above, be compared against the appropriate
threshold log %, log K, log 7{(21), cf. (2.2), (2.3), (2.7) respectively:
if the threshold is equalled or exceeded, we decide H] (or H2): a signal
(or signal 2) is present: if the threshold is not exceeded, we choose the
alternative (i.e. null, HON, or signal 1 cases. We shall give explicit
examples in Section 7 ff.

SECTION 5. MATCHED FILTER STRUCTURES: INTERPRETATION OF THE ALGORITHMS

From the earlier analyses of [20], Chapter 4, and the Appendix therein,
we can establish matched filter structures for the linear portions of the
threshold signal processing explicitly indicated in g,g* for both coherent
and incoherent reception cf. (4.1), (4.4), (4.7), (4.10) above. This is
important because such structures provide a guide to the actual realization
of the physical entities which are needed to carry out the indicated pro-
cessing, either directly as a computational program, or much more conveniently,
usually, by building the specialized mini-computer which represents the
operations involved, perhaps in chip form, etc. In the case of specific
examples, we shall confine our attention here (in the incoherent cases ex-
plicitly) to the important special cases when the desired input signal is
narrow-band, the usual situation in telecommunications practice. We con-
sider again the coherent and incoherent cases in detail for the frequently
encountered "on-off" (i.e. Hy vs. Ho) detection situations. Corresponding
results for the two-signal (H2 VS, H]) are summarized in Sec. 5.

5.1 Coherent Reception (H] VS. Holi

Here we have the situation shown in Figs. 5.1a,b, for both optimum and
suboptimum (i.e., cross-correlation detectors). First, in the optimum case,
the input sampled data {xj} is non-linearly processed, to yield yj=2j, cf.
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(4.1). This new (voltage) sample, [where yj=y(tj)=z(x(tj)), etc., of course]
is then passed through a (1inear) "matched filter", where the weighting
function of the filter is

hy(T-t53T)at = Cag(t5)s(ty)), (5.1)
so that

UL E <§ S:)8s = g y(t:)hy(T-ti5t)at (5.2)

L AL BT H it R A ’

(which in continuous form becomes, on (0-,T+), the linear functional

* * T+
o WD (1)) = [ y(t)hy, (T-t,T)dt.) (5.2a)

The matched filters are shown in Figs. 5.1a,b. For the suboptimum situa-
tion of the cross-correlation detector of (4.7), we have

w(]) z E a_.s >x = E x(ts)hy(T-t,3;T)At (5.2)
nooT 5 < ON I VAN FE MY ’ )

and all operations here are linear, of course. The matched filter remains
the same; only the prefilter processing is differentT The filter, hM, is a
form of delay line filter, with suitable weighting (MhM) and a read-out at
t=T from wherever we choose to start the particular sampling for the
interval (to,to+T), from which we in turn then make the decision indicated
by (2.2). We have called such filters "Bayes mached filters of the 1st
kind, Type 1", cf. Sec. 4.2, [20], which is, of course, recognized as a
special form of (cross-) correlation filter.
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5.2 Incoherent Reception (H] VS. Hgli

Here we have the same phenomenon: a highly non-linear operation on the
sampled data, to obtain 2,2', cf. (4.4), and then to pass these into a
second-order nonlinear system, which in this instance can be expressed in
the manner of Fig. (5.2), either as a combination of time-varying (linear)
filter and zero-memory square-law device, or as another time-varying (linear)
filter, and multiplication operation. The point is that the (1inear) matched
filter here canbe represented in two realizable (i.e. operating only on

the past) forms. These are:

n

= , 4 )
hy(tj-t;st;) = sol. of ZZ]hM(tz—ti,tl)hM(tz_tj,tl)At_ aoiaojsisj>’
. 0, elsewhere , (5.4)
where
(2)x _ ¢ ~n (ngor )
y = 1§ YiY3 (aoiaoj515j> = J_Z] Y5 1‘; yihM(tj‘ti’tj)(At) (5.5)
¢ 2
= Lzt (5.5a)
J=1

The filter, hM(tj'ti’tj)’ is time-varying and realizable, and we call it a

Bayes matched filter of the 2nd kind, type 1 (cf. Fig. 4.3, [20], also).
In the narrow-band situation we are usually forced to deal with, an

equivalent, alternative form of matched filter (e.g. Fig. 5.2, where a

multiplier is employed, instead of a .zero-memory quadratic device). For

this we have

W(Z)* = E y h (ti-t.,t:)At ; hy = 0, ti>t, (5.6)
i] Yi IMYG i) > M LS R I
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where explicitly

Py (t5-t;t)at = <z1.z3s)e Lty > s S0, ty<ty (5.7)
in which
(ZiZ§>% = <§01aojsisj>. (5.7a)

This filter is discussed in Sec. 4.3, [20], also, cf. Fig. 4.4, ibid. It

is realizable, time-varying, and as in the coherent cases, depends only on
the signal statistics; see Sec. 5.3 ff. (The same filter, hM’ or EM’ clearly
applies for the suboptimum, autocorrelator of (4.10), with Yi > X Y5 7 Xy
a linear transformation, cf. (5.3).)

5.3 Signal Scenarios

Using Sec. 3.1 we can provide a more detailed structure for the above
matched filters, including the effects of fading (a) and propagation Tlaw
(v), cf. (3.2), (3.2a). Specifically, for narrow band signals without ampli-
tude modulation, we have from (3.2), (3.2a)

aG
- . = _________.0 = o
55 = /2 cos [wo(tj-e)-¢j—¢0] L — = aB, ; (5.8)
AYJZIN
- Y -
B, = 6,/ ‘/21N , (5.8a)

where the fading effects are governed by the statistics of a, cf. (3.3),

for example.
Thus, for coherent reception the matched filter hM’ (5.1), becomes

explicitly
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0-<tj<T+; =0, elsewhere, (5.9)
since w](e) = §(e- -€, ). Moreover, with the assumed stationarity of all
random processes here we have aoJ = 36 (= E'<Bo>), under the further not

unreasonable assumption thatao (and a, Bo) and e are all mutually in-
dependent. This result, (5.9), is clearly independent of the fading law,
whether or not it is rapid or slow, and whether or not the signal source
is moving. This, in turn, is a direct consequence of the coherent mode
of detection.

On the other hand, with incoherent reception all the above effects
appear explicitly in the structure of the appropriate matched filter [e.g.
hys GM’ (5.4), (5.7)], as we might expect: because of the second-order
statistics involved. Thus, for example, hy, (5.7), becomes now from
(5.8)

hM(tj—ti,tj)At = <a01 OJ></ = 01 OJ>cos[w (t; -t )-6; 03 1 ti>t
= 0 ' tj<t.i ’

(5.10)
and we have, moreover, the various situations:

((i). slow fading (one-sided):

(agitgg) = & = o (/1" (5.11a)

< (ii). rapid fading (one-sided):

(oo ) =

0i“0j

2
%

) »

-2
S35 * 301845

—
|

T (02y,7 42 =2/ \2/7 27
= (2" (BD)/T" 3o, 5+(1-84 )56, )/ T (5.11b)
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(ii1). slow fading (two-sided):

35 = 01 = af 8,5 = a2(eB)/Tp 2. (5.11c)

These results can be extended to include doppler, namely, relative
motion between the desired signal source and the receiver: the normalized
signal (5.8) is now

=5 . _ “oVd
= y2 cos[(w0+wd)(tj-€)-¢j-¢o] Pow, = s (5.12)

d S

so that [cf. III, Sec. 5.1 of [34]]

~(aw) 2 (ts-t.)2/2
Pg-ij = <gisj>e,wd,... - € ‘ b Cos[w (t t )45 +¢J]’ (5.13)

where Awg =(w0/co)Avd, ti-ty = (i-3)AT, and (Ayd)z is-the variance in rela-
tive velocity, and we have postulated a gaussian distribution of velocities;
< is the speed of (wavefront) propagation of EM waves in the medium in
question. Applying the relations (5.11) with (5.13) gives, in this more
general case,

-t. )2/2

hy(t5=tst5)at=(ag 53,50

M( j Cos[wo(ti'tj)'¢i+¢j] ’ tj > ti’

oi O:‘l>

=0, tj<t1..‘

(5.14)
for this matched filter for incoherent reception. In this way, from the
"anatomy" of the desired signal, from source to receiver, we can construct
the desired matched filter for detection. [We remark that still more

sophisticated (received) signal forms can be constructed, if the channel
itself is dispersive, i.e. has time-delay and frequency spread effects as
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well as fading (above), cf. [35]-[38] and remarks at the end of Sec. 3.2
above. ]

5.4 Extensions: Binary Signals (H2 VS. H}li

The matched filters above for the "on-off" cases (H; vs. HO} are
directly modified in the binary signal situation (H2 VsS. H]). Comparing
(4.3), (4.5), (4.8), (4.11) with the respective "on-off" cases, we see at
once that (5.1) and (5.7) are modified to

(21) = . . = .
hy At‘coh = <a0‘]s‘])Z <03 55 0< ty<T3 =0 elsewhere ; (5.15a)
n(21) 4 - .=
" I1nc _<01 0] 1SJ>2 <ao1 03%i J > byt 0 elsewhere .
(5.15b)
From the results of Sec. 5.3 we have, in detail:
(21) , _ (2)
hy "’ (T-t33T)aT = /f((aoj>2cos[m02(tj-eo)—q)j -4,
~(ag:Dycosu (ti-e =644 1) (5.16)
0j/1 ol'"j S0’ 7] 0 ? .
0 < tj <T,
for the coherent cases (where any doppler is compensated for). For the
incoherent cases (5.14) becomes
hlslzn(tJ t t JAT = e <501 OJ>2cos[w02(t t )- ¢( )+¢( )]
1
'<éo1 oJ>]C°S[“ol(t t )- ¢( )+¢( )]}
tj >t 5 =0, t, < tj R (5.17)
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where now the effects of doppler (v Awd) show up as a common damping factor
(since the sourceofsignals 1,2 is the common source). For further "anatomy"
of the filter structure, we can use (5.8), (5.8a), for a,i» etc.

5.5 The Generic Character of the LOBD as Adaptive Processor:
At this pointitis important to point out a number of general properties
of the canonical LOBD's described above. We observe that:

(1). For coherent and incoherent detection - with independent noise
samples - the matched filter depends only on signal statistics
and structure. Because the LOBD is a threshold system, only
first and second-moment statistics of the signal amplitude are
needed, Sec. (5.3). [Higher-order statistics are required,
of course, for doppler, which is phase variable, cf. (5.13).]

(2). The matched filter (by definition) is always linear, but may or
may not be realizable, in the sense of operating only on the
"past" of the received data [cf. Chapter 4, [20]);

(3). A variety of equivalent matched filters can be obtained, to
represent the data functional W(1), W(Z), etc.;

(4). The general functional description of the LOBD is as follows:

(i). It first "matches" the receiver to the (non-gaussian, or
gaussian) noise or interference, in that (a), it "adapts"
i.e., determines the Class of interference (A,B, or C)
and then estimates the Class parameters, 7%A’ 7%B’ etc.-
to generate a nongaussian functional, e.g. %,%', of the
input data;

(ii). Next, the LOBD then "matches" the signal - as it is a
priori known or structured at the receiver - to this
new input (%2,2', etc.), to form an appropriate correla-
tion detector for the non-gaussian functional %, etc.
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These "matched" filters are, by definition, always linear
and usually realizable in the causal sense [Sec. 5.2, 5.4];

(i11). For incoherent detection there is an additional, third
operation, which follows the matching process, (ii), above.
This is usually a noniinear operation plus summation, where
the additional nonlinearity is either a memoryless quadra-
tic process or a multiplication;

(iv). In the mixed cases, of combined coherent and incoherent
processing, (usually where there is some RF phase informa-
tion in narrow-band reception), the nonlinearities fol-
Towing steps (i), (ii), can be more complicated (cf. [1b],
Part II, IIC., for example).

Figure 5.3 illustrates the general formalism of LOBD signal detection,
for either coherent or incoherent reception, in the prototypical "on-off"
case (H] VS. Ho)‘ The extension to the binary signal cases (H2 VS. H1) is
immediate from Sec. 5.4.) Note the key elementsof Locally Optimum Bayes
Estimation (LOBD's), of the EMI parameters. (The LOBE theory is developed
in parallel concept to that of the LOBD, except that for the most part one
operates under the H]: "signal-present" condition.) The combined operation
of LOBD and LOBE is clearly an adaptive process, which, of course, accounts
for its usually significant superiority over conventional systems, a priori
optimized against gauss noise.

Often, of course, in practice nonoptimum or finite-sample estimates
of the parameters of the interfering noise are usually used, as outlined in
Sec. 4.3 above. Moreover, before estimating the pertinent noise parameters,
it is necessary to establish which class of interference the detector is
operating against. One method of doing this is to estimate the pdf (or APD):
Class A noise is always distinctively evident by an (almost) zero magnitude
of the pdf (or a flat plateau in the APD) between the small-amplitude or
"gaussian" region, and the large-amplitude region. In Class B interference
there is no zero amplitude region (or flat plateau). [See [6], [7].) An
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additional advantage of these (estimated) pdf's (etc.) is that they can
also be used to give (estimated) values of the Class (A, B) parameters in-
volved, in the manner of [7], for instance. However, if the elements of
the EMI scenario are known, the needed parameters can then be calculated,
rather than estimated, in the manner of Sec. 3.2 above.

6. PERFORMANCE OF OPTIMUM AND SUBOPTIMUM THRESHOLD DETECTORS: MINIMUM
DETECTABLE SIGNALS, PROCESSING GAINS, AND CONDITIONS OF APPLICABILITY

From the general results of Sec. 2.4 and the specific results of
Appendices A1-A4, we can obtain at once explicit canonical forms for the
various error and correct signal detection probabilities by which perfor-
mance is most generally measured. This is discussed in Sec. 6.1, while
specific structures are reviewed in Sec. 6.2, along with the joint con-
cepts of minimum detectable signal and processing gain, in turn illustrated
by the specific relations developed in Appendices A1-A4. 1In Sections
6.3-6.5 we examine the improvement factors of the optimum detectors over the
suboptimum (correlation) detectors discussed in this paper, along with
the important conditions on the strength of the input signals which permit
us to employ these (analytical) performance measures, and thereby to ob-
tain meaningful numerical results from them. It is shown (in Sec. 6.4),
for example, that the set of conditions, for both coherent and incoherent
reception, must be simultaneously obeyed, if one is safely to use the
performance measures for either mode of reception. This coupling of the
coherent and incoherent modes of detection in the evaluation of either mode
is the consequence of the fact that coherent detection can never be in-
ferior to incoherent detection under the otherwise same signal and noise
conditions of observation. In any case, we emphasize the fact that our

results apply generally to all signal types, broad band and narrow band, and
can be immediately specialized to narrow band examples as needed, cf. Sec. 7 ff.
We proceed: "
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6.1 Canonical Performance Measures:

We now apply the specific results of Appendices A1-A4 to Egs. (2.31)-
(2.33), and note that regardless of the mode of detection, optimum (but
not suboptimum) algorithms are asymptotically normally distributed, G(log n
+ 032/2, 032), where 032 is the variance of the detection algorithm in
question (and is the same under both hypotheses)T Here (¥) refers to:

(-), HOZ (+), H1 in the "on-off" cases, or to H], H2, respectively in the
binary signal situations (s(]) VS. 5(2)). The results are the canonical
forms for the correct signal detection probability (Neyman-Pearson Observer)
and the error-probability (Ideal Observer), uséd in ongoing telecommunica-
tion reception.

We have, accordingly, since for optimum (threshold) detectors

Hq vs. H :
. «2
(N6, = 5 - 5 = o5
Hy vs. Hy:
. _(21)%2 (21> L
R L S )

the relations [from (2.31),(2.32)] for the "on-off" cases, both optimum and
‘suboptimum++

*

Pé*) éi%-{1+o[ j; -0 (] 2a( ))]}, (N.P. Observer), (6.2)

where aé ) is the false-alarm probability and Bé*) is the false-detection

probability Ly

+ The suboptimum cases yield asymptotically normal forms, but with different
means and variance structures, cf, (6.3) ff.

++ We use the condensed notation b(*) to denote either b* or b, (? = opt 3

" otherwise suboptimum). It is important to note that the apprOprlate bias terms
(i.e. those for which the algorithms becomes optimum for the corresponding noise
[cf. Appendix A4-1,D] are assumed here. Otherwise, one must use (2.31), (2.32)
directly. See footnote, next page
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( *
(*) gQ{Z ) 1 %o _ log(*u)
o m—{le }s g w—-ﬂ-e 13,
F Loz 2/? Bs gy gl 27 25, (g3
with
o(x) = -o(-x) = —Z—fx e'tzdt : e'l(y) = x in o(x) . (6.3a)
V1 Y0

For the suboptimum cases note the presence of 30, (cf. A.4-12,31), as well

as o in the above (and following) expressions. In the optimum cases we have

0,50 + o*, of course, heref
Similarly, for the Ideal Observer (thresho]d’i=1) in the "on-off" cases,

: ity pl*) (*) e (*)
where one considers- the: error probability Pe = qo.' ‘+pB as the measure

o{ gerformance, the result here is specifically, on combining (6.3) in
*
Pe :
" i ) o)
p(*) & L1pop 0 . 109 b qer - 20, Jog B 3y e, [10.],
2/2 /fc'g 2/2 /_0* (6.4)

for the general channel (u=p/q#1, or u=1). This reduces to the case of
the symmetrical channel (u=1) to the more familiar, simpler result for the

optimum cases: '
. (%)
en): | Pl 5] {1-9[-53—2_—]} , %=1, [1.0.]. (6.5)

When binary signaling is employed we can also use a Neyman-Pearson

Observer (N.P.0.) procedure, where now one of the error probabilities

* *
aé ) 3(2)( ) (the [conditional] probability of incorrectly stating that
si?nal 52 is present when actually signal S1 occurs) is preset and the other

) s )

which becomes now

is minimized or otherwise evaluated according to (6.2),
.1.

Our suboptimum cases are here (and subsequently) restricted to those situations
where the (nonvanishing) bias is chosen to be the appropriate bias for the class
of noise for which these (suboptimum) algorithms, cf. Sec. 4.2, become optimum
cf. Appendix A4-1,D. Otherwise, we must employ (2 31),(2.32) dlrectly as
performance measures.
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(21)(*)

A 53 {1+o[ fi’/%—-—- -9’1(1-231(2”*))]}, [N.P.0.], (6.5a)

*

5 &

where (6.3) becomes

(21)* (21)
(*)  (2)(*) - 1 o log(%*™" "/unq) . _
R R YR e 1P/ Pys PptRp = 1
2/2 vz 52N (6.5b)
(21 21
s ) L gD ¢ 1 g %o " l0g®?)y 21) ) (6.5¢)
b2 = 27 LNy -

and the "on-off" threshold A is replaced by the binary thresho]d}Y(21)

[Clearly, this is symmetrical in S], 52.] Again, note that o # % # 03

cf. (A.4-71-74), and in the optimum cases, 00,30 + og.[See footnote, p. 55.]
A more meaningful measure of performance in the binary signal cases,
however, is the Ideal Observer [1.0.] above, (6.4), (6.5). Accordingly,
from (2.33) and Appendixes A.2-3,4; A.4-3, we find that in these binary
threshold cases, canonically, for the "unsymmetric" channel (u21f1)

(21)* 1 (21)* 1o
. op(*) o1 % 09 17y 09 Uy
1.]1_2]7‘12- Pe ﬁf{]‘Pze[ > - /2_8(2])* 1+ p]e[" Z/f + /_0(2])* 13,
0
[1.0.1,%=1 . (6.5d)

In the more common operational situations it is the symmetric channel (u21=])
that is used, so that (6.5d) reduces directly to the more familiar, and simpler,
threshold result:

. 0(21)( )
(gzljlli_ Pé ) 2 ~ —{1 of =—— 7 13, [I.0. 7{—u2] . (6.5e)
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This, 1ike (6.2)-(6.5d) above, is a canonical form; [but note the restriction,
footnote, p. 55.] o )

Finally, as we have noted earlier and recall now, various conditions
on the "smallness" of the input signals («a§>0) must be satisfied if these
performance measures (6.2)-(6.5e) are to predict receiver performance
accurately. These conditions will be discussed in Sec. 6.4 ff. In the
meantime, we note that these results above are canonical in several ways:
(i), their form is independent of the mode (coherent or incoherent) of
reception; (ii), they are independent, formally, of signal structure,
(i.e. narrow-band as well as broad-band signal are included), and (iii),
last but by no means least, they are Tikewise invariant, formally, for the
explicit noise statistics.
6.2 Minimum Detectable Signals and Processing Gains: u

We can "anatomize" the quantities [c( )2, % (21)(* ) ], identifying
the "minimum detectable signal" and "processing ga1n“ through the following
definition of "output signal-to-noise ratio" when the (total) noise is stationary:

()2
@l =5 = 1P @@EN= Mm@ 1) 6.6)

N‘out in-min

where H(*)( ) is the processing gain, and (ﬁz>é1% is the minimum input de-
tectable signal (-to-noise rat1o) (N01n min® OF more loosely, the minimum
detectable signal. Here, £(*) ((a0 é:% is some (simple) power of <ao>min’

as we shall note below, cf. (6.9), (6.22b), whose structure depends on the

mode of observation. The quantity (S/N)ézizis an effective output signal-
to-noise (intensity) ratio, after processing, which determines the perfor-
mance of the detector in these threshold régimes, according to the appro-
priate probability measures, (6.2), (6.4), (6.5) above. The minimum detectable
input signal-to-noise ratio {aﬁ}m:n
tensities measured at the same point in the receiver, usually at the output

has its component signal and noise in-

of the receiver's (linear) front-end stages, before subsequent nonlinear

*
processing (as exhibited in the algorithms gé )(ﬁ), etc.). The minimum
detectable signal is the least (normalized) input signal (intensity) which

See footnotes on pp. 54, and p. 55, particularly.
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can be sensed at the receiver, subject to the particular controls of the
decision probabilities and observation time (i.e. sample-size, n).

From the assumption of "practical optimality" discussed in Sec. 2.4
above, where it is sufficient that the H,-variance, (o?n)z, of the threshold

algorithm be effectively equal to the Ho-variance, (cgn)z, e.g.

(%)% = (0% )2 + F(n,a?) 2 (o3 )%, n > 1,
o LE(n,al) << (o2 )2

cf. (2.29), we can also derive the useful concept of "minimum detectable
signal", <ao>m1n’ and assoc1ated processing ga1n, m*. This is because the
condition F(n _7)/(0* ) << 1, establishing a maximum value for threshold
signals, (a ), for wh1ch the algorithms are still LO and AO, cf. Append1x
A3, also estab11shes a non-vanishing input signal-to-noise ratio, (a Y,
for all n, and particularly, large n, such that 0 < <a2>ﬁ1n —I<&o>$1n]max(<<])’
where[(éo m1n max is determined by our selection of the quantitative
meaning of "<«<" in the above condition. This is physically consistent with
our notion of input signal, which is, of course, always nonvanishing.
Accordingly, instead of minimum detectable signal we can equally well
ask for the corresponding maximum detectable range, Yy oo of the desired
signal. This is obtained in Sec. 3.1 from (3.1), (3.2) and the definition

< m1n = (19/(1y = TR _(_)_—

d max
2(12/2)2 a2(6Z/2) (cyrg)®Y

R <IN> 92+c§ |

(6.7)

=2Z\un
N
—A N

which incorporates the various elements of the propagation law, interference
scenario (Sec. 3.2), fad1ng, beam-pattern structure of desired source and
receiver, etc. Thus, (S/N)TR’ in contrast to (S/N)Out in (6.6), is a signal-
to-noise intensity ratio which. is a measure of the desired signal Tevel
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at the transmitter output, in terms of the noise or interference level at
the output of the (linear) front-end stages of the receiver. From (6.6),

(6.7) we see that ré %ax may be obtained from the relation

T = T2 DI (392 1o (25, (M) 12 (6.8)

(
lr'd o'min

(*) (*) sy : :
so that once <§ >m1n’ or o, and I are specified, along with the function
f, maximum detectable range can be calculated, as well. This has been done
in a recent study by Middleton [34], and will not be pursued further in the
present investigation.

In order to determine n(*) and ag é:% in (6.6) we need the specific
results of Appendices 2, 4. We begin with

I. Optimum Coherent Threshold Detection:
From (A.2-14), in (6.6) we have (for henceforth stationary noise

1:3\r'o<:esses):Jr

x2 x - 2@y (&)
%0-coh” ZH h<ao>m1n coh 2(nlL z <ao1 1> ) Eq. (A.2- ]4)

(6.9)
. m* L(2 ; {a = 1—-% a_s:\2
v coh - 3 {3 )min-coh = Zn : o i> ’ (6.10)
with
L) = (), = [z 1og wy (x]H,) 1Py (x]Hg )
=f (wi /wy ) 2wy (x [, )dx, Eq. (A.1-15), (6.10a)

¥ See footnote, p. 102.
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and f*( ) in (6.6) is clearly ( )], i.e., the first power of the indicated
argument. Noting that here the sampling process may be adjusted for narrow-
band signals so that <si>:= Smax - V2 and with no real restriction as to
generality in regarding a and s to be statistically independent, so that

<§ s 3 = a, /2, we see that <a2>m1n coh = ig: regardless of the fading

law, on]y the mean amplitude is relevant.__ [This is not the case for the
maximum range, however, where both Eg'and ag (waz) are required, cf. (6.7).]
We also obtain, on solving (6.2), or (6.5), for 03, and then using (6.9),

the following useful expression for the minimum detectable signal:

a2y

- (n*oh) o7 (2pg-1)+07! (1-20%) | %:[N.P.0. ], p=P

min-coh F
267! (1-2p%) :[1.0.]:p=1.
(*) (*) e 1)
_ *2 *2
= (me) 7 ey 2 or A, (6.11a)
with
B = o aprr e (1-2ak) 5 Cr o =207 (1-2p%)=fB*
Cn.p. = N By.p. 50 (2pp- ag) 5 L1, G 6 Lo, (6.11b)

This relation shows how the minimum detectable signal depends on sample size
and the background noise (via n*) and on the "controls" of the decision process
in detection, e.qg. ps, uF, P;.

For binary signals we use (A.2-50a) in (6.6), to get in these sta-
tionary cases

. 21) 21)* .2\ (21)
binary: (o é cgh) ) éoh @ >l$11n coh
= 2(n(? Z(QJ” 2l aDs{1y)2), gq. (a.2-50),

(6.12)
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so that

' mh min-coh

n2)* g (2); 2y (21) EJZ__E( (2 —(‘Ys(l)>>
1

(6.13)
- We have also, cf. (6.11a), the equivalent expression
(21)* (21)%\-1,.(¥)2 _ (*)2,2
< >m]n COh Hcoh ) {CN.P. or CI.O.} . (6.]3a)

With equal amplitudes (aéz) = aélb, a usual condition of operation,
the effective minimum detectable signal becomes now

GiE)-¢i™h (2
o .

(6.14)

21)*  _ -2 1
(a >rfnn-)-co =4 ; (

By inspection, it as once evident that choosing antipodal signals,

e.qg. sgl) -s§2), and selecting the t; such that Si = Spax V2 (at least

for narrow-band signals) maximizes the minimum detectab]e s1gna1 here [as

well as 0(21) ], and hence further minimizes Pg. Thus, from (6.14) w
have
2\ (21)* = az2
antipodal: (a )an coh = % - (6.15a)

Similarly, for orthogonal signals, e.g.

(2) _ .1 . .
S V2 cos wots 5 s = Y2 sin wots s . (6.15b)

we see that the sum in (6.14) becomes
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>
_0

D -

n n
2 1 .
min-coh - ; cos u ti-sin w t. ) ﬁ'; sin (woti/z)}’

2a g , (orthogonal), (6.15b)

which is thus maximized by choosing the sampling times ti=k(4i—1)n/m0, where
k/w0 = 1/27B = T/2m, in which B is the bandwidth of the signals, which are
on" during (to,to+T) intervals. Of course, for "on-off" signalling, S(])-
here and <é§ é?AzZoh <62>m1n coh = a2, cf. (6.10) et seq. Accord1ng1y,

we have obtained quite readily the we]] known results that for the same total
signal intensity, binary antipodal signals are superior to binary orthogonal

signals, and are equivalent to "on-off" operation (this last, since

- ’ - s ] O n Y
aolbinary > zaolon-off under the same power conditions). By "superior" here

is meant smaller error probabilities (or larger PD's, cf. (6.2)), since

* -~
oéZ]) is increased in the antipodal cases vis-a-vis the orthogonal signals.

II. Suboptimum Coherent Threshold Detection (Cross-Correlators)
From (A.4-52a) we obtain in the case of the suboptimum cross-correlators

for "on-off" operation in the usual stationary régimes:

n
2 _ 2 _ 2
%-coh ~ 2Hcoh<"°'o>m1'n-coh = 2(n)( ; <éosi> /2n) (6.16)
2) 53 L 2 =2
S <a0 min-coh ~ ?ﬁ'iz] <Si> >a, . (6.17)

Comparing (6.17) and (6.10) we see at once that here

.
Teon/Tsp = Wocop = L2} (1) , where L&) = Eq. (6.10a).
(6.18)

The quantity @d coh is the degradation factor for these cross-correlation
detectors (4.7) vis-a-vis the optimum (threshold) detector (4.1), for the
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same input signals, observation periods (n), and coherent (mode of) observa-
tion. Thus, @3 coh is, not unexpectedly, determined by the statistical
character of the noise alone, through L( ) (6.10a). For gauss noise
L(z) =1, cf. A.1-3, but for the usually encountered non-gaussian noise,
L(z) >> 1. [See Sec. 8 for various values of L(z), etc. ]

With binary signals we use (A.4-20) to write similarly

(21)2 _ o (21)7,24(21) L <a(()2)s1§2§-<aé”s(” 2
99-coh = 2Tcoh <a m1n -coh _ 2+(n)-{ ; ( P )"} 26.19)
(2)\- /.(1)
.(21) _ (21)  _:2 0 < >'<§' ) 2
. r[c(:oh ns < >mln)coh a5 iZ]( L?ﬁ' : )" (6.20)

(with aéz) = aé]), usually), and, again, the degradation factor becomes

(21)*

1)* 2
2l (21)* _ 4, 2) (6.21)

( 1)
/m = 24_coh

coh

unchanged from the "on-off" cases above. Similarly, expressions like
(6.11), (6.13) for the minimum detectable signal in these suboptimum cases
are

(21) (21) -1

-1 A2 2 .
IIcoh{CN.P. or CI.O.} ’ <' >m1n coh ~ coh {C

N.P. O" C10} >

(6.21a)
where CN p. = 9'1(2p0-1)+e'](1-2aF), etc. are the suboptimum versions of
the controls for the N.P. and I.0. cases, e.qg. pﬁ > Pps P; > Pe’ Sec. 6.1.

(%)

min-coh

III. Optimum Incoherent Threshold Detection:
We proceed as above for the coherent cases. Here we apply (A.2-40)
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