
NTIA Report 82-112

User-Oriented Performance Measurements on
the ARPANET: The Testing o-f a Proposed

Federal Standard

D. R. Wortendyke
N. B. Seitz
K. P. Spies
E. L. Crow

D. S. Grubb

u.s. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

Bernard J. Wunder, Jr., Assistant Secretary

for Communications and Information

November 1982

TABLE OF CONTENTS

1• INTRODUCTION

1.1 Purpose and Scope of Report

1.2 Report Organization

2. CONTEXT OF THE EXPERIMENT

2.1 Overview of the ARPANET

2.2 Overview of Interim Federal Standard 1033

2.3 Summary of Proposed American National Standard X3.102

2.4 Summary of Proposed Federal Standard 1043

3. TEST OBJECTIVES

3.1 Primary Objectives

3.2 Secondary Objectives

3.3 Summary

4. MEASUREMENT APPROACH

4.1 Data Extraction Element

4.2 Data Files

4.3 Performance Assessment Element

4.4 Statistical Design and Analysis

5. CONDUCT OF THE TEST

5.1 Data Extraction

5.2 Performance Assessment

5.3 Statistical Analysis

5.4 Data Archiving to Removable Mass Storage

iii

Page

1

3

5

6

6

11

25

29

51

53

57

62

63

63

85

86

92

104

106

114

116

118

TABLE OF CONTENTS (cont td)

6. PROJECT RESULTS

6.1 Primary Results

6.2 Secondary Results

7. CONCLUSIONS AND RECOMMENDATIONS

8. ACKNOWLEDGEMENTS

9. REFERENCES

APPENDIX A: NARRATIVE PARAMETER DEFINITIONS

APPENDIX B: LISTINGS OF THE ON-LINE DATA EXTRACTION PROGRAMS

APPENDIX C: SAMPLE DATA FILES

APPENDIX D: SATELLITE RECEIVER TIME CORRECTION

APPENDIX E: FILE STRUCTURE

APPENDIX F: TEST LOG FILE

APPENDIX G: LISTINGS OF COMMAND FILES

iv

Page

119

119

136

172

176

177

181

201

243

261

269

279

281

UST OF FIGURES

Page

Figure 1. ARPANET Geographic Map, December 1980.

Figure 2. ARPANET Logical Map, December 1980.

Figure 3. Parameter development overview.

Figure 4. Access outcome definition.

Figure 5. Access parameters.

Figure 6. __ Secondary parameter development.

9

10

13

17

18

21

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11-

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figl:1re 18.

Figure 19.

Figure 20.

Ancillary parameter development - access example. 24

Interim FED STD 1033 parameters. 26

Comparison of FED STD 1033 and ANSI X3.102 rate
parameter definitions. 28

Summary of ANSI X3.102 performance parameters. 30

Performance measurement overview. 32

End user/data communication system interfaces. 35

Aggregate user concept. 36

Example-reference event "Start of Block Transfer." 38

Primary reference events. 40

Transaction state diagram and binary representation. 42

Binary and ASCII character representations of user
information blocks. 45

Performance assessment program elements and I/O files. 47

Performance assessment listing--performance measure-
ment summary. 49

Relative precision in estimating P from large samples
when number of failures is prescribed and successive
observations are independent. Curve labels are
confidence levels. 52

Figure 21. Hardware configuration tested.

v

65

Figure 22.

Figure 23.

Figure 24.

Figure 25.

Figure 26.

Figure 27.

Figure 28.

Figure 29.

Figure 30.

Figure 31.

Figure 32.

Figure 33.

Figure 34.

Figure 35.

Figure 36.

Figure 37.

Figure 38.

Figure 39.

Figure 40.

Figure 41.

Figure 42.

Figure 43.

UST OF FIGURES (eont ' d)

Page

Host computer software configurations. 67

Logical data flow within the host computers. 68

Additional hardware (in boldface) required for testing. 72

Session profile. 77

Data flow diagram. 83

PROLOG and EPILOG program structures. 88

ANALYZ program structure. 89

Example test log form. 109

Graphical sample of histogram of access times for
test 82. 117

Histogram of access times - overall average. 139

Histogram of access times - east to west, high
priority, peak hours. 140

Histogram of access times - west to east, high
priority, peak hours. 141

Histogram of access times - east to west, high
priority, off hours. 142

Histogram of access times - east to west, normal
priority, off hours. 143

Histogram of block transfer times - overall average
for 512-byte blocks. 152

Histogram of block transfer times - overall average
for 64-byte blocks. 153

Published data on "round-trip delays" in the ARPANET. 154

Throughput in the ARPANET (October 1974). 159

Misdelivery measurement approach. 165

Disengagement time histogram. 168

FED STD 1033 performance measurement summary. 173

X3.102 performance measurement summary. 174

vi

Table 1.

Table 2.

Table 3.

LIST OF TABLES

Constants for the Two Types of Tests

Summary of ARPANET Tests and Conditions

Summary of Observed Anomalies

vii

Page

81

105

137

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

USER-QRIENTED PERFORMANCE MEASUREMENTS ON mE ARPANET:
ras TESTING OF A PROPOSED FEDERAL STANDARD

D. R. Wortendyke, N. B. Seitz, K. P. Spies, E. L. Crow,
and D. S. Grubb*

This report presents the results of a trial implementation of
a newly developed data communication performance measurement
methodology which has been proposed as Federal Standard 1043. In
this experiment, a prototype data communication performance
measurement system was developed in accordance with specifications
defined in the standard. The system was used to assess the data
communication service provided to a typical pair of ARPANET end
users (host computer application programs). These user-oriented
measurements differed from earlier ARPANET measurements in that the
host computer operating systems and network control programs were
regarded as providers of an end-to-end data communication service,
rather than as users of the subnetwork.

Results of the experiment will be useful in three ways.
First, the prototype performance measurement system developed in
this experiment will facilitate future implementations of the
measurement standard. Second, the experience of implementing the
measurement standard identified a number of ways in which that
standard could be improved. These improvements will be
incorporated in a future revision. Finally, the user-oriented
performance values measured in this experiment will assist
communication system planners in relating end-to-end performance
objectives to the performance of subsystems.

Key words: American national standard; ARPANET; computer networks;
data communications; end user; federal standard;
performance measurement

1• INTRODUCTION

New applications for data communication services and the trend towards

competition and deregulation in the telecommunications industry have created a

need for uniform methods of specifying and measuring the performance of data

communication services as seen by the end user. Over the past 5 years,

standards groups in the Federal government and industry have been working

together to meet that need through the development of, user-oriented, system­

independent performance parameters and measurement methods. Results are

*D. R. Wortendyke, N. B. Seitz, K. P. Spies, and E. L. Crow are with the
Institute for Telecommunication Sciences, National Telecommunications and
Information Administration, U.S. Department of Commerce, Boulder, CO 80303.
D. S. Grubb is with the Institute for Computer Sciences and Technology at the
National Bureau of Standards, Washington, DC 20234.

expected to be promulgated within the Federal government in the form of

Federal Telecommunication/Federal Information Processing Standards, and in

industry in the form of American National Standards.

Within the Federal Government, the major responsibility for developing

data communication performance standards is executed by staff from the

Commerce Department's National Telecommunications and Information

Administration/lnsti tute for Telecommunication Sciences (NTIAIITS) and the

Institute for Computer Sciences and Technology at the National Bureau of

Standards (NBS/ICST). The ICST has overall responsibility for developing

Federal Information Processing Standards (FIPS) to promote the eoonomic and

efficient use of computer technology in the Federal Government. The National

Communications System (NCS) Office of the Director promulgates Federal

Telecommunication Standards (FTS).

Industry work on data communication performance standards is centered in

the American National Standards Institute (ANSI), Task Group X3S35. That

group includes representatives from the common carrier, data communications,

and data processing industries as well as representatives of the Federal

government. Its objective is to develop a set of industry/government

standards for specifying and measuring data communication performance from an

end user perspective.

Two related data communication performance standards have been developed.

The first specifies a set of user-oriented performance descriptors or

parameters. That standard was initially approved in 1979, as Interim Federal

Standard 1033 (GSA, 1979; Seitz, 1980a). It has since been applied in a

number of trial Federal procurements (EPA, 1980; USDA, 1980); and a similar

proposed industry standard has been developed by ANSI Task Group X3S35 (ANSI,

1982). The latter standard, designated X3.102, is currently undergoing review

and formal balloting within ANSI. It is planned to ultimately replace Interim

Federal Standard 1033, possibly as a joint Federal Telecommunications/Federal

Information Processing Standard (NBS, 1981).

Federal Standard (FED STD) 1033 and its ANSI counterpart are unique in

providing a set of performance descriptors that can be applied to any digital

communication service, irrespective of system design features such as topology

and control protocol. This property of system independence makes the

parameters useful as a "common language" for relating the performance needs of

data communications users with the capabilities of offered systems and

services. Serious deficiencies in Federal communications management and

2

increasing emphasis on competitive procurement demonstrate that such a

capability is needed in the Federal government (GAO, 1977; GSA, 1980).

Similar needs exist in many non-Federal user organizations as well.

The second standard, proposed by the National Communications System's

Federal Telecommunications Standards Committee (FTSC) as Federal Standard

1043, is the focus of this report. That standard defines uniform measurement

methods to enable users to obtain representative numerical values for the

Interim FED STD 1033 performance parameters (Seitz et al., 1981a, 1981b). It

was developed by the NTIA/ITS in 1980, and is currently being reviewed in

government and industry as a first step towards approval as an Interim Federal

Standard.

The proposed measurement standard will promote innovation and fair

competition in the data communications industry by providing users with a

practical method of measuring delivered performance. Improved ability to

measure performance will enable users to make more intelligent choices among

service and equipment alternatives, and will lead, in many cases, to more

realistic communication requirements. An independent National Research

Council committee has estimated that a 20% reduction in total Federal data

communication costs could be realized through the promulgation of an efficient

method of selecting the right system or service for a given need - a potential

user saving in excess of $400 million per year by the mid-1980's (NRC, 1977).

This work is intended to contribute to the realization of these savings.

1•1 Purpose and Scope of Report

Because of the scope and potential impact of the measurement standard, a

realistic trial implementation of the standard at the draft stage was

considered essential. In October of 1979, NTIAIITS and NBS/ICST began such a

trial implementation, using the Defense Communications Agency's ARPA computer

network as a test bed. In this experiment, a prototype data communication
performance measurement system was developed in accordance with specifications

defined in the standard. The prototype system was then used to assess the

data communication performance provided to a typical pair of ARPANET end users

(host computer application programs).

The purpose of this report is to summarize the results of that

experiment. It is anticipated that these results will be useful in three

ways. First, the prototype performance measurement system developed in this

experiment will serve as a model for future implementations of the measurement

3

standard. Two of the four performance measurement subsystems developed in

this experiment were implemented in machine-independent software which should

be executable in virtually any modern computer system. The other two

measurement sUbsystems are inherently application dependent, but the hardware,

software, procedures, and techniques used in the prototype implementation are

typical of those which would be used in other applications. The existence of

these prototype subsystems will substantially reduce the time and effort

required to develop future measurement systems.

Results of the measurement standard prototype implementation will be

useful, secondly, in improving the measurement standard itself. The

experiment of implementing that standard identified a number of ways in which

it could be clarified, and also produced an abundance of practical examples

which will be helpful in illustrating its use. These improvements will be

incorporated in a future revision.

The results of the measurement standard prototype implementation will

also be useful in a third way - as an aid to system planners in the difficult

process of relating end-to-end performance objectives to the performance of

subsystems. As discussed later, most previously reported data communication

performance measurements actually address the performance of a subsystem

(e.g., the ARPA IMP/TIP subnetwork) rather than the performance of the end-to­

end data communication system (e.g., ARPA subnetwork plus host computer

network access and control software). The difference between subsystem and

end-to-end performance c~n be substantial, and often profoundly influences end

user perceptions of a subnetwork service. The end-to-end measurement results

presented in this report will assist data communication system planners in
assessing such differences.

The experimental, user-oriented nature of these measurements necessarily

imposed certain limitations on the applicability of the measured values.

Fir-st, these values are usage dependent. They characterize the information

path between a particular pair of host computer application programs utilizing

the ARPA network during the period September 17 to November 24, 1981. The

values are probably similar to those provided to many other network users, but

they do depend on the application program usage; and users with different

usage patterns might observe substantially different performance. The

"ancillary" performance parameters, discussed later in this section, provide a

method of "factoring out" much of this usage dependence. A more comprehensive

4

performance characterization, not contemplated at this time, would involve

classification of user applications, random selection of user pairs, and a

much more extensive instrumentation and data collection effort.

A second limitation on the reported performance values is the relatively

small measurement sample on which they were based - approximately 3,000 data

communication sessions and 107 transmitted bits observed over 2 calendar

months. The collected data provide reasonable confidence in the values for

most parameters, but are not sufficient to show trends in service performance

or similar second-order effects. In a few cases (e.g., Bit Error

Probability), the measured sample sizes were clearly insufficient to

accurately characterize the long-term system performance. Most of these

sample inadequacies were anticipated, and they are not a major concern in view

of the experimental nature of the measurement project. They could, of course,

be reduced by more extensive data collection.

A third limitation on the reported performance values, from the point of

view of a system planner, is their restriction to a single service interface.

The measurements would have been more useful in performance allocation if they

had been made both at the end user interfaces and at the host/TIP interfaces.

The latter measurements were not undertaken in the present experiment because

of resource limitations, but there is no restriction in either of the

standards that would prevent them. Considerable insight into the differences

between end-to-end and subnetwork performance can nevertheless be gained by

comparing the results presented here with those of earlier subnetwork

measurements (e.g., Kleinrock, 1976).

1.2 Report Organization
This report is divided into seven major sections. Section 2 summarizes

the ARPA network and each of the three data communication performance

standards which were used in its measurement. Section 3 defines the overall

objectives of the ARPA network measurements project in the form of a series of

questions to be answered by the project results. Section 4 describes the

detailed technical approach used in implementing the prototype performance

measurement system. Section 5 summarizes the overall conduct of the

measurements and describes, step by step, the operator procedures that were

followed in each measurement phase. Section 6 presents the measurement

results in the form of answers to the questions posed in Section 3. Section 7

5

summarizes the major conclusions and recommendations developed during the

experiment.
The report also includes a series of appendices. These contain detailed

information which is of interest to specialists in performance measurement,

but is not essential to an overall understanding of the experiment.

Appendix A presents narrative/symbolic definitions for the Interim Federal

Standard 1033 and ANSI X3.102 performance parameters. Appendix B presents

flowcharts and listings of the computer programs which controlled on-line data

extraction. Appendix G presents examples of each type of measurement data

file created during the experiment. Appendix D describes the time correction

procedure which was used to compensate for differences between actual event

times and the associated clock readings. Appendix E provides directories of

the operating system "shell files" and application programs used in the

ARPANET experiment. Appendix F describes the "log files" created during on­
line data extraction, and Appendix G summarizes and lists the command files

used in extracting and processing performance data.

2. CONTEXT OF TIlE EXPERIMENT

This section defines the overall context of the ARPANET experiment by

describing first, the general design of that network, and second, the

technical content of the three standards which were used in its measurement.

The section is divided into four subsections. The first provides a brief

overview of the ARPANET from a user perspective. The second, third, and

fourth subsections summarize the overall approach and technical content of

Interim Federal Standard 1033, ANSI X3.102, and proposed Federal Standard

1043, respectively. The entire section is tutorial in nature, and may be

omitted by readers already familiar with the subjects discussed.

2.1 Overview of the ARPANET

This subsection provides a brief introductory description of the ARPANET

for those not familiar with it. For further information, refer to Kleinrock

(1976) and the references cited therein. A few additional references of

particular significance to performance assessment are cited below.

About 15 years ago, Dr. L. G. Roberts of the Advanced Research Projects
Agency (ARPA) proposed the development of a new experimental computer network

(Roberts, 1967). The purpose of the network was to interconnect the computer

resources at various research centers in such a way that persons and programs

6

at one research center would have ready access to the data, programs, and

computing power at any other center. It was anticipated that the resulting

resource sharing would improve the productivity of all users, and provide a

substantial reduction in data transmission coats in comparison with systems

then available. Key network performance objectives were (1) low transit

delays (less than 1/2 second for short interactive messages); (2) high

throughput capacity for long file transfers; and (3) reliable, essentially

error-free transmission of user data.

These objectives and benefits were largely achieved in the design of the

Advanced Research Projects Agency Network. The ARPANET has grown from an

experimental, four-node regional network in late 1969 (Roberts and Wessler,

1970) to a fully operational 80-node network which today interconnects over

200 host computers in the continental United States, Hawaii, England, and

Norway (DCA, 1980). Total ARPANET traffic is in excess of 1 billion bits per

day. A number of similar public resource-sharing networks have been developed

in the United States and other countries based on the ARPANET technology

(e.g., see Drukarch et aI., 1980).

The basic concept which underlies the design of the ARPANET is packet

switching. Packet switching is a communication technology in which user

messages are fragmented, at a source network node, into smaller message

segments called packets. Each packet is relayed through the network

independently, in a store-and-forward fashion, with very minimal delays at

intermediate nodes (e.g., less than 10 ms). Individual packets within a

message may follow different physical routes through the network. At the

destination node, the various packets comprising a message are reassembled in

the proper order for delivery to the destination user.

The ARPANET is conceptually and physically divided into two parts: the

sUbnetwork, which consists of small, dedicated communication processing

computers interconnected by leased digital communication lines; and the hosts,

which are larger, user-owned, application-oriented computers attached to the

subnetwork communication processors. Two basic types of communication

processors exist in the subnet: Interface Message Processors (IMP's), which

provide subnetwork access only to host computers; and Terminal Interface

Processors (TIP's), which also provide direct subnetwork access to user data

terminals. Virtually all leased lines interconnecting the ARPA network IMP's

and TIP's operate at 50 kilobits per second (kb/s). Control of the subnetwork

is distributed equally among the various subnetwork processors.

7

Each host and user terminal is connected to the subnetwork; via a single

IMP or TIP. Each IMP can accommodate up to four hosts; each TIP can

accommodate up to three hosts, plus up to 63 terminals. So-called "Pluribus"

IMP's and TIP's provide substantially larger host and terminal handling

capacities. Hosts are connected to their associated IMP or TIP via one of

three types of interface, depending on their physical proximity: Local Host

(less than 30 feet between host and IMP or TIP); Distant Host (30 to 2.000

feet); and Very Distant Hos t(greater than 2,000 feet). Terminals are

typically connected to the TIP's via low-speed dial-up or leased telephone

lines.

The ARPANET host computers vary widely in hardware and software

configuration, but each is provided with a Network Control Program (NCp)1

which establishes and breaks network connections and transfers information on

behalf of user programs, or processes, executing in that computer. A number

of high-level communication protocols are also supported in most ARPANET hosts

(e.g., TELNET, a terminal operator interface protocol, and FTP, a File

Transfer Protocol).

The outer boundaries of the ARPANET are ·somewhat unclear in the published

literature, but "the network" certainly includes the host computer Network

Control Programs as well as other host protocols whose only purpose is to

facilitate ARPANET communication. A central view of this report is that the

host computer operating systems are also part of the end-to-end network from

the end user viewpoint. since a typical user can only access network resources

via operating system calls. The NCP is, in fact, a part of the operating

system in most ARPANET hosts.

Figure 1 shows a topological view of the ARPA subnetwork as it existed in

December 1980 (DCA, 1980). The Department of Commerce, Boulder (DOCB) and

National Bureau of Standards (NBS) TIP's, which served as the subnetwork entry

and exit nodes in this experiment, are highlighted. Also highlighted is the

shortest (8 hop) path between these nodes, over which most of the test traffic

probably passed. A logical map of the ARPANET, showing the connected host

computers, is provided in Figure 2. The DOCB and NBS TIP's are again

1Some hosts use an alternative program, the Transmission Control Program
(TCP).

8

to

ARPANET GEOGRAPHIC MAP, DECEMBER 1980

JVV'v- SATELLITE CIRCUIT

OIMP

DTiP

~PLURIBUS IMP

OPLURIBUS TIP

OC30

(NOTE: THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL SATELLITE CONNECTIONS)

NAMES SHOWN ARE IMP NAMES, NOT (NECESSARIL VI HOST NAMES

Figure 1. ARPANET Geographic Map, December 1980.

o

ARPANET LOGICAL MAP, DECEMBER 1980

PLEASE NOTE THAT WHilE THIS MAP SHOWS
THE HOST POPULATION OF THE NETWORK
ACCORDING TO THE BEST INFORMATION
ATTAINABLE, NO CLAIM CAN BE MADE FOR
ITS ACCURACY

HOST COMPUTER CONFIGURATION
SUPPLIED BY THE NETWORK INFORMATION
CENTER

NAMES SHOWN ARE IMP NAMES, NOT
INECESSARll VI HOST NAMES

o IMP

o TIP

l
t:>. PLURIBUS IMP

<> PLURIBUS TIP

o C30

.Nt, SATELLITE CIRCUIT

~ VERY DISTANT HOST

Figure 2. ARPANET Loqica1 Map, December 1980.

highlighted. Both computers used in this experiment were PDP-11's2 connected

via Local Host interfaces.

The ARPANET was chosen as a test bed for trial implementation of the

proposed measurement standard for two primary reasons. First, the ARPANET is

typical of existing modern data communication networks, many of which employ

packet switching. Some experts believe packet switching will be dominant in

future networks as well, with gradual enhancements encompassing voice as well

as data transmission. Packet sWitching is being considered very seriously as a

principal switching technology for the future Integrated Services Digital

Network (Dorros, 1981).

A second reason for the choice of the ARPANET as a measurement test bed

was its experimental history. As noted earlier, the ARPANET was conceived and

developed as a test of the then-novel concept of packet switching. A number

of very powerful network instrumentation features (e.g., trace, snapshot) were

built into the original IMP/TIP designs to support this research; and the

network's operation and performance were measured, analyzed, and simulated in

literally hundreds of technical studies spanning at least a 5-year period)

Although many of these studies focus on the performance of the subnetwork, and

thus do not consider all the effects of high-level protocols, they

nevertheless represent an extremely valuable source of background information

for the present study. As noted earlier, a comparison of the end-to-end

performance values measured in this experiment with corresponding subnetwork

values should provide some good insight into the problem of performance

allocation.

2.2 Overview of Interim Federal Standard 1033

This subsection provides a brief summary of the overall approach and

technical content of Interim Federal Standard 1033. As noted earlier, this

interim standard specifies a set of user-oriented, system-independent data

communication performance parameters. It was developed by FTSC Technical

2Certain commercial equipment and software products are identified in this
report to adequately describe the design and conduct of the ARPANET
experiment. In no case does such identification imply recommendation or
endorsement by the National Telecommunications and Information
Administration, nor does it imply that the material or equipment identified
is necessarily the best available for the purpose.

3For example, see Cole, 1971; Kleinrock and Naylor, 1974; Kleinrock et a1.,
1976; and the many references cited therein.

11

Subcommittee 2, under the leadership of NTIA's Institute for Telecommunication

Sciences, during the period 1975-1978; was promulgated by FTSC for optional

use by Federal agencies in 1979; served as the basis for a corresponding ANSI

standard, X3.102; and will ultimately be replaced by the X3.102 standard when

the latter is formally approved by ANSI.

Figure 3 summarizes the overall approach used in developing performance

parameters for Interim FED STD 1033. The parameter development process

consisted of four major steps (Seitz and Bodson, 1980):

1. Model Development. Existing and proposed data communication
services were surveyed and certain universal performance
characteristics shared by all were identified. These
characteristics were consolidated in a simple, user-oriented
model which provided a system-independent basis for the
performance parameter definitions.

2. Function Definition. Five primary communication functions
were selected and defined in terms of model reference events.
These functions (access, bit transfer, block transfer, message
transfer, and disengagement) provided a specific focus for the
parameter development effort.

3. Failure Analysis. Each primary function was analyzed to
determine the possible outcomes an individual trial
performance might encounter. Possible outcomes were grouped
into three general outcome categor ies: successful
performance, incorrect performance, and nonperformance. These
categories correspond to the three general performance
concerns (or criteria) most frequently expressed by end users:
efficiency (or speed), accuracy, and reliability.

4. Parameter Selection. Each primary function was considered
relative to each performance criterion in matrix fashion; and
one or more, specific parameters were selected to represent
performance relative to each function/criterion pair.

The specified parameters are of three general types: primary parameters,

which provide a relatively specific, short-term view of performance, including

both user and system contributions; secondary parameters, which provide the

more macroscopic, long-term view of performance traditionally associated with

the concept of availability; and ancillary parameters, which describe the

influence of user delays on the primary "speed" parameter values.

The performance model used in defining the Interim FED STD 1033

parameters differs from those used in earlier standards and specifications in

two major respects. The first is the definition of user/system interfaces.

The model defines the end user of a data communication system or service as a

human terminal operator, unattended device medium (e.g., punched cards), or

12

END
\

TYPICAL FUNCTION

(Reference Events)/
START

END USER
DATA

END USER~ ,
COMMUNICATION ~ "'-

(Source) ~
, , (Destination)

EL INTERFACE SYSTEM INTERFACE
PMENT SIGNALS SIGNALS

f
MOD

DEVELO

NON·
PERFORMANCE

(Reliability)

1
INCORRECT

PERFORMANCE
(Accuracy)

PERFORMANCE TRIAL

SUCCESSFUL
PERFORMANCE

(Efficiency)

PERFORMANCE CRITERION

FUNCTION
EFFICIENCY ACCURACY RELIABILITY

ACCESS

SPECIFIC
BIT TRANSFER PERFORMANCE

PARAMETERS:

BLOCK TRANSFER • PROBABILITIES

• WAITING TIMES

• TIME RATES
-

MESSAGE TRANSFER • RATE EFFICIENCIES

"'"""
DISENGAGEMENT I I

POSSIBLE DISCRETE OUTCOMES

.-----=-------./ , ~.------=-----,
FAILURE

ANALYSIS

PARAMETER
SELECTION

FUNCTION
DEFINITION

Figure 3. Parameter development overview.

13

computer application program. Thus, the end-to-end data communication system

extends to the operator or medium side of the data terminal, or to the

application program side of the host computer operating system. The end-to­

end system includes communication control protocols such as the ANSI Advanced

Data Communication Control Procedure (ADCCP) and International Telegraph and

Telephone Consultative Committee (CCITT) Recommendation X.25.

This viewpoint is essential in a user-oriented standard, since modern

terminals and protocols perform functions (such as error control, flow

control, and virtual circuit establishment) which have a profound effect on

end-to-end performance. One modern data communication network whose end user

interfaces are defined in this way is IBM's Systems Network Architecture

(McFadyen, 1976). The International Organization for Standardization (ISO) is

developing a Reference Model for Open Systems Interconnection (OSI) which

follows a similar interface definition approach (ISO, 1980).

The second major difference between the Interim FED STD 1033 model and

earlier performance models is the selection of parameter-defining events. In

any description of data communication performance, certain information

transfers or device state changes are identified as events to be counted,

timed, or compared in calculating performance parameter values. As noted

earlier, most existing standards and specifications identify such events by

reference to particular system-dependent interface signals (e.g., clear to

send). The FED STD 1033 model departs from this approach by defining the

performance parameters in terms of more general, system-independent reference

events. Each FED STD 1033 reference event is a generic event which subsumes

many system-specific interface signals having a common performance

significance; and each is defined in such a way that it necessarily occurs, at

some point, in any end-to-end data communication session.4

System-specific interface signals are mapped into FED STD 1033 reference

events on the basis of the user interface invol ved, the type of information

transferred (e.g., user information or overhead), and the nature of the state

change the transfer produces. One example of a system-independent reference

event defined in FED STD 1033 is the start of block transfer.

Any description of performance ultimately refers to some particular

function. The second step in developing the Interim FED STD 1033 performance

4I SO uses the term "service primitive" to express the "reference event"
concept in the OSI Reference Model.

14

parameters was to define the particular functions to be evaluated. The

standard defines five primary communication functions, in terms of particular

reference events, as follows:

o The access function begins on issuance of an access request
signal at the originating user interface, and ends
(successfully) on the first subsequent transfer of a user
information bit or block from a source user to the system. It
encompasses all activities traditionally associated with
physical circuit ~stablishment (e.g., dialing, switching,
ringing, modem handshaking) as well as any establishment
activities performed at higher protocol layers (e.g., layer 3
of X.25). Making the end of access coincident with the start
of user information transfer reflects the user view that no
data communication service has actually been provided until
user information begins to flow.

o The bit, block,5 and message transfer functions describe the
flow of information between end users at three distinct levels
of detail. Each function begins on the start of output of the
associated information unit from the source user and ends
(successfully) on completion of delivery of that unit to the
intended destination. Each function encompasses all
formatting, transmission, storage, error control, and media
conversion activities performed between start of output and
completion of delivery, including retransmission if required.
All three functions must normally be considered in a
comprehensive performance specification, as discussed more
fully in Seitz and McManamon (1978).

o The disengagement function begins on issuance of a
disengagement request signal at either user interface, and
ends (successfully) on return of a corresponding disengagement
confirmation signal.

As noted earlier, the terms "access request", "disengagement request",

and "disengagement confirmation" are general descriptors of purpose (reference

events) rather than specific names of interface signals. They denote,

respectively, any event whose purpose is to initiate, terminate, or confirm

termination of an entity's participation in a data communication session.

5As used in the standard, the term "block" denotes a contiguous group of user
information bits delimited at the source user/system interface for transfer
to a destination user as a unit. Thus, for instance, a block may be a single
ASCII character, a card image, a computer word, or the information field of a
frame, depending on the equipment and protocol characteristics at the
user/system interface. The "message" information unit defined in Interim FED
STD 1033 is a performance measurement sample size which does not necessarily
correspond to the user information transferred during a single data
communication session.

15

The third major step in developing the Interim FED STD 1033 performance
parameters was the failure analysis. In that analysis, the performance of

each primary function was regarded as an experiment, or trial, in the

statistical sense; and a set of possible outcomes of each performance trial

was defined in a "pie" diagram of outcome possibilities called a sample space.

Figure 4 shows how this step was accomplished in the case of the access

function. The standard defines four possible access outcomes: Successful
Access, Incorrect Access, Access Denial, and User Blocking. Successful Access

is the case where user information transfer is initiated as intended within a

specified maximum access time. Incorrect Access is the case where transfer is

initiated within the maximum time, but communication is established with a

user other than the one intended by the originator (Le., a "wrong number").

Access Denial is the case where an access attempt fails as a result of either

issuance of a blocking signal or excessive delay by the system. User Blocking

is the case where an access attempt fails as a result of either issuance of a
blocking signal or excessive delay by a user. Familiar examples of system and

user blocking signals are the "circuit busy" and "user busy" signals in the

public switched network. User Blocking outcomes are excluded in defining the

access performance parameters.

A similar approach was used in defining possible outcomes for the other

primary communication functions. In each case, the pertinent outcomes were

grouped in three general categories, reflecting the three general user

performance concerns noted earlier: efficiency (or speed), accuracy, and

reliability.

The final step in developing the Interim FED STD 1033 parameters was to

select and define a minimum set of parameters to describe system performance

relative to each function and outcome. Figure 5 illustrates how this was

accomplished in the case of the access function. Access performance was

described in terms of three specific parameters, one associated with each of

the three general performance criteria noted earlier. The standa.rd defines

the selected access parameters essentially as follows.6

1. Access Time - Average value of elapsed time between the start
of an access attempt and Successful Access. Elapsed time
values are calculated only on access attempts that result in
Successful Access.

6Terminology and notation differ slightly from that used in the standard.

16

User
"Responsible"

System
"Responsible"

Access
Attempt

.------I~-I
User Information Transfer

Not Initiated within
Maximum Access Time

User Information Transfer
Initiated within

Maximum Access Time

1-1

-

Correct Incorrect
Destination Destination

Efficiency (Speed) Accuracy Reliability (Excluded from
System Performance

Measurement)

a. Possible Outcomes of an Access Attempt.

• TRANSFER INITIATED
• CORRECT DESTINATION

b. Sample Space Representation.

Figure 4. Access outcome definition.

17

Access Denial
(System Blocking)

Probability
- [AIJ.]
- As + A~+ Am

Incorrect
Access

Probability
= [As +:> Am]

User Blocking Outcomes
(Excluded from System

Performance Measurement)

Access Performance "Sample"

000 000
Incorrect

~Access
(A m)r-V':J...J1~

~
+ w +···+w3 As

As

•

Access Times

r on Individual
(Successful) Trials

W1

WAs

I -===:1

I)

w2
------J'--­W3

[I

\.
_ [W1 + W2 ~Access

Time

co

Figure 5. Access parameters.

2. Incorrect Access Probability - Ratio of total access attempts
that result in Incorrect Access (L.e., connection to an
unintended destination) to total access attempts included in
an access performance sample (excluding User Blocking
outcomes) •

3. Access Denial Probability - Ratio of total access attempts
that result in Access Denial (e.g., system blocking) to total
access attempts included in an access performance sample
(excluding User Blocking outcomes).

A key aspect of the Interim FED STD 1033 parameter definitions is their

expression in mathematical form. As noted earlier, this approach eliminates

the ambiguity often associated with purely narrati ve definitions, and also
provides a standard procedure for calculating performance parameter values.

The mathematical parameter definitions are based, in each case, on the concept

of an access performance "sample" - Le., a large number of successive access

trials distributed, like apples, in appropriate outcome "bins". Each

Successful Access outcome has an associated elapsed time value (the total time

required to complete that particular attempt).

Values for the access parameters may be calculated directly from the data

in an access performance sample. The value of the efficiency parameter Access

Time is calculated by adding the individual elapsed times (wi) for all As

Successful Access outcomes, and then dividing by As' The value of the

accuracy parameter Incorrect Access Probability is calculated by dividing the

total number of Incorrect Access outcomes (Am) by the total number of outcomes

in the access sample, excluding the User Blocking outcomes - i.e., dividing Am

by (As+A~+Am)' Similarly, the value of the reliability parameter Access
Denial Probability is calculated by dividing the number of Access Denial

outcomes A~ by (As+A~+Am)' User Blocking outcomes are excluded in
calculating the Access Failure probabilities to ensure the comparability of

values measured under different usage conditions.

To make access measurement practical (and to make the measured values

comparable), the standard defines a "maximum access time" beyond which an
access attempt is declared a failure for performance assessment purposes.

This "timeout" point is fixed at three times the average Access Time specified

for the service; Le., three times the delay the user "expects to see" on any

gi ven access attempt. Note that the timeout point has significance only in

the assessment of performance; access attempts that extend beyond the timeout

point need not be abandoned. Additional characteristics of the Access Time

19

distribution (e.g., variance or 95% points) will also be of interest in many

applications.
The same general approach used in the access case was followed in

selecting and defining performance parameters for the user information

transfer and disengagement functions. A separate probability parameter was

defined to express the likelihood of each possible failure outcome; and an

"average elapsed time" parameter was defined, in each case, to quantify the

delay associated with successful performance. Bit and Block Transfer Rate and

Rate Efficiency parameters were also defined, to express system performance

from the standpoint of "throughput" and resource utilization. A complete list

of the primary performance parameters specified in Interim FED STD 1033 is

provided at the conclusion of this section.

Although the primary parameters described above provide a relatively

detailed description of data communication performance, they fall short of

completeness in two respects:

1. They do not provide the kind of macroscopic, long-term view of
performance users traditionally associate with the concept of
availability.

2. They are user dependent, and thus cannot be applied directly
in situations where it is necessary to describe the unilateral
performance of the system.

A small set of additional "secondary" and "ancillary" performance parameters

was included in the standard to meet these needs.
Figure 6 illustrates the approach used in defining the secondary

(availability) parameters. Very briefly, the sequence of transmissions

between a specified pair of users is divided into a series of consecutive

performance measurement periods or samples, each corresponding to the

"message" information unit discussed earlier. Values for each of five

"supported" primary performance parameters are calculated over each successive

message transfer function. The calculated values are compared with

corresponding outage thresholds to define the "secondary outcome" of that

message transfer trial as either Operational Service state or Outage state.

Finally, appropriate time and probability parameters are defined to describe

the resulting sequence of availability state transitions.

In assessing availability performance, the service connecting a user pair

is observed only during the User Information Transfer (UIT) phase: Le., the

time, during each transaction, between Successful Access and disengagement of

20

I I I
~~::User Information __

Transfer Time

Supported Primary Parameters

• Bit Transfer Rate
• Bit Error Probability
• Bit Misdelivery Probability
• Bit Loss Probability
• Extra Bit Probability

I~
Trial

-t>

II
Outcome

'(>

I I

I
Operational

Service
Periods

-- 1,
••·

{
Service Time} {AVerage DuratiOn}

Between = of Operational
Outages Service Periods

(Message Transfer Samples)

Outcomes

~
Operational Outage

Service Outcomes
Outcomes

{
Outage) _ { Outage outcomes)

Probability - Total Outcomes

I
Outage
Periods

I

VlZ/l/lZd
•••

{
o utage } _ { Average Duration}

Duration - of Outage Periods

Figure 6. Secondary parameter development.

21

the last committed user (Seitz, 1980b). As noted earlier, there is no

necessary correspondence between the amount of information transferred during

an individual data communication session and the length of a "message". The

"message" information unit is essentially a performance measurement sample

size - a fixed number of transferred bits.

Five primary user information transfer parameters are defined as

supported performance parameters: the four bit transfer failure probabilities

(Bit Error Probability, Bit Misdelivery Probability, Bit Loss Probability, and

Extra Bit Probability) and Bit Transfer Rate. Outage thresholds for the

supported performance parameters are defined as function of the corresponding

values specified for the service as follows:

1. The outage threshold for Bit Transfer Rate is defined as one­
third (1/3) of the specified Bit Transfer Rate.

2. The outage thresholds for the four bit transfer failure
probabilities are defined as the square root of the
corresponding specified probabil~ty values. For example, a
specified probability value of 10- corresponds to an outage
threshold of 10- j

•

A service is defined to have been in the Operational Service state

(during the preceding performance measurement period) whenever the measured

values for all supported parameters are better than their associated outage

thresholds. A service is defined to have been in the Outage state whenever

the measured values for one or more supported parameters are worse than their

associated outage thresholds. This classification produces, in the

measurement record, a sequence of alternating Operational Service and Outage

periods each having a known duration in the User Information Transfer CUIT)

time. Each period comprises an integer number of messages or samples.

The secondary performance parameters provide a statistical description of

this two-state random process. They are defined in the standard essentially

as follows:

Service Time Between Outages - Average value of elapsed user
Information Transfer time between entering and next leaving- the
Operational Service state.

Outage Duration - Average value of elapsed User Information
Transfer time between entering and next leaving the Outage state.

Outage Probability - Ratio of total message transfer attempts
resulting in the Outage state to total message transfer attempts
included in a secondary parameter measurement.

22

These parameters are termed "secondary" to emphasize the fact that they are

defined on the basis of measured primary parameter values, rather than on the

basis of direct observations of interface events.

The final FED STD 1033 parameters to be described are the ancillary

parameters. The primary communication functions defined in that standard are,

in general, user dependent; and there is a need, then, for a quantitative

means of expressing the influence of user delay on the primary parameter

values. The ancillary parameters fulfill that need.

Very briefly, the ancillary parameters are developed by dividing the

total performance time for an associated primary function into alternating

periods of system and user "responsibility"; and then calculating the average

proportion of total performance time for which the users are "responsible".

As a simple illustration, consider the access (or connection establishment)

phase in a conventional voice telephone call. The total performance time for

the access function is the time between the calling user's off-hook action and

the called party's answer. This total performance time can be divided into

alternating periods of system and user responsibility by noting, at any time,

which entity must produce the next interface event. During the period between

off-hook and dial tone, the system is responsible; during the period between

dial tone and positioning of the first dialed digit, the user is responsible;

and so on. The ancillary parameter User Access Time fraction expresses the

average proportion of total Access Time that is attributable to the user

activities.

Figure 7 illustrates the approach used in defining the ancillary

parameters in more detail, again using the primary function of access as an

example. The figure depicts a series of successful access attempts, each

having a total access time wand a total user access time wu• The latter

quantity represents the total access time attributable to the users on each

particular trial. The ancillary parameter User Access Time Fraction is

calculated by adding the user access time values over a suitable number of

successful access attempts, and then dividing by the corresponding sum of the

total access times. Only Successful Access outcomes are considered in

estimating User Access Time Fraction in order to avoid biasing the average

with unrepresentative values.
A similar approach is used in defining ancillary performance parameters

for the block transfer, message transfer, and disengagement functions. No

separate ancillary parameter is defined for the bit transfer function, since

23

I.... Access Time W2 "'1
I [,<::<<1 " '«<I i

~ User Access I--­I Time w
Un

t Access #n t
I.... Access Time wn-------j

I~~
~

Successful
Access

Access
Request

t
Successful
Access

Access #2

.
_~I User Access L
~ Tlmew u ~

2

\\//
~

Access
Request

t
Access Successful
Request Accesst Access #1 •

I.... Access Time W1 ... 1

~~/, I

-I User Access 1__

~ Tlmew u 1

N
.j:::>

{
User Access }

Time Fraction {
Average User Access Time }

Average Total Access Time

IWu +w u +···+w I1 2 un

W1 + W2 + ... + Wn

Figure 7. Ancillary parameter development - access example.

its values can be inferred from the corresponding block transfer parameter.

The standard thus defines a total of four ancillary performance parameters:

User Access Time Fraction, User Block Transfer Time Fraction, User Message

Transfer Time Fraction, and User Disengagement Time Fraction.

The ancillary parameters have two specific uses:

1. They enable calculation of "user-independent" values for the
associated efficiency parameters - i.e., the values that would
be observed if all user delays were zero.

2. They provide a basis for identifying the entity "responsible"
for timeout failures - the user or the system.

Each of these uses is described more fully in Seitz (1980a).

Figure 8 summarizes the performance parameters which were selected for

inclusion in Interim Federal Standard 1033. Twenty-six parameters were

specified, including 19 primary parameters, 3 secondary parameters, and 4

ancillary parameters. A narrative/symbolic definition for each parameter is

provided in Appendix A.

2.3 SlmDary of Proposed American National Standard X3.102

Proposed American National Standard X3.102 is similar, in both overall

approach and technical content, to the interim 1033 standard. From a

measurement standpoint, the most significant differences between the two

standards are in parameter selection and definition. This subsection briefly

summarizes these differences, proceeding by function and category in the

manner outlined above: Le., access parameters, user information transfer

parameters, disengagement parameters, secondary or availability parameters,

and ancillary parameters.

The primary access parameters defined in X3.102 differ from their Interim

FED STD 1033 counterparts in that the Access Denial outcome is separated into

two distinct cases of system nonperformance: Access Denial and Access Outage.

As defined in X3.102, Access Denial occurs when the system responds to the

user's access request in some manner, but either (a) issues a blocking (e.g.,
circuit busy) signal during the access period, thereby preventing Successful

Access, or (b) delays excessively in responding to user inputs during the

access period, with the result that user information transfer is not initiated

before access timeout. Access Outage occurs when the system fails to issue

any active interface signal during the access attempt: i.e., the system

appears to the user to be "dead".

25

N
01

PERFORMANCE CRITERION
FUNCTION

EFFICIENCY ACCURACY RELIABILITY

ACCESS • ACCESS TIME • INCORRECT ACCESS PROBABILITY • ACCESS DENIAL
PROBABILITY

• BIT ERROR PROBABILITY • BIT LOSSBIT TRANSFER • BIT TRANSFER TIME • BIT MISDELIVERY PROBABILITY
• EXTRA BIT PROBABILITY PROBABILITY

• BLOCK ERROR PROBABILITY
• BLOCK LOSSBLOCK TRANSFER • BLOCK TRANSFER TIME • BLOCK MISDELIVERY PROBABILITY PROBABILITY• EXTRA BLOCK PROBABILITY

• BIT TRANSFER RATE

-MESSAGE TRANSFER • BLOCK TRANSFER RATE
• BIT RATE EFFICIENCY
• BLOCK RATE EFFICIENCY

DISENGAGEMENT • DISENGAGEMENT TIME • DISENGAGEMENT DENIAL PROBABILITY

Legend

Figure 8. Interim FED STO 1033 parameters.

D
~

~

Primary
Parameters

Secondary
Parameters

Ancillary
Parameters

The rationale for distinguishing these two failures is that the
appropriate user responses are often different. In the case of Access Denial

(blocking), the user will normally re-try the call. In the case of Access

Outage, his best response may be to seek maintenance action. The X3.102

standard defines a separate probability parameter for each of these outcomes.

The ANSI review and adaptation of Interim FED STD 1033 resulted in the

omission of four user information transfer parameters: Bit Transfer Time,

Block Transfer Rate, and the Bit and Block Rate Efficiencies. Bit Transfer

Time was omitted on the basis that (1) it is often difficult to measure, and

(2) it is identical to Block Transfer Time in many buffered systems. Block

Transfer Rate was omitted on the basis that it is somewhat redundant with, and

less useful in performance comparison than, Bit Transfer Rate. (The X3.102

standard renames the latter parameter "User Information Bit Transfer Rate" to

emphasize the fact that overhead bits are excluded from its numerator). The

Bit and Block Rate Efficiencies were omitted on the basis that they are of

primary concern to communication suppliers rather than users. Bit Rate

Efficiency can be calculated from User Information Bit Transfer Rate by simply

dividing the latter by the channel signalling rate.

The ANSI X3S35 committee also changed the rate parameter definition ~Tith

respect to the time interval used in the denominator. Figure 9 illustrates

that change. In Interim FED STD 1033, the time in the denominator of a rate

parameter includes all time between the start of input of a "message" at the

source and the end of output of that message at the destination (WT). In

X3.102, the time used is the larger of the input time (Wi) or the output time

(Wo) for a corresponding information unit (called a "sample"). The latter

definition has the advantage that it excludes propagation time, and thereby

provides a more realistic measure of system throughput capacity.
The disengagement 'parameter definitions in Interim FED STD 1033 were not

significantly changed in X3.102, but their application was generalized in one

important respect. As defined in Interim FED STD 1033, the disengagement

parameters represent the average performance provided to all users

participating in a data communication session. In X3.102, these parameters

may also be defined and evaluated separately for each participating user. It

was believed that the latter option would provide more realistic values in

cases where the disengagement functions differ significantly at the separate

user interfaces.

27

Destination

Time

!

Source

B-Bit "Message" T
I

Bit Transfer Rate = [~]

a. FED STD 1033 Rate Parameter Definition

Source Destination

Time T
Wo

1
{

User Information}
Bit Transfer =

Rate

B

Max [Wi or wo]

b. ANSI X3.102 Rate Parameter Definition

Figure 9. Comparison of FED STD 1033 and ANSI X3.102 rate parameter definitions.

28

The ANSI Task Group also made several changes in the Interim FED STD 1033

secondary parameter definitions. The group concluded, first, that Service

Time Between Outages and Outage Duration should be omitted; and second, that

two specific changes should be made in the definition of Outage Probability

(renamed "Transfer Denial Probability"). These changes were (1) omission of

Bit Misdelivery Probability as a supported performance parameter; and (2) use

of the fourth root instead of the square root in calculating the probability

parameter outage thresholds. These changes were intended to simplify the

measurement of availability, particularly with respect to the observation time

required to obtain representative parameter values. The concept of a separate

"secondary" performance parameter category was dropped in X3.102, since that
category would have contained only one parameter.

The ancillary performance parameters defined in Interim FED STD 1033 and

X3.102 are the same, with the exception of (1) renaming, and (2) a change from

"message transfer time" to "input/output time" as the interval to be observed

in assessing user influence on throughput (Figure 9).
Figure 10 summarizes the performance parameters selected for inclusion in

ANSI X3.102. A total of 21 parameters were defined, including 17 primary

parameters and 4 ancillary parameters. A narrative definition for each

parameter is provided in Appendix A.

Of the 21 parameters specified in ANSI X3.102, 17 are identical to their
Interim FED STD 1033 counterparts or nearly so; 3 (Access Denial Probability,

User Information Bit Transfer Rate, and Transfer Denial Probability) are

significantly redefined; and 1 (Access Outage Probability) is new. Six

parameters originally specified in Interim FED STD 1033 were omitted from the

ANSI version. One objective of the ARPA network measurement project was to

assess the merit of these changes in parameter choice and definition from a

measurement perspective. Results of this assessment are presented in

Section 6.

2.4 SlIImary of Proposed Federal Standard 1043

This section summarizes the overall approach and technical content of

proposed Federal Standard 1043. As noted earlier, that standard defines

uniform methods of obtaining values for the standard performance parameters

specified in Interim FED STD 1033. A major purpose of the ARPA network

measurements project was to validate and demonstrate proposed Federal Standard

1043 by implementing it in a practical measurement situation.

29

w
o

PERFORMANCE CRITERION
FUNCTION

ACCURACY RELIABILITYSPEED

ACCESS DENIAL
INCORRECT ACCESS PROBABILITY

ACCESS ACCESS TIME
PROBABILITY ACCESS OUTAGE

PROBABILITY

BIT ERROR PROBABILITY

BIT MISDELIVERY PROBABILITY BIT LOSS
PROBABILITY

BLOCK TRANSFER EXTRA BIT PROBABILITY
USER

TIME BLOCK ERROR PROBABILITYINFORMATION
BLOCK LOSSTRANSFER BLOCK MISDELIVERY PROBABILITY PROBABILITY

EXTRA BLOCK PROBABILITY

USER INFORMATION
BIT TRANSFER TRANSFER DENIAL PROBABILITY

RATE

DISENGAGEMENT DISENGAGEMENT DISENGAGEMENT DENIAL PROBABILITYTIME

Legend.

o Primary Parameters

L:'JI Ancillary Parameters

Figure 10. Summary of ANSI X3.102 performance parameters.

Figure 11 summarizes the overall approach used in defining the proposed

FED STD 1043 performance measurement methods. The standard is written as a

specification for a conceptual data communication performance measurement
system consisting of four major elements:

1. Data Extraction. This system element observes overhead and
user information signals transferred across the user/system
interfaces in real time; determines the performance
significance and time of occurrence of each interface signal;
and outputs this performance information in the form of a
chronological reference event history. The events observed at
each user/system interface provide ,the basis for performance
parameter calculations.

2. Data Files. This system element consists of a set of standard
ASCII character files whose format is independent of the
system under test. These files record the rea~-time event
histories produced by the data extraction function in a
standard form for later (off-line) reduction and analysis.
Separate files are maintained for user and overhead
information, and for each direction of user information flow.

3. Performance Assessment. This syst.em element consists of a
standard FORTRAN program which merges, correlates, and
analyzes the ASCII files described above to produce a set of
measured FED STD 1033 parameter values. Primary elements of
the Performance Assessment program are the access, transfer,
and disengagement sUbroutines, which calculate values for the
19 "primary" parameters defined in FED STD 1033. These
subroutines are supported by programs which calculate
"secondary" and "ancillary" parameter values and perform
various utility functions. The entire Performance Assessment
program is written in ANSI (1966) standard FORTRAN to ensure
its transportability.

4. Statistical Design and Analysis. This system element is a set
of procedures which enable users to relate measurement
precision objectives with associated sample sizes. Those
statistical criteria are used to control the data extraction
and performance assessment elements of the FED STD 1043
performance measurement system.

These four measurement system elements differ substantially in the degree

to which their implementation can be standardized, and their specification in

the standard reflects those differences. The extraction and statistical

elements (1 and 4) are interface and application dependent, and they are

therefore specified in relatively general functional terms. These functional

specifications are intended to guide standards users in designing data

extraction subsystems and developing statistical design/analysis criteria

appropriate to their particular needs.

31

,------,
/MEASUREMENl1

PRECISION /
/ OBJECTIVES I'--1--'

I

I
I-- 1------

IMEASU~EMENT7
I CONFIDENCE /
L_~MIT~-l

STATISTICAL DESIGN IANALYSIS,
f--- __

TEST DESIGN
FUNCTION

I

I
I
I
I
I
I
I
I
I
I

i---t --.
--j DATA ANALYSIS I

. - .FUNCTION I
L_-r_-.J

SOURCE TELECOMMUNICATION DESTINATION
USER SYSTEM USER

)cess
- - I- -- .- - --
ance

DATA E'TRACTION

SOURCE r@-DESTINATION
INTERFACE NIZED. TIME INTERFACE 1-'--
MONITOR REFERENCE MONITOR

DATA FILES

•SOURCE SOURCE DESTINATION DESTINATION
OVERHEAD USER INFO OVERHEAD USER INFO

FILE FILE FILE FILE

PERFORMAN,CE ASSESSMENT

ACCESS TRANSFER DISENGAGE-...
SUBROUTINE SUBROUTINE MENT . .. ~-

SUBROUTINE

ance

--- -- -- ----

/PERFORMANCI
PARAMETER

VALUES I

Telecommunication P
---- -
FED STD 1043 Perform
Measurement System

FED STD 1043 Perform
Measurement System

Performance Analysis

W
N

Fi gure 11. Performance measurement overview.

The user-oriented approach implemented in Interim FED STD 1033 has made

the data recording and performance assessment elements (2 and 3) both

interface and application independent, and the standard exploits that property

by completely standardizing their implementation in a set of detailed

subsystem designs. Availability of these standard designs (and the associated

software products) will relieve standards users of the requirement to develop

data file structures and data reduction software for each measurement
application, and will ensure the comparability of measurement results obtained

by different user organizations.

2.4.1 Data Extraction
The data extraction section of proposed Federal Standard 1043 defines the

general functional requirements for a typical FED STD 1043 Interface Monitor.

Any such monitor must perform three major functions:

1. Input. Detect and properly interpret all signals transferred
across the monitored user/system interface. Record and time­
tag all performance significant events for interface monitor
processing.

2. Processing. Determine the FED STD 1033 performance
significance of each observed interface event. Associate each
performance-significant inter:ace event with a corresponding
system-independent reference event.

3. Output. Create a machine-independent ASCII character record
defining the nature and time of occurrence of each reference
event. Store the reference event records in the appropriate
(overhead or user) information files.

The basic input to a FED STD 1043 Interface Monitor is a sequence of

interface events occurring at the physical or functional boundary between an

end user and a data communication system. As discussed in Section 2.2,

Interim FED STD 1033 defines the end user of a data communication system or

service to be either a human terminal operator 7 an unattended device medium

(such as punched cards), or a computer application program. In some cases,

more than one type of entity supports the overall user function: for example,

a terminal operator providing control inputs and a punched paper tape

providing information storage at the same data communication station. In such

cases, each relevant interface must normally be monitored.

The FED STD 1043 draft defines three general types of user/system

interfaces, each corresponding to a particular type of end user. When the end

user is a human terminal operator, the user/system interface is defined to be

33

the physical interface between the operator and the data terminal

(Figure 12a). When the end user is a device medium, the user/system interface

is defined to be the physical interface between the medium and the data

terminal (Figure 12b). When the end user is an application program, the

user/system interface is defined to be the functional interface between that

program and the local host computer operating system, telecommunication access

method, or equivalent. One such interface is illustrated in Figure 12c, where

the Application Layer represents the local telecommunication access method.

Any discrete transfer of digital information across a user/system

interface is called an interface event. Such events can occur in a variety of

ways. Typical events at the operator/terminal interface are manual keystrokes

and the printing or displaying of received characters. Typical events at the

medium/terminal interface are the reading and punching of punched cards.

Typical events at the application program/access method interface are the

issuance of operating system calls, co-routine calls, and interprocess

communications, and the setting and clearing of flags.
The end user/communication system interfaces defined above will often not

coincide with the data communication carrier/customer interfaces. In such

cases, it may be desirable to observe the interface event sequence, and

determine certain parameter values, at the latter (subsystem) interfaces as

well. Figure 13 illustrates two possible subsystem applications. In the

first, Figure 13a, the subsystem interface is placed at the DTE/DCE (Data

Terminal Equipment/Data Circuit-Terminating Equipment) physical interface; and

the operator and terminal are regarded as an "aggregate user" of the

information transfer channel. In the second, Figure 13b, the subsystem

interface is placed between the Session and Transport layers of a typical Open

Systems Interconnection protocol hierarchy; and the Application Process and

Application, Presentation, and Session layers are regarded as an "aggregated

user" of the Transport Subsystem. Subsystem applications can be useful in

allocating end-to-end performance objectives to purchasable components and

services, and conversely, in determining the impact of subsystem choices on

end-to-end performance.
Interface events are generated by the communicating user and system

entities. To be in accordance with proposed FED STD 1043, an Interface

Monitor must detect all interface events generated at the monitored interface

during a performance measurement period, and must interpret each interface

34

DTE/DCE
INTERFACE

I

(OPERATOR)

I
I

DCE
DATA I

~TERMINAL I

(TRANSMISSION/
SWITCHING
ELEMENTS)

END USER DATA COMMUNICATION SYSTEM

a. Operator/Terminal Interface

END USER

DTE/DCE

~
INTERFACE,,,,,. ,., o.

I
I

PUNCHED ICARD DCE
ED INPUT/ I
ECK) OUTPUT

ITERMINAL

I

DATA COMMUNICATION SYSTEM

(TRANSMISSION/
SWITCHING
ELEMENTS)

APPLICATION
PROCESS

b. Medium/Terminal Interface

End User

TRANSPORT
LAYER

Data Communication System
7

6

\
(ISO DP 7498

Functional Layers)

4

3

2

NETWORK
LAYER

DATA LINK
LAYER

PHYSICAL
LAYER

DTEIDCE
INTERFACE

1

I
1

I

+11

1

, ~ (Transmissionl
DCE - -- SWitching

. Elements)

c. Application Program Interface

Figure 12. End user/data communication system interfaces.

35

"Aggregate
User"

Channel User

EJ-
(Trasmission/

DCE - _. Switching
Elements)

Channel

APPLICATION
PROGRAM

5

"Aggregate
User"

a. Operator and Terminal as an "Aggregate User"
of the Information Transfer Channel.

Transport Subsystem User

Transport Subsystem

4
TRANSPORT

LAYER

3

2

NETWORK
LAYER

DATA LINK
LAYER

PHYSICAL
LAYER

DTE/DCE
Interface

(Trasmission Z
-Switching

Elements)

b. Application, Presentation and Session Layers as an "Aggregate User"
of the Transport Subsystem.

Figure 13. Aggregate user concept.

36

event in accordance with its significance to the communicating entities. THe
Interface Monitor must accomplish these functions without significantly

influencing the timing or quality of the communicated signals.

The events observed at a particular user/system interface cannot be used

directly in defining user-oriented performance parameters because they are

system dependent - i.e., they vary from one data communication system to

another. As noted earlier, these user-oriented standards overcome the problem

of system dependence by defining the parameters not in terms of particular

system-dependent interface events, but in terms of more general, system­

independent reference events.

An example will help to clarify the relationship between system-dependent

interface events and the associated reference events. A user's action in

lifting a telephone handset off-hook transfers one bit of information (the new

hookswitch position) from the user to the system. That transfer is a system­

dependent interface event which notifies the system of a user need for service

in circuit-switched systems (e.g., the public switched network). Completely

different interface events may convey the same information in message- or

packet-switched systems (e.g., issuance of the Connect system call in the ARPA

network) •

All interface events which communicate a user's need for data
communication service (or otherwise initiate an information transfer

transaction) are represented in proposed FED STD 1043 by the single reference

event "access request". This reference event is used to define the beginning

of the access function, and to start the counting of access time. Defining

the access parameters in terms of this and similar reference events makes the

parameters system independent, and makes their values comparable between

services with different user interface protocols.

As a second example, consider the reference event "start of block

transfer" (Figure 14). The nature of the user information unit called a

"block", and the physical events associated with its movement across a source
user/data communication system interface, will vary from one system to

another. Nevertheless, some specific information unit can be identified as a

FED STD 1043 block, and its transfer across the user/system interface can be

identified, in any system; and the corresponding block transfer parameters can

therefore always be defined.

Sixteen reference events are used in measuring the 26 Interim FED STD

1033 performance parameters: 10 "primary" reference events and 6 "ancillary"

37

SYSTEM 1
EVENT

SYSTEM 2
EVENT

SYSTEM 3
EVENT

SYSTEM 4
EVENT

System

Example - Reference Event "Start of Block Transfer":

User Interface Device System-Specific Event

1

2

3

4

Character-asynchronous TTY

Buffered CRT terminal

Host computer access method

Punched card reader

Typing a letter or figure

Typing CR (end of line)

Issuing WRITE system call

Reading of card image

Figure 14. Example-reference event IIStart of Block Transfer. II

38

reference events. The primary reference events are listed in Figure 15.

These events record the basic performance information needed to calculate

values for the "primary" and "secondary" Interim FED STD 1033 parameters. Two

such events are the "access request" and "start of block transfer" events just

discussed. The ancillary reference events record changes in the state of

affairs at a monitored interface with respect to which communicating entity,

the user or the system, is "responsible" for creating the next interface

event. Three distinct responsibility states may exist at an interface during

a data communication session: User Responsible, System Responsible, and

Responsibility Undefined.7 The ancillary reference events are the six
possible transitions between these three states.

The ancillary reference events are used in defining the ancillary

performance parameters, which describe the influence of user delays on the

primary efficiency (or speed) parameters. A record of these events is also

needed to identify the entity responsible for "t-imeout" performance failures.

Ancillary reference events occur asynchronously at the two user interfaces,

and are recorded independently by the associated Interface Monitors.

Interim Federal Standard 1033 defines a user-oriented "transaction state

model" which consolidates the various overhead transfer and ancillary

reference events and serves as a conceptual aid in understanding their

relationships. In a measurement context, that model provides a simple,

concise method of recording individual occurrences of those same events, and

underlies the overhead information file structure defined in FED STD 1043.

The following paragraphs briefly describe the transaction state model and

define the relationship between overhead and ancillary reference events and

the corresponding model events.
The transaction state model represents the digital communication process

at a given user/system interface as a sequence of discrete interactions

between two participating entities: the end user receiving service and a

conceptual "half-system" which represents the portion of the end-to-end system

that interacts with that user. Each communicating entity is represented as

simple finite-state machine that can be characterized, at any given time, by a

distinct Transaction state. An entity's Transaction state fully describes the

7The latter state may exist, for example, when the user and the system
elements communicating across a particular interface are both waiting for an
event at the other interface. Such a state exists at the calling interface
during ringing in the public switched telephone network.

39

-l=::>
o

FUNCTION REFERENCE EVENT SYSTEM IMPACT PERFORMANCE SIGNIFICANCE EXAMPLES

1. ACCESS REQUEST
REQUESTS INITIATION OF AN INFORMATION

BEGINS ACCESS FUNCTION. STARTS THETRANSFER TRANSACTION AND COMMITS
ORIGINATING USER CONNECT REQUEST

THE ORIGINATING USER TO PARTICIPATE. COUNTING OF ACCESS TIME. IN THE ARPANET

2. NONORIGINATING USER COMMITMENT
IN A CIRCUIT -ORIENTED TRANSACTION
INDICATES NONORIGINATING (CALLED) ELIMINATES INCORRECT ACCESS AS A NONORIGINATING USER CONNECT

USER WILLINGNESS TO PARTICIPATE POSSIBLE ACCESS OUTCOME. REQUEST IN THE ARPANET

ACCESS NOTIFIES ORIGINATING USER THAT THE
IDENTIFIES ACCESS ATTEMPT OUTCOME3. SYSTEM BLOCKING SIGNAL SYSTEM CANNOT SUPPORT A REQUESTED DESTINATION HOST DEAD (DESTDEAD)

INFOF.lMATION TRANSFER TRANSACTION. AS ACCESS DENIAL. CONTROL MESSAGE IN THE ARPANET

NOTIFIES SYSTEM THAT THE ISSUING USER IDENTIFIES ACCESS ATTEMPT OUTCOME AS
4 USER BLOCKING SIGNAL CANNOT SUPPORT A REQUESTED USER BLOCKING (EXCLUDED FROM SYSTEM NONORIGINATING USER CLOSE REQUEST

INFORMATION TRANSFER TRANSACTION PERFORMANCE MEASUREMENT).
(DURING ACCESS) IN THE ARPANET.

5. START OF FIRST BLOCK INPUT MOVES ONE OR MORE USER INFORMATION
COMPLETES ACCESS FUNCTION AND TYPING OF FIRST USER INFORMATION

TO SYSTEM BITS FROM SOURCE USER TO SYSTEM.
BEGINS USER INFORMATION TRANSFER CHARACTER AT A BUFFERED CRT
STOPS THE COUNTING OF ACCESS TIME. TERMINAL

BEGINS BLOCK TRANSFER FUNCTION.
TYPING OF ANY USER INFORMATION

6. START OF BLOCK TRANSFER AUTHORIZES THE SYSTEM TO TRANSMIT
CHARACTER AT AN UNBUFFERED

A GIVEN USER INFORMATION BLOCK.
STARTS THE COUNTING OF BLOCK SOURCE TERMINAL. TYPING OF
TRANSFER TIME. CARRIAGE RETURN AT A BUFFERED

USER

SOURCE TERMINAL

INFORMATION
TRANSFER 7. START OF BLOCK OUTPUT MOVES ONE OR MORE USER INFORMATION

STOPS COUNTING OF BIT TRANSFER TIME PRINTING OR DISPLAYING OF THE FIRST

TO DESTINATION USER BITS FROM SYSTEM TO DESTINATION USER.
FOR THE FIRST USER INFORMATION BIT CHARACTER IN A SOURCE USER

IN A BLOCK. INFORMATION BLOCK AT A DESTINATION
TERMINAL.

TRANSFERS A GIVEN USER INFORMATION ENDS BLOCK TRANSFER FUNCTION. PRINTING OR DISPLAY OF A COMPLETE
8. END OF BLOCK TRANSFER BLOCK TO THE DESTINATION USER, WITH

APPROPRIATE NOTIFICATION TO THAT
STOPS THE COUNTING OF BLOCK SOURCE USER INFORMATION BLOCK AT

USER WHERE REQUIRED.
TRANSFER TIME. THE DESTINATION TERMINAL.

9 DISENGAGEMENT REQUEST
REQUESTS TERMINATION OF A USER'S BEGINS DISENGAGEMENT FUNCTION.
PARTICIPATION IN AN INFORMATION STARTS THE COUNTING OF CLOSE REQUEST (AFTER ACCESS) IN

TRANSFER TRANSACTION. DISENGAGEMENT TIME.
THE ARPANET

DISENGAGEMENT

10. DISENGAGEMENT CONFIRMATION
CONFIRMS TERMINATION OF A USER'S COMPLETES DISENGAGEMENT FUNCTION.
PARTICIPATION IN AN INFORMATION STOPS THE COUNTING OF

CLOSE COMPLETION SIGNAL IN THE

TRANSFER TRANSACTION. DISENGAGEMENT TIME
ARPANET

Figure 15. Primary reference events.

entity's current situation with respect to its participation in a data
communication session. The overhead transfer and ancillary reference events

are represented as discrete changes in the Transaction states of one or both
monitored entities.

Figure 16a is a state diagram which represents the possible Transaction

states of each of the two model entities (the end user and the associated

half-system). Relative to any given data communication session, each entity

is in one of three primary Transaction states at any time. These three states
are defined as follows.

1. Idle state. The entity is not involved in the given session.
The entity can be involved in another session, or can be
uninvolved in any session.

2. Committed state. The entity is involved in the given session,
with intent to transfer further user information.

3. Closing state. The entity is involved in the given session,
with intent to terminate involvement without transferring
further user information.

Within each primary state are two "ancillary states": the Active state

and the Waiting state. In general, an entity can enter either ancillary state
on entry to the corresponding primary state; and can change ancillary states

any number of times within a given primary state. The ancillary substates

have slightly different meanings depending on the associated primary states.

Within the Committed and Closing states, the terms Active and Waiting

describe an entity's "responsibility" relative to the ongoing sequence of

interactions at the monitored user interface. When an entity is responsible

for producing the next interface event at the monitored interface, the entity

is defined to be in the Active state; otherwise, the entity is defined to be

in the Waiting state. The User Responsible state exists at an interface when

the user is Active and the associated half-system is Waiting. The System

Responsible state exists when the user is Waiting and the associated half­

system is Active; the Responsibility Undefined state exists when both entities

at an interface are Waiting. All substate transitions within the Committed

and Closing states occur as a result of overhead or user information

transfers, but not all such transfers produce responsibility state changes.

Many telecommunication services are available to the user only during

certain designated time periods, termed "service time intervals." Users may

restrict their participation in telecommunication activities in a similar way.

41

a. Entity Transaction State Diagram

COMPOSITE CLOSING COMMITIED RESPONSIBILITY
STATE STATE STATE STATE

IDLE/ACTIVE 0 0 1
IDLE/WAITING 0 0 0
COMMITIED/ACTIVE 0 1 1
COMMITIED/WAITING 0 1 0
CLOSING/ACTIVE 1 0 1
CLOSING/WAITING 1 0 0

b. Binary Representation
of Transaction States

Figure 16. Transaction state diagram and binary representation.

42

The Active and Waiting substates within the Idle state represent the status of

an entity relative to such service restrictions. When an entity is within a

designated service time interval, but is not involved in a data communication

session, the entity is defined to be in the Idle/Active state. When an entity

is not within an established servic~ time interval, the entity is defined to

be in the Idle/Waiting state. Transitions involving these states indicate the

beginning and end of planned service time intervals. Note that it is possible

for two half-systems within the same telecommunication system to be in

different Idle substates; an example is a world-wide message switching system

that provides service to subscribers only during local business hours.

Figure 16b represents the six Transaction states defined above in three­

bit binary form. The octal equivalents of these binary state variables are

used in the ASCII character records in the overhead information file, as

described below.

Successful measurement of the Interim FED STD 1033 parameters depends on

a proper translation of the system-specific events observed at a monitored

user/system interface into corresponding system-independent reference events.

The Interface Monitor processing function performs that translation. Details

of the translation process are dependent on the user/system interface being

monitored, but the standard provides detailed guidelines to assist users in

accomplishing that task.

Measurement of the Interim FED STD 1033 speed parameters also requires

comparison of event times at the two distant user interfaces. The two

Interface Monitors must therefore have access either to a single common time

source or to separate, but synchronized, time sources. Federal Standard 1043

describes three practical ways of obtaining the necessary time

synchronization: HF WWV broadcasts, NBS telephone time-of-day service, and

the Direct Satellite Time Service of the National Oceanic and Atmospheric

Administration's Geostationary Operational Environmental Satellite (Kamas and

Howe, 1979; NBS, 1978).
The output of a FED STD 1043 Interface Monitor is a set of formatted

ASCII character records defining the sequence of reference events observed at

the monitored interface during a performance measurement period. The nature

of these ASCII character records is described in the following subsection.

43

2.4.2 Data Files
The Data Files section of proposed Federal Standard 1043 specifies

standard formats for recording output from the Data Extraction element of the

FED STD 1043 performance measurement system. These formats are independent of

measurement application.

A given performance measurement batch consists of four data files: a

source overhead information file and source user information file generated by

the source Interface Monitor, and a destination overhead information file and

destination user information file generated by the destination Interface

Monitor. Each overhead information file contains a chronological record of

overhead and ancillary reference events corresponding to the sequence of

interface events oQserved at the monitored interface. Each user information

file contains an ASCII character representation of the transferred user

information.

Both the overhead and user information files are sequential files of

formatted ASCII character records. Sequential files are used because that is

the only file structure supported by the 1966 ANSI standard FORTRAN.

(Conversion to the more recent 1977 ANSI standard FORTRAN will be accomplished
when use of that standard becomes widespread.) The choice of ASCII character

records instead of binary (unformatted) records permits file transportability

for a larger class of computers.

Each record in an overhead information file corresponds to a unique

reference event. The record contains the time of the event, and the octal

representation of the three-bit transaction state code of each model entity

(source user, source half-system, destination half-system, destination user)

immediately after the event, as indicated in Figure 16b.

Figure 17 illustrates how binary transmitted and received data are

represented in a corresponding ASCII character file. The sequence of user

information bits corresponding to a block is divided into a sequence of

strings, each composed of 15 bits. The last string in a block is completed,

if necessary, with binary zero fill following the final user information bit.

The 15 bits that form a string are treated as the binary representation of a

decimal integer, where the bit of lowest index within the string is most

significant. Note that the resulting decimal integer lies in the (inclusive)

range 0-32,767. The user information in a block is thus mapped into a

sequence of decimal integers. Each such integer is stored in a user

information file as an ASCII character string of not more than five digits.

44

1+---------User Information Block ----------l~

Binary
Representation

/ I \ \
I I \ \

/ I \ \
/ I \ \

/ I \ \
/ I \ \

/ I \ \

~ ...~I .eo ~oL... O 0 -ASCII Character
~ ~ ~ . . Representation

l- First ---.l- Second-J I L t I
Integer Integer \.------ Int:~er---.j

Figure 17. Binary and ASCII character representations of user information
blocks.

45

These are right-justified in a five-character field with blank or zero

(character) filIon the left. The data in each field are read and converted

by the performance assessment program using an I5 FORTRAN format

specification. After conversion, the low order (least significant) 15 bits of

the corresponding storage location in memory form an exact copy of the

original user information bit string.

A somewhat different technique is used in representing overhead

information transfer events. As discussed earlier, each user and system

entity is modeled as a finite state machine whose participation in an

information transfer transaction can be represented, at any time, by a

discrete transaction state. Each possible transaction state for an entity is

represented by a corresponding octal digit, which is encoded in a single ASCII

character. All overhead transfer events are then recorded as changes in the

transaction states of one or more entities.

2.4.3 Performance Assessment
The performance assessment section of proposed Federal Standard 1043

specifies a computer program that processes 4 input ASCII character files to

produce a set of 26 Interim FED STD 1033 performance parameter values. The

Performance Assessment program and its input/output files are independent of

measurement application, which allows them to be completely standardized. To

enhance its transportability, the program was written in 1966 ANSI standard

FORTRAN.

As documented in proposed FED STD 1043, the Performance Assessment

program consists of a main driver (ASSESS)B and a set of subroutines that

perform the various data processing procedures required to produce calculated

parameter values. These program elements, and the input/output files they

reference, are shown in Figure 1B. In this diagram, each subroutine at a

given level is connected by a heavy line to a program element at the next

higher level. The intended relation is that the higher level program element

calls the subroutine. The left-to-right arrangement of subroutines at a given

level indicates the order in which they are called by a particular program

element. A thin line from an I/O file to a subroutine implies that the

BTo assist the reader in identifying program and file names appearing in the
body of the text, such names are written with upper case characters
regardless of the form used in the actual software.

46

..j:::o
'1

ASSESS I

! ! ~

I PROLOG I I ACCESS I
I

TRANSF I I DISENG I I SECOND I
I

EPILOG I

I I I I I I I I
i I i I I I I I I I t

I ASSVAR I CKFILE I MERGOV I I CARRYI I I DATCOR I I ANCILL I I SSTATE I I CARRYO I I PALIST II

I - - - - -- --
- 1-

-

- 'I
rASSESSMENT I Lj, SOURCE Nf- I INPUT .; Lf, SOURCE l

PROGRAM OVERHEAD CARRYOVER USER

VARIABLES INFOAMATION DATA FILE INFORMATION
FILE FiLE

L_lDESTINATIO:~ Y~ESTINAj'J,t- ICORRELAro;OVERHEAD USER
INFORMATION INFORMATiON OUTPUT

FILE FILE FILE

~" MERGED ,f- -I SECONDARYfOVERHEAD STATE
INFORMATION HISTORY

FILE FILE

I EXTRA I OUTPUT lPERFORMANcjBLOCK CARRYOVER ASSESSMENT
FILE DATA FILE / LISTING

Figure 18. Performance assessment program elements and I/O files.

subroutine reads from that file; a thin line in the opposite direction implies

that the subroutine writes to the file.

A detailed description of each ASSESS subroutine is provided in the

measurement standard. Briefly, subroutines ACCESS, TRANSF, DISENG, and SECOND

calculate values for the access, user information transfer, disengagement, and
secondary performance parameters, respectively. Subroutine ANCILL supports

the former three programs in calculating values for the ancillary performance
parameters. Subroutine DATCOR matches transmitted and received bits and

identifies undelivered and extra bits to assist TRANSF in evaluating the user
information transfer parameters. Subroutine SSTATE determines (a posteriori)

the secondary (availability) state of the monitored service during a

particular measurement period. Subroutine PROLOG and the subroutines under it

prepare extracted performance data batches for processing. Subroutine EPILOG

and the subroutines under it print and store the program outputs.

Figure 19 illustrates one of five pages of ASSESS program output. Each

performance parameter is listed, followed by the numerical value calculated

for the parameter during the current ASSESS program run. (Note that the

values shown are for format illustration only.) Other program outputs

summarize batch descriptors, user inputs, and raw parameter data.

Each batch of measurement data recorded by the Interface Monitor applies

to a specific source/destination/originating user triplet. In order to use
proposed FED STD 1043 to characterize the performance of duplex transactions,

multipoint transactions, and multiuser networks, it is necessary to aggregate

performance data from two or more batches to produce composite performance

values.9 The Performance Assessment program facilitates such aggregation by

the use of a pair of carryover data files. At the end of each batch

assessment run, key outcome counts and cumulative time durations used in

parameter evaluation are recorded in an output carryover data file. On the

succeeding batch assessment run, this same file is used as an input carryover

data file to initialize the relevant counts and times. Carryover data

management is controlled by a set of user-specified carryover data codes.

This feature enables users to develop composite parameters representing

several directions of flow in duplex or multipoint transactions; or to combine

9The batches may be collected either concurrently or at different times. In
the case of duplex transactions, a single Interface Monitor may record the
performance data for both directions of flow.

48

(PERFORMANCE ASSESSMENT IDENTIFIER PRINTED HERE)
RUN 0

PERFORMANCE MEASUREMENT SUMMARY

PART A - PRIMARY PARAMETERS

1. ACCESS TIME •••••••
2. INCORRECT ACCESS PROBABILITY
3. ACCESS DENIAL PROBABILITY ••••

• • • 37.5 SECONDS
• 1.lXl0(-04) *

1.1Xl0(-02) *
4. BIT TRANSFER TIME •••••
5. BIT ERROR PROBABILITY •••
6. BIT MISDELIVERY PROBABILITY
7. BIT LOSS PROBABILITY ••
8. EXTRA BIT PROBABILITY •••

• • • • 0.068
• 1.5Xl0(-05)· . .
• 6.8Xl0(.-04)

• • • • 0

SECONDS

*
**
*

9.
10.
11.
12.
13.

BLOCK TRANSFER TIME ••
BLOCK ERROR PROBABILITY
BLOCK MISDELIVERY PROBABILITY
BLOCK LOSS PROBABILITY • •
EXTRA BLOCK PROBABILITY

0.068
• 1.5Xl0(-04)·

• •••• 6.8Xl0(-04)
• • • • O·

SECONDS

*
**
*

14. BIT TRANSFER RATE · · · · · 102.4 BITS/SECOND
15. BLOCK TRANSFER RATE . . . · · · 14.6 BLOCKS/SECOND
16. BIT RATE EFFICIENCY · · · · · 68 PERCENT
17. BLOCK RATE EFFICIENCY 68 PERCENT

18. DISENGAGEMENT TIME . . . · · · · · 2.25 SECONDS
19. DISENGAGEMENT DENIAL PROBABILITY · · 5.7Xl0(-05) *

PART B - SECONDARY PARAMETERS

20. SERVICE TIME BETWEEN OUTAGES ••
21. OUTAGE DURATION ••••
22. OUTAGE PROBABILITY •••

• 8 • It· . . . 13.2 HOURS
38 MINUTES

1.4Xl0(-03) *

PART C - ANCILLARY PARAMETERS

23. USER ACCESS TIME FRACTION ••••
24. USER BLOCK TRANSFER TIME FRACTION
25. USER MESSAGE TRANSFER TIME FRACTION
26. USER DISENGAGEMENT TIME FRACTION •• · .

0.4 *
o *

0.02 *
o *

*NOTE - THE PROBABILITIES AND USER PERFORMANCE TIME FRACTIONS ARE
DIMENSIONLESS NUMBERS BETWEEN ZERO AND ONF..

Figure 19. Performance assessment 1isting--performance measurement summary.

49

performance data collected from many user pairs in characterizing a multiuser

network.

The real value of the Performance Assessment program is its time savings

to the user. In the absence of such a standardized, transportable program,

users who wished to conduct performance measurements in accordance with

proposed FED STD 1043 would be forced to develop an ad hoc data reduction

capability for their particular measurement, at substantial cost; and there

would be no assurance that the parameter values produced by different

reduction methods would be comparable.

The Performance Assessment program was based on the Interim FED STD 1033

parameters rather than the X3.102 parameters because the latter were not

firmly established at the time the program was developed. The parameter

changes ultimately adopted by ANSI had relatively little impact on the post­

test processing, and the conversion of Interim FED STD 1033 parameter values

into ANSI X3.102 values was straightforward. The Performance Assessment

program is now being revised to directly compute all 21 of the X3.102

parameters.

2.4.4 Statistical Design and Analysis
The Statistical Design and Analysis section of proposed Federal Standard

1043 defines detailed statistical methods for designing performance

measurements and analyzing the observed results. It addresses three major

topics. The first is qualitative design: i.e., how variables such as time of

day, selected user pairs, and traffic loading should be accounted for in the

arrangement of measurements. The second is sample size determination: i.e.,

the number of measurements of each type a user should conduct in order to

ensure sufficiently precise results. The third is analysis of data: Le.,

how to analyze actual measured data to check pre-test assumptions and refine

measurement precision10 estimates. The methods specified in this section are

drawn mainly from three prior reports (Crow, 1974; Crow and Miles, 1977; Crow,

1979).

10I n statistics, the term "precision" refers to the agreement of repeated
experimental results. It is used in preference to the more stringent term
"accuracy" here to emphasize that the statistical procedures in the standard
quantify measurement uncertainties resulting from limited sample size,
rather than possible bias or system nonstationarity. For further
discussion, refer to Ku (1969).

50

The statistical guidelines of proposed FED STD 1043 may be illustrated by
a step-by-step procedure the standard provides for determining the probability

P of a performance failure (e.g., an error in transferring a bit) with a

specified relative precision. The specification may be, for example, that 95%

confidence limits should be within 50% of P. A sufficient number of observed

failures can be calculated as follows:

1.

2.

3.

4.

Specify the relative (percentage) precasaon desired for P in
terms of confidence limits and the confidence level (80%, 90%,
95%, or 99%) with which that precision will be attained.

Specify the upper bound P11max on the conditional probability
P11 of failure given a faIlure on the previous trial, such
that 0 < P11 ~ P11max < 1.

Locate the desired relative preC1Slon on the vertical axis of
Figure 20 and draw a horizontal line to the curve marked with
the desired confidence level. Draw a vertical line from the
point of intersection to the horizontal axis. Read from the
horizontal axis the number, sind' of failures that would be
required if the successive trials were independent.

Calculate the sufficient number of failures from

1 + P11max

1 - P11max

(or the next largest integer).

5. Proceed with testing until So failures have occurred. The
sample size will thus not be predetermined and will vary
somewhat randomly. However, if a prior estimate Po of P can
be made, the sample size will be approximately nO = sO/PO'

The standard specifies a separate procedure for estimating P11max if there is

no prior information available. Statistical procedures like these provide

users with a quantitative basis for relating measurement precision with

measurement cost.

3. TEST OBJECTIVES

The ARPA network measurements project had two major objectives. The

primary objective was to verify and demonstrate the proposed data

communication performance measurement standard by actually implementing it in
a representative test situation. A secondary objective was to obtain some

typical performance values to characterize the data communication service

provided by the ARPA network and its host computers to end users. It was

51

300

200
0-

S-
0
4-

.-
co
>
S-
(])

+'
s::...... 100
(])

90u
s::
(]) 80""0

-r-:
4- 70s::
0

u 60
4-
0

~ 50
+'
O"l
s::
(]) 40---l
I

4-
r-t-

co
:r: 30
+'
s::
(])
u
S-
(])
0- 20

s = Number of Failures

Figure 20. Relative precision in estimating P from
large samples when number of failures is
prescribed and successive observations
are independent. Curve labels are con­
fidence levels.

52

anticipated that these values would be useful first, in understanding

differences between subnetwork and user-perceived performance; and second, in

assessing proposed refinements to the parameter definitions themselves.

This section defines these overall objectives in more detail, in the form

of a series of questions to be answered by the project results. The questions

are clustered in two groups: those which relate to the adequacy of the

proposed measurement standard, and those which relate to the actual measured

data. They are discussed, in turn, in the following subsections. Their

answers are developed in Sections 4 through 6, and summarized in Section 7, of

this report.

3.1 Primary Objectives

This section poses a series of technical questions which naturally arise

in assessing the adequacy of proposed FED STD 1043 as a specification for a

performance measurement system. The questions are grouped and arranged in

sequence in accordance with the four performance measurement system elements

identified earlier (Figure 11): Le., the Data Extraction element, the Data

Files, the Performance Assessment program, and the Statistical Design and

Analysis procedures.

3.1.1 Data Extraction Element
Measurement of data communication performance obviously requires the

observation, interpretation, and recording of information exchanged between

the data communication system and its users. These functions are performed by

the Data Extraction element of the proposed FED STD 1043 performance

measurement system. As discussed in Section 2, that element consists, in a

typical implementation, of two Interface Monitors and a Synchronized Time

Reference. FED STD 1043 specifies these Data Extraction components in

relatively general functional terms to permit a variety of physical

implementations.
The initial questions relative to implementation of the Data Extraction

element deal with its inputs: r.e., the identification and instrumentation of

the user/system interfaces. The essential questions are:

1. Can the end user/data communication system interfaces be
identified unambiguously from the guidance provided in the
standard? Where are those interfaces in the configuration
tested?

53

2. What specific data communication-related events take place at
the end user interfaces? Can these interface events be
sequentially related in a "session profile" of the type
illustrated in the standard? Can they be observed and
recorded with a negligible (or at least measurable) effect on
the process under examination?

3. What is the effect of system or user failures on the observed
event sequence? Is it necessary (and practical) to represent
possible failure events in a session profile?

4. How do the specified end user interfaces relate to the
"computer/communications" interfaces traditionally used in
performance measurement? Is the difference between the two
significant from an instrumentation point of view?

The answers to these questions will determine whether it is, in fact, feasible
to identify and instrument the end user/data communication system interfaces

in accordance with proposed FED 8TD 1043 in a typical measurement situation.

A second group of questions arises in connection with the Interface

Monitor processing of observed interface events. These are:

1. Can the various events observed at the user/system interfaces
in the configuration tested be unambiguously associated with
the universal "reference events" defined in the standard?
What is the exact association between these events in the case
studied? Are there reference events with no corresponding
interface event, or vice versa? Are the "user information"
and "overhead information" categories clearly distinguishable
from the guidance in the standard?

2. Is it practical and economically feasible to provide a
synchronized time reference to each of two geographically
distant Interface Monitors? How can this be accomplished, and
at what cost?

3. What accuracy can be achieved in the time-stamping of observed
interface events? What mechanisms must be used to correct for
differences between the actual event times and the associated
clock readings?

The answers to these questions will determine whether all information needed

to calculate values for the standard performance parameters can actually be

obtained at the interfaces defined.
A third group of questions arise with regard to the generation and

recording of Interface Monitor outputs. These are:

1. How can the separate event histories recorded at each end of a
data communication system be brought together in one computer
for processing without introducing errors not present in the
original recorded data?

54

2. How much computer time is required to translate the "raw"
event records into the specified standard output format?
Should that translation be performed on-line (during actual
data collection) or off-line (after the test)? How large, and
how complicated, are the translation programs?

The answers to these questions will determine the feasibility of assembling

remotely recorded performance data for centralized processing, and will

strongly influence the design and operation of the Interface Monitor function.

3.1.2 Data Files
A key feature of proposed Federal Standard 1043 is the provision of a

standard Performance Assessment program capable of transforming observed

reference event histories into performance parameter values in an efficient,

uniform way. The use of such a program requires that observed interface

events be recorded in a set of common data files that can be directly written

by the Interface Monitor, and directly read by the Performance Assessment

program. The standard data files defined in proposed Federal Standard 1043
fulfill this need.

A number of significant questions arise with respect to the

implementation of these data files. They are:

1. Can the specified data file formats be directly written and
read by software developed using different programming
languages?

2. What requirements will such standard files place on the memory
capacity of the recording equipment? Are the memory
requirements commensurate with the capacities of
host/measurement systems which might reasonably be expected to
implement the standard? How much is the memory requirement
increased by the choice of a machine-independent data file
format?

3. What is the impact of data aggregation (e.g., combining
measurement results for many user pairs) on the data file
structure? On overall memory requirements? How important is
the "carryover data" capability to standards users?

The answers to these questions will have a critical impact on the

transportability of the standard Performance Assessment program.

3.1.3 Performance Assessment Program
The preceding paragraphs pointed out the importance of the standard

Performance Assessment program to the proposed FED STD 1043 measurement

55

approach. Significant questions associated with the implementation and use of

that program include the following:

1. How large is the program, including both machine instructions
and data? Will the program "fit" within the memory capacity
of computer systems on which it might reasonably be
implemented?

2. How long does the program take to process a "batch" of
recorded measurement data?

3. Does the program correctly determine the outcomes of data
communication attempts under all observed conditions of
performance? Under what conditions does the program fail or
give misleading results?

4. What flexibility must such a program provide to users with
respect to (a) aggregation of measurement data from many
batches, (b) calculation of parameter sUbsets, (c) adaptation
of program variables to measured system characteristics?

The answers to these questions will strongly influence the utility of the

standard Performance Assessment program, and consequently, the efficiency and

economy with which the standard performance parameters can be measured.

3.1.4 Statistical Design and Analysis Procedures

Performance measurement requires the estimation of parameter values on

the basis of a finite "sample", or set, of observations. The use of finite

samples inevitably produces a certain imprecision in the measured parameter

values. That imprecision can always be reduced through the use of a larger

sample, but only at the cost of a longer (and more expensive) test. The

statistical design and analysis procedures specified in proposed FED STD 1043

enable users to design performance measurements on the basis of specified

precision and cost objectives; and to analyze actual measured data to

determine the precision actually achieved during a test.

One important objective of the ARPA network measurements project was to

assess the utility of the proposed FED STD 1043 Statistical Design and

Analysis procedures in an actual measurement situation. Significant questions

to be answered during the project included the following:

1. How should a data communications user's measurement preclslon
objectives be determined? Can/should FED STD 1043 provide
guidance to users in establishing such objectives?

2. How strongly do underlying measurement conditions (e.a., time
of day, direction of transfer) influence the measured

56

parameter values? Does the current FED S10 1043 draft provide
adequate guidance to users in identifying such conditions and
assessing their impact?

3. Given a specified measurement preC1Slon objective, is it
possible to determine the sample size required to achieve that
objective in a straightforward way?

4. Can the post-test data analysis procedures and formulas
provided in the current FED STD 1043 draft be applied to the
ARPA network test data with reasonable effort? How much do
the precision estimates calculated on the basis of the
observed test results differ from the objectives established
before the test? How realistic were the statistical
assumptions on which the pretest calculations were based?

The answers to these questions will provide a basis for assessing the

practicality and utility of the Statistical Design and Analysis procedures

specified in the proposed measurement standard.

3.2 secondary Objectives

The ARPA network has been analyzed, simulated, and measured in an large

number of studies since its development in the late 1960's, and published data

on its performance is abundant. However, much of the published data on ARPA

"network" performance actually refers to the subnetwork - Le., the IMP's,

TIP's, and 50 kb/s leased lines interconnecting host computers. Because it

excludes the effects of higher level protocols which are executed in the host

computer, this data is often not directly usable in characterizing the

performance of the end-to-end service ultimately delivered to ARPA network end

users - e.g., application programs executing in the host computers. A
secondary objective of the ARPA network measurements project was to provide

such a user-oriented, end-to-end characterization of ARPA network/host

computer performance. It was anticipated that the process of collecting that

user-oriented performance data would also provide a basis for assessing

proposed refinements to the parameter definitions.
This subsection poses a series of questions to be answered in

accomplishing those secondary ARPA network measurements project objectives.

The questions are grouped in three categories, in accordance with the three

primary communication functions defined earlier: access, user information

transfer, and disengagement. Within each category, questions related to ARPA

network performance are presented first, followed (where appropriate) by

57

questions related to the parameter definitions. Most of the latter questions

focus on differences between the Interim FED STD 1033 and X3.102 parameters.

3.2.1 Access Parameters
Interim Federal Standard 1033 defines four access performance parameters:

three primary parameters (Access Time, Incorrect Access Probability, and

Access Denial Probability), and one ancillary parameter (User Fraction of

Access Time). ANSI X3.102 defines one additional primary access parameter

(Access Outage Probability).

A comprehensive measurement of these parameters on the ARPA network

should provide answers to the following questions: 11

1. How long must an ARPA network end user wait, after requesting
communication service, before his first block of information
is actually input to the system for transmission? How
variable is that delay? Is it significantly influenced by
direction of transfer, application program priorities, or time
of day? What proportion of the delay is attributable to
subnetwork packet transmissions? What proportion is
attributable to delays introduced by the users?

2. What is the likelihood that transmitted user information will
be directed towards a destination other than the one intended
as a result of a system connection establishment error?

3. What is the likelihood that the system will fail to give the
user access to communication service (within a specified
maximum time) on any given request? How frequently are such
failures attributable to system outages? How sensitive is
that likelihood to the host computer utilization?

The ARPA network access measurements were also intended to answer a number of

questions regarding the detailed definition of the access performance

parameters. These were:

1. Are the observed values for Access 'I'Lme. subs t.ant Lal Ly
influenced by the choice of "start of block transfer" rather
than "connection confirmation" as the end of the access
function? Does the ancillary parameter User Fraction of
Access Time provide an adequate method of factoring out that
influence where user-independent parameter values are desired?

11 In each of the following questions, "the system" includes all functional and
physical elements which participate in communicating user information
between the host computer application program/operating system interfaces.
"The system" thus includes the Network Control Program, the host computer
operating system, and associated high-level protocols.

58

2. Is Incorrect Access Probability practical to measure as
defined in the current standards? Is the distinction between
Incorrect Access Probability and Block Misdelivery Probability
significant from a measurement standpoint?

3. How strongly is the value for Access Denial Probability
influenced by the choice of maximum access time? Would a
different maximum access time value, or a different algorithm
for determining that value, be more appropriate than the one
selected? -

4. ANSI X3.102 differs from Interim FED STD 1033 in that it
distinguishes Access Outage (no system response) from Access
Denial (negative system response or excessive system delay).
Are these two outcomes readily distinguishable in the case
studied? Is that distinction meaningful and important in the
case studied?

The answers to these questions will be useful in characterizing the access

performance of the ARPA network from a user perspective; and in assessing the

practicality and utility of the access parameters themselves.

3.2.2 User Information Transfer Parameters

Interim Federal Standard 1033 defines 19 parameters which directlY or

indirectly describe the performance of the user information transfer

functions. These include 10 parameters which focus on the outcomes of

individual bit or block transfer attempts (Bit/Block Transfer Time, Bit/Block

Error Probability, Bit/Block Misdelivery Probability, Extra Bit/Block

Probability and Bit/Block Loss Probability); 7 parameters which focus on the

transfer of multiblock "messages" (Bit/Block Transfer Rate, Bit/Block Rate

Efficiency, and the three "secondary" parameters Outage Probability, Service

Time Between Outages, and Outage Duration); and 2 ancillary parameters (User

Block Transfer Time Fraction and User "Message" Transfer Time Fraction). The

ANSI X3.102 standard specifies 13 UIT parameters which are a subset of these,

excluding Bit Transfer Time, Block Transfer Rate, both Rate Efficiencies,

Service Time Between Outages, and Outage Duration.12

Questions related to the measurement of these parameters on the ARPA

network include the following:

1. What total delay does a bit or block of user information
experience, on average, between a request for its transmission

120ther differences include renaming of the two ancillary parameters and Bit
Transfer Rate, and a redefinition of the latter.

59

by the source application program and the completion of its
delivery to the destination program? How is that delay
influenced by block length? How variable is that delay, for a
given block length? Does user performance contribute
significantly to the observed end-to-end delay in the case
studied? How do the measured Block Transfer Times compare
with previously measured "average message delays" for the
subnet?

2. The ARPANET error control algorithms have been designed to
ensure that undetected bit (or block) errors will occur on the
order of "years to centuries apart" (Kleinrock, 1976). Has
this objective been attained, or is it, in fact, possible to
observe undetected bit errors in a measurement spanning only a
few million bits?

3. What is the likelihood that a unit of information delivered by
the ARPANET to a given destination user will, in fact, have
been intended for some other user?

4. Kleinrock (1976) has reported that "on the average, every
hundredth message which enters the ARPANET will not reach its
destination. The reason for this undesirable behavior is that
many destination hosts are tardy in accepting messages." Is
the loss of user information as frequent today, in the
configuration tested, as it was in 1976? What proportion of
the observed Block Loss outcomes is attributable to
performance timeouts as opposed to actual absence of the data
in the received user information record? Is Block Loss
primarily attributable to "tardy" hosts, or does the
subnetwork also contribute?

5. Data loss and data duplication are similar in that both can be
caused by ARQ protocol failures and system "crashes". Does
data duplication occur with measurable frequency in the
ARPANET? Are nonduplicate extra bits delivered to ARPANET
users with measurable frequency? What phenomena cause such
events, assuming they occur?

6. What throughput is typically achieved between host application
programs utilizing the ARPA network? How does this throughput
compare with the theoretical maximum process-to-process
bandwidth of the network (Kleinrock, 1976)? How does it
compare to the values obtained in earlier, experimental
measurements? How does it compare with the allocated channel
signalling rate? To what extent are the measured throughput
values influenced by source and destination user delays?

7. What is the overall availability of data communication service
between application programs in the case studied? How is the
downtime subdivided between the subnetwork and the hosts? How
does the subnetwork (e.g., IMP/TIP) downtime observed in the
case studied compare with earlier measured values?

60

The ARPA network user information transfer measurements were also

intended to answer a number of questions regarding the detailed definition of

the UIT parameters. These were:

1. Are Bit Transfer Time and Block Transfer Time distinguishable
in the case studied? Is a comparison of these parameter
values useful in expressing the influence of block length on
transfer time?

2. Are Bit Error Probabil i ty and Block Error Probability
independently useful in characterizing transfer accuracy in
the case studied? Does a comparison of these values provide
useful information on error clustering?

3. Are Bit and Block Misdelivery Probability, as defined in
Interim FED STD 1033 and X3.102, measurable in the case
studied? Could their measurement be made simpler if the
parameters were defined differently?

4. How strongly are the values for Bit and Block Loss Probability
influenced by the choice of maximum block transfer time?
Would a different algorithm for determining maximum block
transfer time be more appropriate in the case studied?

5. ANSI X3.102 differs from Interim FED STD 1033 in the
definition of User Information Bit Transfer Rate. Are these
differences significant in the case studied? Which definition
is preferable from a measurement standpoint?

6. ANSI X3.102 differs from Interim FED STD 1033 in that the
Block Transfer Rate and Bit/Block Rate Efficiency parameters
are omitted. Does the omission of these parameters detract
significantly from the completeness of the performance
description?

7. ANSI X3.102 differs from Interim FED STD 1033 in the selection
and definition of availability parameters. Which approach
appears preferable from a measurement standpoint? Are Service
Time Between Outages and Outage Duration measurable, with
reasonable precision, in the case studied? Does the omission
of these parameters detract significantly from the
completeness of the performance.description? How strongly are
the Outage (or service Denial) Probability values influenced
by the choice of degraded performance (or outage) thresholds?
How much do the required sample sizes differ· under the FED STD
1033 and X3.102 threshold criteria? Is the difference
significant from a measurement standpoint?

The answers to these questions will be useful in characterizing the transfer

performance of the ARPA network from a user perspective; and in assessing the

practicality and utility of the UIT parameters themselves.

61

3.2.3 Disengagement Parameters

Interim Federal Standard 1033 defines three disengagement performance

parameters: two primary parameters (Disengagement Time and Disengagement

Denial Probability) and one ancillary parameter (User Disengagement Time

Fraction). The same three parameters are specified, with minor refinements,

in ANSI X3.102. Questions related to the measurement of these parameters on

the ARPA network include the following:

1. How long must a user wait, after requesting disengagement from
an established data communication session, for the
disengagement function to be successfully completed? Does
that delay differ substantially for each user? How variable
is the delay? What proportion of the delay is attributable to
subnetwork packet transmissions? What proportion is
attributable to delays introduced by the users themselves?

2. What is the likelihood that the system will fail to detach a
user from an established data communication session (within a
specified maximum time) on any given request? How sensitive
is that likelihood to the specified maximum time?

The ARPA network disengagement measurements were also intended to answer a

number of questions regarding the detailed definition of the disengagement

performance parameters. These were:

1. The ANSI X3.102 definitions for Disengagement Time and
Disengagement Denial Probability differ from their Interim FED
STD 1033 counterparts in one important respect: they allow
the specification of separate parameter values for each end
user in cases where the disengagement functions at the user
interfaces are dissimilar. Is this distinction important in
the case studied? How meaningful are the "aggregate"
parameter values representing both user interfaces?

2. How strongly are the values for Disengagement Denial
Probability influenced by the choice of maximum disengagement
time? Would a different algorithm for determining maximum
disengagement time be more appropriate in the case studied?

The answers to these questions will be useful in characterizing the

disengagement performance of the ARPA network from a user perspective; and in

assessing the practicality and utility of the disengagement parameters

themselves.

3.3 Stmnary
The preceding subsections have defined the objectives of the ARPA network

measurements project in terms of a series of questions to be answered by the

62

project results. These questions were clustered into two groups. The key

issue addressed by the first group of questions was the feasibility of

implementing proposed Federal Standard 1043 in an actual performance

measurement system. Detailed questions dealt with the time and effort

required to develop each element of the measurement system; the size and

complexity of the resulting system; and the performance of that measurement

system in terms of speed, accuracy, and reliability. Clearly, these are

questions which must be answered before the standard is promulgated in a

permanent form.

The questions in the second group addressed two key issues: (1) the

user-to-user performance of the ARPA network and its host computers, as

contrasted with the performance of the subnetwork; and (2) the practicality

and utility of the standard performance parameters in characterizing a typical

data communication service. Results will clarify the relationship between

end-to-end and subnetwork performance; and will provide a useful (and perhaps

final) set of refinements to the 1033/X3.102 parameters.

4. MEASUREMENT APPROACH

This section describes the design of the prototype data communication
performance measurement system NTlA/lTS and NBS/lCST developed as a trial

implementation of proposed Federal Standard 1043. As noted earlier, that

measurement system was designed to assess the data communication service

provided to a typical pair of ARPA network end users - host computer

application programs. The material in this section is divided into four

subsections, corresponding to the four performance measurement system elements

defined earlier (Figure 11).

4.1 Data Extraction Element
The general functional requirements for the Data Extraction element of

the proposed FED STD 1043 performance measurement system were presented

earlier in this report (Section 2.4.1). This subsection describes the design

of the Data Extraction subsystem developed to perform these functions in the

ARPANET experiment.
The major features of this design are summarized as follows. At each

user/system interface, a single application program (1) performed all end user

activities related to the access, user information transfer, and disengagement
functions during monitored data communication sessions, and (2) executed the

63

input function of the associated Interface Monitor (L.e., detected and

determined the time of all performance-significant events at the monitored

interface). This design feature exemplifies the active approach to data

communication performance measurement described in Appendix B of proposed FED

STD 1043. The Interface Monitor processing and output functions were

performed off-line by a set of computer programs designed to convert recorded

raw data into the standard ASCII character files specified by proposed FED STD

1043. The synchronized Time Reference was obtained from the NBS satellite

time dissemination service utilizing the Geostationary Operational

Environmental Satellite (GOES).

The detailed description of the Data Extraction subsystem design is

divided into four parts. The first part provides background for that design
by: (1) describing the hardware and software configurations of the data

communication system tested; (2) identifying and describing the user/system

interfaces and all performance-significant events at those interfaces; and (3)

relating the system-specific interface events to the corresponding FED STD

1043 reference events. The second part describes major hardware devices and

some general features of the software used in the Data Extraction subsystem.

The third part describes the design of the on-line phase of Data Extraction;

i.e., the design of the user/monitor programs used to generate and record

interface events. The fourth part describes subsequent off-line processing

which converted extracted raw data into standard ASCII character files for

input to the FORTRAN Performance Assessment program.

4. 1•1 Design Background

Figure 21 illustrates the overall hardware configuration tested. The

basic hardware consisted of two similar PDP-11 host computer systems

interconnected by the ARPA sUbnetwork. The NTIA/ITS host, located in Boulder,
Colorado, was a PDP-11140 computer with 256K bytes of semiconductor random

access memory (RAM) and peripherals including a cathode-ray tube (CRT)

terminal, an LP-11 line printer, three RK-05 disk units, two TU-10 magnetic

tape units, and an LA-36 teletyewriter (TTY), which served as the system

control console. The computer was connected to the DOCB TIP via a standard

ARPANET Local Host interface device. The NBS/ICST host, located in

Gaithersburg, Maryland, was a PDP-11/45 computer with 256K bytes of

semiconductor RAM, a 1K cache memory, and a set of peripherals similar to

64

NTIAIITS Host ARPA Subnetwork NBS/leST Host

0'\
U1

PDP-11/40

Host Computer

Local
Host
Inter­
face

I~
I

; --7
! DOCB L.-_

-j TIP

I (~O kbps
L Lines to at

IMPsITIPs)

CRT Line
Printer

I
Local

PDP-11/45NBS Host
TIP

I
Inter- Host Computer
face

Figure 21. Hardware configuration tested.

those at NTIA/ITS. The NBS/ICST host computer also shared use of four

65 Megabyte capacity disk units.

During the time period of the tests described in this report there were,

typically, one to four time-sharing users connected to the NTIA/ITS host and

two to eight time-sharing users connected to the NBS/ICST host. In most

cases, these users performed tasks that did not make heavy computing demands

on the system. With rare exception, the other users were not using the

ARPANET. Usage of the source and destination TIPs by other hosts and

terminals was not monitored.

Figure 22 shows the host computer software configurations. Both the

NTIA/ITS PDP-11/40 and the NBS/ICST PDP-11/45 ran a UNIX13 Version 6 operating

system (Thompson and Ritchie, 1975) which included input/output drivers for

the Local Host interface and other local peripherals. Each computer ran a

UNIX Network Control Program (NCP), which was originally developed for the

ARPA network at the University of Illinois (Chesson, 1975). The NCP's ran as

application-level programs, and implemented the ARPA network host-to-host

protocol (Carr et a1., 1970). User application programs communicated with

each other and with peripheral equipment via the usual operating system calls.

Figure 23 illustrates the logical flow of user data within the host

computers, and also indicates the end user/data communication system

interfaces and associated interface events. The end user in each case was a

host computer application program, and the end user/data communicatlon system

interface was the functional interface between that program and the host

computer's operating system (OS). The Network Control Programs (NCP's)

regulated the exchange of user information between hosts via the ARPA
subnetwork.

Any discrete transfer of information across a user/system interface is

called an interface event. The specific interface events which occur at the

user/ system interfaces in the configuration tested are listed in the lower

portion of Figure 23. They are of two general types: system calls, which are

issued by an application program to request the performance of a particular
operating system function; and system responses, which are issued by the

operating system to indicate completion of a previously requested function.

The four operating system calls which. may be issued by an application

program executing under UNIX are OPEN, WRITE, READ, and CLOSE. With respect

13Registered trademark of Bell Laboratories.

66

0'1.......

PDP-11 Computer

Application Application Network. . .
Program Control

Program Program

~

,

UNIX Operating System (V.6)

Driver Driver r Driver I
j

r

Peripheral Peripheral ~
Local. . . Host TIP

Equipment Equipment Interface

Host Computer System ARPA Subnet

Figure 22. Host computer software configurations.

To/From·
Other ARPANET
IMPsITIPs

Transmitting (Originating) Host

\\ .e~
cee\('\eD

Receiving Host

System End User

r::::
.Q E
- co..

NCP
~

OS
co ...
.~ OJ
- 0a. ...
o.ll.«

I
A

O'l
co

End User

r::::
.Q E
1ii~
OOJ
=0a. ...
a. a.«

I
I OS

System

,---

~ "'NCP'''' I I

L...--

ARPASubnet

{l 'Is

System Call
• Open
• Write
• Close

System Response
• Open Complete
• Write Complete
• Close Complete

System Call
• Open (Listen)
• Read
• Close

System Response
• Open Complete
• Read Complete
• Close Complete

Figure 23. Logical data flow within the host computers.

to ARPANET communication, OPEN and CLOSE are used to establish and release

logical connections, called "virtual circuits", between application programs.

WRITE causes a specified block of user information to be passed from a source

application program to its local NCP for transmission over an established

connection. READ causes received user information to be passed from the

receiving NCP to the local (requesting) application program. In the normal

case, the system's "complete" response indicates that the requested function

has been successfully accomplished. System failures are indicated by special

exception codes.

Under UNIX, the operating system calls used in local data processing are

the same as those used in ARPANET communication. Thus, each application

program also issues OPEN, WRITE, READ, and CLOSE system calls to access its

local data files; to exchange information with other application programs in

the same computer; and to communicate with the local program operator via

peripherals. To an application program, the ARPk NCP, subnetwork, and remote

host are like any other external communicant.

As discussed in Section 2.4, successful measurement of the 1033/102

parameters depends on a proper translation of the system-specific events

observed at the monitored user/system interfaces into the system-independent

reference events on which the parameter definitions are based. The ten

primary reference events defined in proposed FED STD 1043 were defined

earlier, in Figure 15. The user/system interface events depicted in Figure 23
can be directly related to those reference events as follows.

Reference Event 1. The OPEN system call issued by the user
originating a data communication session is an Access Request
event.

Reference Event 2. The OPEN system call issued by the user not
originating a data communication session is a Nonoriginating User
Commitment event.

Reference Eyent 3. When the system is unable to establish a
requested connection, it notifies the requesting application
program by issuing an OPEN COMPLETE response with a negative (-1)
response code. That negati ve OPEN COMPLETE response is a System
Blocking Signal.

Reference Event 4. If .an originating application program were to
"change its mind" and issue a CLOSE system call while a previously
issued OPEN was still pending, that CLOSE would be an Originating
User Blocking signal. There is no system call at the non­
originating application program interface that corresponds to a
User Blocking signal. (The existence of a Nonoriginating User

69

Blocking signal is not required to measure the standard performance
parameters).

Reference Events 5 and 6. The first WRITE system call issued by a
source application program after connection establishment
corresponds to both the Start of First Block Input to System
(reference event 5) and the Start of Block Transfer for that block
(reference event 6). The standard notes that these two reference
events are coincident in many systems. All subsequent WRITE system
calls issued by a source application program during a data
communication session are also Start of Block Transfer events.

Reference Events 7 and 8. Operating syst€m issuance of a READ
COMPLETE response with a nonzero byte count to a destination
application program constitutes both the Start of Block Output to
Destination User (reference event 7) and the End of Block Transfer
(reference event 8). The standard notes that these two events are
coincident in many systems.

Reference Event 9. The first CLOSE system call issued by a user
participating in an established data communication session is the
Disengagement Request for both participating users. This is true
(as noted in the standard) because a connection with one end has no
meaning.

Reference Event 10. The system issues a CLOSE COMPLETE response to
both participating application programs to confirm the termination
of an established connection. Each of these separate responses is
a Disengagement Confirmation signal.

The reference events defined in proposed FED STD 1043 also include a set

of "ancillary" events, which mark transitions of performance "responsibility"

from a user to the system or vice versa. The interpretation of those events

in the case studied is straightforward: each operating system call transfers

performance responsibility from the issuing user to the system, and each

operating system response transfers responsibility from the system to the
rece i ving user.

There are minor differences between the primary reference events defined

in the 1033/1043 standards and those defined in ANSI X3.102. The first of

these differences is the deletion of event 7 (Start of Block Output to

Destination User). That event was needed only to define Bit Transfer Time, a

parameter which is not specified in the ANSI standard. The second difference

is the addition of four "derived" user information transfer events, which

mark, respectively, the beginning and end of the input and output of a

"transfer sample" - the randomly chosen user information sequence used to

calculate the throughput and availability parameter values. The latter events
are "derived" in the sense that they are defined by an a posteriori analysis

70

of the measurement data, rather than by the occurrence of a particular

user/system interface signal. They correspond, in general, to the start and

end of transfer of the first and last blocks in a sample.

The ARPA network Interface Monitor software was programmed to record each

UNIX operating system call and response by a corresponding reference event as

defined above.

4.1.2 Data Extraction Hardware and Software Tools

This section describes hardware devices and some general features of the

software used in the Data Extraction subsystem for the ARPANET measurements.

The hardware devices, indicated by boldface in Figure 24, consisted of a GOES

satellite antenna/clock receiver system at each site, an operator terminal

connected via a Multi Line Unit (MLU) to the DOCB TIP, and the associated

device interfaces. No special designs were required, since all Data
Extraction hardware was off-the-shelf.

The Synchronized Time Reference required to record event times at the two

distant user interfaces in the ARPANET experiment was provided by the NBS time

dissemination service utilizing the GOES satellite (Kamas and Howe, 1979).

This service makes it possible to obtain a time signal accurate to within 1

millisecond anywhere in North America. Several vendors supply an

antenna/receiver/interface package to obtain t.ime from the satellite. The

receiving systems used in this experiment consisted of a 1 ft square active

antenna connected via coaxial cable to a small (9 in x 17 in x 1-3/4 in) clock

receiver/interface unit. The antenna operates satisfactorily inside many

buildings. Each clock receiver was equipped with a serial RS-232-C interface,

which was connected to the PDP-11 host via standard serial communication

cards. The cost of the package for each site was about $2,000 in 1980.

The additional terminal used in the experiment was a standard dot matrix

printing terminal interfaced into the Multi Line Unit connected to the DOCB

TIP. It was interfaced at 1200 bps, although any of the usual speeds from 300

to 2400 bps could have been used. As shown in Figure 24, this terminal was

connected to the NBS UNIX-3 host computer in Gaithersburg without going

through the ITS host in Boulder. Under normal conditions, this arrangement

allowed a single operator at Boulder to conduct ARPANET measurements without

involving personnel at Gaithersburg. To the Boulder operator, it appeared

that the NBS host was in the next room rather than 1600 miles away. Software

71

NTIAIITS Host ARPA Subnetwork NBS/leST Host

GOES Satellite Antenna GOES Satellite Antenna

PDP-11/45

Host Computer

Local
Host
Inter­
face

NBS
TIP

---;
L..- _

(50 kbps
Lines to Other
IMPsfTIPs)

Local
Host I I I DOCB
Inter-~ TIP
face

PDP-11/40

Host Computer
'-I
N

Figure 24. Additional hardware (in boldface) required for testing.

connection procedures are described fully elsewhere (BBN, 1977) and will not
be discussed here.

All application programs and routines used the Data Extraction subsystem

of the ARPANET experiment were written in the "C" programming language

(Kernighan and Ritchie, 1978). This is a general purpose language which has

been used for writing operating systems (e.g., UNIX), as well as programs for

numerical, text-processing, and data-base management applications. It is also

a relatively "low level" language, oriented toward the bits, bytes, and

addresses dealt with by most computers. This latter feature, and the fact

that "C" is a structured language, were exploited in designing efficient

procedures for performing the tasks of the Data Extraction element. Software
design and coding were done in a modular fashion. Main programs were kept

fairly short (and intelligible) by using procedures or rootines to perform

specific tasks. Thus, additions and modifications to the Data Extraction

software were straightforward.

The UNIX operating system includes several major features which were

frequently utilized in developing and implementing the Data Extraction

software:

1. 110 Redirection. This feature permits the redirection of a
standard output (e.g., a program print statement) that would
normally have appeared on a CRT screen, to some other device
(including a disk file). Thus, without modifying any
software, the program output may be preserved in a file for
later use by means of a simple command like

runprog >filename

where the name of the program is RUNPROG and its output
(except for errors) is totally redirected into the file called
FILENAME.

2. Command Files. These provide a method of storing a sequence
of commands in a text file, then executing each command just
as though it were being typed by an operator. Command files
may also include local and passed parameters, numerics with
simple addition and subtraction computations, logical
comparisons, and simple branching. All test and post-test
processing procedures were executed under control of command
files.

3. Hierarchial File Structure. This feature allows different
directories to exist on the same disk for different purposes.
ThUS, no directory need be excessively long. For example,
data for each month were stored under. a directory whose name
was the three letter abbreviation of the month (e.g., oct,
nov, dec).

73

4. Built-in Utilities. These include a text editor, and enable
the operator or user of the system to convert data or text
from one form to another with a minimum of software
development. For example, several important steps in
preparing a text file of statements for a particular data run
were pre-processed with a command file invoking utilities such
as the editor and the sort routines.

5. Filters, Forks, and Pipes. A filter is a program which takes
its input from one source or file, transforms the data, and
outputs it to a different file. A fork permits starting a
program then returning control to the initiator of the
process. This allows concurrent processes to coexist in the
machine. A pipe allows the directing or funnelling of data
from one program to another program (i.e., the standard output
of the first program becomes the standard input of the second
program). The pipe, with the TEE program, causes the standard
output of a program to appear on the standard output device
(Le., the CRT or TTY) for the operator to monitor and to be
written to a disk file. For example, the command line

xmit.u I tee 10g.x1Z7

causes the XMIT.U program to direct all output both to the
terminal and to a file called LOG.X1 Z7.

4.1.3 On-Line Data Extraction
As stated previously, the design of the ARPANET measurements followed an

active approach; i.e., in 'each host computer, the end user activities and the

input function of the associated Interface Monitor were merged in a single

application program. At the source (transmitting) user/system interface, a

program called XMIT performed all end user activities (i.e., issued all system

calls) required during the monitored data communication sessions. This

program also recorded the nature and time of occurrence of each performance­

significant event (system call or system response) at the source interface. A

companion program, called RECV, performed the corresponding functions at the

destination (receiving) user/system interface.

In the context of the ARPANET experiment, a test consisted of a single

run of companion XMIT and RECV programs. Off-line (post-test) processing of

the raw data extracted during a test produced a set of four standard ASCII

character files for input to the Performance Assessment program; these files

are referred to in proposed FED STD 1043 as a performance data batch. The on­

line Data Extraction software was designed to perform either of two types of

tests, depending on whether the test was intended to obtain data for
calculating access and disengagement parameters, on the one hand, or user

74

information transfer parameters, on the other. A normal access/disengagement

test consisted of a sequence of 160 data communication sessions, with only one

user information block of 64 bytes transferred in each session. A normal user

information transfer test consisted of a single data communication session in

which 20 blocks of user information, of 512 bytes each, were transferred.

The ARPANET measurements were designed so that, in any given test, either

the NBS/IeST host or the NTIA/ITS host could serve as the source host. This

design feature was implemented by including appropriate versions of both XMIT

and RECV in the Data Extraction software at each site. Except for minor

variations due to machine and system software differences between the two

hosts, the NBS and ITS versions of these programs were the same. The compiled

forms of XMIT andRECV occupied about 7800 and 7400 bytes of storage,

respectively. Inoluding ARPANET variable arrays and extracted data buf'fer-s,

the executable software for a test required about 20 ,000 bytes of memory in

each host.
An overview of the on-line (real-time) Data Extraction scheme for the

ARPANET experiment is provided by the session profile of Figure 25. This

shows the nature and sequence of the basic functions performed by

participating entities during a typical ARPANET test, as well as the

performance-significant events resulting from those functions.

Participating entities are indicated at the top of the diagram. As

described previously, the source and destination half-systems collectively

consist of the ARPA sUbnet, the two host computer operating systems, the

Network Control Programs, and the Local Host Interfaces. The source and
destination users are, respectively, the XMIT and RECV programs. Complete
listings of these programs are contained in Appendix B, and simplified flow

charts are shown in Figure B-1. The source and destination test operators

represent the human operator (located in Boulder) who initiated and monitored

the test, and the command files which simulated an operator typing commands.

In all tests, the source user was the originating user (i.e., the source user

initiated all access requests).
Rectangular boxes indicate functions performed by participating entities.

Large circles denote entry and exit points, and small circles denote

interconnect points.

Lines indicate actual or potential movement of information or control

from one function to another. Six types of lines are shown:

75

TEST
SOURCE

OPERATOR
SOURCE

USER
SOURCE

HALF -SYSTEM
DESTINATION
HALF -SYSTEM

DESTINATION
USER

TEST
DESTINATION

OPERATOR

0011001

ATTEMPTING TO OPEN MESSAGE

FAILURE [-1)

RECV START COMMAND

OPEN COMPLETE MESSAGE

--------I~----1--
y ========

DENIAL MESSAGE

I CUMPLETE I I IIMI::UU I 0
OPERATOR =~~T~~~M~A~~~~D====e:::O
COMMAND I !

TERMINATE TEST TERMINATED MESSAGE ~

~=================~

_____l~~~~J~~ ~

p----------------
.! I

011]010

DENIAL

"T"
READ FAILURE 1-11

READ COMPLETE

OPEN ANYHOST

I
RFC RTS

I

I,

I,

I

I
RFC STR

0111010

0101°11
DENIAL

~I~

0111010

OPEN REQUEST

0101011

WRITE FAILURE

OPEN COMPLETE

WRITE COMPLETE

XMIT START COMMAND

ATTEMPTING TO OPEN MESSAGE

----------------,
I I 11 I

I
=======

DENIAL MESSAGE

o TIMEOUT I I COMPLETE I
o RESTART TERMINATE COMMAND

[S================ OPERATORI I COMMAND

U...-"- TEST TERMINATED MESSAGE TERMINATE

~================~

~__~~~~~~~~~_l _

'.J
(J)

MORE
TRANSACTIONS

._-- 0
OPERATOR =~E~~~~~~~M~~====J]
COMMAND I I

lbER"'NA" TEST TERM'NATED MESSAGE. B====r=====l===== -
------r~~~~T~----43

TRANSACTION COMPLETE MESSAGE

FAILURE (_11

~~~~~~TTE I ; CO~~~~TE
I
I
I
I
I TEST COMPLETE MESSAGE

~---------------

''0

CLOSE REOUEST

I
ENDOF FILE

READ REQUEST

"l"
READ FAILURE (-1)

1001101

0011001

CLOSE REQUEST

CLOSE COMPLETE

TEST NOT
COMPLETE

TRANSACTION COMPLETE MESSAGE

CO~Ep:~TE :

I
I
I

";;;'T~O=~T::~S~;. J

PROGRAM FLOW rEXCEPTIONAL,

4 CONTROL TRANSFER .NORMAL,

LEGEND

PROGRAM FLOW rNORMAL,

5 ======== CONTROL TRANSFER ,EXCEPTIONAL,

CLO(:K READ PFlIC)f1 to NEXT EVENT

OPERATOR FLOW

6 - - ------ PROGRAM TO OPERATOR MESSAGE

wnrrr c." "'" cess-or I
::r::::,d, _
TRANSMIT COMPLETE MESSAGE

o TIMEOUT I ICOMPLETE I
~ RESTART TERMINATE COMMAND

L:::::J================ OPERATOR

I I COMMANO

~ TEST TERMINATED MESSAGE TERMINATE

~CJ================21

~-~c"~c~~~---t-----

e
'-J
'-J

Figure 25. Session profile.



o Solid Line - Information Flow
Heavy (Type 1) - Normal Program Flow
Double (Type 2) - Exceptional Program Flow
Light (Type 3) - Operator Flow

o Dashed Line - Control Flow
Heavy (Type 4) - Normal Control Transfer
Double (Type 5) - Exceptional Control Transfer
Light (Type 6) - Program to Operator Message

Captions accompanying a line describe the nature of the information

communicated. During a normal test all paths on the session profile are

followed except for the double lines (Types 2 and 5). A line crossing a

user/system interface in Figure 25 corresponds to a performance-significant

event. The three-digit binary representation of the transaction state

immediately following such an event is shown in the session profile for each

relevant entity.

Clocks readings used to obtain event times are shown by a small symbol at

ei ther the beginning or ending of the lines where the event occurred. The

times are labelled T1, T2, ••• , T6 for the source or transmit site, and R1,

R2, ••• , R8 for the destination or receive site. The odd numbered clock

readings, i.e., T1, T3, T5 and R1, R3, R5, R7, give times which precede an

event, and the even numbered clock readings, I,e., T2, T4, T6 and R2, R4, R6,

R8, give times which follow an event. In implementing the time-tagging

process with the UNIX Operating System, the clock readings required.subsequent

correction to obtain the event times. The correction factor was different

depending on whether the clock readings preceded or followed the associated

event. Details of the correction procedures are described in Appendix D.

This correction would not have been necessary had a clock routine been

interfaced into the operating system; however, the clock was read from the

user program. Including the clock routines in the user program makes the

software less machine dependent and more transportable to other systems.

Both XMIT and RECV began by reading test descriptors from "preface'" files

created prior to the test, then wrote header information in the appropriate

output files. In addition, XMIT generated and stored sequence of 10240 bytes

of pseudorandom data, which served as the source user information transmitted

during the test.

The RECV program then displayed an "attempting open" message to the

operator, read the satellite clock, and generated a "listen" by issuing an

OPEN command to any host on the network (with a particular set of parameters,

78



including a specific connection number). Issuance of the OPEN command

corresponded to the FED STD 1043 reference event "nonoriginating user

commitment." Control was then passed from RECV to the destination NCP, which

issued an "enable connection" and waited for the source to act.

After a 10-second delay (following generation of the pseudorandom data),

XMIT performed the analogous sequence of procedures at the source site, i.e.,

it displayed an "attempting open" message to the operator, read the satellite

clock, issued an OPEN command to the network with an appropriate set of

parameters, and passed control to the source NCP. This OPEN command

corresponded to the FED STD 1043 reference event "access request." The 10­

second delay normally assured that the destination was "listening" before XMIT

passed control to the source NCP. When control was passed to the source NCP,
it issued a "request for connection from sender to receivern' (RFC-STR) through

the network. If the source request parameters matched the destination listen

parameters, then a "socket" was es t abl.ished and the destination sent the
"request for connection from the receiver to sender" (RFC-RTS) back through

the network to the source. A parameter was passed from each NCP through the

local host operating system to the user/monitor programs which detected the

OPEN outcome. A successful OPEN produced an "opened" message to each

operator. After issuance of this message, both XMIT a~d RECV again read the

satellite clock.

After a successful OPEN, XMIT wrote a block of user information to the

network from the pseudorandom data file and passed control to the NCP. The

.WRITE command issued by XMIT corresponded to the two FED SID 1043 reference

events "start of first block input to system" and "start of block transfer."

At the destination site, RECV issued a network READ with three times the

expected number of bytes, and passed control to the NCP. ThUS, if extra bits

were inserted, or even if an entire block were duplicated, the extra data

would have been detected. After a block was sent, the source NCP returned

control to XMIT, which read the clock, and in the case of a user information

transfer test, immediately wrote another user information block from the

pseudorandom data buffer (with the appropriate incrementing of the pointer to

the next part of the buffer). Upon receipt of a user information block from

the NCP, RECV stored this data in a buffer, advanced the pointer by the number

bytes actually received (not the number expected) and read the clock. The

completion of the network READ, issued earlier by RECV, corresponded to the
I

FED STD 1043 reference event "end of block transfer". The RECV program was

79



designed to read from the network up to four blocks more than the number

expected in the type of test being conducted.

After the last user information block had been sent, XMIT generated a

CLOSE command. The issuance of this command corresponded to the FED STD 1043

reference event "disengagement request" for the source user, and initiated the

disengagement function for QQth users. The clock was read at the source site,

and a message "xmit complete" issued to the operator. Control was briefly
passed to the source NCP, which issued a network CLOSE message. A CLOSE

COMPLETE response was then returned to XMIT. This event corresponded to the

reference event "disengagement confirmation" for the source user. Event times
and transaction state codes were recorded to disk files, and the operator was

informed by the "transaction complete" message that the data were preserved.

Meanwhile, RECV continued to read data from the network, store the data

in a buffer, and record the number of bytes received. When the CLOSE message

reached the destination NCP, the local operating system relayed the

information to RECV with an end of file (EOF) indicator. The clock was read,

a "read complete" message issued to the operator, and a CLOSE generated for
the network. Control was briefly passed to the NCP, and a CLOSE COMPLETE

response was then returned to RECV. This event corresponded to "disengagement
confirmation" for the destination user. Clock times were read before and

after the CLOSE. Event times and transaction state codes were recorded to

disk, and the message "transaction complete" was issued to the operator. This

completed the test if it were a user information transfer test; however, for

an access/disengagement test the entire process was repeated for a total of

160 times. A 10-second pause at the source occurred before each network OPEN.

When the entire test was completed, the operator on each end was issued a

"test completed" message.

Not all tests ran exactly as described above. Exceptional cases observed
were:

1. Denial or failure to open a connection to the distant site,

2. A WRITE or READ failure on a block of data, and

3. A READ failure at the receive site for a network CLOSE from
the transmit site.

In the cases of an outright failure or denial, the operator was prompted
by the message:

80



"open denied, a(bort) or c(ontinue)" or
"write error, a(bort) or c(ontinue)" or
"read error, atbor-t) or cContinue)"

whichever was appropriate. The operator could then choose to type "a" or "c"

for abort or continuation of the test. Sometimes, however, there would not be

an outright failure, and the program would "hang" or be suspended in the NCP.

Since the timeout capability was not implemented in either the NBS or ITS NCP,

the software would remain indefinitely in this state. The operator would then

have to decide when to terminate the test.

Both types of tests, user information transfer and access/disengagement,

followed the same sequence of events shown in the session profile and used the

same XMIT and -RECV programs. However, three constants were defined to cause

the test to be executed differently for each test type. Table 1 shows the

number of accesses per test, the number of blocks transmitted per access, and

the number of bytes sent per block.

Table 1. Constants for the Two Types of Tests

Type of Test

Block Transfer

Access/Disengagement

Accesses
Per Test

1

160

Blocks
Per Access

20

Bytes
Per Block

512

64

In each type of test, the total number of bytes sent was 10240. When the

test was complete, the received data file should have contained exactly the

same psuedorandom sequence of 10240 bytes as the transmitted file, provided

there were no unusual events. After each test, a copy of the transmitted user

information was generated at the destination site and compared with the

received data.
In addition to the execution of companion XMIT and RECV programs, an

ARPANET test included the recording of several items of information to

document conditions surrounding the specific test. This information was

written in a "log file" which is described in Appendix F. To simplify

operator procedures and minimize the chances of error, each test was executed

under the control of a pair of command files named RUNXMIT and RUNRECV. These

files performed the following procedures:

1. Displayed the name of program run and the name of the log file
containing the narrative.

81



2. Stored the system date, user names, and all operating process
identifiers in the log file.

3. Compared and stored the system and satellite clock times in
the log file.

4. Stored the name of the test program and test number in the log
file.

5. Directed all standard program output from the test to the
operator and to the log file, and ran the test.

6. Compared and stored in the log file the times from the system
and satellite clocks after the test.

7. Compared the received data file with the transmitted data
file, and stored the results in the log file (RUNRECV file
only).

8. Incremented the test number in the preface files in readiness
for the next test.

Figure 26 shows a bubble chart of the data flow for. the entire

experiment. Whenever the data are in a clearly identifiable form between

processes, they are shown in a bubble. The lines between bubbles represent

data transformation functions, which are identified on the right of the

diagram. The flow of the experiment and data is from top to bottom, with

initial or raw data nearer the top and processed or refined data nearer the

bottom. The on-line operations occur above the short dashed line and
correspond to the data extraction shown by the session profile in Figure 25.

The XMIT and RECV programs each read a short preface file (PREFACE.X and

PREFACE.R, respectively) to obtain information about test number, source and

destination, and type of test. The two programs each created three files in

which all the extracted data from the test were stored. The three files

created by XMIT were OVERHEAD.X, HISTORY.X, AND DATA.X. The files created by

RECV had the same names, except the .X suffix was replaced by .R. The HISTORY

and OVERHEAD files began with the preface header information for the test.

The remainder of information in the OVERHEAD files consisted of the event

number, the transaction state code, and the time the event took place. The

balance of the information in the history files consisted of the block number,

the number of bytes transmitted (or received) in a block, and the start and
end time for that block transmission (or reception). A detailed description

of all the files is presented in Appendix C.

82



Form Xmit Recv Function

1. Text File

2. Memory

3. Binary Files
(Raw Data)

(On-Line)------------
(Off-Line)

4. Binary Files
(Time Corrected)

5. ASCII Character Files

(ASCII File Generation)
----- --------

(Graphical Processing)

6. Printable Text Files

7A. Chronological Text
Files of Times (Temporary)

7B. Sorted Text File
of Times (Saved
with Raw Data)

8. Plotable Files of
Distribution of Times

-- For Graphical Analysis
- For Performance Assessment Analysis

Figure 26. Data flow diagram.

83

Read File

Record to Disk

Consolidate &Archive

Correct Times (Tweak)

Merge &Reformat

Compute Access Time
& XferTime

Editor

Sort

Run Histo and
Ovh. Histo



The last step in the on-line phase of a test was to consolidate all the

files at the Boulder site for the post-test processing and analysis. This was

done using the network File Transfer Program (FTP). An elaborate system of

bookkeeping and checking was established to guard against introducing errors

or losing files in transfer. The files at ITS were moved into a data

subdirectory with the test number appended to the file name. Then the files

were transferred from NBS to the same ITS data directory. A command file

called MOVEX or MOVER did the local moving, but all files were transferred on

a one-by-one basis. Then a command file called GETDTG was run to obtain the

date-time-group (DTG) from the beginning of the HISTORY.X file. Another

command file called STOREM was used to move all the files from a single test

to the archive directory. The archive directory was chosen to be the three­

letter abbreviation of the month (i.e., dec for December). Each file was

stored with the date-time-group as the beginning of its name. This made it

easier to keep track of the data later. The files were not actually moved by

UNIX once they were stored on the disk; only the names and pointers from the

various directories were changed. For this reason the bubble chart does not
show any of the moves and name changes. The system used to check against

introduction of errors when the files were transferred across the network is

discussed in detail in Section 5.1.2. The files shown in Figure 26 in line 3

are binary files; after consolidation into the monthly directory with the

date-time-group, they were termed the "archive" or "raw data" files for the

test.

4.1.4 Off-Line Data Extraction Processing
The processing necessary to generate the ASCII character files for the

analysis programs was done automatically by a linked series of command files

called DOIT.U or DOIT.O, depending on whether the user information transfer
test or the access/disengagement test was being processed. All the command

files are listed and explained more fully in Appendix G. The DOlT command

files began by printing a comparison between the transmitted reference data

file and the raw data received file. Then any temporary files that were on

the disk from the previous processing were removed. The command file then

called two more command files, named PROCESS_QIK and PROCESS FOR, each twice ­

once to process the receive files and once to process the transmit files. The

PROCESS_QIK command file printed out the log files and provided the satellite

clock time corrections for each of the sites as explained in detail in

84



Appendix D. The names of the programs that provided time corrections were

TWEAK.01200, TWEAK.02400, TWEAK.H1200, and TWEAK.H2400. The programs read the

raw OVERHEAD and HISTORY files from the month subdirectory, provided the time

correction factor, and wrote them back to the data directory with the names

OVERHEAD.X, OVERHEAD.R, HISTORY.X., and HISTORY.R. A byproduct of these four

programs were files called O.INFO.X, O.INFO.R, H.INFO.X andH.INFO.R. These

four text files contain a record of all the events or blocks and their

associated times in an easy-to-read format. These files show the raw times

obtained from the satellite clock prior to time-correction.
The two history information files (H.INFO.X and .R) were printed. After

the times were corrected, the next command file (PROCESS_FOR) was called to

run the MERGE and REFORM programs.
The MERGE program (written in "C") took the DATA and HISTORY file for a

given site and interleaved the data and block transmission times into an ASCII

readable file. The REFORM program reformatted the OVERHEAD files into ASCII

character readable files also. The merged files were temporarily named

FORT90, and the reformatted OVERHEAD files were temporarily named FORT80.

Before leaving the command file, the FORT90 file was renamed FORT17 or FORT18

and the FORT80 file was renamed FORT14 or FORT15 for the transmit and receive

cases, respectively.
The final step in the processing, which is not shown in the bubble chart,

was to move the four FORT files to the IDISK2/ASSESS directory and add a date­

time prefix to each file name. The four files are discussed in the next

section.

4.2 Data Files
The second major element of the proposed FED STD 1043 performance

measurement system is a set of four standard-~)rmatted performance data files.

These files serve to link the two system-dependent Interface Monitors with the

single system-independent Performance Assessment program. Their individual

formats and contents were summarized earlier, in Section 2.4.2. Each file is

fully described in Section A.2 of the measurement standard.
During the course of the ARPA network measurements project, each of the

four performance data files was implemented as specified in proposed FED STD

1043. The files were written by the "C" language programs MERGE and REFORM at

the completion of each Data Extraction run, as discussed in Section 4.1. The

files were read by the FORTRAN program PROLOG at the beginning of each

85



Performance Assessment run, as discussed in Section 4.3. With a minor

exception, discussed later, the file formats used in each case were identical

to those specified in the draft measurement standard. No significant problems

were encountered in using the files as a medium for transferring the

measurement data between the "e" language Data Extraction and FORTRAN

Performance Assessment programs.

4.3 Performance Assessment Element

This subsection describes the implementation of the third major FED STD

1043 performance measurement element specified in Figure 11 - the Performance

Assessment element. The subsection is divided into two parts. The first

describes implementation of the standard FORTRAN Performance Assessment

program, with a focus on differences between the original FED STD 1043 program

design and that ultimately used to reduce the ARPA network data. The second

part describes the design of various supplemental data reduction programs

which were used to obtain additional performance statistics such as delay

histograms.

4.3. 1 Standard FORTRAN Performance Assessment Program

Section 2.4.3 described the design of the Performance Assessment program

as originally specified in proposed Federal Standard 1043. In the process of

implementing that program in this experiment, several changes in the program

structure were adopted. The effect of these changes was to fragment the

overall ASSESS program into three separate programs, which are executed

sequentially: PROLOG, which checks the format and content of input files and

prepares them for processing; ANALYZ, which reduces the extracted performance

data to a set of performance parameter values; and EPILOG, which prints the

calculated parameter values.

The purpose of fragmenting ASSESS into three stand-alone programs was to

reduce the computer memory required to accomplish the performance assessment

function. The original ASSESS program comprised over 50,000 bytes of

executable code. A user program of that size would not be directly executable

on some smaller host computer systems. The PROLOG, ANALYZ, and EPILOG

programs are substantially shorter and will thus be more widely usable.

The major change this fragmentation required was the addition of utility

subroutines which read and write FORTRAN files linking the three programs.

These utility subroutines were not required when ASSESS was a single program,

86



since the equivalent linkages were made via COMMON blocks. Four program

linkage subroutines were added, consisting of two symmetrical pairs: one pair

which write and read the FORTRAN files linking PROLOG and ANALYZ; and another

pair which write and read the files linking ANALYZ and EPILOG.

Figures 27 and 28 illustrate the structure of the revised Performance
Assessment programs. The major routines under the new PROLOG program are

shown in Figure 27, and may be briefly summarized as follows: CKSPEC, CKCARY,

CKINFO, COMPCH perform format and validity checks on the information input to

PROLOG. This information includes run specifications defined by the test

operator (e.g., timeout values, data correIator window size), carryover files

in multi-run performance assessments, and performance measurement information
in the preface records of the overhead and user information files (e.g., batch

numbers). The MERGOH routine combines the data from the separate source and

destination overhead information files to create a single chronological merged

overhead information file. The INSTAT routine initializes the access,

transfer, and disengagement sample statistics. The PRWRIT routine and its

subroutines create the program linkage files in which data are passed from

PROLOG to ANALYZ.
The major routines under the new ANALYZ program are shown in Figure 28.

Briefly, ANREAD and its subroutines read the program linkage files in which

data are passed from PROLOG to ANALYZ. The ACCESS, TRANSF, DISENG, and SECOND

routines and their associated subroutines calculate values for the access,
user information transfer, disengagement, and secondary performance

parameters, respectively. The ANWRIT routine and its subroutines create the

program linkage files in which data are passed from ANALYZ to EPILOG.

The two most important subroutines within the ANALYZ program are BITCOR

and ANCILL. The BITCOR subroutine matches transmitted and received user

information bits and identifies incorrect, undelivered, and extra bits. The

ANCILL subroutine calculates the user fractions of access, user information

transfer, and disengagement time intervals as requested by ACCESS, TRANSF, and

DISENG. These fractions are used in calculating ancillary parameter values,

and in determining "responsibility" for timeout failures.
The major subroutines under the new EPILOG program are shown in

Figure 27. Briefly, EPREAD and its subroutines read the program linkage files

in which data are passed from ANALYZ to EPILOG. The SUMMRY routine and its

subroutines print and store the results of the performance assessment run.

87



PROLOG

I I I
CKSPEC CKCARY CKINFO MERGOH INSTAT PRWRIT

I I I

I
COMPCH WRSTAT WRSPEC

a. PROLOG Structure

EPILOG

EPREAD SUMMRY

I I I
RDSPEC RDSTAT RDPARS TIMDAT RTOFCH RTOECH

b. EPILOG Structure

Figure 27. PROLOG and EPILOG program structures.

88



CO
1..0

ANALYZ

I I
ANREAD ACCESS TRANSF DISENG SECOND ANWRIT

I

I I I I I I I
RDSPEC RDSTAT BITCOR ANCILL SSTATE WRPARS WRSTAT WRSPEG

I
I I I I

SWLOAD SSHIFT DWLOAD DSHIFT BTOPBT

I I I I

I
EXSBIT EXDBIT

Figure 28. ANALYZ program structure.



The input/output files used by the revised Performance Assessment

programs are similar to those used by ASSESS, except that two new files (the

PROLOG-to-ANALYZ and ANALYZ-to-EPILOG program linkage files) have been

added. Other, less significant changes to the Performance Assessment programs

are not documented here. All program changes made during the trial

implementation period will be incorporated in a revised version of the draft

1043 standard.

4.3.2 Supplemental Data Reduction
The ARPANET experiment was designed to provide a more complete

description of access and block transfer time distributions than is required

by proposed FED STD 1043. For an operator-specified set of tests (of the same

type), supplemental data processing procedures produced the following output:

(1) the minimum, maximum, mean, and standard deviation of the observed access

(or block transfer) times; and (2) a histogram showing the distribution of

access (or block transfer) times. Software for the supplemental data

processing includes both "C" language and FORTRAN routines. The software was

designed to deal specifically with the ARPANET measurement data, and is

generally not "system independent."
Key preliminary procedures in the supplemental data processing were

performed by the same DOIT command file that generated the four standard ASCII

character output files specified by proposed FED STD 1043. For each. test, the

DOIT command file created a text file containing access or block transfer

times sorted according to increasing performance time. The text files were

used later as input to separate data processing procedures that generated

statistics and histograms for aggregated tests. The noIT command file also

generated a file consisting of x-y coordinates of the vector trace for a

histogram of performance times for each individual test.

The following discussion outlines, in general terms, the procedures

executed by the DOIT command files during the supplemental data processing.

Because the procedures are significantly different for the two types of tests,

they will be treated separately.

Access Time Processing
The DOIT.O command file executed another command file called GRAPH.ACC,

which ran a program called ACCESSTIME. This program read the time corrected

OVERHEAD.X data file and produced an output text file named ACCESS.INFO, in

the temporary directory. This text file, which was very large, contained the

go



same data as that in O.INFO.X, plus some very important additions. These

additions were the differences in time between adjacent events and the

differences between alternate events. The file name from whence the raw data

originated and the session number (1-160) were also added.

A short command file named TAB.ACC edited the large ACCESS.INFO file and

reduced it from about 976 lines to 160 lines, with each line containing the

time difference corresponding to the FED STD 1033 definition of access time.

This shortened temporary file, called TFIL, was immediately sorted by TAB.ACC

into a table of ascending access times. This table was called TABLE.ACC and

was stored with the raw data in the monthly directory.

The command file GRAPH.ACC then ran the program OVH.HISTO, which read the

TABLE.ACC file and generated a text file consisting of x-y coordinates of the

vector trace for a histogram of access times. This file of x-y coordinates

was called PLOT16ACC, where the 16 denoted the number of class intervals in

the histogram between the upper and lower limits. The command file also

moved, sorted, and aggregated some of these data files, but it had no impact

on the data flow shown in Figure 26 and need not be discussed further.

Block Transfer Time Processing

The DOIT.U command file executed another command file named GRAPH.XFR.

GRAPH.XFR ran a program called XFERTIME which read the corrected times from

both the HISTORY.X and HISTORY.R files. The output text file was called

XFER.INFO, and contained the usual preface information (from both transmit and

receive files), the start time of the block transfer at the source, the end

time of the block transfer at the destination, and the difference between the

two times. In addition, the number of bytes transmitted and block numbers

were shown. At the end of the text file the block and bit transfer rates and

transmission times were given. In a manner similar to that for access time

processing, another short command file called TAB.XFR was executed to edit the
unnecessary lines from the XFER.INFO file and produce a file (TFIL) of only

those lines which contained a block transfer time. The short command file

sorted TFIL into the TABLE.XFR file of ascending block transfer times and

returned control to the GRAPH.XFR command file. Processing then paralleled

the access time processing, with a HISTO program which read the TABLE.XFR file

and produced a PLOT10XFR file of x-y coordinates. The TABLE.XFR was stored

with the raw data and the temporary files were moved, aggregated, and sorted.

91



Plotting of the Histograms

The final step in obtaining the histograms for individual tests involved

listing the plot files to an intelligent graphic CRT. The operator selected

appropriate histogram format parameters from an autoplot menu displayed on the

CRT. The terminal then read the vector trace of the x-y coordinates and

plotted the histogram on its screen (soft copy). It was possible for the

operator to clear the screen, modify the axes or plot parameters, and replot

the histogram quickly (usually in less than 30 seconds) until the desired

aesthetic result was produced. Labels and annotations concerning the test or
tests were then added to this soft copy. Finally, a few CRT keystrokes

transferred the soft copy graph to an associated dot matrix graphic printer.
This produced the final hard copy graph and completed the supplemental data

reduction.

4.4 Statistical Design and Analysis
As discussed in Section 2.4.4, the Statistical Design and Analysis

procedures specified in proposed FED STD 1043 deal with three general

subjects: qualitative test design, sample size determination, and test data

analysis. The qualitative design and sample size determination procedures are

normally accomplished during the preliminary test planning. Their application

in the ARPANET experiment is summarized below, following a brief tutorial on

statistical sampling fundamentals. The data analysis procedures are normally

accomplished after a test has been completed. Selected examples of the post­

test analysis performed on the ARPANET data are presented with the measurement

results in Section 6.

4.4.1 sampling Fundamentals
The following paragraphs define a number of statistical concepts which

are important in data communication performance measurement. Each concept is

illustrated using the measurement of block transfer performance as an example.

In statistics, it is basic to distinguish between a population and a

sample from that population. The population is the complete set of items of

interest: for example, all blocks transferred between a pair of end users.

In a complex measurement, the items in a population may be multivalued (block

transfer outcomes and transfer times, for example). Often, the items are not

fixed in number, but continue to come into existence indefinitely in time; and

thus, the size of a population may be theoretically infinite.

92



A population is normally characterized by a number of statistical

descriptors called parameters. Each parameter is a specific function of the

numerical values which characterize the population items. Parameters are

chosen on the basis of experimental objectives. Block Error Probability and

Block Transfer Time are examples.

A sample is a finite part (or subset) of a population, which is used in
estimating the population parameters. The process of sampling makes the

experimental determination of population parameters practical by restricting

the number of items which must be observed. In the measurement of block

transfer performance), a sample might consist, for example, of 10,000
consecutive transferred blocks.

In order to draw valid inferences about a population from a sample, the

sample must be drawn with some element of randomness or chance. A sample

whose items are chosen in a random manner is called a random sample. In the

measurement of block transfer performance, the collection of a random sample

might be accomplished by observing block transfer attempts at many different,

arbitrarily chosen times.

The value of each population parameter is estimated by a mathematical

function of the sample. Any such function is called an estimator; and the

value it produces is called a statistic or (more simply) an estimate. For

example, the value of the performance parameter Block Transfer Time can be

estimated by the mean Block Transfer Time calculated over a sample. In

general, an estimator need not be the same function of the sample as the

corresponding parameter is of the population; for example, the sample median

might be a better estimator of Block Transfer Time than the sample mean in
some cases.

The standard performance parameters defined in Interim FED 8TD 1033 are

of four basic types: probabilities (e.g., Block Error Probability); mean time

intervals (e.g., Block Transfer Time); time rates (e.g.; Bit Transfer Rate);
and rate efficiencies (e.g., Bit Rate Efficiency). The probability parameters

are estimated by the relative frequency, in the sample, of the particular

(failure) outcome in question. The mean time parameters are estimated by

sample means. The rate and rate efficiency parameters are estimated by the

individual sample values, or by mean rate values calculated over several

samples. The ancillary parameters, which are ratios of mean times, may be

regarded as a fifth parameter type. They are estimated by ratios of the

appropriate sample means.

93



The estimation of population parameters from a finite sample obviously

involves some uncertainty. The goodness of a parameter estimate is measured

by its precision, i.e., the length (or half-length) of the confidence interval

for the estimate. A confidence interval is a range of values about a

parameter estimate within which the "true" value of the parameter can, with a

stated percent confidence, be expected to lie. The end points of a confidence

interval are called confidence limits. The stated percent confidence is

called the confidence level, and expresses the likelihood that the confidence

interval calculated from a sample will include the "true" value of the

parameter. For example, a confidence level of 95% implies that the confidence

limits will include the "true" parameter value in about 95 out of 100

experiments.

The precision of an estimate is high when the confidence interval (for a

given confidence level) is small, and vice versa. Specifically, the precision

of an estimate is inversely proportional to the square root of the sample

size. Thus, one can calculate either the required sample size or the

precision of an estimate if the other is given. FED STD 1043 defines the

details of these calculations and gives examples.

In some measurement applications, it is more practical to deal with the

relative precision of an estimate than with its absolute precision. The

relative precision of a parameter estimate is the half-length of the

confidence interval for the estimate divided by the estimate itself. Relative

precision is normally expressed in percent. As an illustration of the meaning

of relative precision,assume 10 independent Block Errors are observed in a

sample of 10,000 transferred blocks. Then the Block Error Probability

estimate is 10-3• The upper and lower 95% confidence limits about that

estimate, from Crow (1974), are roughly 1.8 x 10-3 and 4.8 x 10-4• Half the

difference between these confidence limits, i.e., the half-length of the

confidence interval, is (1/2)(18 - 4.8)10-4 =6.6 x 10-4; and the relative

precision of the Bit Error Probability estimate is (6.6 x 10-4)/(10-3)(100) =
66%. This value can be determined directly by inspection of Figure 19.

Classical statistical methods are based on the assumption that successive

observations are independent, I,e., unrelated in value to each other. That

assumption is unrealistic for observations taken in rapid succession on a data

communication system. Dependence between observations is commonly measured by

correlation coefficients, or, in the case of observations on the same

variable, by autocorrelation coefficients. An autocorrelation coefficient Pk

94



is a number, in the range -1 ~ Pk ~ 1, which expresses the degree of
dependence or linkage between two observed values of a variable. Positive

autocorrelation indicates that the observations are more similar than pure

chance would predict, and vice versa. The 199 (k) of an autocorrelation

coefficient is the separation, in a sequence of values, between the pairs of

values whose autocorrelation is being expressed. If pairs of observations

separated by lag k are independent, then Pk =O.

The collection of autocorrelation coefficients for k = 1, 2, 3, •.• of

a variable observed at discrete times is called its autocorrelation function.

This function may be complicated, but as a first approximation it is often

represented according to the "Markov model", in the form Pk =P1 k. In that

special case, we can characterize the dependence between observations by the

one parameter P1. This is done in FED STD 1043 and herein. If P1 is

positive, there is positive dependence between successive sample values, and

the sample contains less information than if P1 were zero. Thus, the sample

size required to achieve a given measurement precision is larger in the case

of positive dependence. Calculations presented in FED STD 1043 demonstrate,

for example, that a 0.5 autocorrelation between successive access time values

triples the sample size required to estimate the mean with any given

precision.

4.4.2 Qualitative Test Design

We now briefly summarize the application of the proposed FED STD 1043

quali tative test design guidelines in the ARPANET experiment. Those

guidelines require, first, that all test variables known to significantly

influence the measured performance be clearly specified (and, where

appropriate, specifically tested); and second, that the testing pattern be

varied so as to "average out", and if possible detect, the effects of other

unknown test variables. The intent of these guidelines is to make the

measured values more informative, more reproducible, and more comparable

between services.
In preliminary design of the ARPANET experiment, the following test

variables were identified as clearly influencing the measured performance:

1. Identity and characteristics of the end users.

2. Sequence of interface events during a typical data
communication session.

95



3. Time of test (within day and week).

4. Priority of the user programs relative to that of other
computer programs executing in the hosts.

The first variable influences measured performance in two ways: first,

by defining the location and nature of the end user interfaces, which are also

the system boundaries and the performance measurement points; and second, by
defining the frequency and duration of user delays during a data communication

session. The end users were completely specified in the ARPANET experiment

via the XMIT and RECV program designs. Those programs are listed in
Appendix B.

The second test variable, the interface event sequence, influences
observed performance primarily in its effect on user delays. As an example,

the measured value for the parameter Access Time can be strongly influenced by
the order in which the originating and nonoriginating user Open requests are

issued: the former request starts the access function, but the latter is

required to complete it. The expected interface event sequence was defined in

the ARPANET experiment via the session profile diagram of Figure 25. The most

likely alternative event sequences were also identified in that figure.

The third variable, the time of test, reflects the aggregate effect of
three extremely important test conditions: the utilizations of the source and

destination host computers, and the subnetwork traffic. None of these

conditions could be completely controlled or directly measured curing the

ARPANET experiment, although the test log files gave rather good insight into

the former two. The effects of time of test on performance were reflected in

the test design in two ways: (1) by random selection of test start times; and

(2) by the division of all tests into "peak hours" and "off hours" categories,

as described in Section 5. The exact date and time of each test was, of

course, recorded with the measurement data.

The final test variable identified in the preliminary ARPANET experiment
design was the priority of the end user programs. This variable directly

affects user performance time when a host computer is shared between several

programs, since a user program may be interrupted by any concurrently

executing program of higher priority. The effect of user program priority on
measured performance was reflected in the ARPANET test design by conducting

tests with both very high and normal program priorities. Since user program

priority influences only the performance of the users, it can, of course, be

"factored out" by use of the ancillary performance parameters.

96



In order to detect other possible test variables of significance, a large

number of preliminary ARPANET measurements were conducted with selected
changes in hardware and software configuration, operator procedures, and event

timing. These preliminary measurements revealed one test variable that had
not been considered in the preliminary design: the direction of data

transfer. It was initially anticipated that the system's performance in

transferring data from Boulder to Gaithersburg would be about the same as its
performance in transferring data from Gaithersburg to Boulder, since the two
paths appear symmetrical. Preliminary measurements suggested that performance

on the two paths might be significantly different, perhaps because of the much

heavier utilization of the NBS/IeST host. This variable was reflected in a

revised test design via explicit "West to East" or "East to West"
alassification of all test runs.

Although the qualitative test design guidelines provided in FED STD 1043

proved to be generally adequate in the ARPANET application, the participants

agreed that a more comprehensive itemization of network and user conditions

which may affect data communication performance would be helpful to future

users. Such an itemization will be added to the standard.

~.4.3 sample Size Determination
The second step in applying the proposed FED STD 1043 Statistical Design

and Analysis procedures in the ARPANET experiment was to select target sample

sizes. The measurement standard provides explicit, step-by-step procedures

for determining sample sizes for each type of performance parameter, and these

procedures were successfully applied in the ARPANET experiment. However, the

selection of sample sizes did involve a substantial amount of "trial and

error" as a result of two factors: (1) a lack of prior information on the

user-to-user performance of the ARPANET, and (2) a certain inexperience on the

part of the project engineers in assessing the time and cost implications of

measurement precision objectives. In the following, we summarize the major

steps by which sample sizes were determined in the ARPANET experiment, and

comment briefly on how the proposed FED STD 1043 procedures' might be made a

bit more tolerant of such user deficiencies in future applications.

A preliminary step in determining the measurement sample sizes was to

establish the size of an individual test run or "batch." The batch size can

be determined independently from the'overall sample size, since individual

batches can be aggregated to create a larger sample. The batch size does

97



affect the efficiency with which a given confidence level is achieved,

however, for two reasons: (1) data from different batches are often much less

correlated than data from the same batch; and (2) it takes much less time to

process a few large batches containing a desired total number of trials than

to process many small batches containing that same total number of trials.

The access/disengagement and UIT batch sizes specified in Section 4.3.1 (160

accesses, 10,240 bytes) were chosen as a reasonable compromise between these

goals. The effect of correlation within batches on the access/disengagement

sample size requirement is discussed below.

As noted earlier, the determination of overall sample sizes for the

various parameter measurements proved to be an iterative process. An initial

feeling of the measurement engineers was that it would be "nice" to measure

the probability parameters with at least 50% relative precision at a 90%

confidence level, and the time parameters to within ± 5%. This formulation of

the measurement precision objectives, while conceptually simple, proved to be

unrealistic for two reasons:

1. Measuring different parameters ·with the same precision
requires, in general, that each parameter be measured with a
different sample size. This is true because the sample size
is determined, in part, by the performance values observed.
The collection and processing of separate samples for each
parameter would have greatly complicated the measurements
and would have represented inefficient use of time and data.

2. Measuring probabilities with 50% relative precision and a 90%
confidence level is very costly an~ time consuming if the
probability values are low (e.g., 10-), because the required
sample sizes are extremely large.

As an example of the latter problem, Figure 20 shows that 50% relative

precision at a 90% confidence level on a failure probability estimate requires

the observation of 12 failure outcomes, assuming independence between

successive trials. If the probability being measured is, say, 10-10, the

measurement will require, on average, 1.2 x 1011 trials--e.g., 120,000,000,000

transmitted bits. Even at a transmission rate of 5 kilobits per second, such

a measurement would require continuous transmission of test data for more than

9 months!

The fundamental problem here, quite clearly, was that the initial

precision objectives were selected too arbitrarily. A better approach is to

derive the measurement precision objectives from a systematic study of how the

measured values are to be used--specifically, the relationship between the

98



precision of a measured parameter value and the utility or worth of that value

to the user. The engineers responsible for the ARPANET tests agreed that the

measurement standard should be revised to include general guidelines for

conducting such a study.

The "second pass" at determining measurement sample sizes was undertaken

more carefully, and proved to be much more successful. The general approach

used was the following:

1. Sample sizes were defined by function rather than by
individual parameter. Thus, for example, all of the access
parameters were estimated on the basis of a common access
sample--a specified number of access attempts.

2. Within each function, the selection of sample size was based
on the precision objectives for one or two target parameters
for which the precision was judged to be particularly
important or particularly difficult to achieve. The
precisions for the other parameters were simply calculated, a
posteriori, from the sample sizes already specified. In
general, the measured precisions for these parameters were
both better and less important than those of the target
parameters.

3. Sample sizes for the target parameters were derived in four
iterative steps: first, an examination of each parameter
value's probable application in the "outside world"; second,
the specification of a tentative precision objective based on
that application; third, calculation of a sample size
corresponding to the precision objective; and finally, an
evaluation of that sample size from the point of view of
measurement time feasibility.

The third step involved the conduct of preliminary measurements in most

cases. The sample sizes Ultimately selected for the ARPANET experiment were

the following:

Access function - 3,000 attempts.

User information transfer function - 3 x 106 bits.

Disengagement function - 3,000 attempts per user.

The follOWing paragraphs briefly summarize the process by which these

measurement sample sizes were derived.

4.4.3.1 Access Function
The sample size for the access function was determined by the preC1Slon

objective for the parameter Access Time. The basic application envisioned for

99



the ARPANET Access Time data was comparison with other measured data (e.g.,

Access Times for commercially available "value-added" services). An

examination of specification practices for several such services indicated

that any precision better than ± 5% of the specified value would be fully

satisfactory; and the feasibility of achieving measurements of this precision

was substantiated by the ± 5 millisecond accuracy of the event time-stamping
(Appendix D). An Access Time precision objective of ± 0.1 second was

tentatively selected.

Proposed FED STD 1043 defines six different procedures for determining

sample sizes for the time parameters, each assuming different prior knowledge
about the performance of the measured service. Neither an upper bound on the

standard deviation nor the lag-1 autocorrelation of ARPANET access times was

known prior to this experiment, and thus it was necessary to estimate these

parameters via a set of preliminary samples in order to define an overall

sample size. A number of early access/disengagement tests were examined, and

four tests (numbers 71, 73, 75, and 76 in Table 3) were selected as the
preliminary samples. The calculation procedure, following proposed FED STD

1043 Section A.4.2.2, case 5, was as follows:

1. A target precision (half-length of confidence interval, A) was
specified as 0.1 second, with a confidence level of 95%.

2. Means W, standard deviations s, and lag-1 autocorrelations r1
were calculated for the four samples:

s

1.770

0.399

0.157

1.491

0.440

0.149

2.017

0.778

0.145

1.819 Mean =1.774 second

0.568 RMS = 0.566 second

0.038 Mean = 0.123

3. The half-length Heor. of the confidence interval was calculated
for the 640 prellminary observations, ignoring at first the
fact that they were obtained in four groups. For n1 = 640,
t n 1 = 1.96, the normal percentage point. Hence

1- , .05

H = 1.96 0.566 (1.123)1/2 = 0.0496 second
cor J640 0.877

The desired preclslon, A = 0.1 second, appeared to have been attained already,

and no further observations appeared to be needed. However, it was necessary

to examine two assumptions: first, that r1 accounts for correlation among the

100



observations sufficiently (according to the Markov model rk = r1 k); and
second, that the internal variances s2 accounted for variation among the four

samples sufficiently. The autocorrelations of lag-2 through -10 of the data,

averaged over the four samples (groups), were:

0.129 0.121 0.116 0.105 0.066 0.076 0.061 0.027 0.036;

whereas the Markov model with r1 =.123 would dictate r2 = r1 2 =0.015, r3 =
r1 3 = 0.002, r4 = r1 4 = 0.0002. • • Thus, the Markov model was not
followed very well. The significance of the departure from the Markov model

was examined as follows~ It was determined first whether these

autocorrelations differed signifieantly from 0, using the rough standard error

(n)-1/2 = 0.04. Based on 640 observations, the autocorrelations r1 through r5

do differ significantly from 0, and from the model values, at the 5%

significance level. Fortunately, none of them was large; the increase in

number of observations required by r1 = 0.123 according to the Markov model

was 28%. To bring Hcor up to A = 0.1 using the Markov model would have

required r1 to be 0.651, and then r2 through r6 would have exceeded the values

observed. Hence, the departure from the Markov model did not weaken the

precision greatly in this case. However, it is generally desirable to check

consistency with the model, and it is not difficult to do if a program for

calculating the autocorrelations is at hand. The IMSL program was used here.

The second assumption was that observations in different groups differed

from one another no more than ones in the same group (to phrase it a bit

differently). This was tested by comparing the variance derived from the four

means w1 with the mean square internal variance s2 = 0.320. The variance of

the four means was <0.2169)2 = 0.0471, which must be multiplied by 160 (since

Ow = owl In) to provide an independent estimate of the variance of individual

access times. That yielded 7.530, which is 23.5 times the internal variance,
so there was no question that there was additional variation between groups.

The confidence limits for Access Time were revised to take account of

this added variation by using equations (A.4)-(A.10) of Crow (1979). The 95%

confidence limits for Access Time, including the added variation between

samples, were calculated to be

_ {1.9911.774 ± 0.217 - 1.557 seconds.

Taking account of the variation between groups of 160 access times occurring

some time apart showed that the mean Access Time was much more poorly

101



determined than a single sample of 160 taken in rapid succession (10 seconds

apart) would have led one to believe. It was thus necessary to take more

samples to achieve a precision of ± 0.1 second.

The total number of samples (of 160 trials each) required was calculated
to be approximately

(0.217/0.1)2 x 4 = 18.8,

since a precision of 0.217 was achieved with four samples and the number of

samples goes up as the square of the precision (as measured inversely by half­

length of confidence interval). This intuitive result is in accord with

(A.13) of Crow (1979). Rounding up to 19 samples gave an Access Time sample

size objective of about (19)(160) = 3040 access attempts. Obtaining an

overall access sample of that size was judged to be quite feasible, since the

first 640 attempts were collected in less than 2 weeks.

The fact that so little of sx2 was contributed by internal variance
showed that it would have been unnecessary to include as many as 160 access

attempts in each sample. If only 40 attempts had been included in each

sample, the total number of samples would have increased only to

4 ~ 0.320)-----=2 0.0451 + 40 = 21.2
(0.1)

The total number of access times with 22 samples of 40 each would have been

880, compared with 3040 with 19 samples of 160 each. The test design was not

changed to reflect this savings because a larger number of trials was needed

to obtain the desired.~recision in estimating Disengagement Time, as discussed

below.

4.4.3.2 User Information Transfer Functions
The sample size for the bit, block, and "message" transfer functions was

determined by a precision objective for the parameter Bit Error Probability.

It was assumed that this parameter would impose the most stringent sample size

requirement among the UIT parameters, because a very effective (24-bit) end­

to-end error control is used in the ARPANET. This assumption is reflected in

Kleinrock's (1976) observation that If • • • as far as we know, no undetected

errors have as yet passed through the network. These failures to detect

errors have been designed to occur on the order of years to centuries

102



apart•.•". A preliminary ARPANET measurement substantiated this view, since

no bit errors were observed in over 300,000 transferred bits.

In defining a sample size for Bit Error Probability, it was decided to

make the "worst-case" assumption that no bit errors would be observed, even in

a very extensive test of several month's duration. In such a case, the

estimated Bit Error Probability ts zero; and the critical parameter becomes

the upper confidence limit on that estimate--the lowest value one can say is
"almost certainly" greater than the true Bit Error Probability. On the basis

of earlier measurement results and known constraints on the experiment

duration, it was decided to seek a sample size which would place that limit

near 10-6 at the 90% confidence level. Equations presented in the measurement

standard demonstrate that this objective requires a sample size between 1 and

5 million bits, depending on the dependence assumed. A sample size of 3

million bits was selected for the ARPANET UIT measurements.

4.4.3.3 Disengagement Function
Sample size determination for the disengagement function was accomplished

in the same general manner as described above for access. As a practical

matter, the access and disengagement sample sizes are normally similar because

the two functions are operationally a pair--"what goes up must come down."

The measurement precision objective for Disengagement Time was

substantially less stringent than that for Access Time, for two reasons:

first, because previously measured values with which the ARPANET Disengagement

Times might be compared were very coarsely specified; and second, because the

source user Disengagement Times observed in preliminary measurements were

extremely short, and therefore, more subject to other types of measurement

error (e.g.; the ± 5 ms uncertainty in time-stamping interface events). It

was concluded that even a measurement uncertainty in the neighborhood of ± 20%

would be qUite satisfactory.

Because the precision objective for Disengagement Time was less stringent

than that for Access Time, it was expected that a disengagement sample about

equal to the access sample would provide more than sufficient precision in the

Disengagement Time estimates. However, a preliminary measurement of

Disengagement times was conducted to determine whether it might be possible to

base the Disengagement Time estimates on a smaller sample. The four

preliminary samples of 160 access attempts made available about the same

number of disengagement attempts. These were observed at both the source and

103



the destination. It was immediately apparent that the two sets should not be

combined, because the largest source time was much less than the smallest

destination time.

Since the access time samples had much larger between-sample variation

than within-sample (internal) variation, it was hypothesized that the same

would be true for the disengagement times, and that thus it might be

sufficient to analyze just 40 times in each sample. The means and standard

deviations for the last 40 trials in each sample, averaged over the four

preliminary samples, are:

Source
Destination

w
0.0117
2.4868

s
0.0073 second
1.1536 second

The internal standard deviations are much larger fractions of the means than

in the case of access times, and thus, it was concluded that the full (access)

sample size should be used in estimating the disengagement parameters.

5. CONDUCT OF TIlE TEST

The numerical measurement results described in Section 6 of this report

are based primarily on 21 access/disengagement tests and 23 user information

transfer tests. Each test was characterized by a set of "test variables" or

measurement conditions expected to have a significant influence on measurement

results, as discussed in Section 4.4.2. These conditions may be summarized as

follows:

1. Direction of Transfer
a. East-to-West (NBS/Gaithersburg to ITS/Boulder)
b. West-to-East (ITS/Boulder to NBS/Gaithersburg)

2. User Program Priority
a. High (enhanced execution priorities for both XMIT and

RECV programs)
b. Normal

3. Time of Test
a. Peak Hours (weekdays, 8 AM - 6 PM Eastern Local Time

(ELT), except 12 N - 1 PM)
b. Off Hours (all hours except peak hours)

Table 2 shows the type/condition characteristics and date-time identifier of
each of the 44 tests used in calculating the measured values. As indicated in

the table, these tests spanned a 2-month measurement period from September 17

to November 24, 1981. Gaps in the chronological sequence of test numbers

104



Table 2. Summary of ARPANET Tests and Conditions

TEST TEST TEST VARIABLE TEST
NO. TYPE DIRECTION PROGRAM PRIORITY TIME OF TEST DATE-TIME

AID urT E-W W-E HIGH NORMAL PEAK HRS OFF HRS

71 X X X X 9/17-1806
73 X X X X 9/17-2214
74 X X X X 9/22-2209
75 X X X X 9/23-1846
76 X X X X 9/24-1827
77 X X X X 9/24-1946
80 X X X X 9/25-1511
81 X X X X 9/25-1600
82 X X X X 9/25-1735
83 X X X X 9/25-1919
84 X X X X 9/25-2024
85 X X X X 9/25-2140
86 X X X X 9/26-1726
87 X X X X 9/28-2238
89 X X X X 9/29-1328
90 X X X X 9/29-1824
92 X X X X 10/16-0005
93 X X X X 10/19-1727
95 X X X X 10/21-1713
96 X X X X 10/23-1738
97 X X X X 10/23-1836
98 X X X X 10/27-2108
99 X X X X 10/27-2139

101 X X X X 10/28-2213
102 X X X X 10/28-2224
103 X X X X 10/29-1522
104 X X X X 10/29-1524
105 X X X X 11/03-1432
106 X X X X 11/03-1435
107 X X X X 11/04-1625
108 X X X X 11/04-1627
109 X X X X 11/05-2135
110 X X X X 11/05-2137
111 X X X X 11/10-1418
112 X X X X 11/10-1421
113 X X X X 11/12-1945
114 X X X X 11/13-1447
115 X X X X 11/13-1449
118 X X X X 11/18-1553
119 X X X X 11/18-1557
122 X X X X 11/20-1815
123 X X X X 11/20-1818
126 X X X X 11/24-2054
127 X X X X 11/24-2057

105



indicate tests which were excluded in calculating the measured values. These

excluded tests were of two types: (1) tests conducted prior to the formal

measurement period to verify and fine-tune the measurement system; and (2)

tests rejected during the formal measurement period as a result of measurement

system (or operator) errors. No valid test data taken during the formal

measurement period was excluded.

This section describes the detailed operator procedures used in

conducting the ARPANET measurements. This discussion is organized into four

subsections covering data extraction, performance assessment, statistical

analysis, and data archiving.

5.1 Data Extraction
The description of the conduct of the Data Extraction phase of the

ARPANET experiment is divided into three subsections. The first deals with

the conduct of a typical ARPANET test, Le., the on-line (real-time)

extraction of a measurement data batch. The second describes the procedures

followed in consolidating test data files for processing at the ITS site. The

third outlines the conduct of the post-test processing of a measurement data

batch. Where test procedures were sufficiently similar for

access/disengagement and user information transfer tests, only one is

described, with differences noted. Where the two test procedures were

substantially different, each is described separately. While the majority of

the tests proceeded as described, there were some unusual situations which

necessitated a decision by the operator as to whether to abort, continue, or

terminate a test.

Most of the test steps were incorporated into command files, and hence

did not require individual operator actions. Exceptional conditions and error
messages were directed to the test operator's input/output terminal. Although

the two software programs which performed the data extraction, i.e., the XMIT

and RECV programs, were written to accept control parameters at runtime, it

was easier to have two versions of the program resident in the UNIX files:

one for access/disengagement tests and one for user information transfer

tests. The same files were created in both tests, but the file lengths were

different.
The amount of time to conduct a test varied. An access/disengagement

test took approximately 40 minutes for a full set of 160 sessions (with one

block of 64 bytes being sent during each session). A user information test

106



took less than 3 minutes to send and record the same 10,240 bytes of data,

clustered in 20 blocks of 512 bytes, during a single session.

5.1.1 On-Line Testing

Under normal conditions, tests were run from Boulder without involving

personnel at Gai thersburg. The test operator first logged onto the Boulder

UNIX system via a local CRT terminal, and onto the Gaithersburg UNIX system

via a second terminal a few feet away. This second terminal was connected

directly to the DOCB ARPA network TIP, and therefore did not have any

connection with the NTIA/ITS host. Connection was made to the NBS UNIX-3

system by typing

@o 211

where the @symbol informs the TIP the next character is a command, the 0 is

short for open, and the 211 is the address recognized in the ARPA network for

the UNIX-3 system in Gaithersburg. After logging on at both sites and

changing to the appropriate software directory at ITS with the command

cd /disk2

the operator checked the preface files with the command

cat pref*

to ensure that the test numbers and other information were correct for the

test to be run. If not, the text editor was used to correct the data.

The next step was to check the system clock and satellite receiver clock

in each system. If their respective times differed by more thana preset

amount (5-20 minutes), the program notified the operator and exited. (Note

that the system clock was not used in time-tagging event.s.) Also, since the

NBS satellite receiver clock could not be seen at ITS, that clock was remotely

checked for synchronization with the GOES time satellite signal. This check

was made with the command

which elicited a brief display of the satellite receiver and system clock

times. In the normal case where the satellite receiver clock time and the

received GOES satellite time were synchronized, that time was printed with a

trailing blank space. If the printed time ended with any character other than

a blank space, the receiver clock was out of synchronization; the printed

107



character indicated the approximate amount of error that could be expected as

a worst case. If the clock was out of synchronization, the operator

determined the cause and restored synchronization before proceeding. Such
instances were rare.

The operator initiated a test by typing a pair of shell commands, one at
each terminal. For example, the commands

sh/runrecv recv.o 126
at ITS, and

sh/runxmit xmit.o 126

at NBS caused an access/disengagement test (number 126) to be run, with the

source user at NBS. If the test programs RECV.U and XMIT.U had been

specified, a user information transfer test would have been run. (In general,

similar user information transfer and access/disengagement command files are

distinguished by a .U or .0 suffix.) Once the program initiate commands were

typed, the shell command files performed the test as described in

Section 4.1.3.

As a general practice, RUNRECV was started first and RUNXMIT second.

Coupled with the 10-second delay in XMIT described previously, this practice

normally assured that the destination user was "listening" before XMIT issued

an access request, thereby avoiding a user blocking condition.

While the test was running, the operator made a handwritten entry into

his log book. This included the date, the test number, the local time, the

direction of data transfer, the names of the programs used at each site, the

number of accesses, the number of blocks per session, and the number of bytes

per block. A sample of the form used to record this data is shown in

Figure 29.

When each test was completed, a normal operating system prompt was

returned to the operator. The operator then had the option to perform another

test run in the reverse direction by typing (for example)

sh/runxmit xmit.o 127

at ITS, and
sh/runrecv recv.o 127

at NBS. If tests were run in both directions before consolidating the files

to the ITS site for processing, there were seven files to transfer from the

NBS site. These files were, for the example above:

108



a
1.O

LOCAL SITES ARCHIVED
RUN DATE TIME X(MIT) OR R(ECV) NBS ITS AMOUNT XMITTED DATE-TIME DATE OUTCOME OF TEST TO TAPE
NO. MONTH-DAY HR:MIN NBS ITS PROG NAME PROG NAME II ACCESSES II BLOCKS . II BYTES FOR ARCHIVING PROCESSED AND COMMENTS NO.

---- --
82 9/25 1130 X R xmit.o recv.o 160 1 64 25-1735 10/22 OK 77

----
83 9/25 1315 X R xmit.o recv.o 160 1 64 25-1919 10/20 OK 77

84 9/25 1415 X R xmit.o recv.o 160 1 64 25-2024 10/16 OK 77

85 9/25 1530 X R xmit.oslo recv.o 160 1 64 25-2140 10/15 OK 77

86 9/26 1130 X R xmit.o recv.o 160 1 64 26-1726 10/14 OK 77

87 9/28 1170 X R xmit.o recv.o 160 1 64 28-2238 10/13 OK 77

..
122 11/20 1115 X R xmit.u recv.u 1 20 512 20-1815 11/20 OK 84

123 11/20 1118 R X recv.u xmit.u 1 20 512 20-1818 11/20 OK 84

Figure 29. Example test log form.



xmit files (first test)

1. 10g.x126
2. history. x
3. overhead.x

recv files (second test)

1. 10g.r127
2. history.r
3. overhead.r
4. data.r

When the operator completed the desired testing (either one run or a pair

of runs in opposite directions), he created a directory listing of the remote
(NBS) site files by typing

Is -1

The operating system returned the time the files were created and the length

of the files in bytes. The operator noted the byte· counts on the files to be

transferred as an important initial check on loss or insertion of user

information in the transfer process. The operator then logged out of the NBS

Gaithersburg system and closed the TIP connection by typing

@c

5.1.2 Data Consolidation
After concluding a test (or a pair of tests in opposite directions), the

next step in the measurement process was to move the files to appropriate

directories in the ITS host computer. All the steps now described were

performed at ITS in Boulder, and assume, for example, the test numbers

specified above.

The operator first changed directories to the subdirectory for data by

the command

cd data

and moved the receive and transmit files from the /DISK2 directory to

/DISK2/DATA by means of the two command files

sh/mover 126
sh/movex 127

The test number was used, in each case, after the appropriate command file

name. Note that the command MOVER moved the receive files and the command

MOVEX moved the transmit files. At this point, the DATA subdirectory

contained the following files from ITS:

110



receive files (first test) transmit files (second test)

1. log.r126 1. log.x127
2. history.r126 2. history.x127
3. overhead.r126 3. overhead.x127
4. data.r126 4. data.x

In addition to moving data files, the command files appended 126 or 127

to the end of the file name of the HISTORY, OVERHEAD, and receive DATA files.

The DATA.X file was the same for all tests and was permanently left in the

directory, and hence did not need to be moved or identified with a suffix.

(The DATA.X file is the eighth file listed above and was not moved with the
other seven.)

It should be recalled that when a file is "moved" from one directory on a

disk to a subdirectory on the same disk, it is not physically moved at all by

the UNIX operating system; only the pointer to its name is changed. Thus one

need not be concerned about losing bytes or changing bits while "moving" files

around on the same disk. This is not true if one moves data to a different

disk.

The next step in the data consolidation was done by the File Transfer

Program. That high-level ARPANET program copied the seven files at NBS to

ITS. The program was invoked by the following operator command/computer

response sequence (computer responses are underscored):

(after a second or two)

ftp

HOST: nbs-unix

Attempting connection to nbs-unix

Connection~
user name
pass KKK
~ logged.in

"Name" is the user name of the account in which the test was conducted; and of

course, the appropriate password was used. The binary mode was then set by
typing

bin

and the transfer of each file was done with

get
Local filename history.x126
Foreign filename history.x

111



and so on for all seven files. Notice that the HISTORY, OVERHEAD, and

received DATA files must have the test number appended to them; and the

creation of the new file in the ITS host was the opportune time to do this.

As each file was transferred over the network, a total byte count was reported

by the ftp program. This was compared with the byte count obtained from the

Is -1 directory obtained earlier. After all seven transfers were successfully

completed the ftp was ended by the command

bye

The operator was then returned to the UNIX operating system.

It was now necessary to compare the transferred DATA file, and the

locally received file, with the stored reference. This was done by the

command sequence

cmp data.r126 data.x
cmp data.r127 data.x

Normally, the files compared. If so, the system provided no messages to the

operator. Any difference in the files produced an error response.

If there were differences, the operator noted this in the handwritten log

sheet. If the received DATA file that was transferred over the network did

not compare with the stored reference, the error could have occurred either

during the file transfer process or during the actual measurements. This was

easily determined by doing an ftp in the reverse direction (naming the file

differently at the remote site), and then comparing the two remote files. If

the remote files differed, the error occurred during the post-test file

transfer process. In that case, the original file was transferred to ITS

again to get the correct "image" of the file recorded at NBS. If the remote

files were identical, then an error occurred in the network during the test.

After the files were properly consolidated into the DATA directory, the

next step was to determine the archive date-time group to be used in storing

the files. Each file associated with a single test was stored in a directory

whose name had the following form. The first three characters were letters

which indicated the month. The next seven characters were numbers, separated

by a hyphen, which indicated the day-hour minute (in UT) at which the test was

started. For example, a test that was started on December 5, 1981 at 5: 32

p.m. would have the seven raw data files stored on the disk as

dec/05-1732name.x

112



The identifiers NAME.X and NAME.R denote a transmit or receive file,

respectively. The name identifies the file type as history, overhead, log, or

data.

The command to determine the date-time group (dtg) was

sh/getdtg 126

where the lower test number in the set of the two tests was entered. In the
example case, the SHOW program was automatically executed for both test 126

and 127. The test number was read from either the CRT screen or from a file

in the DATA directory where all the run numbers and archive times were stored.

For example, after issuing the above command, the last four lines of the

DTG.SHORT file read

Data from file history.x126
**File prefix (dd-hhmm) = 05-1732

Data from file history.x127
**File prefix (dd-hhmm) = 05-1735

The test operator manually entered these numbers into the log sheet in the

proper column.

The two sets of seven files for each test are then moved to their final

subdirectory with the command

sh/storem dec 05-1732 126

where the month, dtg, and test numbers were entered separately after the

command file name STOREM. (Again, only the name pointer was changed - not the

file.) In a similar manner, the raw data files for the other test were moved

with the command

sh/storem dec 05-1735 127

This completed data consolidation and file archiving. The file directory for

the month included all the other files, but to recall only the files run in

this test the wild card * may be used when asking for the December directory.

For example, the command

Ism dec/05-17*
would show on the screen

05-1732data.r
05-1732his.r
05-1732his.x
05-1732log.r
05-1732log.x

05-1732ovh.r
05-1732ovh.x
05-1735data.r
05-1735his.r
05-1735his.x

113

05-1735log.r
05-1735log.x
05-17350vh.r
05-17350vh.x



5.1.3 Post-Test Processing
The processing of the raw data files which were stored in the month

directory was done completely by a command file. By merely executing, for
example, the command

shldoit.u dec 05-1732 its

from the DATA directory, all the time corrections, merging, and reformatting

of binary files to ASCII character files, as well as the determination of

access or block transfer times and creation of the plottable histogram files,

were accomplished. The name of the command file was DOIT.O or DOIT.V

depending on whether the file was for the access/disengagement or user

information transfer test type. The parameters after the command file name

were the month directory, the dtg of the archive file name, and the location

of the destination site, Le., "its" or "nbs".

The entire process took about 12 minutes for the information transfer

data and about 45 minutes for the access/disengagement data. The latter data

took longer to process because of the greater number of times in the files.

The processing took much longer on the ITS computer system than it might have

because the "c" compiler did not recognize the minicomputer's hardware

floating point, and therefore had to perform all the time corrections with

software floating point routines.

5.2 Performance Assessment
This section outlines the operator procedures followed during the

Performance Assessment phase of the ARPANET experiment. The description,

which parallels thatr for Performance Assessment design in Section 4.3, is

organized into two subsections. The first deals with the FORTRAN processing

of the four standard ASCII files in a performance measurement batch as

specified by proposed FED STD 1043. The second describes the conduct of

supplemental data processing procedures used to obtain additional statistical

information about access and block transfer times.

5.2.1 Standard FORTRAN Performance Assessment
The performance measurement data batch corresponding to each ARPANET test

(i.e., the four standard ASCII chara~ter files output by the interface

monitors, as specified in proposed FED STD 1043) was processed in a single­

batch performance assessment. In addition several multibatch performance

114



assessments were made by utilizing the carryover data features described in
proposed FED STD 1043. Aggregate samples were formed by combining performance

data batches derived from tests having uniform type, direction, and program

priority.

Prior to each performance assessment run, the operator created the

specifications input file appropriate for that run by using the UNIX text

editor. The operator also assigned the name FORTXX to each input file

required in the particular performance assessment run, and stored that file

under the /DISK2/ASSESS directory. (The symbols XX in a file name represent

the digits of the unit number associated with the file by a BLOCK DATA

subprogram included in the standard performance assessment software.)

The standard FORTRAN performance assessment programs PROLOG, ANALYZ, and

EPILOG were executed by invoking the appropriate version of a command file

named PASSRUN. At the conclusion of each run, this command file also printed

the assessment summary file, printed auxiliary files of chronologically

arranged performance times for access/disengagement or for block transfer,

sorted these auxiliary files in ascending numerical order, and printed the

sorted files.

5.2.2 Supplemental Data Reduction

For each ARPANET test, the post-test command file DOIT generated a file

containing the x-y coordinates of the vector trace of a histogram of access

time (for access/disengagement type tests) or block transfer times (for user

information transfer type tests). This file was named, for example, PLOT20ACC

or PLOT10XFR, where the digits denote the maximum number of class intervals in

the histogram. The plot files were translated into histograms as described

below.

The plot file was listed from the /DISK2/DATA/TEMP directory to the

intelligent graphics terminal by typing (for example):

cat plot16acc

The CRT memory capacity was about 10K bytes, and the plot file normally was

less than 1.5K bytes. At this point the PDP-11 computer was no longer needed

and the operator logged out. Using the "scroll" keys and "delete" and "clear"

keys of the CRT, the operator removed all lines of data from the display

except the x-y data coordinates. The operator then selected the autoplot menu

and entered appropriate maximum and minimum values for the x and y axes. The

115



histogram was plotted, and appropriate scales were placed on its axes, all

within a few seconds after depression of the CRT "autoplot" and "autoplot
axes" keys.

The graphics cursor was positioned for labels and the graphics text size

and orientation keys were used to complete the CRT graphics screen. The total

process took only 3 to 5 minutes, with most of the time being used for the

composition, typing, and placement of text annotating the graph. An

additional stroke of one of the user definable keys caused the graphics

display to be printed by a dot matrix graphics printer; the printing required

about 1 minute. An example of the graphics output from the printer is shown

in Figure 30.

Supplementary access and block transfer time statistics and histograms

for operator-defined test aggregates were obtained by utilizing the "TAB.ACC"

or "TAB.XFR" files generated by DOlT and stored with raw data in the month

subdirectory. These files, whose name also included a month/date-time prefix

(e.g ,; SEP/24-1827TAB.ACC), consisted of a sequence of records sorted
according to ascending performance times. The operator extracted performance

times from the files for the desired aggregate and concatenated the results to

a file which served as input for the appropriate statistical and histogram

routines.

When the standard FORTRAN performance assessment and the supplemental

data reduction for a performance data set were completed, the results of the

two independent processing techniques were manually compared. In all normal

tests which had run on the principal paths of the session profile of

Figure 25, the two sets of data agreed. Only in exceptional cases did any

differences appear. Depending on the nature of the discrepancy, the raw data

files or time-corrected data files were listed to examine in detail all the

event times and conditions surrounding the abnormal event. For example, one

very long access time occurred in the middle of a test which ran unattended.

Normally, the operator would have terminated the test, but after 12 minutes,

the access attempt "succeeded" and the test continued. In spite of that one

extremely long delay, the test ran to completion; however, 3 of the 160

transmitted data blocks were lost in this test.

5.3 Statistical Analysis
About midway in the planned sequence of access/disengagement tests, a

statistical analysis of the collected Access Time data was conducted to check

116



50, iii iii iii Iii iii iii iii iii iii iii iii iii i i • I ii' iii iii I

45 ······························,···············(·A·Rp·AN·tT····A·cC·E:·S·S·····ttfME·S·····
40 ••••••••• ' 0 , ••••••••••••••

(East to West, High Priority, Peak Hours)

Test +82 took place on SepteMber 25, 1981

NBS/leST (Gaithersburg)
NTIA/ITS (Boulder)

35

III
eli.... 30
Q.

ij
....... (I) 25
.......
'-.I ~

0

.... 20
c
eli
u
l.- 15
eli

Q..

1/;3

••••••••••••••- ••••••••••••••• -••••••••••••••• I .......... • • to •••:.

Source:
Destination:

Start of Test:
End of Test:

NUMber of Accesses
MiniMuM TiMe
M.uiMUM TiMe

j.7:35 UT
18:11 UT

= 160
= 1.307 s
::: 4.358 s

5 ......................................................······f·~··········!············m······r····~··· .
5.04.54.03.53.132.52.01.51.0.5

O r ! i • i I • i • I ' ii I I I I I I ,.,..-----;-]i •• ., , • I I • I • iii .r=r==t I L • Ir-=r=J J I0.0 I 'ii • iii • i J

Recess Time in Seconds

Figure 30. Graphical sample of histogram of access times for test 82.



earlier dependence assumptions and refine the preliminary sample size

estimate. This analysis, which is summarized in Section 6.2.1, essentially

confirmed the earlier estimate. At about the same point in the measurements,

Disengagement Time data were subjected to a similar statistical analysis, as

described in Section 6.2.3.

After all tests had been completed and the resulting data had been

processed by the various Performance Assessment routines, final confidence

limit calculations were carried out for the measured performance parameters.

In addition, several statistical analyses were performed to assess the

significance of "test variables" (r.e., direction of transfer, program

priority, time of test) in measuring performance parameters. The results of
these calculations and analyses are presented in Section 6.

5.4 Data!rehiving to Removable Mass Storage

The "on-line" mass storage for the ARPANET measurements consisted of a

single, dedicated 2.5-Megbyte RK05 hard disk platter. This storage was

allocated among program and command files, raw data files, and processed data

files. The (compiled) program and command files, which were absolutely

essential, occupied about 20% of the disk (Le., about 1000 512-byte blocks).

Another 20% of the disk was required for temporary files during post-test and

performance assessment processing. Each access/disengagement test generated

about 140 blocks of raw data; the "TAB.ACC" and standard ASCII files required

another 13 and 350 blocks, respectively. A user information transfer test

required about 40 blocks' for raw data, 2.5 blocks for the "TAB.XRF" files, and

13 blocks for the standard ASCII files. The ASCII files corresponding to a

test were regarded as expendable after they had been processed by the standard

FORTRAN performance assessment programs, and were removed from the
/DISK2/ASSESS directory. Even with this storage-conserving tactic, there was

not enough space on the disk for all raw data and "TAB" files generated during

the experiment. Preservation of these files was essential for additional

processing or re-examination at a later time, and for aggregation of selected

tests. Consequently, raw data and "TAB" files were copied onto magnetic tape

whenever it became necessary to obtain disk space for additional tests and

processing.

All files on /DISK2 and its subdirectories were stored on tape drive 0

from /DISK2 by the command

tar cO

118



then a directory of the archived tape was made with

tar tOr

If any of the files had to be recovered later from the tape, the command

tar xO Jdata/nov/05-2135*

would, for example, recover all the files from the test that began on

November 5 at 21:35.

6. PROJECT RESULTS

Section 3 defined the specific objectives of the ARPA network

measurements project in terms of a series of questions to be answered by the

project results. This section summarizes those results and answers each of

the associated questions.

The organization of this section follows that of Section 3. Each

question posed in that section is restated in its entirety here, followed by a

detailed discussion of the pertinent project results. In all but a few cases,

the project results directly answer the questions posed. Exceptions are

highlighted as topics for possible future study. Overall conclusions and

recommendations of the experiment are summarized separately, in Section 7.

6.1 Primary Results
As noted in Section 3, the primary objective of the ARPA network

measurement project was to verify and demonstrate proposed Federal

Standard 1043 by actually implementing it in a representative test situation.

This subsection summarizes the ARPA network measurements project results that

relate to that objective. The results summarized here focus on the

measurement process, and its specification in proposed FED STD 1043, rather

than on the performance values obtained. Implementation results are presented

separately for each of the four performance measurement system elements

identified earlier (Figure 11).

Because the questions in this subsection focus on the measurement

process, most have been answered implicitly in the descriptions of that

process in Sections 4 and 5. The purpose of this subsection is to recall each

question and explicitly state its answer. For conciseness, material

adequately presented in Sections 4 and 5 is not repeated here. Specific

references to those sections are provided where appropriate.

119



6.1.1 Data Extraction Element
The prototype FED STD 1043 Data Extraction subsystem used in the ARPANET

measurements is described in Sections 4.1 and 5.1 of this report. As noted in

Section 3.1.1, the development of that subsystem was intended to answer a

number of specific implementation questions. Those questions were divided

into three groups, corresponding to the input, processing, and output

functions of a typical Data Extraction subsystem. The four questions related

to the Data Extraction input function are restated and answered below.

1. Can the end user/data communication system interfaces be
identified unambiguously from the guidance provided in the
standard? Where are those interfaces in the configuration
tested?

Identification of the end user/data communication system interfaces

proved to be straightforward in the configuration tested. As discussed in

Section 2.4, proposed FED STD 1043 defines three general types of end

user/data communication system interfaces, each corresponding to a particular

type of end user: operator, medium, and application program. Both end users

in this case were computer application programs. In all cases where the end

user is an application program, proposed FED STD 1043 defines the user/system

interface to be the functional interface between that program and the local

host computer operating system, telecommunication access method, or

equivalent. Thus, in the case studied, each user/system interface ~as defined

to be the functional interface between the (applicable) XMIT or RECV

application program and the local UNIX operating system.

2. What specific data communication - related events take place
at the end.~ser interfaces? Can these interface events be
sequentially related in a "session profile" of the type
illustrated in the standard? Can they be observed and
recorded with a negligible (or at least measurable) effect on
the process under examination?

Analysis of the user/system interfaces identified above revealed eight

well-defined interface signals by which all application program/operating

system communications are effected: namely, the OPEN, READ, WRITE, and CLOSE

system calls and their associated "complete" responses. These signals, which

were illustrated in Figure 23, are the interface events on which all

assessment of performance was based.

The user/system interface events depicted in Figure 23 can occur in many

different sequences. However, because the test approach used was an active

120



one, where the measurement entity and the end user were one and the same, ft

was possible to completely determine the normal interface event sequence via

the application program designs. This was done, resulting in the session
profile shown earlier (Figure 25). As discussed in Section 4, virtually all

of the ARPA network tests followed the normal data flow path depicted in that

figure.

Because an active measurement approach was used, all user/system

interface events were directly ava i Labl e to the Interface Monitors, and no

special "probes" were required t.o observe them. As discussed in Section 4,

the process of recording the interface events was divided into on-line and

off-line steps, with only the essential functions performed on-line. As a

result, the only significant influence of the measurement process on the

~vents being measured was the reading of the satellite clock. As discussed in

Appendix D, that action took at most 132 milliseconds, and occurred once per

interface event - just before the event in the case of system calls, and just

after the event in the case of system responses.

The effect of the clock read times on the observed time parameter values

was measurable in all cases, and negligible in most. The effect of each clock
reading was to delay the occurrence of the next interface event by (at most)

132 milliseconds. In each case, these delays occurred at a point in the data

communication session when a user was "responsible" for creating the next

interface event. ThUS, all of the clock reading delays were counted as user

delays; contributed to the ancillary parameter values; and could be "factored

out" of the corresponding primary parameter values. In no case was the total

clock read time more than 15% of the average performance time being measured.

3. What is the effect of system or user failures on the observed
event sequence? Is it necessary (and practical) to represent
failure events in a session profile?

There were no "user failures" during the tests since both users were, in

fact, carefully designed measurement programs. The effects of system failures

on the observed event sequence depended on the type of failure. Two general

types of system failures were postulated (and observed): failures which

suspend (or "hang up") the test, and failures which omit expected events from

the interface event sequence. An example of the first type is a failure of

the system to respond to an Open request. That failure causes the measured

system to "hang up" waiting for the response; and in the case s tud red , test

operator action was required to break the impasse. An example of the second

121



type of failure is the loss of a block of data by the system. That failure

does not cause the system to hang up, since the input of data by the source

user is not dependent on the delivery of previously transmitted data.

Failures of the first type are readily handled by adding test operator

functions to the basic session profile. The operator functions shown in

Figure 25 were, in fact, added to an earlier session profile after the need

for predictable, standardized operator responses to system failures became
apparent.

Failures of the second type cannot be explicitly represented in the

session profile because they are, in fact, absences of expected interface

events. Such failures require no special processing in the Data Extraction
subsystem in any case, since the Performance Assessment program detects

missing events.

A third type of system failure could have occurred (but in fact, did not

occur) during the testing: the generation of unexpected or superfluous

events. An example would be the duplicate delivery of user information. As

in the case of the absence of expected events, it is not practical or

necessary to depict such failures in the session profile. Again, if such

events had occurred, they would have been detected by the Performance

Assessment program.

4. How do the specified end user interfaces relate to the
"computer/communications" interfaces traditionally used in
performance measurement? Is the difference between the two
significant from an instrumentation point of view?

In the configuration tested, the end user functional interfaces are

separated from the host computer physical interfaces by two distinct host

programs: the UNIX operating system and the NCP (Figure 23). A third host

program, the ARPANET I/O driver, actually handles transfer of data across the

physical computer interface. This program is assembled as a part of the

operating system.

Instrumentation of the computer/communications interfaces would be

substantially different from instrumentation of the end user interfaces in the

configuration studied. Principal reasons are first, the obvious differences

in event significance and timing at the two interfaces; second, the fact that
the former interface is physical and the latter functional; and third, the

fact that the ARPANET NCP would be on the user side of the monitored interface

in the former case. The latter fact would almost certainly dictate a

122



"passive" measurement approach (e.g., tapping into the user/system interfaces

or placing traps in the TIP programs), since an "active" (surrogate user)

approach would require extensive changes to the host NCP's.

The second group of three questions dealt with the Interface Monitor

processing of observed interface events. These questions are restated and

answered below.

1• Can the various events observed at the user/system interfaces
in the configuration tested be unambiguously associated with
the universal "reference events" defined in the standard?
What is the exact association between these events in the case
studied? Are there reference events with no corresponding
interface event, or vice versa? Are the "user information"
and "overhead information" categories clearly distinguishable
from the guidance in the standards?

As discussed in Section 4.1.1, the process of associating system-specific

interface events with system-independent referenge events was straightforward

in the configuration tested. The OPEN, WRITE, and CLOSE system calls and the

OPEN COMPLETE and CLOSE COMPLETE system responses were each associated with a

particular primary reference event. Each of the eight interface events was

associated with one of two basic ancillary reference events - four of each

type. There were no reference events without a corresponding interface event,

and no interface events without performance significance.

The "user information" and "overhead information" categories were also

clearly distinguishable in the case studied. The data files transferred in

conjunction with the WRITE and READ COMPLETE events contained only user

information, since all data in those files was intended to cross both

user/system interfaces. All other transferred information was overhead, since

it crossed either one or no user/system interfaces.

2. Is it practical and economically feasible to provide a
synchronized time reference to each of two geographically
distant Interface Monitors? How can this be accomplished, and
at what cost?

The ARPA network measurements project clearly demonstrated that it is

possible to accurately synchronize remote data communication Interface

Monitors using the NBS/GOES satellite time dissemination service. As

discussed in Section 4.1.2, this was accomplished by placing a commercially

available satellite clock receiver at each test site, and connecting each

receiver with the local host computer via a conventional terminal I/O

(RS-232-C) interface. Installation and connection of the clock receivers was

123



accomplished with little difficulty, and the receivers proved to be effective

and reliable over the entire test period. Times within the remote clock

receivers are synchronized to within ± 10 microseconds.

The economic feasibility of synchronizing remote Interface Monitors via

the satellite time service depends on the cost of the other measurement system

components and, ultimately, the cost of the monitored system. The satellite

clock receivers used in this experiment retail for less than $2K. That cost

is a negligible fraction of the total cost of mos t large- and medium-scale

computer systems on the market today, but could add substantially to the cost

of very small systems. In cases where a less expensive synchronization scheme

is needed, two options are available:

1. HF WWV Broadcasts. Time difference between a local clock
signal and the WWV reference can be determined to within ± 1
millisecond using an HF recei ver and oscilloscope. Time of
day can also be read automatically from a BCD time code in the
WWV broadcast, using commercially available WWV receiving
equipment.

2. Telephone Time-of-Day Service. The same time-of-day signals
broadcast over WWV are also available over commercial
telephone lines, by calling (303) 499-7111. These reference
signals can be compared with a local clock in the same way as
the WWV signals. As a result of variability in the telephone
line delay, the resulting synchronization is slightly less
accurate than that obtained from HF transmission.

In the first case, the equipment cost could be less than $500. The

necessary equipment would be readily available at many computer sites. The

second approach would be still less expensive, since no HF receiver is

required.

It appears that the unavailability of an accurate, inexpensive remote

clock synchronization technique has substantially inhibited performance

measurement in the past. This has been evidenced in two ways: first, a

restriction of measurements to relatively few applications; and second, the

selection of performance parameters which correspond poorly with user concerns

in order to avoid the requirement for measurement system synchronization. The

findings presented here should help to eliminate synchronization as an

obstacle to performance measurement. For further information on time

synchronization techniques, refer to Kamas and Howe (1979).

3. What accuracy can be achieved in the time-stamping of observed
interface events? What mechanisms must be used to correct for

124



differences between the actual event times and the associated
clock readings?

As discussed in Appendix D, serial transfer of the time from the clock

receiver to the host computer reduces its accuracy somewhat, but the recorded

event times are still accurate to within ± 5 milliseconds. That experimental

error is much less than 1% of all but one of the performance times to be
measured. 14

Because the time information is transferred serially from the clock

receiver to the host, there is a significant difference between the time at

which an event actually occurs and the time at which a clock sample, or "time
hack", marking that event is obtained. Fortunately, that difference is highly

predictable. The mechanism used to correct for such differences is simply to

add (or SUbtract) a constant to (or from) the sampled time, depending on

whether the event follows or precedes the time hack. The correction times

were (+120, -12 ms) at ITS and (+65, -7 ms) at NBS for events following and

preceding the time hack, respectively. Refer to Appendix D for further

information.

Two additional questions were asked with regard to the generation and

recording of Interface Monitor outputs. These were:

1. How can the separate event histories recorded at each end of a
data communication system be brought together in one computer
for processing without introducing errors not present in the
original recorded data?

The consolidation of remotely recorded event histories in one computer

system for processing must be error-free if the processed measurement results

are to be accurate. In the measurements reported here, this consolidation was

accomplished routinely using the ARPANET File Transfer Protocol and the UNIX

Compare utility command (Section 5.1.2). The procedure used in these

experiments is equally applicable in many other test configurations. Briefly,

a data file can be transferred from a remote site (say A) to a processing site

(B) without error as follows:

1. FTP the file from A to B.
2. FTP the received file from B back to A.
3. Compare the two files at A. If the tvIO compare exactly, the

file was transferred correctly from A to B. If the two do not
compare exactly, repeat.

14The one exception, source user Disengagement Time, is so small that its
precise value is relatively unimportant.

125



This procedure fails only in the extremely unlikely event of exactly

compensating errors during the two file transfers.

2. How much computer time is required to translate the "raw"
event records into the specified standard output format?
Should that translation be performed on-line (during actual
data collection) or off-line (after the test)? How large, and
how complicated, are the translation programs?

The translation of binary event records into ASCII output format was

accomplished by four "c" language programs: a pair of time correction

programs called TWEAK.H and TWEAK.O, which adjust the user information and

overhead event times, respectively,15 and the MERGE and REFORM programs. The

time correction programs took about 30 minutes to process all the times

recorded during a 160-session access/disengagement test, or about 2-3 minutes

to process all the times recorded during a single user information transfer

test. These times are about the same as the corresponding test execution

times without processing. All the processing times could have been reduced by

more than a factor of 10 if the ITS "c" complier had used hardware rather than

software floating point instructions. The MERGE and REFORM execution times

were negligible by comparison.

The translation of raw binary records into ASCII formatted records was

accomplished off-line in this experiment for two reasons: (1) to minimize

user influence on the measured values; and (2) to simplify the on-line test

functions. Either on-line or off-line processing is feasible, but the latter

probably results in a simpler overall test. None of the four Data Extraction

processing programs used in this experiment is particularly complex. The

TWEAK programs read successive event times from the raw data files, classify

the times as leading or trailing, apply the appropriate correction factors,

and write the corrected times into new files. The MERGE program appends

corrected block transmission times to the corresponding recorded user

information blocks. The REFORM program accomplishes the actual binary-to­

ASCII file conversions. Each of the four programs is between 7 and 15K bytes

in size. These program sizes could be reduced by 30%-40% through editing if

necessary. That effort might well be justffied i:t~.the processing were

performed on-line.

15Separate TWEAK programs were actually used to process the ITS and ICST data.
since the time correction factors were different in the two cases.

126



6.1.2 Data Files
The standard ASCII character files used to link the Data Extraction and

Performance Assessment elements of the measurement system are described

briefly in Section 2.4.2 of this report, and more fully in the measurement

standard. As noted in Section 3.1.2 above, the implementation of these data

files in the ARPA network measurements project was intended to answer three

specific questions. These questions are restated and answered below.

1. Can the specified data file formats be directly written and
read by software developed using different programming
languages?

The problem of creating data files which are directly accessible to

programs written in different languages is an important one. In the process

of recording data in a logical record, a program typically· delimits the data

into several blocks, and appends various control words which define the record

structure. Programs written in the same language as the recording program can

read a record without difficulty, since they expect a record structure exactly

like that created. However, this is often not the case when the recording

program is written in a different language: even though the same computer and

operating system are used, record structures typically differ between

languages. The result is an inability to pass data directly between programs

written in different languages.

This problem arose immediately in the ARPA network testing, since the

Data Extraction programs were wr'itten in "C" and the Performance Assessment

program was written in FORTRAN. An early version of proposed FED STD 1043

specified unformatted binary FORTRAN files as the input to the Performance

Assessment program. Efforts to create such files in "c" proved difficult; and

it was soon realized that even if this were successful in the present

experiment, other users of the standard would face a similar problem. It was

therefore concluded that the file formats used in passing performance data

between the Data Extraction and Performance Assessment functions should be as

nearly language and machine independent as possible. The approach chosen to

achi~this objective was to transfer all performance data between- these -twO:-'-­

measurement system elements in the form of ASCII character records.

As noted in Section 4.2, the process of transferring performance data

from the "C" Data Extraction programs to the FORTRAN Performance Assessment

program via ASCII character records proved to be very straightforward. The

extent to which this common file structure is language and machine independent

127



was not determined in this experiment, but it seems likely that the chosen

file structure will minimize translation problems in other applications as

well. Virtually any computer system can create ASCII character records, and

the file delimiters are specified as particular characters in the ASCII code

(ANSI, 1967). Further tests of the transferability of the specified data

files are planned.

2. What requirements will such standard files place on the memory
capacity of the recording equipment? Are the memory
requirements commensurate with the capacities of
host/measurement systems which might reasonably be expected to
implement the standard? How much is the memory requirement
increased by the choice of a machine-independent data file
format?

The memor-y capacity required to store the event histories recorded during

a performance test depends, of course, on the number of trials observed. Four

ASCII character files were generated during each test: an overhead

information file and a user information file for each user/system interface.

The ASCII overhead and user information files generated during a complete 160­

session access/disengagement test were about 25,000 and 65,000 bytes in

length, respectively. The corresponding overhead and user information file

lengths for a single VIT test were 1,000 and 33,000 bytes. Files of this size

will fit comfortably within the disk capacities of even relatively small

computer systems, including portable microcomputer systems which might well be

used as dedicated FED STD 1043 measurement instruments.

These data file sizes could be reduced substantially, if necessary, by

including fewer sessions or less transmitted data in each test. This would

not necessarily reduce the ultimate precision of the measured values, since

the results of several tests can be aggregated off-line using the Performance

Assessment program's carryover data files. Thus, it appears that data storage

requirements will not significantly constrain the ability of users to conduct

FED STD 1043 performance measurements.
As noted earlier, the problem of transferring data files between the Data

Extraction and Performance Assessment functions was solved through the use of

standard formatted ASCII character records. These formatted records store

data files less efficiently than binary files, as was shown in Figure 16. The

binary-to-ASCII translation process increases the user information file

lengths by a factor of 2.67, since each group of fifteen VIT bits is mapped

into five 8-bit ASCII characters. A similar expansion occurs in the case of

128



the overhead information files. This memory utilization cost appears to be

well justified by the direct program-to-program transfer capability the ASCII
files provide.

3. What is the impact of data aggregation (e.g ,; combining
measurement results for many user pairs) on the data file
structure? How important is the "carryover data" capability
to users?

The provision of data aggregation in the Performance Assessment program

has no effect whatsoever on the format of individual ASCII files. The data

aggregation capability can substantially reduce the memory capacity required

to record measurement data, since the same memory space can be used to store

the results of many successive batches. To achieve this memory savings, the

operator simply reduces the number of performance trials in each individual

test and runs more tests, always processing the data from one test before

initiating the next. Irrespective of test size, the ultimate test results are

always reduced to a very small number of outcome values. These can be stored

between batches and aggregated with subsequent results using very little

memory. The carryover feature will be of particular significance to users with

limited memory capacity.

6. 1.3 Performance Assessment Program

The standard FORTRAN Performance Assessment program used to red' ~',= the

interface event histories to parameter values has been described in

Section 2.4.3 of this report. As noted in Section 3.1.3, the application of

that standard program in the ARPA network measurements project was intended to

answer four specific questions. These questions are restated and answered

below.

1. How large is the program, including both machine instructions
and data? Will the program "fit" within the memory capacity
of computer systems on which it might reasonably be
implemented?

As discussed in Section 4.3, the Performance Assessment program used to

reduce the ARPA network per-f'ormance data actually consisted of three

separately compiled programs linked by FORTRAN data files. The number of

bytes in the compiled (object) version of each program is shown below.

129



Program

'PROLOG
ASSESS
EPILOG

Object Code in Bytes

16,000
38,000
29,000

As noted earlier, these programs were executed sequentially in processing

a data batch, and only one program needed to be in the computer memory at any

time. Most modern computer systems can accommodate application programs up to

at least 64K bytes in length, and thus the size of the Performance Assessment

program should not be a deterrent to its widespread use.

2. How long does the program take to process a typical "batch" of
recorded measurement data?

The Performance Assessment program took between 4 and 5 minutes to

process a typical 160-session access/disengagement test, and about 7 minutes

to process a typical 10,240-byte user information transfer test, on the PDP­

11/40. The processing took about 10 minutes if both the access/disengagement

and UIT parameters were calculated on the former type of test. This was

rarely done in processing the ARPANET data because the access/disengagement

and UIT parameters were evaluated in separate tests.

The printing of test results on the LP-11 added another 40 to 50 seconds

in each case. Operator input of run parameters would add another 2 to 3

minutes if the parameters were different for each test, but this delay was

avoided in most cases by storing fixed run parameters in a file. No operator

involvement was required after test processing was initiated, since the

PROLOG, ASSESS, and EPILOG programs were executed by a UNIX shell file.

3. Does the program correctly determine the outcomes of data
communication attempts under all observed conditions of
performance? Under what conditions does the program fail or
give misleading results?

The ARPA network measurements data proved to be very useful in testing

the Performance Assessment program logic. Essentially all of the extracted

performance data was input to that program, and the correctness of the output
- ~._:_.-__ .-':·'"i~_.~'o;

was tested in two independent ways: first, by comparing that output with'the

results of an operator analysis of the raw performance data; and second, by

comparing that output with the results of the supplementary data reduction.

With two exceptions, discussed below, the program functioned exactly as

expected.

130



The first Performance Assessment program failure observed during the ARPA

network measurements occurred dur-ing the processing of a group of three very

unusual data communication sessions recorded in test numbers 78 and 79. In

each of these three sessions, the source user program (at ITS) opened a

connection, transmitted a user information block, and closed the connection in

the normal manner; but only one event occurred at the destination user

interface - the destination progr-amts original Open (any host) request. That

request was never completed, and the destination user program therefore had no

opportunity to participate in the session. From the point of view of that

program, it was as if the session never took place. Naturally, the

transmitted data was never received.

The difficulty in processing these sessions arose when the Performance
Assessment program attempted to determine the destination user disengagement

time. As defined in both Interim FED STD 1033 and X3.102, that time begins

when the first Close request is issued (in this case, by the source user). It

ends when the system issues a Close Complete signal to the destination user.

The problem, of course, is that the latter event does not occur with the

session being examined. It does ultimately occur, however - in the next

normal session. The Performance Assessment program's original disengagement

subroutine did not restrict its search for the disengagement confirmation

signal to one session. It therefore erroneously calculated the destination

user disengagement time for the faulty session on the basis of the

Disengagement Confirmation signal in the next session! The problem was

obvious once it occurred, since the erroneous disengagement time was more than
five times longer than any other recorded. The solution was equally obvious ­

adding a check for session boundaries to the disengagement subroutine.

The original Performance Assessment program also proved to be deficient

in identifying the precise beginning of a string of undelivered (or extra)

bits. This function was originally accomplished in the program's DATCOR

SUbroutine, which worked by comparing the number of matching transmitted and

received bits in a correlator "wi.ndow" with a threshold (Seitz et aL, 1981).

That subroutine correctly identified the beginning of an undelivered (or

extra) bit string whenever the first bit in that string differed from the next

subsequent received (or transmitted) bit; but displaced the beginning of such

strings by one or more bits if the string bits and the subsequent bits

fortuitously matched. The program computed the correct number of undelivered

131



or extra bits in every case, but sometimes transformed a single undelivered or
extra block into two incorrect blocks as a result of the displacement.

This deficiency in the original DATCOR subroutine was resolved by

replacing that subroutine with two operator-selectable subroutines, each

appropriate in a particular type of measurement application. The first,

termed BITCOR, matches transmitted and received bits without reference to

block boundaries. That subroutine is used in applications where the source

block boundaries need not be preserved in delivering information to the

destination. 16 The block-oriented UIT parameters are far less important in

such cases. The second subroutine, termed BLKCOR, is still under development.

That subroutine will match transmitted and received bits on the basis of block

delimiters provided by the source user and the system, and will be used in

applications where the source block boundaries must be preserved. It will

eliminate the outcome displacement problem by performing data comparison and

outcome decision-making on a block-by-block basis.

Although the ARPA network application provided a reasonably comprehensive

test of the Performance Assessment program, it was not possible to verify all

of the program logic using the ARPANET data because certain possible failures

were never observed. Where such deficiencies were identified, the logic in

question was tested separately via simulated measurement data. All possible

access and disengagement performance outcomes were simulated and correctly

detected in this supplementary testing. The UIT processing subroutines were

tested in a similar manner, but additional testing will be required to assess

those subroutines' processing of tightly clustered UIT failures (e.g., Lost

Bits and Incorrect Bits within two bytes of each other).

4. What flexibility must such a program provide to users with
respect to (a) aggregation of measurement data from many
batches, (b) calculation of parameter subsets, and (c)
adaptation of program variables to measured system
characteristics?

The benefit of data aggregation in memory-limited applications has been

discussed earlier, in answer to question 3 in Section 6.1.2. The carryover
feature also proved to be of value during the ARPA network measurements for

another reason: the need to cluster performance data from different batches a

posteriori, based on the observed test results. This need arose first,

16As noted earlier, the end-to-end ARPANET service measured in this experiment
had that property.

132



because the influence of test conditions on the measured values could not be

predicted in advance; and second, because there were cases in which it was

necessary to exclude data batches from the test results due to measurement

system failures. The ability to combine performance data from separate

batches appears to be essential in all but the most rudimentary measurement

applications.

The ability to calculate parameter subsets proved to be useful, but not

essential, during the ARPA network measurements. As noted earlier,

access/disengagement and UIT performance were evaluated separately, using

different test procedures during those measurements; and the ability to

consider only the parameters of interest in reducing the data saved both

computer and operator time. That savings would be much more significant in
processing very lengthy tests. The ability to enable or inhibit the

calculation of parameters by primary function (access, user information

transfer, disengagement) proved to be more useful than the ability to enable

or inhibit calculation by parameter type (primary, secondary, ancillary).

The key program variables which must be input by the Performance

Assessment program operator are (1) the specified or expected performance

times for the access, block transfer, and disengagement functions; (2) the

corresponding specified user fractions; (3) the data correIator window size,

correspondence threshold, and maximum bit shift constants; and (4) the outage

or Transfer Denial Thresholds. The ability to easily vary the specified

performance times and user fractions proved to be essential in reducing the

ARPA network performance data. The reason was that the appropriate values for

these input variables were not known a priori; and yet those values must be

specified with reasonable accuracy in order to properly reduce the performance

data. The specified access, block transfer, and disengagement times are used

in determining performance timeouts, as discussed in Section 2.2. The

specified user fractions of these times ape used in assigning "responsibility"

for performance failures to the users or the system.

This apparent impasse was easily resolved by processing the first few
performance data batches twice: once to determine the appropriate input

variables, and once to calculate final performance values based on those

variables. As an example, both Interim FED STD 1033 and ANSI X3.102 define an

access attempt to be a failure if its total performance time exceeds three

times a "specified" Access Time value. The specified value is defined as the

mean of the Access Time distribution with no truncation. To determine this

133



mean, the first few access/disengagement tests were processed with a

"specified" value so large that no timeouts occurred. The same data was then

re-processed with the specified input value equal to the calculated mean.

This two-step processing will not be required in most operational performance

measurements, since appropriate "specified" performance values will be

available either from previous measurements or from the system requirements.

6.1.4 Statistical Design and Analysis Procedures

The Statistical Design and Analysis procedures used in conducting the

ARPA network measurements are described briefly in Section 2.4.4 of this

report, and more fully in the measurement standard. As noted in Section 3.1.4

above, the application of these procedures in the ARPA network measurements

project was intended to answer four specific questions. These questions are

restated and answered below.

1. How should a data communications user's measurement precision
objectives be determined? Can/should FED STD 1043 provide
guidance to users in establishing such objectives?

The determination of measurement precision objectives is not a simple

task, nor is it a task that can be reduced to anyone "standard" procedure.

However, the engineers and mathematicians who participated in the ARPA network

measurements project agreed that at least some additional guidance on the

determination of measurement precision objectives should be added to proposed

FED STD 1043. That guidance should do two things. First, it should encourage

standard users to base the determination of measurement precision objectives

on a serious examination of the relationship between the precision of a

measured parameter value and its usefulness in service selection or operation.
Such an examination would lead, in many cases, to less stringent measurement

precision objectives and more economical measurements. Second, it should

point out the practical necessity of choosing a single sample size for

measuring parameters that are necessarily measured together (e.g., the various

access parameters). Guidelines for clustering parameter measurements based on

sample size requirements would also be useful. Guidelines covering these

principles will be incorporated in a future revision of the measurement

standard.

2. How strongly do underlying measurement conditions (e.g., time
of day, direction of transfer) influence the measured
parameter values? Does the current FED STD 1043 draft provide

134



adequate guidance to users in identifying such conditions and
assessing their impact?

As discussed in Section 5, the ARPA network measurements were designed to

assess the network performance with respect to three primary measurement

variables: direction of transfer (east-to-west or west-to-east), user program
priority (high or normal), and time of day (peak hours or off hours). The

test results indicated that each of these variables had a measurable effect on

the observed end-to-end performance. 17 No other significant measurement

variables were identified. The guidance on the identification of measurement

conditions in proposed FED STD 101n was judged to be generally adequate, but

it was felt that a more comprehensive itemization of network and user

conditions that may affect data communication performance would be helpful to

users. Such an itemization will be added to the standard in a future

revision.

3. Given a specified measurement preclslon objective, is it
possible to determine the sample size required to achieve that
objective in a straightforward way?

The ARPANET experiment indicated that calculation of sample size

requirements from measurement precision objectives using proposed FED STD 1043

is very straightforward. What is less straightforward is the determination of

realistic measurement precision objectives. As suggested in answer to

question (1) above, the first step in determining such objectives is to

establish the relationship between the precision of the measured values and

the usefulness of those values in communication management decision making.

The proposed FED STD 1043 sample size determination procedures provide the

essential second step: relating measurement precision to measurement cost.

4. Can the post-test data analysis procedures and formulas
provided in the current FED STD 1043 draft be applied to the
ARPA network test data with reasonable effort? How much do
the precision estimates calculated on the basis of the
observed test results differ from the objectives established
before the test? How realistic were the statistical
assumptions on which the pretest calculations were based?

No particular problems were encountered in applying the proposed FED STD

1043 statistical analysis procedures to the ARPANET measurement results. As

17The effects on specific parameters (and the probable reasons for these
effects) are discussed in Section 6.2.

135



discussed in answer to question (3) above, the measurement precision

objectives established at the outset of the test proved to be much too

stringent in the case of several parameters; and the desired and actual

confidence limits differ correspondingly in those cases. As discussed in

answer to question (1) above, similar difficulties could be avoided in future

applications of the standard by a more careful development of the measurement

precision objectives.
Perhaps the most significant statistical assumption underlying the pre­

test calculations of confidence limits was th~ assumption of first-order

Markov dependence between performance times. As discussed in Section 4.4,

that assumption was checked in the case of the ARPANET access times. The

results indicated that higher order dependence does exist, but has relatively

little impact on the precision estimates. Thus, the Markov assumption appears

to be reasonable in the case studied.

6.2 Secondary Results
As noted in Section 3, a secondary objective of the ARPA network

measurements project was to obtain some typical performance values to

characterize the data communication service provided by the ARPA network and

its host computers to end users. It was anticipated that these values would

be useful first, in understanding differences between subnetwork and user­

perceived performance; and second, in assessing proposed refinements in the

performance parameter definitions.
This subsection summarizes the ARPA network measurements project results

that relate to that objective. The same question/answer format employed in

the preceding subsection is used here. As in Section 3, the questions are

grouped in three categories, addressing the access, user information transfer,

and disengagement parameters successively. Within each category, questions

related to network performance are addressed first, followed by questions

related to the parameter definitions. The various questions are discussed

more extensively here than in the preceding subaec t Lon , since the measured

performance results have not been presented in earlier sections.

Table 3 summarizes the performance measurement results in qualitative

terms. As would be expected in measuring a modern packet-switching network

like the ARPANET, the majority of the tests ran faultlessly, with no deviation

from the normal flow path of Figure 25. What is shown in Table 3 are the

relatively few exceptions. The measured values for the. 1033/102 accuracy and

136



IDENTIYING
NUMBER

TEST
NUMBER(S) NATURE OF ANOMALY CAUSE (IF KNOWN)

REMEDIAL ACTION
(IF ANY) PERFORMANCE EFFECT

77 DOCB TIP "crashed" during an A/D
test sequence.

Routine TIP maintenance
procedures.

TIP restart. See next Access Denial (timeout).
item.

2

3

4

78179

94

95

Systematic disappearance of first
or 2 blocks transmitted during an
AID test sequence.

Systematic disappearance of all
transmitted blocks beginning at
the middle of an AID test sequence.

Destination host refused connection
(and source program received a
denial r-esponse) after 67 trials in
an AID test sequence.

NTIA/ITS NCP altered by Host software restart.
TIP "crash" during pre-
vious test.

Probably a host software Host software restart.
failure - NBS system
"crashed" soon after test.

Destination NCP "crashed." Host software restart.

Block Loss.

Block Loss (all blocks
transmitted between failure
and test termination).

Access Denial (system
blocking signal).

5 97 Random loss of blocks during an AID
test sequence.

Unknown. Destination
host was under very heavy
local use.

None. Problem did not
persist.

Block Loss (three random
blocks in a 160-block
sequence).

W
-....J

6 97 12-minute access time observed on
one trial in a 160-trial AID
sequence. Access ultimately estab­
lished. Remaining access times
normal.

Unknown. Destination
host was under very heavy
local use.

None. Problem did not Access Denial (timeout).
persist.

7

8

9

10

Not
Assigned

Not
Assigned

Not
Assigned

All UrT
TESTS

Host down at initiation of test.

TIP down at initiation of test.

Host and TIP disconnected at
initiation of test.

First few blocks input by source
are delivered to destination in
two pieces (512 bytes --64 bytes
+ 445 bytes).

Various (e.g., hardware
failures, software
"crashes").

TIP program failure.

TIP operator error.

Unknown. May be a char­
acteristic of the host
flow control protocol.

Host hardware mainten­
ance or software re­
start.

TIP restart (via
remote action).

Reconnect TIP/host
cable.

None. Delivered bit
sequence is correct;
only block delimiters
are changed.

Access Outage. This was a
very common occurrence.

Access Outage.

Access Outage.

Longer Block Transfer Times
for first few blocks trans­
mitted during UIT tests.

Table 3. Summary of Observed Anomalies



reliability parameters were largely determined by these anomalies. Each

anomaly is discussed more fully below, in conjunction with the particular

parameter value(s) it influenced.

6.2.1 Access Parameters
The three questions posed in Section 3.2.1 regarding ARPA network access

performance are restated and answered below.

1. How long must an ARPA network end user wait, after requesting
communication service, before his first block of information
is actually delivered to the system for transmission? How
variable is that delay? What proportion of the delay is
attributable to delays introduced by the users? What
proportion is attributable to subnetwork packet transmissions?

The first of these questions is answered by the measured value of the

standard performance parameter Access Time. The measured value of that

parameter, averaged over all 2993 Successful Access outcomes observed during

the 5 weeks of ARPA network access/disengagement testing, was 1.8 seconds.

The Access Time measurement precision objective specified in Section 4.4 was

achieved, and thus the upper and lower 95% confidence limits on this estimate

are 1.9 and 1.7 seconds, respectively.

The variability of the measured access times is further illustrated in

the series of five histograms shown in Figures 31 through 35. 18 Figure 31

shows the distribution of measured access times for 3049 observed trIals. The

smallest access time observed was 602 milliseconds; the largest was 24.1

seconds. (An astounding 728.6-second [12.1 minute] access time was observed

on one trial, but was discarded as an obvious anomaly.) A total of 14 access

times fell between 6 and 25 seconds. The overall standard deviation of the

measured access times was 1.0 second.
Figures 32 through 35 provide a basis for assessing the effects of

direction of transfer, user program priority, and time of day on the measured

access times. The observed effect of direction of transfer on access time is

illustrated by Figures 32 and 33. There is a measured difference in mean

Access Time of about 0.1 second between attempts initiated at NBS/leST and

18These histograms include all measured values which are graphically
representable. They include 17 trials which exceeded the "3 times nominal"
timeout and 39 trials which were not included in the sample used in
calculating the access parameters because a clock error occurred at the
destination.

138



t:4RPt:4NET t:4CCESS TI ME~S
.......................................................

(Overall Average)

-
TranSMission between NBS/leST in
Gaithersburg & NTlA/lTS in Boulder

.............................................................. ... .... Test ing took place between SepteMber 17, 1981. .. .
- and October 23, 1981

'r--

NUMber of Accesses = 3049
MiniMUM TiMe -. 602 MS

: MaxiMUM TiMe = 24.1 s................. ....................................... .... '" ... . ...... ; ........ Mean TiMe 1.86 s
..........

c:

r-- Standard Deviat on = 1. 02 s......-

-
~

r-- I III n :

413

30

l/l
011
VI
l/l
011
u....
a: 213
'+-
0eN

<..0 ..
c
(I..

OJ
s...
011

CL. 10

13
13.13 .5 I.e 1.5 2.13 2.5 3.13 3.5 4.13

Access TiMe in Seconds

Figure 31. Histogram of access times - overall average.



40 Iii iii ' iii Iii iii iii , I ' , iii iii i , , , , iii iii I

~RPANET ACCESS T I ncs
30

r--
············································1···. .

(East to West, High Priority, Peak Hours)
11/
(II

111
III
(II

V
'J
a:
....
0-l:=:>

0 +0
c
J1I
\,.,

!o..
(II

0..

20

10

Source: NBS/leST (Gaithersburg)
Destination: NTIA/ITS (Boulder)

Testing took place between SepteMber 17, 1981
I---. and SepteMber 29, 1981

....-
NUMber of Accesses - 1567
MiniMuM TiMe = 664 M!:;
MaxiMuM TiMe = 7.71 s ............
Mean TiMe = 1.88 s
Standar'd Deviation = 613 MS

I--

r-n---m--h
r-

i , i , , r-
.b 1.0 1.5 2.13 2.5 3.13

--
3.5 4.121

~ccess Time in Seconds

Figure 32. Histogram of access times - east to west, high priority, peak hours.



40 Iii iii i , • , ii' , ii' , • , Iii iii i I Ii' iii iii ii' I

~RP~NET ~CCESS TIMES
~0 : : : : .

- r : : . (West to East, High Priority, Peak Hours)

Testing took place between October 21, 1981
and October 23, 1981

NTlA/ITS (Boulder)
NBS/leST (Gaithersburg)

I--
5

MS

M <:·..,
<:'-,

345
1. 54
5.1i
1. 97

409

Source:
Destintion:

I--
NUMber of Accesses =
MiniMUM TiMe =
MaxiMuM TiMe =

... , Mean. TiMe =
Standard Deviation =

r--

...................: : , .10

20

(1)

IJJ
VI
VI
(ll

U
U
c:
'f-
0

.f':> ..........
t:
Q.I

U
~

IJJ
Q.

....... r
.5 1.0 1.5 2.0

:

2.5 3.0 3.5 4.0

Access TiMe in Seconds

Figure 33. Histogram of access times - west to east, high priority, peak hours.



:

RRPt=lNET RCCESS TIMES
................. ................................... --- .....

(East to West, High Priority, Off Hours)
-

Source: NBS/leST (Gaithersburg)
...-......- Destination: NTIAIITS (Boulder)

~
................. ................................... ... .... ... . Test ing took place between SepteMber 17, 1981 ..

and SepteMber 28, 1981

: NUMber of Accesses = 480
: ; MiniMuM TiMe = 602 MS

MaxiMuM TiMe .-. 4.84 s
................. ................................... ... .... ... ........... : .... Mean TiMe = 1. 53 5

.............
: Standard Deviation = 369 Mf.';:

...-

n I n---r-L, .rfTi

40

313

III
GI
VI
1,11
GI
'J
V

CI 213
'i-
0......

+::>
+0N
c
(I,t
....
l.-
GI
a, 113

a
121.13 .5 1.13 1.5 2.13 2.5 3.13 3.5 4.0

Access TiMe in Seconds

Figure 34. Histogram of access times - east to west, high priority, off hours.



iii ' , iii iii , , i , , I Ii. i ,40 Ii' iii iii iii iii f i i

~RP~NETi ~CCESS T I ~lES
(East to West, NorMal Priority> Off Hours)

,..-,
Source: NBS/leST (Gaithersburg)

r--l I Destination: NTIA/ITS (Bo uLder )

... , Testing took place between SepteMber
and SepteMber 25, 1981

s .

III
011
III
III
011
'oJ
'-'a:
~

0
+:>

+0-W
C
QI
'J
!...

'11
0...

30

20

10

.......................................~....

NUMber of Accesses -
MiniMuM TiMe =
MaxiMuM TiMe =

••• 1•••••••••••••• Mean TiMe =
r-,: Standard Deviation =

320
795

5.48
1. 74

367

r.V.l
I.::.:.~. )

MS

S

MS

1981

.I ! I ! i
,

i Cl=j = r=J

€I.e .5 1.0 1.5 2.e 2.5 3.0 3.5 4.e

Access Time in Seconds

Figure 35. Histogram of access times - east to west, normal priority, off hours.



attempts initiated at NTIA/ITS, but this is attributable to the difference in

clock read times at the two sites (Appendix D).

The observed effect of user program priority on Access Time is

illustrated by Figures 34 and 35. As one would expect, the mean Access Time

measured under high user program priority was shorter than that measured under

normal priority. The observed difference is about 0.2 second. However, the

access time variation among tests having the same measurement conditions was

sufficiently large that this difference could not be declared statistically
significant.

The effect of time of day on Access Time is illustrated by Figures 32 and

34. The mean Access Time during peak hours was about 0.4 second longer than

the corresponding off hours value. This difference, which was statistically

significant, undoubtedly reflects a substantial user component, although

variations in subnetwork utilization between peak and off hours probably also

contributed (Kleinrock et a1., 1976).

The average proportion of Access Time that is attributable to delays

introduced by the transmitting and receiving end users (host computer
application programs) is indicated by the measured value of the ancillary

parameter User Fraction of Access Time. That value, averaged over all 2993

Successful Access outcomes observed during the testing, was 0.15. Thus, the

average user component of Access Time was 0.15 x 1.8 = 0.3 seconds, and the

average system component of Access Time was 0.85 x 1.8 = 1.5 seconds, In the

application tested, most of the user time was occupied by clock readings (144

and 264 milliseconds per access for NBS/leST and NTIA/ITS originated attempts,

respectively). The user programs would not be instrumented in actual

operational data communication sessions, of course, but they would still

introduce delays as a result of their processing of an access request. Such

processing functions might include, for example, user resource allocation,

user ID verification, and quality of service negotiation.

Decomposing the measured Access Time values into subnetwork and host

components was not really an objective of this experiment, but a rough

estimate of these components can be developed as follows. Beginning with the

1.8 second average Access Time, we first remove the end user (application

program) component (0.3 second) using the ancillary parameter as noted above.

The resulting 1.5 second user-independent Access Time is composed of two

subnetwork packet transit delays (one for the connection request and one for

144



the response) and two host computer processing delays (one to generate the

response and one to generate the first WRITE request).

Consider first the average contribution of the two subnetwork packet

transit delays. The typical transit delay for a single-packet message across

an 8-hop ARPA subnetwork path is less than 250 ms. One-half second is thus a

reasonable, although rough, upper bound on the connection request and response

subnetwork transit delays. This leaves 1 second as the probable contribution

of the two host computer operating systems and NCP's. A substantial portion

of that delay is probably a result of time-sharing interrupts.

About midway through the testing, a statistical analysis of the collected

Access Time data was conducted to test earlier dependence assumptions and

refine the sample size requirements. Major steps in this analysis are

summarized below, as a demonstration of use of the FED STD 1043 Statistical

Design and Analysis procedures.

The measured Access Times were analyzed in accordance with A.4.3.2 of

proposed FED STD 1043 and Crow (1979), the second reference providing the
formulas for taking account of the substantial intergroup differences between

samples separated in time. As noted earlier, these differences led to

determining that 19 samples of 160 trials each would be required to estimate

the mean access time within ± 0.1 second with 95% confidence. At the mid­

point in the planned test interval, nine such samples had been acqutr-cd and

assessed; and it was therefore assumed that the specified precision had not,

as yet, been attained.

To the four preliminary samples used in the sample size determination

(Section 4.4) we adjoined the five further samples available:

W 1.665 1.897 1.566 1.397 1.932 Mean = 1.691 seconds

s 0.239 0.742 0.147 0.333 0.455 RMS = 0.435 seconds

r1 0.009 0.004 0.028 0.180 0.228 Mean = 0.090

The means and RMS internal variance for all nine samples were thus

1.728 seconds, 0.497 seconds, 0.104

(Very slight differences arose from rounding at different states of

calculation.)

The variance of the nine means was (0.2120)2 =0.0450, little different

from that found previously for the first four means. Following the previous

calculations, we have all ni =160, m =9, se2 =0.247,

145



s 2 8 (160 x 0.0450 - 0.247) = 0.0434= 1440-160a

s_2 = 0.0434 + ~4~67 = 0.00482 + 0.0017 = 0.00499x 9

2s- = O. 141x

Since the internal variance contributed only 3% of sx2, it mattered little

whether the slight increase in it due to the autocorrelation was included.

The factor (1 + r1 )/( 1 - r1) - 1.232 increased that term to 0.00021, and 2s x
to 0.142. Hence, the 95% confidence limits for Access Time, based on the
first nine 160-access samples, were

1.728 ± O. 142 = 1.870 seconds
1.586

As predicted, the prescribed accuracy of 0.1 second was not attained with nine

samples, and the necessity of about 19 (perhaps 18) samples to attain that

accuracy was confirmed.

2. What is the likelihood that transmitted user information will
be directed towards a destination other than the one intended
as a result of a system connection establishment error?

This question is answered by the measured value for the standard

performance parameter Incorrect Access Probability. No Incorrect Access

outcomes occurred in the 3019 access attempts observed during this experiment,

so that the Incorrect Access Probability is estimated as zero. Based on the

assumption that successive Incorrect Access outcomes are independent, which

seems to be as reasonable an assumption as any based on the data collected,

the 95% upper confidence lim it for Incorrect Access Probability is 1 x 10-3

(Crow, 1974).

3. What is the likelihood that the system will fail to give the
user access to communication service (within a specified
maximum time) on any given request? How frequently are such
failures attributable to system outages? How sensitive is
that likelihood to host computer utilization?

The first two questions are answered by the measured values for the

standard performance parameters Access Denial Probability and Access Outage

Probability. As discussed in Section 2.3, the definitions of these parameters

in Interim FED STD 1033 and X3.102 differ in that the former standard treats
Access Outages as Access Denials, whereas the latter treats Access Outages as

separate outcomes. As noted earlier, 3019 total access attempts were observed

146



during the experiment. Of these, 17 failed as a result of access timeout; 1

failed as a result of issuance of a system blocking signal; and 8 failed as a

resul t of Access Outage (e.g., network or host observably down at the outset

of the test). The Interim FED srD 1033 Access Denial Probability value is

thus (17 + 1 + 8)/3019 = 8.6 x 10-3; the X3.102 Access Denial Probability

value is (17 + 1)/3019 =6.0 x 10-3; and the X3.102 Access Outage Probability

value is 8/3019 = 2.6 x 10-3• Thus, a little less than one-third of the

observed access failures were attdbutable to system outages.

The upper and lower 90% confidence limits for these estimates are

summarized below:

Upper 90% Lower 90%
Parameter Confidence Limit Confidence Limit

FED STD 1033
10-2 10-3Access Denial Probability 1.2 x 6.0 x

X3.102
10-3 10-3Access Denial Probability 8.8 x 3.8 x

X3.102
10-3 10-3Access Outage Probability 4.8 x 1.3 x

Of the three types of access failures discussed above, the timeout

failures are undoubtedly the most sensitive to host computer utilization. Of

the 17 timeout failures observed during the access/disengagement tests, all

but 1 occurred during peak hours. The seventeenth timeout failure was

apparently the result of an unusually long subnetwork transit delay.

The ARPA network access measurements were also intended to answer four

questions regarding the detailed definition of the access performance

parameters. These questions are rest.at.ed and answered below.

1. Are the observed values for Access Time substantially
influenced by the choice of "start of block transfer" rather
than "connection confirmation" as the end of the access
function? Does the ancillary parameter User Fraction of
Access Time provide an adequate method of factoring out that
influence where user-independent parameter values are desired?

The measured difference between these two possible "end of access" events

was about 175 milliseconds for access attempts initiated at NBS/ICST, and 300
milliseconds for access attempts initiated at NTIA/ITS. In each case, the

majority of the time is occupied in reading the satellite clock.

147



The delay between these two access ending events is less significant

given the existence of the ancillary parameter User Fraction of Access Time,

since that parameter can be used to factor out such user-dependent delays.

User Fraction of Access Time and the other ancillary parameters proved to be

effective and useful in analyzing the ARPA network measurement results,

particularly where comparisons between end-to-end and subnetwork performance
were undertaken.

2. Is Incorrect Access Probability practical to measure as
defined in the current standards? Is the distinction between
Incorrect Access Probability and Block Misdelivery Probability
significant from a measurement standpoint?

The answer to the first question depends on one's definition of

"measure". If that definition implies that a probability estimate obtained by

measurement must be greater than zero, then Incorrect Access Probability will

be difficult to "measure" in data communication systems with effective end-to­

end error control. The standards tested in this experiment are based on the

opposite view, that a probability estimate of zero is a valid measurement

result as long as the sample size, and the associated upper confidence limit,

are stated. The ARPANET experience demonstrated that the instrumentation

effort required to estimate Incorrect Access Probability is straightforward in

any case.

The distinction between Incorrect Access Probability and Block

Misdelivery Probability is significant from a measurement standpoint in that

the latter measurement requires the provision of dual Interface Monitors, with

similar instrumentation, synchronization, and storage capabilities, at one or

both user sites. This subject is addressed more fully in the discussion of

Block Misdelivery Probability in Section 6.2.2.

3. How strongly is the value for Access Denial Probability
influenced by the choice of maximum access time? Would a
different maximum access time value, or a different algorithm
for determining that value, be more appropriate than the one
selected?

The maximum access time (or "access timeout") value influences Access

Denial Probability very directly, since it establishes a measured delay beyond

which an access attempt is declared to be a failure for performance assessment

purposes. In essence, the timeout value truncates the access time

distribution at a value equal to three times the pre-truncation mean; and any

access attempt whose performance time exceeds that truncation point (as a

148



result of system delays) is declared to be an Access Denial. Clearly, a

larger timeout value would cause fewer access attempts in the "tail" of the

Access Time distribution to be classified as Access Denials, and vice versa.19

The specific effect of the access timeout value on Access Denial

Probability depends on two factors:

1. The frequency of Access Denial outcomes attributable to causes
other than timeout. The possible other causes of Access
Denial are System Blocking signals and, in the FED STD 1033
case, Access Outages. The more such non-timeout denials there
are in a measurement sample, the less influence the timeout
threshold has on Access Denial Probability; and vice versa.

2. The shape of the Access Time distribution. The more peaked
that distribution is, the less influence the timeout threshold
has on Access Denial Probability; and vice versa.

The relative numbers of timeout, system blocking, and Access Outage

outcomes observed during the ARPA network measurements have been stated

earlier: Le., 17, 1, and 8 outcomes, respectively. Thus, timeouts account

for about two-thirds of the observed Access Denials under the FED STD 1033

defini tion, and 94% of the observed Access Denials under the X3.102

definition.

The choice of a timeout threshold for defining performance failures is

inevitably somewhat arbitrary. The constant 3 was chosen in the belief that

it would (1) be generally consistent with user expectations about service

performance, and (2) include most of the area under a typical delay time

distribution. Crow (1979) analyzed the effect of truncating various delay

time distributions at 3 times the mean, and related this data to typical

communication delay distributions available at that time. He pointed out that

some form of truncation is necessary in conducting practical measurements,20

and concluded that the "3 times nominal" truncation rule appears to be as

reasonable as any other based on the distributions studied.

19The truncation point also affects Access Time, since only Successful Access
outcomes are included in that average. However, the effect on Access Time
is normally much less significant than the effect on Access Denial
Probability.

20The need for some truncation point is clearly illustrated by the 12.1-minute
access time observed in these measurements. Inclusion of that one point in
the Access Time distribution would increase its standard deviation from 1.0
to 13.2 seconds!

149



4. ANSI X3.102 differs from Interim FED STD 1033 in that it
distinguishes Access Outage (no system response) from Access
Denial (negative system response or excessive system delay).
Are these two outcomes readily distinguishable in the case
studied? Is that distinction meaningful and important in the
case studied?

The relative numbers of outage and non-outage Access Failures observed

during the ARPA network tests have been presented earlier. To summarize

briefly, the exclusion of Access Outage outcomes in calculating Access Denial

Probability reduces the value of that parameter by about 30%, from 8.6 x 10-3

to 6.0 x 10-3. By itself, that difference would not justify the separation of

these outcomes and the definition of a new performance parameter. However, a

second reason for distinguishing Access Outage from Access Denial was that the

appropriate user actions are often different in the two cases. In the former

case, maintenance action is normally required; in the latter case, the best

user response often is simply to re-attempt access. This distinction proved

to be a very accurate and pr~ctical one in the ARPA network application; and

on the basis of that experience, the ANSI approach is clearly preferable.

6.2.2 User Information Transfer (and Availability) Parameters

The seven questions posed in Section 3.2.2 regarding ARPA network user

information transfer and availability performance are restated and answered

below.

1. What total delay does a bit or block of user information
experience, on average, between a request for its transmission
by the source application program and the completion of its
delivery to the destination program? How is that delay
influenced ~y block length? How variable is that delay, for a
given block length? Does user performance contribute
significantly to the observed end-to-end delays in the case
studied? How do the measured Block Transfer times compare
with previously measured "average message delays" for the
subnet?

The average delays experienced by user information bits and blocks in
transit between ARPANET host application programs are expressed by the

standard performance parameters Bit Transfer Time and Block Transfer Time.

The values for these two parameters are virtually identical in the case

studied, because each block is passed across the application program/operating

150



system interface as a unit rather than as a series of bits.21 Only the latter

parameter is discussed here. Values are presented for two block lengths: the

512-byte (4096-bit) block transferred during the user information transfer

tests, and the 64-byte (512-bit) block transferred during the

access/disengagement tests.

The measured value of Block Transfer Time for 512-byte blocks, averaged

over all 428 512-byte blocks successfully transferred during the 4 weeks of

ARPA network UrT testing, was 709 milliseconds. The 95% upper and lower

confidence limits on this value, assuming independence between successive

trials, are 739 and 679 milliseconds, respectively. The corresponding average

value for the 2996 64-byte blocks successfully transferred during the

access/disengagement testing was 262 milliseconds (± 10 ms). The difference

between these values is primarily a result of differences in the transmission

and flow control protocols for single-packet and multi-packet messages. The

64-byte blocks fit easily into a single packet, whereas the 512-byte blocks

were transmitted as five separate packets.

Figures 36 and 37 show the dJLstributions of measured block transfer times

for the 512-byte and 64-byte blocks, respectively. (Again, for completeness,

these histograms are not truncated at three times the mean.) The 512-byte

block transfer times range between 569 milliseconds and 4.0 seconds, with a

mean of 757 milliseconds and a standard deviation of 386 milliseconds. The

64-byte block transfer times range between 216 milliseconds and 2.9 seconds,

with a mean of 264 milliseconds and a standard deviation of 70 milliseconds.

The variations of Block Transfer Time with direction of transfer and

system utilization were qualitatively similar to those observed in the case of

Access Time. The choice of high or normal user program priority should have

no effect on Block Transfer Time since there are no user delays during that

time (Figure 25).

A rough comparison of end-to-end and subnetwork Block Transfer Times can

be derived from the subnetwork data shown in Figure 38 (adapted from

Kleinrock, 1976). Figure 38a shows average and minimum subnetwork "round-trip

delay" as a function of hop distance. Figure 38b presents histograms of

round-trip delay for 1-, 5-, and 9-hop paths. Kleinrock defines "round-trip

delay" as follows:

21 An occasional exception was observed, as identified in Table 3, anomaly
No. 10.

151



60 Iii iii i". , iii iii iii iii iii iii iii • iii iii i , i I

........ ~RP~~ET BLOCK TR~NSFER TIMEs
................: : ~ ; ~' : .III

~

Q,I
<.r-
III
c
to
~

i-

~

U
0
.-l

Ul I:Q
N <.r-

0

+-
C
Q,I
U
~
Q,I
a,

513

413

313

213

.---

...r ~ ~.

· .... , .

I--

Transfer TiMes for 512 Byte Blocks

TranSMission between NBS/leST in
Gaithersburg & NTIA/ITS in Boulder

Testing took place between October 27) 1981
and NoveMber 24) 1981

NUMber of Blocks ::: 435
MiniMuM TiMe .- 569 MS
MaxiMuM TiMe ::: 3.99 s
Mean TiMe ::: 757 MS
Standard Deviation ::: 386 M~5

113 . • •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 • ••••••••••••••••••· . . . . .

~
.· .· .

~

.5 La 1.5 2.13 2.5 3.13 3.5

Transfer TiMe in Seconds

Figure 36. Histogram of block transfer times - overall average for 5l2-byte blocks.



50 i i • iii' i , , iii i , , ii' , iii , , ii' • iii iii' iii iii iii if i , , iii' , , ii' , iii' , , , , , i i

.-

413
i=lRPRNEt BLOCK TRi=lNSFER~ TIMES

................. ; ; .

Transfer TiMes for 64 Byte Blocks

NUMber of Blocks = 3003
MiniMUM TiMe = 216 MS
MaxiMuM TiMe = 2.86 s
Mean TiMe .- 264 MS

··········~···Standard Dev:i.at:J.on = 70 MS

I--

10 , .

.7.6.5.4

TransMission between NBS/leST in
Gaithersburg & NTIA/ITS in Boulder

Testing took place between SepteMber 17, 1981
and October 23, 1981

n,
.3

I""""r:=r=r

.2• 1

20 ~ ~ .

30 , , ....•.....•....

I,tl
s;
Q.I

C+-
UI
C
tU

'-
t-

.:ll:

U--'
0(J1

.--!W

.:r.
~
0

i-"
C
Q.I
u
'-
Q.I

0..

Transfer TiMe in Seconds

Figure 37. Histogram of block transfer times - overall average for 64-byte blocks.



900, I

800

700 l- I I 40

35~ 1 HOP

600l- AVERAGE I I n 5 HOPS,.,

( I
30 I

o I
w 500 ,I I(I)

~ I
w 25

I i
..,

~ I
.... 400 I
ci.. I
a:: I

9 HOPS01 .... If'. 20 • • I.j:::. 0 I ~
Iz 300 I:::>

0 L...a:: 15 I

1O~ ~
r' I

I I

~
I

2001- . I I I I I

•
100l- I 51- I

'"J' ~ LJlli ~}-1-~ I I
0 200 400 600 BOO 1000 1200 1400 1600

2 3 4 5 6 7 8 9 10 11 ROUND-TRIP TIME (MSEC)
NUMBER OF HOPS

a. Round-trip delay in the ARPANET b. Histogram of round-trip
(October 1974). delays (msec) .

Figure 38. Published data on "round-trip delays" in the ARPANET.



"Round-trip delay is measured by the IMP's and is the time from
when a message enters the network until the network's end-to-end
acknowledgement in the form of a RFNM is returned."

Thus, "round-trip delay" includes two subnetwork Block Transfer Times:

one for the source block and one for the Request for Next Message (RFNM). The

source blocks transmitted in these "round-trip delay" measurements were 8063

bits (8 packets) in length (Kleinrock and Opderbeck, 1975). The RFNM's are

short, one packet messages. Based on a factor of 3 as the approximate

difference in transit delay between the source message and the RFNM, the

average one-way subnetwork Block Transfer Time for a 8-packet message across

the 8-hop DOCB/NBS path is estimated to be about (.75)(750 ms) = 563

milliseconds. The corresponding single-packet delay would be (.25)(750 ms) =

187 milliseconds. Thus, about 70% of the user-to-user Block Transfer Time is

estimated to be subnetwork delay in each case.

2. The ARPANET error control algorithms have been designed to
ensure that undetected bit (or block) errors will occur on the
order of "years to centuries apart" (Kleinrock, 1976). Has
this objective been attained, or is it, in fact, possible to
observe undetected bit errors in a measurement spanning only a
few months?

Not a single bit error was observed in the 3.287,040 bits transferred

during the ARPANET access/disengagement and UIT tests. Thus, both the Bit

Error Probability and Block Error Probability values are estimated as zero.

The 95% upper confidence limit for the former parameter, (assuming the

conditional probability of an error, given an error on the preceding bit, is

P11 = 0.7) is 3 x 10-6•

3. What is the likelihood that a unit of information delivered by
the ARPANET to a given destination user will,in fact, have
been intended for some other user?

The question is answered by the measured values for Bit Misdelivery

Probability and Block Misdelivery Probability. As discussed more fully in

answer to a later question, these values could have been measured with little

additional effort during the ARPANET tests by simply creating a duplicate of

the destination user program, with a different process address, at each site.

Unfortunately, the simplicity of that approach was not realized until most of

the ARPANET tests had been completed; and the limited data collected after its

implementation were not sufficient to estimate those parameters in a

statistically valid way. Based on the error probability results just

155



described, it is highly unlikely that Block Misdelivery would have been
observed in any case.

4. Kleinrock (1976) has reported that "on the average, every
hundredth message which enters the ARPANET will not reach its
destination. The reason for this undesirable behavior is that
many destination hosts are tardy in accepting messages." Is
the loss of user information as frequent today, in the
configuration tested, as it was in 1976? What proportion of
the observed Block Loss outcomes is attributable to
performance timeouts as opposed to the actual absence of the
received user information? Is Block Loss primarily
attributable to "tardy" hosts, or does the subnetwork also
contribute?

These questions are answered by the measured values for the Bit Loss

Probability and Block Loss Probability parameters. Unlike Block Error, Block

Loss proved to be readily observable in the ARPANET experiment. Excluding

timeouts, the value measured for that parameter over all blocks transmitted

during the experiment was 7/3445 = 2 x 10-3• That value is somewhat lower

than the value measured by Kleinrock 5 years earlier.

An additional 14 transmitted blocks were classified as lost on the basis

that their transfer times exceed the "3 times nominal" timeout value. Thus,

the overall Block Loss Probability measured during the test was (7 + 14)/3445

= 6 x 10-3• The upper and lower 90% confidence limits on this value are 9 x

10-3 and 4 x 10-3, respectively. Exactly two-thirds of the blocks classified

as "lost" during the test were timeout failures.

The proportion of Lost Block outcomes caused by "tardy" hosts cannot be

determined exactly from the data observed, but a survey of the anomaly causes

listed in Table 3 suggests that a substantial proportion of the 7 "total"

losses were caused by host NCP failures. The question is somewhat academic to

the end users in any case, since the data is unavailable either way.
The calculation of Block Loss Probability required one rather difficult

statistical decision. An additional 39 Block Loss outcomes were observed in

tests 78, 79, and 94, as described in Table 3. These failures were not

included in the above figures because they were a result of "hard" failures in

the host software which would have caused Block Loss outcomes in all

subsequent transmitted data. Adding the Block Loss outcomes actually observed

after these failures to those observed on other tests would be misleading,

since the former total is more a function of the test operator's alertness

than the system's performance. Each of these observed software failures was

counted in calculating the secondary (availability) parameters.

156



Bit Loss Probability was identical to Block Loss Probability in the case

studied, since only entire blocks were lost. In the general case, bits may be

lost within a delivered block, making the Bit Loss Probability higher than the

Block Loss Probability. Note that FED STD 1033 and X3.102 classify a block as

lost only if all bits in the block are lost. Delivered blocks from which

some, but not all. bits have been lost are classified as Incorrect Blocks.

5. Data loss and data duplication are similar in that both can be
caused by ARQ protocol failures and system "crashes". Does
data duplication occur with measurable frequency in the
ARPANET? Are nonduplicate extra bits delivered to ARPANET
users with measurable frequency? What phenomena cause such
events, assuming they occur?

No instances of either data duplication or the delivery of nonduplicate

".extra" bits were observed during the ARPANET testing. Thus, both the Extra

Bit Probability and the Extra Block Probability values are estimated as zero.

The 95% upper confidence limit for the former parameter, based on the same

sample size and conditional failure probability defined in the case of Bit

Error Probability, is 3 x 10-6•

Although delivery of duplicate or extra data is rare or even nonexistent

in the ARPA network, it is always possible whenever two "copies" of an

information unit exist simultaneously at different physical locations in a

network. For further discussion, see Sunshine (1975) and Seitz (1980a).

6. What throughput is typically achieved between host application
programs utilizing the ARPA network? How does this throughput
compare with the theoretical maximum process-to-process
bandwidth of the network (Kleinrock, 1976)? How does it
compare to the values obtained in earlier, experimental
measurements? How does it compare with the allocated channel
signalling rate? To what extent are the measured throughput
values influenced by source and destination user delays?

The two standard performance parameters which most directly measure the

throughput performance of a network are the Interim FED STD 1033 parameter Bit

Transfer Rate and its ANSI equivalent, User Information Bit Transfer Rate.

The values for these two parameters differed insignificantly in the ARPANET

application because of its relatively short transit delays, so that the

discussion of results can be focussed on Bit Tr-ansfer Rate without loss of

generality.

Bit Transfer Rate values were measured only in the case of the 512-byte

UIT tests, because only a single block was transmitted during each session in

the access/disengagement tests. The average user-to-user Bit Transfer Rate

157



measured during the ARPA network UIT tests was 4872 bits per second (bps).

That value is substantially lower than both the previously measured and the

theoretical maximum ARPANET throughputs reported earlier. Kleinrock (1976)

has calculated a maximum possible bandwidth for ARPANET process-to-process

(user-to-user) communication of 39.6 kilobits per second (kbps); and has

measured ARPANET throughput vs. hop distance with the results shown in

Figure 39. Note that an average throughput of 32.5 kbps was achieved for an

8-hop path in that (1975) measurement. In a later study, Kleinrock et ale

(1976) examined the throughput performance of the ARPANET under operational

traffic conditions, and concluded that "if the overall traffic characteristics

remain unchanged, not more than roughly 10 kbps of the 50 kbps will, on the

average, be available for process-to-process communication." The Bit Transfer

Rate values measured in this experiment are roughly half that, or about 10% of

the 50 kbps ARPANET signalling rate.

The differenc~ between the 10 kbps throughput predicted by Kleinrock and

the roughly 5 kbps measured in this experiment is probably a result of three

factors:

1. User Delays. The measured value of User Message Transfer Time
Fraction for the overall UIT tests was 0.13. Dividing 5.3
kbps by the one's complement of that factor would produce a
user-independent throughput value of 6.1 kbps.

2. Host Time-Sharing Delays. Both host NCP's are subject to
interruption by other programs, and of course the operating
system itself introduces some delay in transferring data
between the NCP's and the user programs.

3. Occasional Long Block Transfer Times. Such delays will retard
"throughput" under either the Interim FED STD 1033 or the
X3.102 parameter definitions, since ARPANET flow control
protocols allow only a certain amount of user data "in the
pipe" at any time.

The relative influence of the latter two factors on Bit Transfer Rate is

unknown.

The Interim FED STD 1033 parameter Block Transfer Rate differs only by a

constant from the corresponding bit-oriented parameter, since the block length

used in the UIT measurements was fixed. The measured 512-byte Block Transfer

Rate was 4872/(512)(8) = 1.19 blocks per second. Thus, about one 512-byte

block per second was transferred between the NTIA/ITS and NBS/ICST host

computer application programs during a typical UIT test.

158



35

40' I

-
~30r I

I
::;)

~ 25r IC)...... ::>01 I I1.0 0
a:
~20 t- I

I
I
I
J L

0 1 2 3 4 5 6 7 8 9 10 11 12
NUMBER OF HOPS

Figure 39. Throughput in the ARPANET (October 1974).



7. What is the overall availability of data communication service
between application programs in the case studied? How is the
downtime subdivided between the subnetwork and the hosts? How
does the subnetwork (e.g., IMP/TIP) downtime observed in the
case studied compare with earlier measured values?

As discussed in Section 2, these questions are addressed by the Interim

FED STD 1033 parameter Outage Probability and its ANSI counterpart, Transfer

Denial Probability; and by the Interim FED STD 1033 parameters Service Time

Between Outages and Outage Duration. The ANSI standard parameter Access

Outage Probability also bears on these questions, as discussed above.

Outage Probability and Transfer Denial Probability are calculated by

dividing the period of time during which user information transfer is in

progress (UIT time) into subintervals consisting of a specified number of

bits; and then defining the service to be in either the operational service or

the outage state during each subinterval on the basis of the outcomes

encountered by those bits. The subinterval (called a "message" in Interim FED

STD 1033 and a "sample" in X3.102) is chosen so as to obtain values of a given

precision for a set of "supported" performance parameters; and the secondary

(availabili ty) state of the service is determined over any given sample by

comparing the observed values for the supported parameters with established

outage thresholds.

In the ARPANET application, a method was developed by which both these

parameters could be measured by processing the same samples in slightly

different ways. What was done was the following:

1. The "expected" performance of the end-to-end service was
characterized in terms of specified values for the supported
performance parameters.

2. Outage or Transfer Denial thresholds for these supported
parameters were defined on the basis of the specified values,
using both the Interim FED STD 1033 and X3.102·algorithms.

3. A "message" or "transfer sample" size was established on the
basis of the threshold values and the measurement precision
objectives defined in X3.102. (Interim FED STD 1033 does not
require any particular measurement precision in the
determination of outages.)

4. Secondary or ava ilab il i ty outcomes were determined by
comparing the "supported" parameter values observed during
each sample with the corresponding thresholds. Evaluation of
these availability parameters did not require separate
measurements, since the same data used in evaluating the
primary parameters could be used.

160



"Expected" or specified values for the supported performance parameters

would normally be established on the basis of either user requirements or

previous measurements. In the case of User Information Bit Transfer Rate,

preliminary measurement results were available and indicated that a specified

value of 5 kbps would be appropriate. Neither source of values was available

in the case of the probability parameters, and it was therefore necessary to

define the values somewhat arbitrarily. It was decided to adopt the user

requirements specified in a recent network service solicitation issued by the

Environmental Protection Agency (EPA, 1980) as the "expected" ARPANET values

for three reasons: (1) those requirements are defined directly in terms of
the Interim FED STD 1033 parameters; (2) the service desired was similar, in

many respects, to that provided by the ARPANET; and (3) several major

suppliers of public data communication services submitted quotations

indicating a willingness and ability to comply with the specified values. The

specified values (and the associated threshold values) for each of the four

supported parameters are summarized below.

Supported Parameter

Bit Transfer Rate
Bit Error Probability
Bit Loss Probability
Extra Bit Probability

Specified Value22
FED STD 1033

Threshold Value
X3.102

Threshold Value

A minimum transfer sample size, based on 'the X3.102 threshold v-Iues and

Figure 19, was calculated as follows:

18 failures

(5.3 x 10-2) failures /bit
= 340 bits

The ANSI standard stipulates an additional sample size requirement - that

a transfer sample must include at least one interblock gap. The smallest

sample size fulfilling that requirement in the case of the UIT tests was 8192

bits, since the block size in those tests was 512 bytes. A "message" or

sample size of 8192 bits was used in calculating both Outage Probability and

Transfer Denial Probability values.
Values for Outage Probability and Transfer Denial Probability were

calculated from the UIT test data as follows. The 435 blocks transmitted

22Based on specified character-oriented parameter values. Misdelivery
probability values were not specified and are ignored here.

161



during the UIT tests were partitioned into 217 two-block "samples", each

composed of 8192 consecutive bits. Performance during each sample was

compared with the specified thresholds to identify any Outages or Transfer

Denials. Six occurrences were identified, each on the basis of one or more

Block Loss outcomes. Each failure qualified as both a Interim FED STD 1033

Outage and an X3.102 Transfer Denial. The values for both Outage Probability

and Transfer Denial Probability were thus estimated as 5/217 =2.8 x 10-2•

For comparison, a similar calculation of Outage/Transfer Denial

Probability was made on the basis of the 64-byte UIT results observed during

the access/disengagement tests. The same (8192 bit) sample size was used; but

in this case, the sample comprised 16 consecutive blocks, each transmitted in

a separate data communication session. These samples do not include an inter­

block gap, and thus they are, strictly speaking, not appropriate for

estimating X3.102 User Information Bit Transfer Rate. However, this

deficiency had no practical effect because the only transfer failures observed
were Lost Blocks.

A total of 208 samples were available for calculating Outage/Transfer

Denial Probability values from the access/disengagement test data: 186

samples from the 3010 64-byte blocks transm it ted dur ing the 21

access/disengagement tests listed in Table 2, and 22 samples from the 356

blocks transmitted in three excluded batches (78, 79, and 94 - see Table 3).

Of the 208 samples, 14 contained one or more Lost Blocks and thus qualified as

Outages/Transfer Denials. The values for Outage Probability and Transfer

Denial Probability were thus estimated from the access/disengagement test data

as 14/208 = 6.7 x 10-2• A single, aggregate estimate of Outage/Transfer

Denial Probability based on both the UIT and access/disengagement tests would

be (6 + 14)/425 = 4.7 x 10-2• As noted earlier, that value can be regarded as

a sampled measure of the system's unavailability during user information

transfer. The corresponding availability value would be 95.3%

Based on the anomaly causes listed in Table 3, it appears that most of

the end-to-end service unavailability observed during the tests was

attributable to host failures. However, the Outage/Transfer Denial

Probability values measured in this experiment are actually rather close to

the 1.64% ARPANET IMP "down rate" reported earlier (Kleinrock, 1976).
It became apparent relatively early in the ARPA network measurements

project that it would not be possible to obtain realistic measured values for

the other two "secondary" performance parameters specified in Interim FED STD

162



1033: Service Time Between Outages and Outage Duration. The reason for this

difficulty was the limited measurement time available. Unlike Outage

Probability, which can be estimated on the basis of very few observed outages,

the two time parameters require the averaging of many successive operational

service and outage periods. Successful measurement of the latter parameters

would require either much more continuous sampling of the service (e.g., tests
in progress throughout the normal business day) or a much longer overall test

period (e.g., 1 year). Neither option was feasible in this experiment, and

thus no meaningful measurement results for these parameters can be reported.

The ARPA network user information transfer measurements were also

intended to answer seven questions regarding the detailed definition of the

UIT performance parameters. These questions are restated and answered below.

1. Are Bit Transfer Time and Block Transfer Time distinguishable
in the case studied? Is a comparison of these parameter
values useful in expressing the influence of block length on
transfer time?

Bit Transfer Time and Block Transfer Time were virtually identical in the

case studied because user Lnf'or-ma t.Lon blocks were passed across both

user/system interfaces as a unit (with the Write request or Read Complete

response). The effect of block length on transfer time could not be

determined by comparison of these values, but was measured directly in terms

of the Block Transfer Times for two representative block lengths (as shown

earlier in Figures 38 and 39).

2. Are Bit Error Probability and Block Error Probability
independently useful in characterizing transfer accuracy in
the case studied? Does a comparison of these values provide
useful information on error clustering?

Both questions are moot, since no bit errors were observed during the

experiment. The use of these two parameters in characterizing error

clustering is described in Appendix B ofX3.102 (ANSI, 1982).

3. Are Bit and Block Misdelivery Probability, as defined in
Interim FED STD 1033 and X3.102, measurable in the case
studied? Could their measurement be made simpler if the
parameters were defined differently?

The answers to these questions require a bit of explanation. The Bit and
Block Misdelivery Probabilities could have been measured rather easily in the

ARPA network testing through the ereation of "dummy" XMIT or RECV programs;

but this approach was not conceived and implemented until most of the testing

163



had been compLebed.. As a result, no useful values for these two parameters
were obtained.

One relatively simple approach which could have been used to measure the

misdelivery probabilities is illustrated in Figure 40. The possibility for

misdelivery is created by "forking" (duplicating) the RECV program at each

destination user site, and then changing the address of the forked program to

one distinct from, but similar in binary representation to, that of the

intended destination program. Both programs would be activated at the outset

of the test, with the expectation that only the intended destination program

would actually receive any traffic. Receipt of traffic by the unintended
destination would, of course, indicate misdelivery.

While the above approach is conceptually and procedurally simple, it has

about as much intuitive appeal to a practical measurement engineer as looking

for a needle in a haystack. That is probably why it was overlooked in the

ARPANET test design. Both Interim FED STD 1033 and X3.102 point out that

separate consideration of the misdelivery probabilities is optional. The

extremely high transfer accuracy measured during the ARPANET experiment argues

that misdelivery is very unlikely in that network; and the measurement

outlined in Figure 40 would almost certainly have confirmed that expectation.

4. How strongly are. the values for Bit and Block Loss Probability
influenced by the choice of maximum block transfer time?
Would a different algorithm for determining maximum block
transfer time be more appropriate in the case studied?

As discussed above, two-thirds of the Block Loss outcomes observed during

the ARPANET tests were timeout failures. Eliminating all timeout failures

from the Block Loss category would have reduced the reported Block Loss

Probability by a factor of 3, from 6.1 x 10-3 to 2 x 10-3• As noted in a

similar discussion of access timeout, the "3 times nominal" rule for defining

performance failures is somewhat arbitrary but appears reasonable in the case

studied.

5. ANSI X3.102 differs from Interim FED STD 1033 in the
definition of User Information Bit Transfer Rate. Are these
differences significant in the case studied? Which definition
is preferable from a measurement standpoint?

These differences, described in Section 2.3 and illustrated in Figure 9,

proved to be unimportant in the ARPANET application. The throughput values

measured under the two definitions typically differed by only a few percent.

The differences in parameter definition would be much more significant in

164



User Pair Tested
for Misdelivery

~

--'
C'l
U1

Source User

Blocks Addressed
to User X

Correctly
~ Delivered Blocks

"'" Possible
"" .....s-> Misdelivered

<, Blocks
<,

<,
<,

<,
~

Intended
Destination

User (X)

Unintended
Destination

User (Y)

Figure 40. Misdelivery measurement approach.



applications with longer Block Transfer Times (e.g., electronic mail or

traditional message switching systems).

6. ANSI X3.102 differs from Interim FED STD 1033 in that the
Block Transfer Rate and Bit/Block Rate Efficiency parameter
are omitted. Does the omission of these parameters detract
significantly from the completeness of the performance
description?

The custom of relating user-to-user transfer rate to the associated
channel signalling rate is a very useful one, as evidenced by its widespread

acceptance by communication system analysts and designers. However, omission

of the Rate Efficiency parameters from X3.102 can be justified on the basis

that their values are primarily of interest to service suppliers rather than

end users. The decision has essentially no measurement implications in any

case, since the Rate Efficiency parameter values differ only by a constant

from the corresponding Bit Transfer Rates.

7. ANSI X3.102 differs from Interim FED STD 1033 in the selection
and definition of availability parameters. Which approach
appears preferable from a measurement standpoint? Does the
omission of Service Time Between Outages and Outage Duration
detract significantly from the completeness of the performance
description? How strongly are the Outage (or Service Denial)
Probability values influenced by the choice of degraded
performance thresholds? How much do the required sample sizes
differ under the two threshold criteria? Is the difference
significant from a measurement standpoint?

As discussed earlier, it was not practical to obtain values for the

Interim FED STD 1033 "secondary" parameters Service Time Between Outages and

Outage Duration during the ARPA network measurements because of the very

extensive observation time required. These MTBF/MTTR parameters are

conceptually important to end users, and their omission definitely detracts
from the completeness of a performance specification. Unfortunately, it

appears certain that the same difficulty encountered in measuring these

parameters in the ARPANET experiment would also be encountered in many

operational measurements. Even if these parameters were successfully measured

over a particular observation period, they would be less useful than other

parameters in predicting future performance because their longer measurement

time would increase the likelihood of nonstationarity in the measured service.

With some reluctance we must conclude, therefore, that the omission of Service

Time Between Outages and Outage Duration from the set of standard performance

parameters appears to be a practical necessity.

166



The differences between the X3.102 and Interim FED STD 1033 outage

threshold criteria had little effect on the assessment of transfer

availability in the application tested, since the service performance within a

sample varied between extremely good and extremely poor performance (Block

Loss) in an essentially binary fashion. The choice of threshold criterion did

significantly influence the transfer sample size, however: if the Interim

FED STD 1033 "square root rule" rather than the ANSI X3.102 "fourth root rule"

had been used in defining the probability parameter thresholds, and the same

level of prec ision had been sought, the minimum transfer sample size would

have been increased from 18/(5.3 x 10-2) = 340 bits to 18/(2.8 x 10-3) = 6429

bits. This difference was masked by the "inter-block gap" requirement in this

experiment, but it would be significant in cases where a smaller block size

was used. Based on the performance observed during this experiment, the ANSI

approach appears preferable.

6.2.3 Disengagement Parameters
The two questions posed in Section 3.2.3 regarding ARPA network

disengagement performance are restated and answered below.

1. How long must a user wait, after requesting disengagement from
an es tabl ished data communica tion sess ion, for the
disengagement function to be successfully completed? Does
that delay differ substantially for each user? How variable
is the delay? What proportion of the delay is attributable to
subnetwork packet transmissions? What proportion is
attributable to delays introduced by the users themselves?

These questions are addressed by the Interim FED STD 1033 and X3.102

Disengagement Time parameters. The ARPANET measurements quickly demonstrated

a distinct asymmetry in the values for these parameters between the user

originating disengagement (the source user in this experiment) and the other

(nonoriginating) user. This asymmetry is illustrated in the bimodal

Disengagement Time distribution shown in Figure 41. The figure summarizes the

results of 3054 disengagement attempts, all observed during peak hours under

high priority, with the source user (and disengagement originator) at NBS.

The average originating user Disengagement Time was 12 milliseconds (within

± 1 ms); the average nonoriginating user Disengagement Time was 2.5 seconds

(within ± 0.1 second).

The reason for the substantial difference between the originating and

nonoriginating user disengagement times measured in the ARPANET experiment is

167



iii I iiiiii I Iii iii25 iii I Iiiiiiiii I I I I i I

5

15

10
: DESTINATION
DISENGAGEMENTS

...................................

NUMBER OF DISENGAGEMENTS: 3054

· . . .· . . . .
• : • I •

ARPANET DISENGAGEM~NT TIMES· . . . .· . . . .
(EAST TO WEST, HIGH PRIORITY, PEAK HOURS)

........................................ T" ~~~~~~':"'~'~~>~~~;"~~~;~~'~~~'~j'~'~~""""":"""

: DESTINATION,: NTIA/ITS (BOULqER)
. ' .
: : :

•••••••••••••••••••••••••••••••••••• Co : ••••••••••••••••• ": •••••••••••••• : ••••••••••••• :' •••••••••• '••••••• ; ••••••••••••• , ~ •••• f •••• + ...••.••...

, '

TESTING TOOK PLACE BETWEEN :
........................................................ , ···SEPTEMBER 17, 1981 ~ND SEPTEM:BER 29, .1981 · · ..

: : .
: : :

........................................................... : ~ ~ : ; : ·1 I..·..: ·

SOURCE : :
DISENGAGEMENTS

~
Z
w 20
~
w
~
(!)
Z
W
(f)

o
IL.o
I-
Z
w
o
a::
w
a..

0\
co

5J.05 0.1 0.2 0.5 I 2
o ' '" I '" I " I , I I " r=r=n' I I I I '" I I I , I I I " I ......", I , I

0.001 0.002 0.005 0.01 0.02

DISENGAGEMENT TIME IN SECONDS

Figure 41. Disengagement time histogram.



evident from the data communication session profile (Figure 25).

Disengagement of the originating user is a simple local function which is

accomplished entirely within that user's host computer operating system. All
that program has to do to disengage an originating user is to remove the Open
Request parameters from its local tables and issue a CLOSE COMPLETE response.
Once the disengagement request has been issued, the originating user is not

involved in the process at all. In contrast, disengagement of the
nonoriginating user requires first, the transmission of a disconnect request

from the originating NCP through the network to the nonoriginating user;

second, that user's issuance of a CLOSE request; and finally, issuance of the
CLOSE COMPLETE response by the nonoriginating host operating system.

Based on the Block Transfer Time measurements reported earlier, it

appears that only about 10% of the nonoriginating user Disengagement Time is

occupied by the subnetwork's disconnect request transmission. About 1O~ of

the remaining time is nonoriginating user time, associated with issuance of

the second CLOSE request. The remaining time is apparently occupied by NCP
and OS processing.

As in the case of Access Time, a statistical analysis of the collected
Disengagement Times was conducted about midway through the test to check

dependence assumptions and refine the sample size requirements. Major steps

in this analysis are briefly summarized below.

The destination Disengagement Times were analyzed in the same way as the
Access Times, except that the full autocorrelation fUnction was estimated for
each of the 10 samples available using the last 40 times of each sample. The
autocorrelation fUnction of the destination Disengagement Times was determined

because those times were known to have substantial within-sample variance.
The autocorrelations of lags 1 through 10, averaged over the 10 samples of 40

each, are:

0.176 -0.018 0.026 0.085 -0.020 ·0.031 0.035 -0.052 -0.048

All of these except the first are quite negligible and in fact are not

statistically significant, judged by comparison with the approximate standard
error n- 1/2 = 400-1/2 =0.05. This draws some confirmation from the fact that

5 of the 10 are positive and 5 negative. They are consistent with the Markov

model Pk = P1 k•

The mean destination Disengagement Time, estimated from the last 40

trials in each of the 10 samples, is 2.496 seconds. The root-mean-square

169



within-sample standard deviation is 1.139 second. To get confidence limits

for the true mean we proceed as with the Access Times, and get the variance of

the 10 means, 0.028808. The independent estimate of the individual

observation variance is 40 times this, 1.15232, the square root of which,

1.073 seconds, is actually smaller than the above within-sample standard

deviation. Hence there is no additional between-sample variation, in contrast

to the situation for Access Times.

Thus, following the Access Time analysis, we take sa2 = 0, sx 2 =
(1.139)2/400 = 0.003243. The autocorrelation factor, 1.176/0.824 = 1.427,

increases this to 0.004629, so the approximate 95% confidence limits for mean

destination disengagement time are

2.496 ± 0~136 =~:~g6 seconds

Since there was no additional between-sample variance, this precision could

have been doubled by simply analyzing all 1600 times in the 10 samples rather

than only 400. All available data were used in calculating the overall

disengagement time values presented above.

2. What is the likelihood that the system will fail to detach a
user from an established data communication session (within a
specified maximum disengagement time) on any given request?
How sensitive is that likelihood to the specified maximum
time? .

These questions are answered by the measured Disengagement Denial

Probability values. As in the case of the Disengagement Times, the

Disengagement Denial Probabilities were substantially different for the

originating and nonoriginating users and were calculated separately. The

originating user disengagement process exceeded the "3 times nominal" timeout

threshold 38 times during the 2993 ARPANET access/disengagement trials,

producing an originating user Disengagement Denial Probability value of 1.3 x

10-3• The nonoriginating user disengagement process never exceeded its

(separate) timeout during the tests, producing a nonoriginating user

Disengagement Denial Probability estimate of zero. The system ultimately

completed the disengagement function without corrective action on every trial,

including the 38 trials that were "timed out" for performance assessment

purposes. Thus, in this case, the timeout thresholds completely determined

the disengagement Denial Probability values; and those values simply measured

the spread of their associated Disengagement Time distribution.

170



The ARPA network disengagement measurements were also intended to answer

two questions regarding the detailed definition of the disengagement

performance parameters. These questions are restated and answered below.

1. The ANSI X3.102 definitions for Disengagement Time and
Disengagement Denial Probability differ from their Interim FED
STD 1033 counterparts in one important respect: they allow
the specification of separate parameter values for each end
user in cases where the disengagement functions at the user
interfaces are dissimilar. Is this distinction important in
the case studied? How meaningful are the "aggregate"
parameter values representing both user interfaces?

The distinction between originating and nonoriginating user disengagement

proved to be very significant in the ARPANET case. In fact, the extreme

bimodality of the Disengagement Time distribution (Figure 41) indicates that

the "average" performance of the two ends would be completely misleading in

characterizing either. This finding substantiates the ANSI X3S35 decision

that the standard should encourage separate specification of disengagement

performance in cases where the disengagement process differs significantly at

the two user interfaces.

2. How strongly are the values for Disengagement Denial
Probability influenced by the choice of maximum disengagement
time? Would a different algorithm for determining maximum
disengagement time be more appropriate in the case studied?

As discussed earlier, the system ultimately completed the disengagement

function without corrective action on every trial, including those that were

"timed out". Unlike access and block transfer, only timeout failures were

observed in the case of disengagement; and thus, the measured Disengagement

Denial Probabilities indicate the "spread" of the associated distributions

rather than the likelihood of "hard" failures.

These results lead one to question the timeout thresholds used in

defining Disengagement Denial in this experiment. The "3 times nominal" rule

is particUlarly unappealing in the originating user case. For the results

illustrated in Figure 41, for example, a strict application of this rule

forces one to call any disengagement trial lasting longer than 36 milliseconds

a Disengagement Denial! It appears, intuitively at least, that the allowabl~

variation in performance time should be greater in cases where the normal

performance time is very small.
The threshold defining rules specified in X3.102 allow for such

exceptions. That standard acknowledges, in its introduction, that users may

171



wish to define communication failure probabilities on the basis of different

timeout or threshold criteria in certain situations; and requires only that

such departures from the normal failure-defining criteria be explicitly

identified in performance specifications. The latter requirement is necessary
to ensure the validity of performance comparisons.

The X3.102 approach appears to provide a reasonable compromise between

the conflicting needs for uniformity and flexibility in the definition of

performance failure thresholds.

6.2.4 SlIImary of Measured Values

Figures 42 and 43 summarize the user-to-user performance of the ARPA

network in terms of measured values for the Interim FED STD 1033 and ANSI
X3.102 performance parameters, respectively. Confidence limits associated

with the various parameter values have been indicated in the preceding

sections.

7. CONCLUSIONS AND RECOMMENDATIONS

As stated in Section 3, the ARPA network measurements project had two

overall objectives. The primary objective was to verify and demonstrate

proposed Federal Standard 1043 by implementing it in a representative

measurement situation. A secondary objective was to obtain some typical

values to characterize the data communication service provided by the ARPA
network and its host computers to end users. It was anticipated that these

values would be useful first, in understanding differences between subnetwork

and user-perceived performance; and second, in assessing proposed refinements

to the parameter definitions themselves. This section briefly summarizes the

major conclusions and recommendations of the ARPA network measurements project

in the context of these objectives.

With respect to the trial implementation of proposed FED STD 1043, the

most significant conclusion is that it was, in fact, successful: that is, it

was possible to directly apply proposed Federal Standard 1043 in obtaining

Interim FED STD 1033 and ANSI X3.102 parameter values to characterize the

performance of a typical modern data communication service. Future

implementations of the proposed 1043 standard should be facilitated by the

tools and techniques described here. It is recommended, on the basis of this

successful implementation, that the FTSC and ANSI Task Group X3S35 proceed

apace with the remaining steps required to prepare proposed FED STD 1043 for

172



PERFORMANCE MEASUREMENT SUMMARY

Part A - Primary Parameters

1. Access Time............................... 1. 8 Seconds
2. Incorrect Access Probability... 0 *
3. Access Denial Probability ,..... .. . 8. 6xl0- 3 *

(512-bit blocks) 709 Milliseconds
4. Bit Transfer Time c.~0.9.{)~1J.~~ b.~-.()~~.sL. 262 [·1i 11 i seconds
5. Bit Error Probability.............................. 0 *
6. Bit Misdelivery Probability..................................................... t *
7. Bit Loss Probability.......................................................................... 6xl0 3 *
8. Extra Bit Probability...................................................................... 0 *

(512-bit blocks) 709 Milliseconds
9. Block Transfer Time (~.O'~.?~b..~~..~]:().c.~.~.L. 262 Mi 11 i seconds

10. Block Error Probability.................................................................... 0 *
11. Block Misdelivery Probability...................................................... t 3 *
12. Block Loss Probability................................................................... 6xl0 *
13. Extra Block Probability.................................................................... 0 *
14. Bit Transfer Rate (4Q~.~:-:-J?g b..l.o.~~.~). 4872 Bits/Second
15. Block Transfer Rate (4.Q~.?:-:-J?~t: 1>:L.o.~~.f?} 1.19 Blocks/Second
16. Bit Rate Efficiency. 9. 7 %
17. Block Rate Efficiency...................................................................... 9.7 %

Originator 12 Milliseconds
.. Nonoriginator 2.518. Disengagement Time Seconds

19. Disengagement Denial Probability .Q.r:~g,~.J;l;~.t,qI.. 1. 3xl0- 3 *
Nonorlglnator 0

Part 8 - Secondary Parameters

20. Service Time Between Outages __t,__ Hours
21. Outage Duration t Hours
22. Outage Probability 4. 7xl0-

2
*

0.15
0.13
0.13
o

0.13

*Note: The probabilities and user performance time fractions are dimensionless numbers
between zero and one.

tValue not measured.

Figure 42. FED STD 1033 performance measurement summary.

173



SERVICE PERFORMANCE SPECIFICATION

Part A - Primary Parameters

1. Access Time.................................................. 1.8 Seconds
2. Incorrect Access Probability. 0 *
3 A D ' I P b bilit 6 0 10- 3 *. ccess en 18 ro a I I y................................... . x

4. Access Outage Probability 2.6xlO-
3 *

5. Bit Error Probability............. 0 *
6. Bit Misdelivery Probability................................. t *
7. Extra Bit Probability........... 0 *
8. Bit Loss Probability 2.0xlO-

3
""

(5l2-bit blocks) 709 Milliseconds
9. Block Transfer Time (iQ~9;1>j-.t.•~~~~~.s). 262 Mill iseconds

10. Block Error Probability..................................... 0 *
11. Block Misdelivery Probability.............................. t *
12. Block Loss Probability 2.0xlO-

3
*

13. Extra Block Probability......... 0 *
Bits/

14, User Information Bit Transfer Rate....................... 4872 Second
Originator 12 Milliseconds

15, Disengagement Time ~l?1}~!!-.&~~~~~!.. 2.5 Seconds
16. Disengagement Denial Probability ?:!-.g.~~~~?:•• 1.3xlO-

3
*

Nonoriginator 0
17, Transfer Denial Probability 4. 7xlo-

2
*

Part B - Ancillary Parameters

0.15 *
0.13 *
0.13 *

0 *0.13

18. User Fraction of Access Time ---::..;.=.;;;.-

19. User Fraction of Block Transfer Time. .<'~~~~:-F~:-.V!~~~? .. --.,;;-.,;;;.;_
20, User Fraction of Sample Input/Output Time .-;;~;...

21 U F t ' f D' t T' Originator. ser rae Ion 0 Isengagemen Ime ---.~_
Nonorlglnator

*Note: The probabilities and user performance time fractions are
dimensionless numbers between zero and one.

tValue not measured.

Figure 43. X3 0102 performance measurement summaryo

174



formal coordination and approval as a joint Federal/American National

Standard.

Although the trial implementation of proposed FED SID 1043 revealed no

need for major changes to that standard, it did identify a number of

opportunities to improve and refine it. Specific recommendations are the

following:

1. Provide a summary of the ARPANET Data Extraction subsystem
developed during this experiment with the standard, either as
an appendix or in an associated user reference manual. Such a
summary will greatly facilitate future Data Extraction
subsystem designs.

2. Determine and state the constraints, if any, which exist on
the transfer of ASCII character records between machine­
dependent Data Extraction programs and the standard FORTRAN
Performance Assessment program. A clear statement of any such
constraints will prevent possible difficulties in transferring
recorded performance information between these two performance
measurement system elements.

3. Revise the draft 1043 standard to reflect a partitioning of
the Performance Assessment program into the three
sequentially executed program modules described in Section 4
of this report: PROLOG, ASSESS, and EPILOG. This
partitioning ensures a Performance Assessment program size
commensurate with the memory capacities of smaller computer
systems.

4. Provide additional guidance in the standard to assist users in
developing realistic measurement precision objectives. Such
guidance will simplify test design process and will lead, in
many cases, to less stringent measurement objectives and more
economical tests.

While not essential, additional trial applications of proposed FED SID

1043 would be useful to Task Group X3S35 in developing the corresponding ANSI

standard. Measurements involving instrumentation of an operator/terminal
interface would be particularly helpful, since the ARPA network measurements

did not directly address that interface. Comparative measurements of several

public data networks would also be valuable, both in further refining the 1043

standard and in promoting more accurate user assessment of competing service

alternatives.

A comparison of the measurement results obtained in this experiment with

earlier results revealed some significant differences between the performance

delivered to typical ARPA network end users and the performance of the

subnetwork. Performance delays observed at the end user interfaces were two

175



to four times greater than the corresponding subnetwork delays, and the

observed throughputs were proportionally lower. It appears that most of the

additional delay is introduced by communication support software in the hosts

(e.g., the NCP's and operating systems) rather than by the user programs

themselves.
The measurement results obtained in this experiment confirmed that

transmission errors are extremely rare in the ARPANET. However, the loss of

user data in transit between application programs is relatively common. Such

failures appear to be caused by hardware and software "crashes" and subnetwork

delays in addition to the previously reported "tardiness" of ARPANET hosts in

accepting transferred messages. Data loss was by far the most serious network
imperfection observed during these measurements. That one phenomenon

completely determined the measured service availability values.

In almost every case where differences between the Interim FED STD 1033

and X3.102 performance parameter definitions were examined, the measurement

resul ts demonstrated that the latter definitions are preferable. This was
particularly true in the case of Disengagement Time, where separate

specifications for the two user interfaces were clearly required; and in the

case of the "secondary" MTBF and MTTR parameters, whose evaluation would have

required a measurement period five to ten times lopger than the time

available. On the basis of this trial implementation, it is recommended that

X3.102 be adopted as both the final form of the standard parameter definitions

and the basis for revised FED STD 1043 performance measurement methods.

8. ACKNOWLEDGEMENfS

Many individuals contributed to the ARPA network measurements project and

the development of this report. Among the former are Peter McManamon of ITS,

who conceived and initiated the project; Greg Noel of the Naval Ocean Systems

Center, who assisted in shoehorning UNIX into the NTIA/ITS and NBS/ICST host

computers; Evi Nemeth and Dwight Melcher of the University of Colorado, who
provided supplemental data reduction programs; Rob Rosenthal of NBS, who gave
the authors a much-needed early tutorial on UNIX and "C"; and Marty Miles of

ITS, who participated in statistical analysis of the measurement data. Among

the latter are Bob Linfield, Don Glen, and Evi Gray, who reviewed the draft

report in ITS; Ray Moore and Jerry Lynn, who reviewed the draft report in

NBS/ICST; and Cathy Edgar, who typed and edited the entire report.

176



9. REFERENCES

ANSI (1966), USA Standard FORTRAN, X3.9-1966, Computer and Business Equipment
Manufacturers' Association, Washington, DC 20036.

ANSI (1967), USA Standard Code for Information Exchange, X3.4-1967, Computer
and Business Equipment Manufactures' Association, Washington, DC 20036.

ANSI (1982), Proposed American National Standard No. X3.102, Data
communication user oriented performance parameters, April. Available
from the authors of this report.

BBN (1977), Terminal interface message processor user's guide, Bolt, Beranek
and Newman Report No. 2183, NIC No. 10916, July.

Carr, C. S., S. D. Crocker, and V. G. Cerf (1970), Host-host communication
protocol in the ARPA network, AFIPS Conference Proc., 1970 Spring
Joint Computer" Conference, Vol. 36, pp. 589-597.

Chesson, G. L. (19-75), The network UNIX system, Operating Systems Review 1.,
No.5.

Cole, G. C. (1971), Computer network measurements: techniques and
experiments, School of Engineering and Applied Science, University of
California, Los Angeles, Engineering Report UCLA-ENG-7165, October.

Crow, E. L. (1974), Confidence limits for digital error rates, Office of
Telecommunications Report 74-51, November.

Crow, E. L. (1979), Statistical methods for estimating time and rate
parameters of digital communication systems, NTIA Report 79-21, June.

Crow, E. L., and M. J. Miles (1977), Confidence limits for digitalerror~tes

from dependent transmissions, Office of Telecommunications Report 77,,-·)18,
March.

DCA (1980), ARPANET Directory, NIC 48000, published for the Defense
Communication Agency by the Network Information Center, SRI
International, Menlo Park, CA 94025.

U.S. Department of Agriculture (1980), Departmental telecommunications network
request for proposals, U.S. Department of Agriculture, RFP No. OF-81-R­
12, November.

Dorros, I. T. (1981), ISDN, A challenge and opportunity for the 80's, IEEE
Cormnun. Mag., March.

Drukarch, C. Z., P. M. Karp, K. G. Knightson, L. Lavandera, A. M. Rybczynski,
and N. Sone (1980), X.25:the universal packet network interface,
Proceedings of the Fifth International Conference on Computer
Communications, October.

EPA (1980), Request for quotations, telecommunications network service, U.S.
Environmental Protection Agency, RFQ No. WA-80-D289/Idm, May.

177



GAO (1977), Better management of defense communications would reduce costs,
Report to the Congress by the Comptroller General of the United States,
General Accounting Office LCD-77-106, December.

GSA (1979), Interim Federal Standard 1033, Telecommunications: digital
communication performance parameters, General Services Administration,
August. Available from Office of the Manager, National Communications
System, Technology and Standards Division, Washington, DC 20305.

GSA (1980), Federal procurement regulations, Title 41 - Public contracts,
property management, General Services Administration.

ISO (1982), Reference model of open systems interconnection, International
Organization for Standardization Draft International Standard 7498,
June.

Kamas, G., and S. L. Howe (1979), Time and frequency user's manual, National
Bureau of Standards Special Publication No. 559, November.

Kernighan, B. W., and D. M. Ritchie (1978), The C programming language,
(Prentice-Hall, Inc., Englewood Cliffs, NJ 07632).

Kleinrock, L., and W. E. Naylor (1974), On measured behavior of the ARPA
network, Proceedings of the National Computer Conference, May 6-10.

Kleinrock, L., and H. Opderbeck (1975), Throughput in the ARPANET - protocols
and measurement, Proceedings of the Fourth Data Communications Symposium,
Quebec, Canada, October.

Kleinrock, L., W. F. Naylor, and H. Opderbeck (1976), A study of line overhead
in the ARPA network, Commun. ACM lQ, No.1, January.

Kleinrock, L. (1976), Queueing Systems, Vol. II, Computer Applications (John
Wiley & Sons, Inc., New York, N.Y.).

Ku, H. H. (1969), Precision measurement and calibration, selected NBS papers
on statistical concepts and procedures, National Bureau of Standards
Special Publication 300, Volume 1, February.

McFadyen, H. J. (1976), Systems network architecture: an overview, IBM
Systems J. 15., No.1.

National Research Council (NCR) Committee on Telecommunications (1977),
Summary of Office of Telecommunications Study Panel meeting, Boulder,
Colo., April 11-13.

NBS (1978), NBS time via satellites, National Bureau of Standards Publication
No. TES-602, January.

NBS (1981), Solicitation of comments on impact and applicability of planned
user-oriented data communication performance parameters standard, Federal
Register 46, No. 58, March.

178



Roberts, L. G. (1967), Multiple computer networks and inter-computer
communications, Proc. of the ACM Symposium on Operating Systems,
Gatlinburg, Tenn.

Roberts, L. G., and B. D. Wessler (1970), Computer network development to
achieve resource sharing, AFIPS Conference Proc., 1970 Spring Joint
Computer Conference, Vol. 36, pp. 543-549.

Seitz, N. B., and P. M. McManamon (1978), Digital communication performance
parameters for proposed Federal Standard 1033, NTIA Report 78-4, Vol. I,
standard parameters, May.

Seitz, N. B., and D. Bodson (1980), Data communication performance assessment,
Telecommunications ~, No.2, February.

Seitz, N. B. (1980a), Interim Federal Standard 1033 reference manual, NTIA
Report 80-55, December.

Seitz, N. B. (1980b), Measuring communication availability with Federal
Standard 1033, Proc. 1980 Reliability and Maintainability Symposium, San
Francisco, Calif., January.

Seitz, N. B., K. P. Spies, and E. L. Crow (1981a), Telecommunications:
digital communication performance measurement methods, proposed Federal
Standard 1043, Version 5, May. Available from the authors of this
report.

Seitz, N. B., K. P. Spies, and E. L. Crow (1981b), Data communication
performance measurement--a proposed Federal Standard, Proc. 1981 National
Telecommunications Conference, New Orleans, Louisiana, November.

Sunshine, C. A. (1975), Interprocess communication protocols for computer
networks, Digital Systems Laboratory, Department of Electrical
Engineering, Stanford University, Technical Report No. 105, December.

Thompson, K., and D. M. Ritchie (1975), UNIX programmer's manual, Bell
Telephone Laboratories, Inc., May.

179





APPENDIX A: NARRATIVE PARAMETER DEFINITIONS

This appendix provides brief narrative definitions for the Interim FED

STD 1033 and ANSI X3.102 parameters. The parenthetical symbols in these

definitions are explained in the referenced sample space diagrams and tables.

A.1 Interim Federal Standard 1033 Paraneters
The 26 performance parameters specified in Interim Federal Standard 1033

are defined as follows. Refer to the standard and its supporting reports for

more explicit definitions of the associated outcomes.

A.1.1 Access Parameters
Interim Federal Standard 1033 specifies access performance in terms of

the three primary parameters identified in Figure A-1. Narrative definitions

for the selected access parameters are provided below.

Access Time W(as) - Average value of elapsed time between the start
of an access attempt tea) and Successful Access teas). Elapsed
time values are calculated only on access attempts that result in
Successful Access.

Incorrect Access Probability P(am) - Ratio of total access attempts
that result in Incorrect Access (Am) to total access attempts
included in the reduced sample (At).

Access Denial Probability Pea ) - Ratio of total access attempts
that result in Access Denial (A£) to total access attempts included
in the reduced sample (At).

A maximum access time equal to three times the nominal value of the

parameter Access time, 3WN(as)' is defined for performance assessment

purposes. Access trials whose performance time exceeds this maximum should be

counted as Access Failures.

A.1.2 User Information Transfer Parameters
Interim Federal Standard 1033 specifies bit transfer, block transfer, and

message transfer performance in terms of the 14 primary parameters identified

in Figure A_2.23 Narrative definitions for the 10 selected bit transfer and

23The separate bit transfer, block transfer, and message transfer sample
spaces are represented by a single "pie diagram" to simplify the
presentation.

181



ACCESS PARAMETERS

ACCESS TIME
W(as)

ACCESS DENIAL (ai)

ACCESS DENIAL
PROBABILITY

Pta,)

INCORRECT ACCESS (am)

INCORRECT ACCESS
PROBABILITY

P(am)

DEFINITIONS

As
1. AccessTime = W(as) = 1 I w(8s)

s as= 1

2. Incorrect Access Probability = P(am) = AmiA'

3. Access Denial Probability = P(a,) = AliA'

AS = Total number of Successful Access
outcomes counted during an access
parameter measurement.

Am = Total number of Incorrect Access
outcomes counted during an access
parameter measurement.

Ai = Total number of Access Denials
counted during an access para­
meter measurement.

A' = Total number of access attempts
counted during an access parameter
measurement: As+Aqr+-AJ .

w(asl = Value of access time measured on a
particular successful access attempt.

Figure A-1. Access parameter definitions.

182



BLOCK TRANSFER RATE
R(bJ

BLOCK RATE EFFICIENCY
Q(b,)

BLOCK TRANSFER TIME
W(bJ

BLOCK TRANSFER PARAMETERS
~(b2s)

B2s
1. Block Transfer Time = W(b2s) = B~ L w(b2s1

s b2s=1
w(b2s)

2. Block Error Probability = P(b2el = B2e/(B2s+B2el w(b3*)

3. Block Misdelivery Probability = P(b2m) = B2m/(B2'-B2rB2x)

4. Block Loss Probability = P(b21) = B2j(B2' -B2x1
B1'

5. Extra Block Probability = P(b2x) = B2x/(B2'-B2,tl
B2'

MESSAGE TRANSFER PARAMETERS

1. BitTransfer Rate = R(b1s) = w~~*)
Rmax

n

2. Block Transfer Rate = R(b2sl =~
w(b3*)

3. Bit Rate Efficiency = Q(b1s) =~
Rmax

4. Block Rate Efficiency = Q(b2s) = R(b2cl~
Rmax

BIT TRANSFER PARAMETERS

B2s

1. BitTransferTime = W(b1s) = 2(~2sl L w1(b2sl
b2s=1

B2s
+ 2(~2sl L w.jb2s)

b2s=1

2. Bit Error Probability = P(b1e) = B1eI(B1 s+B1e)

3. Bit Misdelivery Probability = P(b1m) = B1m/(B1' -B1,rB1x)

4. Bit Loss Probability = P(b11) = B1t/(B1'-B1x)

5. Extra Bit Probability = P(bl x) = B1x/(B1' - B1
J1

DEFINITIONS

B1s(B2sl = Total number of Successful Bit (Block) Transfer
outcomes counted during a UIT performance
measurement.

B1e(B2e) ; Totalnumber of Incorrect Bit (Block) outcomes
counted during a UIT performance measurement.

B1m(B2ml=Total number of Misdelivered Bit (Block) out-
comes counted during a UIT performance measurement.

B11(B2} = lotal number of Lost Bit (Block) outcomes
counted during a UIT performance measurement.

B1x(B2x) = Totalnumber of Extra Bit (Block) outcomes
counted during a UIT performance measurement.

wl(b2 s) = Value of bit transfer time measured on the last
bit of a particular successful block transfer
attempt.

= Value of bit transfer time measured on the first
bit of a particular successful block transfer
attempt.

= Value of block transfer time measured on a
particular successful block transfer attempt.

= Duration of a particular UIT
performance measurement period.

= Total number of bit transfer outcomes to be
included in an individual UIT
performance measurement: B1s+B1e+ B1m+B1.t+B1x•

= Total number of block transfer outcomes to be
included in an individual UIT
performance measurement. B2s:tB2e+B2m+ B21.+B2x •

= Signaling rate (bits per second).

= Average block length.

Figure A-2. User information transfer parameter definitions.

183



block transfer parameters are provided below. For conciseness, only the term
"block" is used in these definitions; but it is emphasized that an exactly
analogous set of parameters is defined for the bit transfer function. The
general symbols band B refer to either the bit transfer or the block transfer
function. 24

Block Transfer Time Webs) - Average value of elapsed time between
the start of a block transfer attempt t(b) and Successful block
Transfer t(bs)' Elapsed time values are calculated only on block
transfer attempts that result in Successful Block Transfer.

Block Error Probability P(b
i
) - Ratio of total Incorrect Blocks

(Be) to total successfully de ivered blocks (Bs+Be).

Block Misdelivery Probability P(bm) - Ratio of total Misdelivered
Blocks (Em) to total transferred blocks (B'-B~-Bx)'

Block boss Probability P(bV - Ratio of total Lost Blocks (BR? to
total transmitted blocks (B'-Bx)'

Extra Block Probability P(bx) - Ratio of total Extra Blocks (Bx) to
total received blocks (B'-B~).

A maximum block transfer time equal to three times the nominal value of
the parameter Block Transfer Time, 3WN(b2s)' is defined for performance
assessment purposes. Block Transfer trials whose performance time exceeds
this maximum should be counted as Block Transfer Failures.

All of the above definitions apply equally to the bit transfer
parameters, with two exceptions:

1. The maximum bit transfer time is defined to be equal to the
maximum block transfer time, 3WN(b2s)'

2. Bit Transfer Time values are calculated only for the first and
last bits of each block, since these are the only bits for
which SU output and DU input times are normally available.

The denominators of the bit transfer and block transfer probability
parameters have been chosen to normalize the maximum value of each probability

to one. Successful Block Transfers and Lost Blocks are expressed as a
proportion of total blocks transmitted (B'-Bx); Extra Blocks are expressed as

a proportion of total blocks received (B'-B~); Misdelivered Blocks are

expressed as a proportion of total blocks transferred between the source and

24Separate equation definitions for the bit transfer and block transfer
parameters are provided in Figure A.2.

184



destination in question (B'-B£-Bx); and Incorrect Blocks are expressed as a
proportion of total blocks transferred between the source and destination in

question, excluding misdelivered blocks (B'-Bg,-Bx-Bm). The latter subset is
expressed more simply as (Bs+Be), the "successfully delivered" blocks.

Narrative definitions for the four primary message transfer parameters
are provided below. Again, only the term "block" is used in these
definitions; but an exactly analogous set of parameters is defined for the bit
transfer function.

Block Transfer Rate R(bs) - Total number of Successful Block
Transfers (Bs) counted during a performance measurement period,
divided by tfie duration of the period w(b3*). The duration w(b3*)
is measured in User Information Transfer Time.

Block Rate Efficiency Q(bs) - Ratio of the product of the Block
Transfer Rate R(bs) and the Average Block Length (n) to the
Signalling Rate of the communication service, R(max).

Rmax is a constant characteristic of the communication service

interconnecting the users, as described in Section A.2.2.

A.l.3 Disengagement Parameters
Interim Federal Standard 1033 specifies disengagement performance in

terms of the two primary parameters identified in Figure A-3. Narrative
definitions for the selected disengagement parameters are provided below.

Disengagement Time W(ds) - Average value of elapsed time between
the start of a disengagement attempt t(d) and Successful
Disengagement t(ds). Elapsed time values are calculated only on
disengagement attempts that result in Successful Disengagement.

pisengagement Denial Probability P(d£) - Ratio of total
disengagement attempts that result in Disengagement Denial (D£) to
total disengagement attempts included in the reduced sample (D').

A maximum disengagement time equal to three times the nominal value of
the parameter Disengagement Time, 3WN(ds)' is defined for performance
assessment purposes. Disengagement trials whose performance time exceeds this

maximum should be counted as Disengagement Failures.

A.1.1I Secondary Parameters
Interim Federal Standard 1033 specifies the availability performance of a

data communication service in terms of the three "secondary" parameters

185



......
CO
(j)

DISENGAGEMENT TIME
W(ds)

DISENGAGEMENT DENIAL
(d,)

DISENGAGEMENT
DENIAL

PROBABILITY
P(d,)

DISENGAGEMENT PARAMETERS DEFINITIONS

2. Disengagement Denial
Probability = P(dJl = DJID'

Os

0'

OJ

= Total number of Successful Disengagement outcomes
counted during a disengagement parameter measurement.

= Total number of Disengagement Denials counted during
a disengagement parameter measurement.

= Total number of disengagement attempts counted during
a disengagement parameter measurement: 0 5 + De.

w(dsl = Value of disengagement time measured on a
particular successful disengagement attempt.

1 Os

Os I w(dsl
ds=1

1. DisengagementTime = W(dsl

Figure A-3. Disengagement parameter definitions.



identified in Figure A-ll. Narrative definitions for these three parameters
are provided below.

Service Time Between Outages W(y*) - Average value of elapsed user
information transfer time between the start t(y) and the end t(z)
of the secondary function service continuation.

Outage Duration W(z*) - Average value of elapsed user information
transfer time between the start t(z) and the end t(y) of the
secondary function service restoral.

Outage Probability P(b3z) - Ratio of total message transfer
attempts resulting in the secondary outcome outage state (b3z) to
total message transfer attempts included in the reduced sample
(B3' ).

The secondary function "service continuation" consists of maintaining the
telecommunication service in the operational service state continuously
(during user information transfer time), without transition to the outage
state. The secondary function "service restoral" consists of returning the
telecommunication service from the outage state to the operational state.

A.1.5 Ancillary Parameters
Interim Federal Standard 1033 defines the four ancillary parameters on

the basis of three variables defined as follows.

w(g*) =

=

=

Elapsed time between the start and the end of an
individual primary function performance period.

Total time (within the primary function performance
period) during which aggregate responsibility for
advancing the function to completion rests with the
users.

Total time (within the primary function performance
period) during which aggregate responsibility for
advancing the function to completion is "split"
between a user and a half-system.

The ancillary parameters are calculated on the basis of a sample of
successful performance trials, Gs• The random variables w(g*), wu(g*), and

wv(g*) are thus specialized to their "successful outcome" counterparts, w(gs)'
wu(gs)' and wv(gs). The average values of these variables are represented by

the symbols W(gs)' Wu(gs), and Wv(gs)' respectively. The ancillary parameters

p(g) are defined as ratios of these average values, as follows:

187



-UITTime_

Start of
Measurement

Operational Service r-l-+4=,t--+-..,.
State (b3yJ-

Outage State (b3,)

Supported Primary Parameters

• Bit Transfer Rate
• Bit Error Probability
• Bit Misdelivery Probability
• Bit Loss Probability
• Extra Bit Probability

a. Secondary State Sequence

Operational
Service Transition

End of
Measurement

Outage Transition

b. Secondary State Diagram

SECONDARY PARAMETERS DEFINITIONS

1. Service Time Between Outages = W(y*)

Z

2. Outage Duration = W(z*) = ~ I w(z*)
z=1 w(y*) = Value of Service Time between Outages measured

on a particular transition to the Outage state:
t(z)-t(y).3. Outage Probability P(b3z) = B3z/B3'

y

~ I
y=1

w(y*)
B3Z

tty)

t(z)

= Total number of Outage state outcomes counted
during a secondary parameter measurement.

= Time most recent Operational Service transition
occurred.

= Time most recent Outage transition occurred.

Figure A-4.

w(z*) = Value of Outage Duration measured on a particular
transition to the Operational Service state:
t(y)-y(z).

Y = Total number of Operational Service periods
counted during a secondary parameter measurement.

Z = Total number ofOutage periods counted during
a secondary parameter measurement.

B3' = Total number of message transfer trials
counted during a secondary parameter measurement.

c. Secondary Parameter Definitions

Secondary model and parameter definitions.

188



p(g) =
Wu(gs) + 0.5 Wv(gs)

W(gs)

The parameters p(g) are termed "user performance time fractions"; they

express the average proportion of successful primary function performance time

that is attributable to user delay. Periods of unilateral user responsibility

contribute to Wu' and are "weighted" at their full value in computing p(g);

periods of "split" responsibility contribute to Wv' but are "weighted" at only

half their full value to reflect the equal division of responsibility between

the user and system entities.

Narrative definitions for the four specific ancillary parameters included

in the standard are provided below.

User Access Time Fraction p(a) - Ratio of average user access time,
Wu(as) + 0.5 Wv(as)' to average Access Time, W(as)' measured over a
sample of successful access attempts, As.

User Block Transfer Time Fraction p(b2) - Ratio of average user
block transfer time, Wu(b2s) + 0.5 Wv(b2 s)' to average Block
Transfer Time, W(b2~), measured over a sample of successful block
transfer attempts, tl2s •

User Message Transfer Time Fraction p(b3) - Ratio of average user
message transfer time, Wu(b3 ) + 0.5 W (b3 ), to average message
transfer time, W(b3y ) , measurea over a s~mpl~ of successful message
transfer attempts, B3. "Successful" message transfer attempts are
those encountering th~ secondary outcome Operational Service state
(b3y).

User Disengagement Time Fraction p(d) - Ratio of average user
disengagement time, Wu(ds) + 0.5 Wv(ds)' to average Disengagement
Time, W(ds)' measured over a sample of successful disengagement
attempts, us.

A.2 ANSI X3.102 Parameters
The 21 performance parameters specified in proposed American National

Standard X3.102 are defined as follows. Refer to the standard and its

supporting reports for more explicit definitions of the associated outcomes.

A.2.1 Access Parameters
Figure A-5 summarizes the possible access outcomes and their associated

performance parameters. Narrative definitions for the selected parameters are

provided below.

189



ACCESS TIME
W(as)

SUCCESSFUL ACCESS (aJ

ACCESS FAILURE

ACCESS
OUTAGE

PROBABILITY
P(ao)

USER BLOCKING (a,)

(EXCLUDED FROM SYSTEM
PERFORMANCE MEASUREMENT

ACCESS DENIAL
PROBABILITY

Pia,)

ACCESS PARAMETERS

As

1. Access Time = W(as) = ~ I w(~)
s as= 1

2. Incorrect Access Probability = P(am) = AmiA'

3. Access Denial Probability = P(a,) = AliA'

4. Access Outage Probability =
P(ao) = Ao/A'

ACCESS
OUTAGE

(aD)

A'

t(a)

INCORRECT ACCESS (am)

INCORRECT ACCESS
PROBABILITY

P(am)

DEFINITIONS

= Total number of access attempts
counted during an access parameter
measurement: As+A,ntAJ+A o

= Total number of Successful Access
outcomes counted during an access
parameter measurement.

= Total number of Access Denials
counted during an access para­
meter measurement.

= Total number of Access Outage
outcomes counted during an access
parameter measurement.

= Total number of Incorrect Access
outcomes counted during an access
parameter measurement.

=Time a particular access attempt starts

t(as) = Time Successful Access is attained on a

particular access attempt.

w(as> = Valueof access time measured on a
particular successful access attempt: t (as) -t (a)

Figure A-5. Access parameter definitions.

190



Access Time w(as). Access Time is the average value of elapsed
time between the start of an access attempt t Ca) and Successful
Access t(as). Elapsed time values are calculated only on access
attempts that result in Successful Access.

Incorrect Access Probability P(am). Incorrect Access Probability
is the ratio of total access attempts that result in Incorrect
Access (A~) to total access attempts included in the reduced access
sample (A ).

Access Denial Probability P(a~). Access Denial Probability is the
ratio of total access attempts that result in Access Denial (A~) to
total access attempts included in the reduced access sample (AI).

Access outage Probability P(ao). Access Outage Probability is the
ratio of total access attempts that result in Access Outage (Ao) to
total access attempts included in the reduced access sample (AI).

Access timeout occurs (i.e., an access attempt is declared a failure for

performance assessment purposes) whenever the duration of an individual access

attempt exceeds 3WN(as)' Le., three times the specified value of the

parameter Access Time.

A.2.2 User Information Transfer Parameters
Figures A~6a, A-6b, and A-6c summarize the possible user information

transfer outcomes and the associated user information transfer parameters.

Narrative definitions for the selected parameters are provided below.

The defined user information transfer parameters include both bit­

oriented and block-oriented parameters. The bit-oriented parameters are

included primarily to facilitate comparison of systems with different block

lengths.

Block Transfer Time W(b2s). Block Transfer Time is the average
value of elapsed time between the start of a block transfer attempt
t(b2) and Successful Block Transfer t(b2s). Elapsed time values
are calculated only on blocks that are successfully transferred.

Bit Error Probability P(b1e). Bit Error Probability is the ratio
of total Incorrect Bits (Bl e) to total successfully transferred
bits plus Incorrect Bits (B1 s + B1 e).

Block Error Probability P(b2e). Block Error Probability is the
ratio of total Incorrect Blocks (B2e) to total successfully
transferrd blocks plus Incorrect Blocks ~B2s + B2e) .

Bit Misdeliyery Probability P(b1 m). Bit Misdelivery Probability is
the ratio of total Misdelivered Bits (B1 m) to total bits
transferred between a specified source and destwation (B1 I - B1 ~ ­
B1 x) ·

191



BIT TRANSFER RATE
R(b1 SJ

BIT TRANSFER PARAMETERS

1. BitLossProbability = P(b11J =B1,t1(B1'-B1xJ

2. Bit Misdelivery Probability = P(b1 mJ = B1m/(B1' -B1rB1xJ

3. Bit Error Probability = P(b1 eJ = B1e/(B1 s+B1eJ

4. Extra Bit Probability = P(b1xJ = B1x/(B1'-B1.1)

5. User Information Bit Transfer Rate = R(b1sl =~
w(b3'l

EXTRA BIT (b1 xl

EXTRA BIT
PROBABILITY

P(b1 xl

DEFINITIONS

B1' = Total number of bit transfer outcomes to be
included in an individual UIT
performance measurement (All bit transfer
outcomes except b1j ).

B1s = Total number of Successful Bit Transfer
outcomes counted during a UIT performance
measurement.

B1f =Total number of Refused Bit outcomes counted
during a UIT performance Measurement.

B11 = Total number of Lost Bit outcomes
counted during a UIT performance measurement.

B1m = Total number of Misdelivered Bit out-
comes counted during a UIT performance measurement.

B1e = Total number of Incorrect Bit outcomes
counted during a UIT performance measurement.

Figure A-6a.

B1X = Total number of Extra Bit outcomes
counted during a UIT performance measurement.

w(b3'J = Greater of input time w(b3j)or output time w(b3 0l

required to transfer sample to/from the system.

UIT = User Information Transfer

User information bit transfer parameter definitions.

192



BLOCK TRANSFER TIME
W(b2Sl

BLOCK TRANSFER PARAMETERS

B2s
1. Block Transfer Time = W(b2Sl = B~ L w(b2Sl

S b2S=1

2. Block Loss Probability = P(b2tl = B2i(B2'-B2xl

3. Block Misdelivery Probability = P(b2ml = B2m/(B2'-B2rB2xl

4. Block Error Probability = P(b2el = B2e/(B2s+B2el

5. Extra Brock Probability = P(b2xl = B2X/(B2'-B2,tl

DEFINITIONS

B2' = Total number of block transfer outcomes to be
included in an individual UIT
performance measurement
(All block transfer outcomes except b2 fl.

B2S = Total number of Successful Block Transfer
outcomes counted during a UIT performance
measurement.

B2f = Total number of Refused Block outcomes
counted during a UIT performance measurement.

B2.t ,= Total number of Lost Block outcomes
counted during a UIT performance measurement.

B2m =, Total number of Misdelivered Block out-
• comes counted during a UIT performance measurement.

Figure A-6b.

B2e ,= Total number of Incorrect Block outcomes
counted during a UIT performance measurement.

B2x = Total number of Extra Block outcomes
counted during a UIT performance measurement.

w(b2sl =, Value of block transfer time measured on
a particular successful block transfer
attempt.

UIT = User Information Transfer.

User information block transfer parameter definitions.

193



SAMPLE TRANSFER FAILURE

TRANSFER DENIAL
(b3.t)

TRANSFER DENIAL
PROBABILITY

P(b3t)

SUCCESSFUL SAMPLE TRANSFER
(b3s)

REJECTED SAMPLE
(b3f)

(EXCLUDED FROM
SYSTEM

PERFORMANCE
MEASUREMENT)

DEFINITIONS

Transfer Denial Probability = 83//83' 83' = Total number of transfer samples
to be included in a Transfer Denial
Probability determination.

831.= Total number of Transfer Denial
outcomes counted in a Transfer
Denial Probability determination.

Figure A-6c. Transfer denial probability definition.

194



Block Misdelivery Probability P(b2). Block Misdelivery
Probability is the ratio of total Mis~livered Blocks (B2m) to
total blocks transferred between a specified source and destination
(B2' - B2 j1, - B2x).

Extra Bit Probability P(b1 x). Extra Bit Probability is the ratio
of total Extra Bits (B1 x) to total bits received by a particular
destination user (B1' - ~1j1,).

Extra Block Probability P(b2x.). Extra Block Probability is the
ratio of total Extra blocks (~2x) to total received blocks (B2' ­
B2 j1,).

Bit Loss Probability P(b1j1,). Bit Loss Probability is the ratio of
total Lost Bits (B1j1,) to total transmitted bits (B1' - B1 x).

Block Loss Probability P(b2j1,). Block Loss Probability is the ratio
of total Loss Blocks (B2j1,) to total transmitted blocks (B2' - B2x).

User Information Bit Transfer Rate R(b 1s!. User Information Bit
Transfer Rate is the total number of ~uccessful Bit Transfer
outcomes (B1 ) in an individual transfer sample divided by the
input/output ~ime for that sample. The Input/Output Time w(b3*)
for a transfer sample is the larger of the input time w(b3i) or the
output time w(b30 ) for that sample (Figure A-7).

Transfer Denial Probability P(b3j1,). Transfer Denial Probability is
the ratio of total Transfer Denials (B3j1,) to total transfer samples
counted (B3'). Transfer Denial (b3j1,) occurs whenever the
performance as determined for a transfer sample is worse than the
threshold of acceptability for any of four supported transfer
parameters as a result of system degradation. Transfer Denial
Probability isa sampled measure of unavailability.

Block transfer timeout occurs (i.e., a block transfer attempt is declared

a failure for performance assessment purposes) whenever the duration of an

individual block transfer period exceeds 3WN(b2s)' i.e., three times the

specified value of the parameter Block Transfer Time.

A.2.3 Disengagement Parameters
Figure A-8 summarizes the possible disengagement outcomes and the

associated disengagement parameters. Narrative definitions for the selected

parameters are provided below.
There is a separate disengagement function associated with each end user.

The outcomes are determined separately for each function, and the outcomes for

all users in a data communication session are weighted equally in determining

the disengagement parameter values. Separate disengagement parameters may be

195



Time

Case 1. No rate conversion: w(b3i) =w(b30 )

Case 2. Rate increase:
w(b3j) < w(b30 )

Case 3. Rate reduction:
w(b3j) > w(b30 )

B1s
User Information Bit Transfer Rate R(b1s)= --------­

Max [w(b3i) or w(b30 ) J

B1s =Total Successful Bit Transfer outcomes in the transfer sample.

Figure A-7. User information bit transfer rate.

196



DISENGAGEMENT TIME
W(d,l

DISENGAGEMENT DENIAL
(d,l

DISENGAGEMENT
DENIAL

PROBABILITY
P(d,)

DISENGAGEMENT PARAMETERS

o,
1. DisengagementTime = W(ds) =_1_ I· w(ds)Os ds=1
2. Disengagement Denial

Probability = P(dJ) = 01/0'

t(d)

DEFINITIONS

= Total number of Successful Disengagement outcomes
counted during a disengagement parameter measurement.

= Total number of Disengagement Denials counted during
a disengagement parameter measurement.

= Time a particular disengagement attempt starts.

Figure A-B.

t(d s) = Time Successful Disengagement is attained on a particular
disengagement attempt.

w(dS) = Value of disengagement time measured on a
particular successful disengagement attempt: t(ds)-t(d)

Disengagement parameter definitions.

197



calculated for each end user interface in cases where significant performance
differences are expected.

Disengagement Time W(ds). Disengagement Time is the average value
of elapsed time between the start of a disengagement attempt t(d)
for a particular user and Successful disengagement t(ds)of that
user. Elapsed time values are calculated only on disengagement
attempts that result in Successful Disengagement.

Disengagement Denial Probability P(d~). Disengagement Denial
Probability is the ratio of total disengagement attempts that
result in Disengagement Denial (D~) to total disengagement attempts
included in the reduced disengagement sample (D'),

Disengagement timeout occurs (i.e., a disengagement attempt is declared a

failure for performance assessment purposes) whenever the duration of an

individual disengagement attempt exceeds 3WN(ds)' i.e., three times the

specified value of the parameter Disengagement Time.

A.2.4 Ancillary Parameters
The ancillary parameters are developed by dividing the overall

performance time for an associated primary function into subintervals, each

corresponding to a period of user or system responsibility. Each ancillary
parameter expresses the average proportion of the total primary function

performance time that is attributable to user delay.
There are ancillary parameters for: access, block transfer, and

disengagement. In addition, there is an ancillary parameter that expresses

the user influence on User Information Bit Transfer Rate. No ancillary

parameter is defined for the bit transfer function, since the Lost Bit (system

nonperformance) and Refused Bit (user nonperformance) outcomes are

distinguished from each other by reference to the associated block transfer

outcomes. Narrative definitions for the selected ancillary parameters are

provided below.

User Fraction of Access Time U(as). The User Fraction of Access
Time U(as) is the ratio of the average access time for which the
user is responsible to the average total access time, measured over
a series of successful access attempts.

User Fraction of Block Transfer Time U(b2s). The User Fraction of
Block Transfer Time U(b2 ) is the ratio of the average block
transfer time for which the user is responsible to the average
total block transfer time, measured over a series of successful
block transfer attempts.

198



User FractiQn Qf Input/Output Time U(b3 s). The User Fr-act.Ion Qf
Input/Output Time U(b3 s) is the ratio Qf the average user
input/Qutput time tQ the average tQtal input/Qutput time fQr a
transfer sample, measured Qver a series Qf successful transfer
samples. The User Input/Output Time fQr a transfer sample is that
pQrtiQn Qf the sample input/Qutput time fQr which the user is
respQnsible.

User FractiQn Qf Disengagement Time U(d ). The User Fr-act ton of
Disengagement Time U(ds) is the ratiQ Qf ~he average disengagement
time fQr which the user is respQnsible tQ the average tQtal
disengagement time, measured Qver a series Qf successful
disengagement attempts.

199



200



APPENDIX B: USTINGS OF mE OR-UNE DATA EXTRACI'ION PROGRAMS

This appendix contains listings of the XMIT and RECV programs used for
on-line data extraction in the ARPANET experiment. These programs were written
in the "C" Language for a UNIX Version 6 compiler on a PDP-11/40. Many of the
constants in both programs were identical, so they were incorporated in a pair
of header files called "include" files. Since these files are part of the
compiled program, they are shown following the program listings. The first
"include" file is NET.C and defines the constants used for opening and
establishing the network connection. The second "include" file relates to

both the clock (satellite receiver) parameters and formats and the default
parameters for the test. Corresponding to the two types of tests
(access/disengagement and user information transfer), there were two header
files called CLOCK.OVH.H and CLOCK.USR.H with only minor differences between
the two. Inclusion of one or the other determined the character of the
compiled software. In following the accepted convention, all source text
files for "C" were named, for example,

xmit.c or recv.c

and the compiled versions of the same program were

xmit and recv

A simplified flow chart of the two programs and their interaction is
presented in Figure B-1. Since "C" is a modular language, the main program
follows the flow sequence in the chart in a straightforward manner.

201



NTIA-ITS (PDP-11/41ij
(Boulder, CO)

ARPANetI I
I I

NBS-leST lPDP-11/45)
(Gaithersburg, MD)

OpenNet

ReadClock

ReadClock

Createand
Write Preface

Record

Receive
Blockof Data

Host Computer

TransmitN I
Data Blocks

I
I
I
I
I I

--+- -+
I I

I

I
I
I

I I
++

I
I
I
I
I
I
I I

--1-+
I I

OpenNet

ReadClock

SendBlock
of Data

ReadClock

Createand
Write Preface

Record

Generate
RandomData

and Write
to File

HostComputer---------'P'9'------'Mi------::::======---
I I I I
I I I I
I I I I
I I I
I I I
I I

I
I

I

I I
-++

ie
Q.

Gl

I

CloseNet

WriteTrailer
Data Records

Closing I
Handshake I

I

I
I
I
I
I
I

I

I
I

I
I

CloseNet

Write
Overhead&
HistoryFiles
for Blockn

Write Trailer
Data Records

Yes

Yes

Figure B-1. Flow chart of on-line data extraction programs.
202



Dec 1 18:05 1:id1 xm i t v c Page 1

'include "clock.usr.h"

changed:

added quirk:

commented:
rewritten:

to output (send) data from source over arpanet
David ~ortendyke september 30, 1980
evi nemeth december 1980
evi neme t h february 1981
to read preface header from a file.
Dana Grubb april 1981
Dave Wortendyke april-may 1981
Version 2.0 -- Overhead measurements
dave wortendyke oct 20, 1981
solves problem at nbs-unix of close net = -1
dav e wortendyke oct 27, 1981
dropped net war~-up (for >64 bytes)

Inputs: Program- # blocks, # of bytes/block, # transactions
Fil~s- One: preface.x
Hardware- WWV Satellite Receiver clQck
Library-

Outs: Program- N blocks of BLOCKSI~E bytes in each of
'r transactions

Files- Three: history.x, overhead.x, data.x
Hardware- Network controller/TIP
Library-printf

main progr'1Ill
written:
modified:
mod ified:

*
*
*/

*

*

*
*

*
*
*

#
/*
*
*
*'.*

N
o
w

/*
/*

clock.usr.h --> BLOCKSI~B=512, NBLOCKS=20, NTRANSACTIONS=1
clock.ovh.h --> BLOCKSIZE= 64, NBLOCKS= 1, NTRANSACTIONS=160

*/
*/

iinclude "net.h" /* open type bit assignments */

ddefine xmit main /* calling "xmit" gives the "main" program */

struct openparams
I

char 0 op;
char o-type;
int o-id;
int o-lskt·
int O-fSktL2J;
char o-frnhost;
char o-bsize;
int 0 nomall;
int o-timeo;
int 0' relid;

openparams; -

/* struct for making parameterized connections */

/* opcode for kernel & daemon - unused here */
/* type for connection see defines below */
/* id of file for kernel & daemon - unused here */
/* local socket number either abs or rel */
/* foreign skt either abs or rel */
/* for connection to specific host nums */
/* bytesize of connection telnet demands 8 */
/* initial allocation bits and msgs */
/* num of secs to wait before timing out */
/* fid of file to base a data connection on */

atruct time
I

int hour;
int min;
int sec;
int frac;

sattime;

/* for satelite clocks time entries */

/* nours */
/* minutes */
/* seconds */
/* fractional seconds in milliseconds */



Dec 1 18: 03 1981 xmit. c Page 2

char
char

int
int
int
int

databuf[BUFFHSIZE]; . /* data buffer for transmission across the network */
timebuf[2*MAXBLOCKS+5][CLOCKRECORDLENGTH+l ]; /* buffer for satellite

clock times, +1 I S needed for null, and +5 for overhead times */

date[3]; /* date: year, month, day */
ttyline[3]; /* line characteristics of ttyX (from gtty) as a tty */
debug; /* flag for debug-trace printouts */
overhdbuf[2*MAXBLOCKS+5]; /* buffer to store transaction state changes */

*
*/

N
o
+::-

xmit(argc,argv)

int argc ;
rhar *argv[ J;

/* Arguments are for when program begins executing.
* argc = number of command line arguments, counting
* 0 for "xmit"and 1 for number of blocks.
* argv = pointer to array of character strings that
* contain arguments (one per string). In this case,
* argv[l] contains the number of blocks to xmit.

(The default = 20)

register int i;
int
int
int
int
int
int
int
int
int
int
int
int
int
int
char
enar
int

int
char
int
int

j;
byteswritten;
bytessent[MAXBLOCKSJ;
numblocks;
bytes block;
numaccesses;
transactnum;
totalbytes;
fd net;
fd-history;
fd-overhead;
fd-clock;
ivec[2];
tvec[2J;
*pbuf;
*filename;
baud;

time() ;
*ct ime();
inchar;
nclockreads;

/* number bytes actually sent/block */
/* number of blocks to be sent */
/* number of bytes per block */
/* number of network accesses */
/* acccess or transaction number */
/* total # bytes to be sent */
/* file descriptor, arpanet network */
/* file descriptor, history file */
/* file descriptor, overhead file */
/* file descriptor, satellite clock */
/* system time vector, before transmission */
/* system time vector, after transmission */
/* pointer to random data buffer */
/* pointer to file name */

/* time of day, system clock */
/* converts system time to ascii */
/* input character from operator */
/* number of satellite clock reads */



Dec 1 1',:05 1981 xm i t v o Page 3

time(ivec); /* Read UNIx system clock. */
printf ("\n----------- network transmission ------------- ,,);
printf ("\ntest beginning,");
printf (" .s ", ctime(ivec));

numblocks = (argc > 1) ? atoi (argv[ 1 j) : NBLOCKS;

/* numblocks' made equal to desired number of blocks per run
* This is a "conditional expression", meaning:
* if the term before the question mark is not = 0,
* then the term after the question is the value;
* otherwis~, the term after the colon is the value.
* In other words: if argc >1, then the integer form of
* argv[l] is the value of "numblocks"; otherwise,
* set = NBLOCKS (in the "clock.h" file), which = 20.
*/

bytes block = (argc > 2) ? atoi(argv[2]) : BLOCKSIZE;
- /* Sets the number of 'bytes per block to BLOCKSIZE

* if there is no second argument, otherwise it sets
* the bytes per block = the value of the second arg */

numaccesses = (argc > 3) ? atoi(argv[3]) : NTRAN3ACTION~;

printf("/nI4ust use %d blocks or fewer, program terminating.", MAXBLOCKS);
exi t ();

if (numblocks > MAXBLOCKS)
tN

o
01

totalbytes = numblocks * bytes block * numaccesses;
if (totalbytes > BUFFRSIZE) -
t

pr ntf("\n ---> Request to send more, data than in buffer !");
pr ntf( "\n Program terminating. \n");
ex t();

pr ntf ("\n%d blocks of %d bytes to be sent" ,numblocks, bytes block);
pr ntf ("for each of %d accesses, ", numac ceeae s l r -
pr ntf ("= %d total bytes", totalbytes);

debug = NO; /* Change this to YES if debug is desired */

pbuf = &databuf[Oj; /* pbuf points to contents of databuf */

fd clock = openclock(); /* set tty interface to proper mode for
- * sat cloc~and return file descriptor */

initializeclock(fd_C10ck); /* reset sat clock, format sat clock,
* read initial record from both
* clocks, and compare clocks */

filename = "history.x";
fd_history = preface(filename); /* Write preface record for history



Dec 1 18:03 1981 xmt t , c Page 4

* file. The preface routine returns
* a file descriptor for history file. */

filename = "over-he ad v x '";
fd overhead = preface(filename); /* Write preface record for

* overhead file */

randomdata(); /* Creates 10240 bytes of pseudo random test data */
/* unless the data already exists */

openparams.o type = 0 SEND;
openparams.o-lskt =-277;
openparams.o:fsktL1] = 10;

timet ivec);

transactnum

/* Read UNIX system clock. */
/* ivec is the time for network open. */

0;

start:
while (transactnum < numaccesses)
(

pr i nt f'{ "\nAttempting open # %d, ", transactnum + 1 );

N
o
CTl

sleep(10);
nice(-45);

/* Wait 10 seconds to be sure the recv program is up */
/* Have UNIX give us higher priority for service */

readclock(fd clock,O); /* Read satellite clock. */
overhdbuf[Oj-= 23;
nclockreads = 1;

fd net = open("/dev/net/ntia-its",&openparams);
- /* try to open connection to ntia-its */

readclock(fd_clock,l); /* Read satellite clock. */

if (fd net <= 0)
( -

overhdbuf[l j = 54;

dupclocktime(2); /* Duplicate the last clock time into
* row 1 (2nd time)
*/

overhdbuf[2 J = 11;
nclockreads = 3;

record ovrhd(fd overhead,nclockreads);
printf-("0:\len denied, a(bort) or c(ontinue)
if (answer() == 0)

exit(); /* Abort = 0 = False

? ");

else
goto start; /* Continue = 1 = True

*/

*/



Dec 118:031981 xmit.c Page 5

else
l

overhdbuf[1] = 32;
nclockreads = 2;
printf("Opened, "I;

readclock(fd clock,2); /* Read satellite clock. */
- /* The 2 means put the time at the

* 2nd row of the buffer used by readclock. */
/* DATA TRANSMISSION LOOP FOLLOWS */

overhdbuf[nclockreads]= 23;
nclockreads =+ 1 ;

for (i=O;i<numblocks;i++)
I

overhdbuf[nclockreads] = 32;
nclockreads =+ 1 ;

N
o
-......J

bytessent[i] = write(fd_net,pbuf+bytes_block*(transactnum*numblocks+i) ,bytes_block);

/* write arguments are the file descriptor,
* pointer to row of "databuf",
• and the number of bytes to send. */

/* bytessent is the number of bytes actually sent */

readclock(fd clock,nclockreads); /* Read sat clock. */
- /* Put the time in next

* row of "timebuf". */

/* Abort = 0 */
/* Continue = 1 */

if (bytessent[i] != bytes block)
I printf( "Write error, a( bor t )

if (answer() == 0)
exit() ;

else
l

or c(ontinue) ? "I;

readclock(fd clock,nclockreads);
printf("\n\t\tattempting next write, "I;
continue;

/* A continue statement quits the existing
* iteration of the for loop and starts
* the next incremented loop value
*/

/* make the last end time be the next start time */
dupclocktime(nclockreads);

printf("Xmit complete, "I;
readclock(fd clock,nclockreads);
overhdbuf[nclockreads] = 45;
nclockreads =+ 1;
close (fd_net); /* Close connection to ntia-its */



Dec 1 18:03 1981 xmit.c Page 6

readclock(fd clock,nclockreads);
overhdbuf[ncTockreads] = 11;
nclockreads =+ 1;

nice(10); /* Set the UNIX nice routine to normal value */

decodetime (2,&sattime);

for (j=1 ;j(numblocks+1 ;j++)

/* Decode char buffer containing
* time r'etur ned by sat clock and
* convert it to integers.
* 2 for location in buffer */

/* WRITE HISTORY FILE */

N
o
00

/* write arguments = file descriptor, buffer, # bytes
* History file to be record number, number of bytes,
* and all start and end times. */

byteswritten = write (fd history,&j,2);
/* Counter j written to history file as record no. */

byteswritten = write (fd history,&(bytessent[j-1 ]),2);
/* bytessent is an array built from the returned
* arguments of the write routines.
* It is the number of bytes actually sent for
* each block. */

byteswritten = write (fd history,&sattime,sizeof(sattime));
/* start time of-each block. */

decodetime (2*j+1,&sattime);

byteswritten = write (fd_history,&sattime,sizeof(sattime));

printf("Transaction complete II);

record_ovrhd(fd_overhead,nclockreads);

transactnum =+ 1; /* Increment the number of transactions and
* do another if the while condition is met. */

time(tvec); /* Read UNIX clock. */
/* tvec time is for close network. */

closeclock(fd_clock);

if (debug == YES)
I

/* Close sat clock file */

for(i=O;i(numblocks;i++)
printf ("\nbytessent[%d] =: %d",i,bytessent[iJ);

close(fd history);
close(fd=overhead);

baud = (totalbytes * 8) / (tvec[1 ]-ivec[1 ]);



Dec 1 18:03' 1981 xmit.c Page 7

printf ("\n\n5'6d characters at %d baud ", totalbytes , baud);

printf ("\ntest completed, %s\n----------------\n",dtime(tvec));
/* ctime converts system time to ascii */

t'imes
descriptor

Dave Wortendyke July 3, 1980
modified evi nemeth february 1981

to read preface header record from a file.

PREFACE() routine:
Function to define and write preface record
for history file, ie file of before and after
for transmission of each block. returns file
of history file.

*/
preface (file)

I
/*
*
*
*
*
*
*
*
*

char *file;
I

nt fd;
nt fd preface;
nt byteswritten;

N
o
~

char
char
char
char
char
char

*p ident;
*p-run;
*p-type;
*p-info;
*p-source;
*p:destin;

/* Performance Measurement Identifier */
/* Run Number */
/* Type Identifier source/dest, */
/* Information type identifier */
/* Source identifier */
/* Destination identifier */

char *readpreface();

fd = creat(file,0664);
if (fd < 0)
I

printf ("\ncannot create file\nprogram preface exiting\n");
ex i t f ) ;

fd_:(lreface. = open(lpreface.x",READ); /* READ is a 0 for UNIX read */
if lfd preface < 0) /* UNIX gives -1 for error */
I -

printf ("\ncannot open preface file\nprogram preface exi ting\n");
exit();

byteswritten = 0;

/* Following commands read pieces of preface
* and write to history.x */

/* The form A =+ B is equivelent to A = A + B.*/

p_ident readpreface(fd_preface,IDENTSIZE);



/* batch no. */

N
--'
o

Dec 118:031981 xmi t , o Page 8

byteswritten =+ write(fd, p_ident, IDENTSIZE);

p run = readpreface(fd preface,RUNSIZE);
byteswritten =+ write(fd~ p_run, RUNSIZE);

p type = readpreface(fd preface,TYPESIZE);
byteswritten =+ write(fd~ p_type, TYPESIZE);

p info = readpreface(fd preface,INFOSIZE);
byteswritten =+ write(fd~ p_info, INFOSIZE);

p source= readpreface(fd preface,SOURCESIZE);
byteswritten =+ write(fd~ p_source, SOURCESIZE);

p destin= readpreface(fd preface,DESTINSIZE);
byteswritten =+ write(fd~ p_destin, DESTINSIZE);

byteswritten =+ write(fd, date, sizeof(date));

if (debug == YES)
printf( "\npreface written to file h i s t or y , x (%d bytes)", byteswri tten);

close(fd_preface);

return( fd);

/*
*
*
*
*
*
*
*
*
*
*
*
**/

READPREFCE () routine.
function to read the preface header information from the
file "preface.x" (preface.r). the argument fd is its file
descriptor; length is the length of the string to be read.
the function returns a pointer to this character string.

if a line of the preface header file preface.x (preface.r)
is too long it is truncated, if it is too short it is padded
with blanks. the proper sizes are defined constants at the
beginning of this file, actually they are in the include
file "clock.h".

char *readpreface(fd,length)

int fd;
int length;

register int i;
register int j;
int bytesread;
int totalbytes;



Dec 1 18:03 1981 xm t t ;.c Page 9

char s[MAXPREFACESIZE);

if (length <= 0 :: length> MAXPREFACESIZE)
t

pr ntf (lI\ninvalid
pr ntf (II length:
pr ntf ("\nprogram
ex t();

length argument to function readpreface,");
%d",length);
preface exiting\n\n");

totalbytes = 0;

/* READ PREFACE LOOP FOLLOWS */

pr ntf ("\npreface.x file format wrong, eof encountered.");
pr ntf ("\nprogram preface exiting\n\n");
ex t();

/* read 1 byte, put in sCi) */bytesread = read(fd,&s[i),1);
if (bytesread == 0)
{

for (i=O;i<MAXPREFACESIZE;i++)
I

if (totalbytes < length) /* blanks in rest of file */
for (j=totalbytes-1 ; j<length;j++)

s[j~ = BLANK;
s[length] = NULL; 1* last buffer char set = null */
return(s); /* normal return */

if (s[i) == NL)
I

totalbytes =+ bytesread;N............

I
pr ntf ("\npreface header record contains too many characters");
pr ntf (lI\nno newline encountered, format pr obab Ly wrong");
pr ntf ("\nprogram preface continuing\n\n");

if (debug == YES)
printf ("\npreface record: %S",S);

s[length) = NULL;
return(s);

I
/*
*
*
*
*
*/

READCLOCK () routine.
procedure to read time from satel.ite clock and store it
in a buffer, timebuf. there are two arguments: fd and n,
fd is the file descriptor of the clock line; n is the
row in the buffer to store the current clock reading.

/* GENERAL INFORMATION ON I/O:
* First argument is the file descriptor.
* Second argument is the buffer location.



N
-.I

N

Dec 1 18:03 1981 xm.t t , c Page 10

* Third argument is the number of bytes. */

/* The return argument for a write is the number of
* bytes sent, which must = the number supposedly sent
* or there is an error. */

/* The return argument for a read is a number greater
* than zero, unless it was an end of file; or a
* -1 for a read error. */

readclock(fd,n)

int fd;
int n; /* n = offset in "timebuf" for particular clock reading. */

int byteswritten;
int bytesread;

char *buffer;

buffer = TRIGGER; /* TRIGGER = "T" */
byteswritten = write (fd,buffer,l);
bytesread = read (fd,timebuf+n,CLOCKRECORDLENGTH);
if (bytesread != CLOCKRECORDLENGTH)

readerror(bytesread);

/*The output from this routine is the sat clock time
* in the specified row of "timebuf". */

/*
*
*
*
*/

create psuedo-random data for test (10240 bytes)
unless the data already exists.
Dave Wortendyke July 3, 1980

randomdata( )
I

register int i;
int fd data;
int byteswritten;

/* loop counter
/* file designator */

*/

int temp; /* temporary variable */
int a; /* n-l register */
int b; /* n-2 register */

a = 0; /* initial a value */
b = 1; /* initial b value */

for (i=O;i<BUFFRSIZE;i++)
I

temp = a;
a = a • b;

/* loop simulating circular shift */

/* save a */
/* a excl. or b */



Dec 1 18:03 1981 xmt t ;c Page 11

b = temp; /* b = original a */

if (fd data ) 0 )
break;-

N
--'
W

temp = a; /* save new a */
a = a » 3; /* shift 3 to right */
a = a & 01777; /* a masked with octal 01777 */
temp = temp « 13; /* flush all but 3 bits */
temp = temp » 3; /* align 3 bits */
a = a : temp; /* a incl. or temp */
databuf[iJ = (a & 0377); /* store lower 8 bits */

fd data = open("data.x", 0);
while( 1 )
!

fd data = creat("data.x", 0644);
if-(fd data < 0)
{ -

printf ("\ncould not create random data file\nprogram randomdata exiting\n");
exi t();

I
byteswritten = write(fd_data, &databuf, sizeof(databuf));

if (debug == YES)
I
rintf ("\nrandom data now in databuf[%d]", byteswri tten);

break;

close (fd_data) ;

/*
*
*
*
*
*

*
*
*
**/

OPENCLOCK() routine.
dave wortendyke and evi nemeth
nov 1980

sets tty interface to proper mode for satellite clock.
returns file descriptor of the clock line.
in order to open a port for the clock, the user must be
superuser, or the program must have mode 4755 and must be owned
by the root, or the port, that is the device in /dev, must
be owned by the owner of the program.

int openclock()



Dec 1 18:03 1981 xmit.c Page 12

int fd;
int clockline[3];

/* open clock port */

/* line characteristics for the clock */

printf (Il\nunable to open tty port to read clock.\nexiting\n");
exit();

fd = open (CLOCK,READWRITE);
if (fd < 0)
{

/* set line characteristics */

N
--'
-r::-

gtty (fd,ttyline);
if (debug == YES)

printmode(ttyline);

Clockline~01 = CLOCKSPEED;
clockline 1 = ttyline[1 ];
clockline 2 = CLOCKMODE;

stty (fd,clockline);
if (debug == YES)
{

/* speeds */
/* erase and kill characters */
/* any parity,hup,no echo,no cr/lf */

gtty (fd,clockline);
printmode(clockline);

return( fd);

/*
*
*
*/

INITIALIZCLOCK() routine.
resets, formats and initializes clock.

initializeclock(fd)

int fd; /* file descriptor of the clock line */

register int j;

int byteswritten;
int bytesread;

/* loop counter */

/* value returned by the write routine */
/* value returned by the read routine */

int printmode(); /* function to print line characteristics */



Dec 1 18:03 1981 xmf t ,.c Page 13

nt timevec[2];
nt *systime;
nt timeoff;
nt satday;

char *buffer;
char tempE 4];

/* time vector returned by time system call */
/* pointer to array returned by gmtime sys call */
/* difference between satelite and system clocks */
/* day returned by satellite clock */

/* buffer for clock writes */
/* temporary storage for char to int conversions */

/* turn the clock on and format it for initial record,
* which includes the date.
*/

N
--'
U1

buffer = RESET; /* reset code for clock */
byteswritten = write (fd,buffer,l);
if (byteswritten != 1)

writerror(byteswritten);
if (debug == YES)

printf("\nbuffer: %s",buffer);

buffer = IFORMAT; /* format code including day */
byteswritten = write (fd,buffer,FORMATLE~GTH);
if (byteswritten != FORMATLENGTH)

writerror(byteswritten);
if (debug == YES)

printf( "\nbuffer: %s", buffer);

/*
*
*
*/

read an initial record on the satelite clock
read an initial.record on the system clock

bytesread = read(fd,&(timebuf[O][j]),l);
if (bytesread != 1)

readerror(bytesread);

j = 0;
while (1)
{

if (timebuf[O][j] == NL)
break;

else
j++;

if (debug == YES)
printf ("\ninitial satellite time:

time (timevec);
systime = gmtime(timevec);

%s", timebuf);



Dec 1 18:0) 1981 xmit.c Page 14

if (debug == YES)
I

printf ("\nsystime -- %d %d %d:%d:%d\n".*(slstlme+YEAR).
*(systime+JULIANDAY) + 1.*(systime+HOURSJ,*(systime+MINUTBS).
*(systime+SECO~DS»;

/*
*
*
*/

decode the satellite clock record and compare system clock and
satellite clock values. exit if the two times are too far off.

temp~o j. = timebuffo 1· fIDAYBEGIN];
temp 1 = timebuf 0 IDAYBEGIN +
temp 2 = timebuf 0 IDAYBEGIN +
temp,3 = NULL;
satday = atoi(temp);

1 ];
2] ;

printf ("\ncheck the date on your system\nprogram eXiting\n");
exit() ;

1];

N
--'
m

if (satday != 1 + *(systime + JULIANDAY»
I

temPfO] = timebuf[O][IHOURBEGIN];
temp 1] = timebuf[O][IHOURBEGIN + 1 ];
temp 2J = NULL;
sattime.hout = atoi(temp);

temp[O] = timebuf[O][IMINBEGIN];
temp[lj = timebuf[O][IMINBEGIN +
temp[2] = NULL;
sattime.min = atoi(temp);

/* system uses 0-364. satellite uses 1-365 */

printf ("\ncheck the time on your system\nprogram exiting\n");
exit();

timeoff = ( *(systime + HOURS) * 60 + *(systime + MINUTES) ) - ( sattime.hour * 60 + sattime.min);
if (debug == YES)

pr intf ("\ntimeoff =: %d minutes\n", tirneoff);
if (timeoff > TIMEDIFFLIMIT :: timeoff < -TIMEDIFFLIMIT)
I

date~O1date 1
date.2

*(systime + YEAR);
(*(systime + MONTH» + 1;
*(systime + DAY);

/* system call returns 0-11, we need 1-12 */

/*
*
*
*/

reformat the clock to return only the time. read the record
generated by formatting it.

buffer = FORMAT; /* format sode, time only */
byteswritten = write (fd.buffer.FORMATL~~GTH);



Dec 1 18:03 1981 xmLt v c Page 15

if (byteswritten != FORMATLENGTH)
writerror(byteswritten);

if (debug == YES)
printf( "\nclock format: %S",buffer);

bytesread = read(fd,&(timebuf[O][j]),l);
if (bytesread != 1)

readerror(bytesread);

j = 0;
while (1)
I

if (timebuf[O][j] == NL)
break;

else
j++;

if (debug == YES)
printf ("\nreformatted clock record: %s\n ll ,timebuf);

N......
'oJ

/*
*
*/

function to decode the character buffer containing the time
returned by the satellite clock and convert it to integers

decodetime(n,sat)

int n;
struct time *sat;

char hour[3];
char minf3];
char sec 3];
char fractionalsec[4];

hourfo] = timebuffn][HOURBEGIN];
hour 1] = timebuf nJ[HOURBEGIN + 1];
nourj z ] = NULL;

m~n[o~mJ.n 1
min 2

sec[01sec 1
sec 2

= timebuf[nJfMINBEGIN];
= timebuf nJ MINBEGIN + 1];

NULL;

= time~uf[n][SECBEGIN];
= timebuf n][SECBEGIN + 1 ];
= NULL;

fractionalsec[O] = timebuf[n][FRACBEGIN];
fractionalsec[l] = timebuf[n][FRACBEGIN + 1];



Dec 118:031981 xm i t , c Page 16

fractionalsec[2j = timebuf[nj[FRACBEGIN + 2];
fractionalsec[3j = NULL;

sat->hour = atoi(hour);
sat->min = atoi(min);
sat->sec = atoi(sec):
sat->frac = atoi(fractionalsec):

if (debug == YES)
{

pr ntf ("\nn =: %d",n);
pr ntf ("\ntirnebuf =: %s", timebuf+n);
pr ntf ("\ncharacter arrays =: %s:%s:%s.%s",hour,min,sec,fractionalsec):
pr ntf ("\ninteger arrays =: %d,%d,%d+%dms\n",sat->hour,sat->min,sat->sec,sat->frac):

/* RECORD_OVERHEAD() information on transaction states and times */

record_overhd(fd,n)N
--'
co

int
int

fd;
n: /* nwnber of states and times to record to overhead file */

int j;
int bytes;

for (j=1: j < n+1: j++)

decodetime(j-1,&sattime):
bytes = write(fd, &j, 2);
bytes = write(fd, &(overhdouf[j-1 ]), 2):
bytes = write(fd, &sattime, sizeof(sattime»:

printmode( line)

int line[3J;

printf ("\ngtty line mode: %0 %0 %0 \n" ,line[0],line[1 ],line[2]):
return(O);



Dec 1 18: 03 1981 xmit. c Page 17

writerror(bytes)

int byte,,;
{

pr ntf ("\ndevice write error B);
pr ntf ("\nnumber of bytes written
ex t();

%d",bytes);

readerror(bytes)

int bytes;
{

pr ntf ("\nclock read error ");
pr ntf ("\nnumber of bytes read
ex t();

%0 \n", bytes) ;

reset ttyX line for Satellite Clock back to normal tty mode
/*
*
*/

closeclock(fd)

N
--'
\D

int fd;

stty (fd,ttyline);

gtty (fd,ttyline);
printf ("\nin closeclock routine:");
printmode(ttyline);

if (debug == YES)
{

close(fd) ;

/* ANSWER() routine.
* returns 1 if true or continue and 0 if false or abort.
*/

int answer()
{

int a;



Dec 1 18:03 1981 xmit.c Page 18

sWitch(getchar())
I

case 'a':
printf( "\n Test terminated by operator \ll,tl);
a = 0;
break;

case 'c t
:

a = 1;
break;

default:
printf(tl 'a' or 'c'? II);

return(a) ;

int n;
I

DUPCLOCKTIME() routine
duplicates a previous clock reading into the next row of the buffer

/*
*
*/

dupclocktime(n)N
N
a

register int k;

/* make the last end time be the next start time */

for
I

l

(k = 0; k < CLOCKRECORDLENGTH + 1; k++)

timebuf[n][k] = timebuf[n-1 ][k);



Jan 11 10:5~ 1982 recv.c Page 1

#
/*
*
*
*
*
*

*
*
*
*
*

main program
written:
modified:
modified:

commented:
rewritten:

changed.r

corrected:

to receive data from sender over arpanet
David Wortendyke september 30, 1980
evi nemeth december 1980
evi nemeth february 1981
to read preface header from a file.
Dana Grubb april 1981
Dave Wortendyke april-may 1981
Version 2.0 -- Overhead measurements
dave wortendyke oct 27, 81
dropped warm-up for large blocks (>64 bytes)
dave wortendyke nov 12, 81
insufficient # of writes to history file when blocks
are split by net software into two smaller blocks

N
N
--'

* Inputs: Program- # of bytes/block expected" # transactions
Files- One: preface.r

* nardware- '/lV/V Satellite Receiver clock
* Hardware- Network controller/TIP
* 1ibrary-
* Outs: Program-

Files- Three: histnry.T, overhead.r, data.r
* Li brary-pr intf
*/
dinclude "clock.usr.h"

/*
/*

clock.usr.h --> BLOCKSIZE=512, NBLOCKS=20, NTRANSACTIONS=1
clock.ovh.h --> BLOCKSIZE= 64, NBLOCKS= 1, NTRANSACTIONS=160

*/
*/

#include "net.h"

#define recv main

/* open type bit assignments */

/* calling "recv" gives the "main" program */

struct openparams
I

char 0 op;
char o-type;
int o-id;
int o-lskt·
int O-fSktL2J;
char o-frnhost;
char o-bsize;
int 0 !lomall;
int o-timeo;
int 0 relid;

openparams; -

struct time
I

int hour;
int min;
int sec;
int frac;

sattime;

/* struct for making parameterized connections */

/* opcode for kernel & daemon - unused here */
/* type for connection see defines below */
/* id of file for kernel & daemon - unused here */
/* local socket number either abs or rel */
/* foreign skt either abs or rel */
/* for connection to specific host nums */
/* bytesize of connection telnet demands 8 */
/* initial allocation bits and msgs */
/* num of secs to wait before timing out */
/* fid of file to base a data connection on */

/* for satelite clocks time entries */

/* hours */
/* minutes */
/* seconds */
/* fractional seconds in milliseconds */



char
char

recv(argc,argv)
/*
*
*
*
*
*
*
*
*/

N
N
N

Jan 11 10:59 1982 recv.c Page 2

databuf[BUFFRSIZE]; _ /* data buffer for transmission across the network */
timebuf[2*WAXBLOCKS+7J[CLOCKRECORDLENGTH+1]; /* buffer for satellite

clock times, +1 needed for null and +7 for overhd times */

nt date[3]' /* date: year, month, day */
nt ttylineL3]; /* line characteristics of ttyX (from gtty) as a tty */
nt debug; /* flag for debug-trace printouts */
nt overhdbuf[2*MAXBLOCKS+7]; /* buffer to store transaction state changes */

Arguments are for when program begins executing.
argc = number of command line arguments, counting

o for "xmit"and 1 for number of blocks.
argv = pointer to array of character strings that

contain arguments (one per string). In this case,
argv[1] contains the block size in bytes and
argv[2J contains the number of network listens.
(The default = 20)

int argc; _
char *argvL J;
I

register int i;
int j;
int byteswritten;
int bytesrecd[MAXBLOCKS];
int numblocks;
int netreads;
int bytes block;
int numaccesses;
int transactnum;
int totalbytes;
int subtotalbytes;
int bytes_to_read;

int
int
int
int
int
int
int
char
char

fd net;
fd-history;
fd-overhead;
fd-clock;
fd-data;
ivec[2];
tvec[2];
*pbuf;
*filename;

/* number bytes actually recvd/block */
/* number of blocks expected */
/* number actually read */
/* number of bytes per block */
/* number of network accesses */
/* acccess or transaction number */
j* total # bytes recvd */
/* total # bytes recvd/transaction */
/* number of bytes to read each time

* from network = 3 * number expected
* except for the fake test = exact #
*/

/* file descriptor, arpanet network */
/* file descriptor, history file */
/* file descriptor, overhead file */
/* file descriptor, satellite clock */
/* file descriptor, recvd data file */
/* system time vector, before transmission */
/* system time vector, after transmission */
/* pointer to random data buffer */
/* pointer to file name */



Jan 11 10:59 1982 recv.c Page 3

int baud;

int
char
int

time ();
*ctime () ;
nclockreads;

/* time of day, system clock */
/* converts system time to ascii */
/* number of satellite clock reads */

time(ivec); /* Read UNIX system clock. */
printf ("\n----------- network reception
printf ("\nt'est beginning,");
printf (" %s ", ctime(ivec));

");

bytes_block

numaccesses

(argc > 1) ? atoi(argv[1])

(argc > 2) ? atoi(argv[2])

BLOCKSIZE;

NTRANSACTIONS;

N
N
W

/* This is a "conditional expression", meaning:
* if the term before the question mark is not = 0,
* then the term after the question is the value;
* otherwise, the term after the colon is the value.
* In other words: if argc >2, then the ascii form of
* argv[2] is the value of "number of transactions"; otherwise,
* set = NTRANSACTION"S (in the "clock.h" file), which = 1.
*/

numblocks = BUFFRSIZE / (bytes block * numaccesses);
bytes to read = 3 * bytes blocK; /* Allow room for more than expected

- - - */

printf (lI\nTest to access network with %d listens\nlt,numaccesses);
debug = NO; /* Change this to YES if debug is desired */

pbuf = &databuf;

fd clock = openclock();

/* pbuf points to contents of databuf */

/* set tty interface to proper mode for
* sat clock and return file descriptor
*/

initializeclock(fd_clock);

filename = "history.r";
fd_history = preface(filename);

filename = "overhead.r";
fd overhead = preface(filename);

/* reset sat clock, format sat clock,
* read initial record from both
* clocks, and compare clocks
*/

/* Write preface record for history
* file. The preface routine returns
* a file descriptor for history file.
*/

/* Write preface record for
* overhead file
*/



Jan 11 10:59 1982 recv.c Page 4

fd data = creat("data.r", 0664);
iC(fd data < 0)
{ -

printf( "\nCannot create file data. r for recvd data");
printf("\nProgram eXiting \n");
ex i t l ) ;

openparams.o type = 0 RCV;
openparams.o-lskt =-10;
openparams.o:nomall = 1024;

time(ivec); /* Read UNIX system clock. */
/* ivec is the time for network open. */

N
N
~

transactnum = 0;
totalbytes = OJ

start:
while (transactnum < numaccesses)
{

nice(-85); /* Have UNIX give us higher priority for service */

printf( "\nAttempting open # %d, ", transactnum + 1);

readclock(fd_clock,O); /* Read satellite clock. */
overhdbuf[OJ = 32;
nclockreads = 1;

fd net = open("/dev/net/anYhost" ,&:openparams);
/*-try to open connection to anyhost *7

readclock(fd_clock,I); /* Read satellite clock. */

*/
*/

? II);

/* Abort = 0 = False

/* Continue = 1 = Truegoto start;

overhdbuf[1 J = 23;
nclockreads = 2;
printf("0pened, II);

else

overhdbuf[1 J = 11;
nclockreads = 2;
record ovrhd(fd overhead,nclockreads);
printf-(II0pen denied, a(bort) or c(ontinue)
if (answer() == 0)

exit();

l
else
{

if (fd net <= 0)
{ -

sUbtotalbytes = 0;
netreads = 0;



Jan 11 10:59 1982 recv.c Page 5

/* Now receive the data for real this time. */

readclock(fd_clock,2);

/* DATA RECEPTION LOOP

/* Read satellite clock. */
/* The 2 means put the time at the
* 2nd row of the buffer used by readclock. */

FOLLOWS */

overhdbuf[nclockreads]= 32;
nclockreads =+ 1;

for (i=O; i < numblocks + 4; i++)
{

bytesrecd[i] = read(fd_net,pbuf+totalbytes+subtotalbytes,bytes_to_read);

readclock(fd_clock,nclockreads);

overhdbuf[nclockreads] = 23;
nclockreads =+ 1;

/* Read sat clock. */
/* Put the time in next
* row of "timebuf". */

sUbtotalbytes =+ bytesrecd[i];
/* make the last end time be the next start time */
dupclocktime(nclockreads);

/* bytesrecd[i] < 0 and error */

netreads =+ 1·
if (bytesrecdLi] > 0)
{

overhdbuf[nclockreads - 1] = 45;
break;

/* EOF means xmit closed */

/* increment # of blocks read */

pr i rrt f'{t'Re ad error, a(bort) or c(ontinue) ? ");
if (answer() == p)

eXit(); /* Abort = 0 */

if (bytesrecd[i] == 0)
t

I
else
{

I
else
{

N
N
til

else
t

/* Continue = 1 */
printf("\n\t\tattempting next read, II);
readclock(fd_clock,nclockreads);

printf( "Recv complete, II);
readclock(fd clock,nclockreads);
overhdbuf[nclockreads] = 54;
nclockreads =+ 1;



Jan 11 10:59 1982 recv.c Page 6

close (fd net); /* Close connection to anyhost */
readclockffd clock,nclockreads);
overhdbuf nclockreadsJ = 11;
nclockreads =+ 1;

nice(10); /* Set the UNIX nice routine to normal value *!

decodetime (2,~sattime); /* Decode char buffer containing
* time returned by sat clock"and
* convert it to integers.
* 2 for location in buffer */

write arguments = file descriptor, buffer, # bytes
History file to be record number, number of bytes,
and all start and end times. */

for (j=1 ; j

/*
*
*

<= net reads ; j++) /* WRITE HISTORY FILE */

N
N
0"1

byteswritten = write (fd history,&j,2);
/* Counter j written to history file as record no. */

byteswritten = write (fd history,&(bytesrecd[j-1 J),2);
/* bytesrecd is an array built from the returned

* arguments of the read routines.
* It is the number of bytes actually sent for
* each block. */

byteswritten = write (fd history,&sattime,sizeof(sat~ime));
/* start time of-each block. */

decodetime (2*j+1,&sattime);

byteswritten = write (fd_history,&sattime,sizeof(sattime));

I
byteswritten = write(fd_data, pbuf + totalbytes, sUbtotalbytes);

printf(IITransaction complete II);

record_ovrhd(fd_overhead,nclockreads);

totalbytes =+ subtotalbytes; /* Update the grand total count */
transactnum =+ 1; /* Increment the number of transactions and

* do another if the while condition is met. */

time (tvec); /* Read UNIX clock. */
/* tvec time is for close network. */

closeclock(fd_clock);

if (debug == YES)
I

/* Close sat clock file */

for(i=O;i<numblocks;i++)
printf ("\nbytesrecd[%dJ =: %d",i,bytesrecd[iJ);



Jan 11 10:59 1982 recv.c Page 7

close(fd history);
close(fd-overhead);
close (fd=data);

baud = (totalbytes * 8) / (tvec[1 ]-ivec[1]);
printf (n\n\n%d characters at %d baud n, totalbytes,baud);

printf (n\ntest completed, %s\n---------------- \nn ,ctime( tvec) );
/* ctime converts system time to ascii */

times
descriptor

Dave Wortendyke July 3, 1980
modified evi nemeth february 1981

to read preface header record from a file.

PREFACE() routine:
Function to define and write preface record
for history file, ie file of before and after
for transmission ~f each block. returns file
of history file.

*
*/
preface(file)

I
/**/
/*
*
*
*
*
*
*
*

N
N
.......

char
I

*file;

int fd;
int fd preface;
int byteswritten;

char
char
char
char
char
char

*p ident;
*p-run;
*p-type;
*p-info;
*p-source;
*p=destin;

/* Performance Measurement Identifier */
/* Run Number */
/* Type Identifier source/dest */
/* Information type identifier */
/* Source identifier */
/* Destination identifier */

char *readpreface();

fd = creat(file,0664);
if (fd < 0)
{

printf (n\ncannot create file \nprogram preface exi t i ngvn") ;
exi t();

fd_preface = open(npreface.rn ,READ); /* READ is a 0 for UNIX read */
if lfd preface < 0) /* UNIX gives -1 for error */
{ -

printf (n\ncannot open preface file\nprogram preface exi ting\nn);
exi t();

byteswritten = 0;



Jan 11 10:59 1982 recv.c Page 8

/* Following commands read pieces of preface
* and write to history.r *7

/* The form A =+ B is equivelent to A = A + B.*/

p_ident = readpreface(fd_preface,IDENTSI~E);

byteswritten =+ write(fd, p_ident, IDENTSIZE);

N
N
co

p run = readpreface(fd preface,RUNSIZE);
byteswritten =+ write(fd-;- p_run, RUNSIZ~);

p type = readpreface(fd preface,TYPESIZE)'
byteswritten =+ write(fd-;- p_type, TYPESIZE);

p info = readpreface(fd preface,INFOSIZE)'
byteswritten =+ write(fd-;- p_info, INFOSIZE);

p source= readpreface(fd preface,SOURCESIZE);
byteswritten =+ write(fd-;- p_source, SOURCESIZE);

p de s ti ne readpreface(fd preface,DESTINSIZE);
byteswritten =+ write(fd-;- p_destin, DESTINSIZE);

byteswritten =+ write(fd, date, sizeof(date));

/* batch no. */

/*
*
*
*
*
*
*
*
*
*
*
*
*
*/

if (debug == YES)
printf("\npreface written to file history.r (%d bytes)",byteswritten);

close(fd_preface);

return(fd);

READPREFCE () routine.
function to read the preface header information from the
file "pre race , x" (pr erace v r ) . the argument fd is its file
descriptor; length is the length of the string to be read.
the function returns a pointer to this character string.

if a line of the preface header file preface.x (preface.r)
is too long it is truncated, if it is too short it is padded
with blanks. the proper sizes are defined constants at the
beginning of this file, actually they are in the include
file "clock.h".

char *readpreface(fd,length)

int fd;
int length;



Jan 11 10:59 1982 recv.c Page 9

length argument to function readpreface,");
%d",length);
preface eXiting\n\n");

pr ntf (n\ninvalid
pr ntf (n length:
pr ntf ("\nprogram
ex t();

register int i;
register int j;
int bytesread;
int subtotalbytes;
char s[MAXPREFACESIZE];

if (length <= 0 :: length> MAXPREFACESIZE)
I

subtotal bytes = 0;

pr ntf ("\npreface.r file format wrong, eof encountered.");
pr ntf (n\nprogram preface exi ting\n\n");
ex t();

bytesread = read(fd,&s[i],1); /* read 1 byte, put in sCi] */
if (bytesread == 0)
I

/* READ PREFACE LOOP FOLLOWS */

for (i=O;i<MAXPREFACESIZE;i++)
I

N
N
\.0

subtotalbytes =+ bytesread;

if (subtotalbytes < length) /* blanks in rest of file */
for (j=subtotalbytes-1 ; j<length;j++)

s[ j] = BLANK;
s[lengthJ = NULL; /* last buffer char set = null */
return(s ; /* normal return */

if (s[i] == NL)
I

I
pr ntf ("\npreface header record contains too many characters");
pr ntf ("\nno newline encountered, format probably wrong");
pr ntf ("\nprogram preface continuing\n\n");

if (debug == YES)
printf ("\npreface record: %s",s);

s[lengthJ = NULL;
return(s ;

i
/**/
/*
*
*

READCLOCK () routine.
procedure to read time from satellite clock and store it
in a buffer, timebuf. there are two arguments: fd and n,



Jan 11 10:59 1982 recv.c Page 10

*
*
*/

fd is the file descriptor of the clock line; n is the
row in the buffer to store the current clock reading.

/* GENERAL INFORMATION ON I/O:
* First argument is the file descriptor.
* Second argument is the buffer location.
* Third argument is the number of bytes. */

/* The return argument for a write is the number of
* bytes sent, which must = the number supposedly sent
* or there is an error. */

/* The return argument for a read is a number greater
* than zero, unless it was an end of file; or a
* -1 for a read error. */

N
W
o

readclock( fd ,n)

int fd;
int n; /* n = offset in "timebuf" for particular clock reading. */

int byteswritten;
int bytesread;

char *buffer;

buffer = TRIGGER; /* TRIGGER = "T" */
byteswritten = write (fd,buffer,l);
bytesread = read (fd,timebuf+n,CLOCKRECORDLENGTH);
if (bytesread != CLOCKRECORDLENGTH)

readerror(bytesread);

/*The output from this routine is the sat clock time
* in the specified row of "timebuf". */

/**/

/*
*
*
*
*
*
*
*
*
*
*/

OPENCLOCK() routine.
dave wortendyke and evi nemeth
nov 1980

sets tty interface to proper mode for satellite clock.
returns file descriptor of the clock line.
in order to open a port for the clock, the user must be
superuser, or the program must have mode 4755 and must be owned
by the root, or the port, that is the device in /dev, must
be owned by the owner of the program.

int openclock()



Jan 1110:591982 r ecv ; c Page 11

int fd;
int clockline[3];

/* open clock port */

/* line characteristics for the clock */

printf (II\nunable to open tty port to read clock.\nexiting\n");
exit();

fd = open (CLOCK,READWRITE);
if (fd < 0)
{

/* set line characteristics */

gtty (fd,clockline);
printmode(clockline);

I'\)

W
--'

gtty (fd,ttyline);
if (debug == YES)

printmode(ttyline);

Clockline~01 = CLOCKSPEED;
clockline 1 = ttyline[1];
clockline 2 = CLOCKMODE;

stty (fd,clockline);
if (debug == YES)
{

/* speeds */
/* erase and kill characters */
/* any parity,hup,no echo,no cr/lf */

return(fd) ;

/**/

/*
*
*
*/

INITIALIZCLOCK() routine.
resets, formats and initializes clock.

ini tiali~eclock(fd)

int fd; /* file descriptor of the clock line */

register int j;

int byteswritten;
int bytesread;

/* loop counter */

/* value returned by the write routine */
/* value returned by the read routine */



Jan 11 10:59 1982 recv.c Page 12

int printmode();

nt t"imevec[2];
nt *systime;
nt timeoff;
nt satday;

char *buffer;
char temp[4];

/* function to print line characteristics */

/* time vector return~d by time system call */
/* pointer to array returned by gmtime sys call */
/* difference between satelite and system clocks */
/* day returned by satellite clock */

/* buffer for clock writes */
/* temporary storage for char to int conversions*/

N
W
N

/* turn the clock on and format it for initial record,
* which includes the date.
*/

buffer = RESET; /* reset code for clock */
byteswritten = write (fd,buffer,I);
if (byteswritten != 1)

writerror(byteswritten);
if (debug == YES)

printf("\nbuffer: %s",buffer);

buffer = IFORMAT; /* format code including day */
byteswritten = write (fd,buffer,FORMATLENGTH);
if (byteswr i tten != FORMATLENG'r H)

writerror(byteswritten);
if (debug == YES)

printf("\nbuffer: %s",buffer);

/*
*
**/

read an initial record on the satelite clock
read an initial record on the system clock

j = 0;
while (1)
I

bytesread = read(fd,&(timebuf[O][j]),I);
if (bytesread != 1)

readerror(bytesread);

if (timebuf[Oj[j] == NL)
break;

else
j++;

if (debug == YES)
printf ("\nini tial satellite time: %s",timebuf);



Jan 1110:591982 r ecv ; c Page 13

time (timevec);
systime = gmtime(timevec);

printf ("\nsystime -- %d %d %d:%d:%d\n" ,*(s,ystime+YEAR) ,
*(systime+JULIANDAY) + 1,*(systime+HOURSJ,*(systime+MINUTES),
*(systime+SECO~DS»;

if (debug == YES)
I

/*
* decode the satellite ~lock record and compare system clock and
* satellite clock values. exit if the two times are too far off.
*/

printf ("\ncheck the date on your system\nprogram exi ting\n");
exi to;

N
W
W

temp~Oj = timebuff01~IDAYBEGI~];temp 1 = tim.ebuf 0 IDAYBEGIN + 1 ];
temp 2 = timebuf 0 IDAYBEGIN + 2];
temp 3 = NULL;
satday = atoi(temp);

if (satday != 1 + *(systime + JULIANDAY»
I

/* system uses 0-364, satellite uses 1-365 */

temp[o~ = timebuf[O][IHOURBEGI~];
temp[1 = timebuf[O][IaOURBEGI~ + 1];
t eapj z ] = NULL;'
sattime.hour = atoi(temp);

1 J;
temp[O] = timebuf[Oj[IMINBEGINj;
temp[1] = timebuf[O][IMINBEGIN +
temp[2j = NULL;
sattime.min = atoi(temp);

timeoff = ( *(systime + HOURS) * 60 + *(systime + MINUTES) ) - ( sattime.hour * 60 + sattime.min);
if Cdebug == YES)

printf ("\ntimeoff =: %d minutes\n",timeoff);
if (timeoff > TIMEDIFFLIMIT :: timeoff < -TIMEDIFFLIMIT)
I

printf ("\ncheck the time on your system\nprogram exi ting\n");
exit();

date~01date 1
date 2

*(systime + YEAR);
(*(systime + MONTH» + 1;
*(systime + DAY);

/* system call returns 0-11, we need 1-12 */

/*
*
*
*/

reformat the clock to return only the time. read the record
generated by formatting it.



Jan 11 10:59 1982 recv.c Page 14

buffer = FORMAT; /* format code, time only */
byteswritten = write (fd,buffer,FORMATLENGTH);
if (byteswritten != FORMATLENGTH)

writerror(byteswritten);
if (debug == YE8)

printf("\nclock format: %s",buffer);

j = 0;
while (1)
I

bytesread = read(fd,&(timebuf[O][j]),l);
if (bytesread != 1)

readerror(bytesread);

if (timebuf[O][jJ == NL)
break;

else
j++;

N
W
~

if (debug == YE8)
printf ("\nreformatted clock record: %s\n",timebuf);

/**/
/*
*
*/

function to decode the character buffer containing the time
returned by the satellite clock and convert it to integers

decodetime(n,sat)

int n;
struct time *sat;

char
char
char
char

hour[3] ;
min[3j;
sec[ 3 ;
fractionalsec[4J;

hour~OJ = timebuf[nj[HOURBEGIN];
hour 1 J = timebufLn [HOURBEGIN + 1];
hour 2J = NULL;

min~Oj = timebuf[nj[MINBEGIN];
min 1 J = timebuf[n [MINBEGIN + 1];
min 2J = NULL;

sec[O] = timebuf[nJ[SECBEGIN];
sec[1 J = timebuf[nJ[SECBEGIN + 1];



Jan 11 10:59 1982 recv.c Page 15

sec[2] = NULL;

fract onalseC[OJ
fract onalsec 1
fract onalsec 2
fract onalsec 3J

= timebUf~n]~FRACBEGIN];
= timebuf n] FRACBEGI~ + 1 J;
= timebuf n] FRACBEGI~ + 2 ;
= NULL;

N
Wu,

sat->hour = atoi(hour);
sat~>min = atoi(min);
sat->sec = atoi(sec);
sat->frac = at6i~fractionalsec);

if (debug == YES)
i

pr ntf ("\nn =: ~d",n);
pr ntf ("\ntimebuf =: %s",timebuf+n);
pr ntf ("\ncharacter arrays =: %s:%s:%s.%s",hour,min,sec,fractionalsec);
pr ntf ("\ninteger arrays =: %d,%d,%d+%dms\n",sat->hour,sat->min,sat->sec,sat->frac);

/**/

/* RECORD_OVERREAD() information on transaction states and times */

record overhd(fd,n)

int
int

fd;
n; /* number of states and times to record to overhead file */

/**/

int j;
int bytes;

for (j=1; j < n+1; j++)

decodetime(j-1,&sattime);
bytes = write(fd, &j, 2);
bytes = write(fd, &(overhdbuf[j-1 ]), 21;
bytes = write(fd, &sattime, sizeof(sattime));

pr intmode (line)

int line[3];



Jan 11 10:59 1982 recv.c Page 16

printf ("\ngtty line mode: %0 %0 %0 \n",line[OJ,line[1 J,line[2J);
return(O);

writerror(bytes)

%d", bytes);
printf ("\ndevice write error ");
printf ("\nnumber of bytes written
exit() ;

int bytes;
I

readerror(bytes)

%0 \n", bytes) ;
pr ntf ("\nclock read error ");
pr ntf ("\nnumber of bytes read
ex to;

int bytes;
t

N
W
0\

1**1

reset ttyX line for Satellite Clock back to normal tty mode
1*
**1
closeclock(fd)

int fd;

stty (fd,ttyline);

if (debug == YES)
t

gtty (fd,ttyline);
printf ("\nin closeclock routine:");
printmode(ttyline);

close(fd) ;

I
1**1



N
W
-....J

Jan 11 10:5~ 1982 r ecv ;c Page 17

/* ANSWER() routine.
* returns 1 if true or continue and 0 if false or abort.
*/

int answer ( )
l

int a;

sWitCh(gttchar()) .

case tat:
printf( "\n Test terminated by operator \n");
a = 0;
break;

case Ie':
a = 1;
break;

default:
pr i ntr t " 'a' or tel? II);

r e t ur nf a ) ;

/* DUPCLOCKTIME() routine
* duplicates a previous clock reading in~o the next row of the buffer
*/

dupclocktime (n)

int
{

n;

register int k;

/* make the last end time be the next start time */

for
{

l

(k = 0; k < CLOCKRECORDLENGTH + 1; k++)

timebuf[n][k] = timebuf[n-1 ][k];



Jan 614:23 1982 net .h Page 1

/* defined constants for programs testing network transmission */

/* icp : direct */
/* user : server */
/* listen: init */
/* general : specific ( for listen) */
/* simplex : duplex */
/* absolute : relative */
/* direct user init general smplex absolute */

/* direct user listen general smplex absolute */01

01
02
04
010
020
040
05

#define 0_RCV

#define OPNPARAMSIZE 18

/* open type bits */
#define 0 DIRECT
#define O"""13ERVER
#define O-INI'f
#define O-SPECIFIC
#define O-DUPLEX:
#define O-RELATIVE
#define O:SEND

N
W
co



Jan 6 14:24 1982 clock.usr.h Page 1

/* aefined constants for programs using the satellite clock */

IIdefine BLOCKSI~E

IIdefine lill.LCX:KS
IIdefine l'iAXll.LCX:KS
IIdefine NTrlJUiSAC?IOrlS
IIdefine BUFFrlJI~E

512
20
30
1
10240

IIdefine 11AXPUEr'ACESltE eo
IIdefine ID&,~SI~E 52
lIaefine RUNSltB 4
IIdefine TYPBJltE 12
IIdefine I;1}'OSE.E e
IIJefine JOUhCB8I~B 52
IIdefine DB.,'cl,'SltB 52

,Nefine dO 0
IIdefine Y'~., 1
IIdefine fillAD 0
lIaefine RBADJrlITE 2
,Nefine tLLLIO" 2J:J

N
W
\.0

IIdefine 1'-1,

Ifdefine NULL
,tdefine BWlK
ddefine EO],'

Hdefine CLOCK
tldefine 'j"fYi'IODB
#define CLOC~qUDB

ddefine CLOCKSPEED

'\n'
'\0', ,
-1

"/devrtty5"
0532
0501
05415

/* any parity,echo,cr/lf,tabs */
/* a~y parity,hup */
/* set in/out speeds at 11 = 2400 baud */

ddefine FOtlrlIAT.L8HG'ld
Hdefine lFOllpjA'f
ddefine FOllJ'1A'f
"define R&:l.l!J"lff
daefine 'rtilliliER

18 /* to
"}'ddd hh:lillll:SS.sssT"
11i'lXXXXht1..XmrnXssX.sssTIl
"RIl
11TH

format the clocks output */
/* format for initial clock record, includes day */
/* format for other clock records, time only */

tldefine i,w.:CLOCKtlliCLJtillJJ8JMfd
Hdefine CLOC KtlliCLJtill.L81K),J'd

20
15

/* to read initial clock record */
/* to read other clock recoras */

ddefine Tn1EDIF~~II~IT 30

ddefine IDAYBclJI~ 1
ddefine IrlOUllBIDIN 5
ddefine HUUHBIDU 1

Hdefine YBJ\l{
ddei'ine l'lLJrlTti
Hdefine JULIA1~nAY

Hdefine DAY
ddefine rlOLJHS
ddefine ['lINU'rBJ
#define SECONDS

:5
4
7
5
2
1
LJ

/* offset in time array returned by gmtime */
/* offset in time array r-eturned by gmt ime */
/* offset in time array returned by gmtime */
/* offset in time array returned by gffitime */
/* offset in t ime array returned by gmtime */
/* offset in time array returned by gffitime */
/* offset in time array returned by gmtime */

/* maximum difference allowea between
system and satellite clocks (minutes) */

/* position in string returned by clock */
/* position in string returned by clock */
/* position in string returned by clock, short format */



Jan 6 14:24 1982 ctock.uervn Page 2

N
~
a

#define n~INBEGIN

#define !'lll'lBEGI1'l
#define ISECBEGll'l
#define SECBEGIN
#define IFRACBEGll1
#define FRACBEGIN

8
5
11
5
14
7

/* position in string returned by clock */
/* position in string returned by clock, short format */
/* position in string returned by clock */
/* position in string returned by clock, short format */
/* position in string returned by clock */
/* position in string returned by clock, short format */



Jan 6 14:23 1982 cl.ock.ovh.h Page 1

/* defined constants for programs using the satellite clock */

#define BLOCKBIZE
#define Nl:lLOCKB
#define I'!AXJJWCKS
#define N'rHANSACTI01'1S
#define BUFFHSIZE

64
1
10
160
10240

Itdefine 1'lAXPH.ErACESIZE 00
#define IDENTSIZE 32
Itdefine H.UNSIZE 4
Itdefine TYPESIZE 12
#define INFOSIZE 8
Itdefine SO~H.CESIZE 32
Itdefine DESTINSIZE 32

Itdefine NO 0
Itdefine YES 1
Itdefine READ 0
Itdefine READWRITE 2
#define ZILLION 200

18 /* to format the -cl.ocks output */
"Fddd hh:mm:ss.sssT" /* format for initial clock record, includes day */
"FJOO(;{nhXmmXssXsssT" /* format for other clock records, time only */
uRIt

liT"

N
~
-.J

#define I'lL
#define NULL
#define BLANK
#define ro~'

Itdefine CLOCK
Itdefine TTY1~ODB

Itdefine ClJJCKl~ODE

Itdefine CWC KBPEED

Itdefine ~Uffi~TL~'1GTH

#define UOffi'lAT
tfdefine FOffi'lAT
Itdefine RESE'f
Itdefine THIGGER

'\n'
'\0', ,
-1

"/dev/ttY3"
0532
0301
05413

/* any parity,echo,cr/lf,tabs */
/* any paritY,hup */
/* set in/out speeds at 11 = 2400 baud */

#define II"tAXCLOCK:R.B:::ORDLENGTH
Itdefine CLOCK:R.B:::ORDLill'1GTH

#define YEAR 5
Itdefine ~IONTH 4
Itdefine JULIAiiDAY 7
#define DAY 3
Itdefine HOURS 2
#define [l"tli'1U'fBS 1
#define S:EX:OlWS 0

#define TliI"tEDIF~'LD~IT 30

#define IDAYBEGIN 1
#define IHOURBEGIN 5
Itdefine HOURBEGIN 1

20
15

/* to read initial clock record */
/* to read other clock records */

/* offset in time array returned by gmtime */
/* offset in time array returned by gmtime */
/* offset in time array returned by gmtime */
/* offset in time array returned by gmtime */
/* offset in time array returned by gmtime */
/* offset in time array returned by gmtime */
/* offset in time array returned by gmtime */

/* maximum difference allowed between
system and satellite clocks (minutes) */

/* position in string returned by clock */
/* position in string returned by clock */
/* position in string returned by clock, short format */



Jan 6 14:23 1982 crock.ovh.h Page 2

N
~
N

#define IMn~EGli~

#define MINBEGIN
#define ISECBEGli~

#define SECBEGIN
#define IFRACBEGIN
#define FRACBEGIN

8
3
11
:5
14
7

/* position in string returned by clock */
/* position in string returned by clock, short format */
/* position in string returned by clock */~
/* position in string returned by clock, short format */
/* position in string returned by clock */
/* position in string returned by clock, short format */



APPERDIX C: SAMPLE DATA FILES

This appendix contains a sample and brief description of each of the
various types of the data files mentioned in Section 4.1.3 and the bubble
chart in Figure 26. The data presented should be considered representative
only; in the case of long files, only the beginning of the file is shown.
When the transmitted and received files have the same format, only one is
included. Since a binary list of integer and floating point numbers would be
meaningless, the binary files have been converted to ASCII characters and
formatted for presentation. The files summarized below are presented as a
complete set following this description.

1. PREFACE.R and RREFACE.X (Figure C-1) are text files for on­
line input to the XMIT and RECV programs.

2. DATA.X (Figure C-2) is a binary file containing pseudorandom
data generated on-line by XMIT. A small portion is shown as a
hexidecimal dump using the UNIX "od -h" command.

3. HISTORY.X (Figure C-3) is a binary ·file generated on-line by
the XMIT program and contains the block size and start and end
times for each block transfer. The example shown is the text
version of the file (H.INFO.X) generated by the program SHOW.

4. OVERHEAD.X (Figur-e C-4) is a binary file generated on-line by
the XMIT program and contains transaction state codes and
event times. The example shown is the text version of the
file (O.INFO.X) generated by the program OVHD.SHOW.

5. HISTORY.X (Figure C-5) , now located in the data directory, is
a binary file consisting of the time-corrected version of the
raw data file of Figure C-3. The text was obtained from the
SHOW program.

6. OVERHEAD.X (Figure C-6), now located in the data directory, is
a binary file consisting of the time-corrected version of the
raw data file of Figure C-4. The text was obtained from the
OVHD.SHOW program.

7. FORT14 (Figure C-7) is an ASCII character file reformatted
from the OVERHEAD file of Figure C-6. This file is one of
four used by the standard FORTRAN performance assessment
program.

8. FORT17 (Figure C-8) is an ASCII character file created by
merging the HISTORY.X file of Figure C-5 with the DATA.X file
of Figure C-2. This file and its receive companion (FORT18)
are used to transfer data from the binary files to the
standard FORTRAN performance assessment programs.

243



Access/Disengagement Tests
9. ACCESS.INFO (Figure C-9) is a text file with information in

the same format as O.INFO.X, plus the following data: time
differences (in seconds) between adjacent and alternate
events, the file (with dtg preface) from whence the data
originated, and an access attempt number. This file is
created by the ACCESTIME program from data in the time­
corrected OVERHEAD.X file.

10. TFIL (FIGURE C-10) is a temporary text file obtained by
editing out all lines from ACCESS.INFO except for those in the
third record. This results in a file which contains
chronologically arranged access times in the fifth column of
data.

11. TABLE.ACC (Figure C-11) is a text file produced by sorting the
chronological access times in TFIL into ascending access
times. This file is archived with the raw data for the
access/disengagement tests.

12. PLOT16ACC (Figure C-12) is a text file containing x-y
coordinates for the plottable access time histogram. It is
created by the OVH.HISTO program from the TABLE.ACC file.

User Information Transfer Tests
13. XFER.INFO (Figure C-13) is a text file which contains, for

each user information block transferred during a test, the
source start time, the destination end time, and the time
difference derived from the time-corrected HISTORY.X and
HISTORY.R files. In addition, the date-prefixed file name and
a received block number appears to the right of the times. At
the end of the listing are calculations based on both 1043
definitions and X3.102 definitions of rates and transmission
times.

14. TFILE (Figure C-14) is a temporary text file obtained by
editing out all lines of the XFER.INFO file except those that
have a block transfer time.

15. TABLE.XFR (Figure C-15) is a text file produced by sorting the
chronological transfer times in TFIL into ascending transfer
times. This file is archived with the raw data for the user
information transfer tests.

16. PLOT10ACC (Figure C-16) is a text file containing x-y
coordinates for the plottable block transfer time histogram.
It is created by the HISTO program from the TABLE.XFR file.

244



a. Preface file preface.r

NBS/ITS ARPANET TEST
126

DESTINATION
USER
NBS-UNIX (Gaithersburg)
NTIA-ITS (Boulder)

b. Preface file preface.x

NBS/ITS ARPANET TEST
126

SOURCE
USER
NTIA-ITS (Boulder)
NBS-UNIX (Gaithersbutg)

Figure C-l. Listing of PREFACE.R and PREFACE.X files.

0000000 8000 0290 0212 0422 0424 Oc64 Oc6d 108c
0000020 1093 38dO 38fd 50b8 51dd dOd1 d24000d2
0000040 073a a007 aaf4 40ab 5b9d c058 e2d3 00e6
0000060 739c 817d 239f 0237 a006 0694 0632 0846
0000100 4c69 1da4 95b7 2ac4 b2bd 6ec1 4f15 880b
0000120 fb50 cd95 688b 8a3c 27b6 8e52 ge7b 08dc
0000140 729a Od1d d9c2 Ob83 57b1 Od3c 1de6 Oc7f
0000160 94ae 0287 1290 1cfO Oc7d 3cee 3cda 403c
0000200 614f f8a5 ba2b 7132 b7c8 132f 1ac7 c43b
0000220 5b1f ae28 83bO d426 b15e f51d 65dd 4277
0000240 a806 6fd5 9bb7 5b45 6763 6820 f8a9 66ca
0000260 3e95 1dd5 8c79 f63e 65d9 d6d7 d240 40d2
0000300 6e32 2cOb 7ge4 d9b3 2ead eb70 af93 6587
0000320 037c 1def 58de f1dO b644 d97e dd34 505d
0000340 d6e1 1246 17aa 8437 8296 2ce2 2a79 50aa
0000360 51df f891 f64d 5077 4e24 50cd 70d3 0074
0000400 7dee a172 1b7a 420c cd29 c6fc aca7 0ge1
0000420 c21d 9f3b dd74 2db5 3fd3 641d c54f 9251
0000440 f538 ed99 60ee fe91 2aad 2710 9486 b202
0000460 7c56 2b25 d1a1 334e 5bef 31d6 159c 0431
0000500 9ce6 6acf 13f4 ddfc 1f24 6f67 19a1 6537
0000520 OdOa 15aO 2856 e02f 4bb9 ea1e c6de 1463
0000540 1bce fcfa bb20 d133 41dc 5a93 f4f9 1641
0000560 6b4a 99a4 3f67 1ecb a85a Oede 2e7a 202a
0000600 Oc41 5ce9 4576 f886 926f 49df af32 63b3
0000620 7bba 54d8 a811 6fd7 a757 771e 1f8d 3192
0000640 70b4 8d18 df72 7915 5e8d e81a 02fe 231f
0000660 'b8e7 960b 7433 6b28 98a8 fb46 d937 20dd
0000700 833f b637 b410 2cd4 6e5f 35c6 b5ge 3225
0000720 b682 Oec6 0639 78c7 6177 ec02 ce9d 288a

Figure C-2. Hexidecimal dump of DATA.X file.

245



History-information file:

Perfor. measure ID = NBS/ITS ARPANET TEST
Run number = 126
Type = SOURCE
Information ID = USER
Source = NBS-UNIX (Gaithersburg)
Destination = NTIA-ITS (Boulder)
Mo/Day/Yr = 11/24/81
Start time (Hr:Min:Sec) = 20: 54: 37

Data from file nov/24-2054his.x

**File prefix (dd-hhmm) = 24-2054

Record Bytes Start time End time

1 512 20:54:37.248 20:54:40.977
2 512 20: 54: 40. 977 20:54:41.797
3 512 20:54:41 ·797 20:54:42.730
4 512 20:54:42.730 20:54:43.383
5 512 20:54:43.383 20:54:44.069
6 512 20:54:44.069 20:54:44.746
7 512 20:54:44.746 20:54:45.463
8 512 20:54:45.463 20:54:46.083
9 512 20:54:46.083 20:54:46.869

10 512 20:54:46.869 20:54:47.503
11 512 20:54:47.503 20:54:48.120
12 512 20:54:48.120 20:54:48.773
13 512 20:54:48.773 20:54:49.397
14 512 20:54:49.397 20:54:49.994
15 512 20:54:49.994 20:54:50.670
16 512 20:54:50.670 20: 54: 51 . 31 0
17 512 20: 54: 51 . 31 0 20:54:51.928
18 512 20:54:51.928 20: 54: 52. 541
19 512 20: 54: 52. 541 20:54:53.251
20 512 20:54:53.251 20:54:53.874

Total sets of times(blocks) = 20

Figure C-3. Text version (H.INFO.X) of HISTORY.X file.

246



Overhead-information files:

Perfor. measur. ID
Run number
Type
Information ID
Source
Destination
lVIo/Day/Yr
Start time (Hr:Min:Sec)

= NBS/ITS ARPANET TEST
= 126
= SOURCE
= USER
= NBS-UNIX (Gaithersburg)
= NTIA-ITS (Boulder)
= 11/24/81
= 20:54:35

Data from file nov/24-2054ovh.x

Record Code Clock time

1 23 20:54:35.026
2 32 20:54:37.145
3 23 20:54:37.248
4 32 20:54:40.977
5 23 20:54:40.977
6 32 20:54:41.797
7 23 20:54:41 ·797
8 32 20:54:42.730
9 23 20:54:42.730

10 32 20:54:43.383
11 23 20: 54 : 4~; . 383
12 32 20:54:44.069
13 23 20:54:44.069
14 32 20:54:44.746
15 23 20:54:44.746
16 32 20:54:45.463
17 23 20:54:45.463
18 32 20:54:46.083
19 23 20:54:46.083
20 32 20:54:46.869
21 23 20:54:46.869
22 32 20:54:47.503

3
37
38
39
40
41
42
43
44

Total # times

3
23
32
23
32
23
32
45
11

= 44

20:54:51.928
20: 54: 51.928
20: 54: 52. 541
20: 54 : 5;~ . 541
20:54:5:5.251
20:54:5:5.251
20: 54: 5:5.874
20: 54: 5:5.992
20:54:54.078

Figure C-4. Text version (O.INFO.X) of OVERHEAD.X file.
247



History-information files:

Perfor. measur. ID
Run number
Type
Information ID
Source
Destination
Mo/Day/Yr
Start time (Hr:Min:Sec)

= NBS/ITS ARPANET TEST
= 126
= SOURCE
= USER
= NBS-UNIX (Gaithersburg)
= NTIA-ITS (Boulder)
= 11/24/81
= 20:54:37

Data from file history.x

**File prefix (dd-hhmm) = 24-2054

Record Bytes Start time

1 512 20:54:37.313
2 51 2 20 : 54 : 41 . 042
3 512 20:54:41.862
4 512 20:54:42.795
5 512 20:54:43·448
6 512 20:54:44.134
7 512 20:54:44.811
8 512 20:54:45.528
9 512 20:54:46.148

10 512 20:54:46.934
11 512 20:54:47.568
12 512 20:54:48.185
13 512 20:54:48.838
14 512 20:54:49.462
15 512 20:54:50.059
16 512 20:54:50.735
17 512 20: 54: 51 .375
18 512 20:54:51.993
19 512 20:54:52.606
20 512 20:54:53.316

End time

20: 54: 40.970
20:54:41.790
20:54:42.723
20:54:43·376
20:54:44.062
20:54:44.139
20:54:45.456
20:54:46.076
20:54:46.862
20:54:47.496
20:54:48.113
20:54:48.166
20:54:49·390
20:54:49.987
20:54:50.663
20:54:51.303
20: 54: 51 .921
20:54:52.534
20:54:53.244
20:54:53.867

Figure C-5. Text version of time-corrected HISTORY.X file.

248



Overhead-information files:

Perfor. measure ID
rlun number
Type
Information ID
Source
Destination
lVIo/Day /Yr
Start time (Hr:Min:Sec)

= NBS/ITS ARPANET TEST
= 126
= SOURCE
= USER
= NBS-UNIX (Gaithersburg)
= NTIA-ITS (Boulder)
= 11 /24/81
= 20:54:35

Data from file overhead.x

Record Code Clock time

1 23 20:54:35.091
2 32 20:54:37.138
3 23 20:54:37.313
4 32 20:54:40.970
5 23 20:54:41.042
6 32 20:54:41.790
7 23 20:54~41 .862
8 32 20:54:42.723
9 23 20:54:42.795

10 32 20:54:43.376
11 23 20:54:43.448
12 32 20:54:44.062
13 23 20:54:44.134
14 3220:54:44.739
15 23 20:54:44.811
16 32 20:54:45.456
17 23 20:54:45.528
18 32 20:54:46.076
19 23 20:54:46.148
20 32 20:54:46.862
21 23 20:54:46.934
22 32 20:54:47.496
~~~

Total #

36
37
38
39
40
41
42
43
44

times

32
23
32
23
32
23
32
45
11

= 44

20: 54: :>1 .921
20: 54: :> 1 . 993
20:54:52.534
20: 54 : ~)2 . 606
20:54:~53·244

20:54:53.316
20:54:~53·867

20:54:54.057
20: 54 : ~54 . 071

Figure C-6. Text version of time-corrected OVERHEAD.X file.

249

N
U1
a

NBS/ITS ARPANET TEST
NBS-UNIX (Gaithersburg) NT lA-ITS (Boulder)
00000075275.0912377
00000075277.1383277
00000075277.3132377
00000075280.9703277
00000075281.0422377
00000075281.7903277
00000075281.8622377
00000075282.7233277
00000075282.7952377
00000075283·3763277
00000075283.4482377
00000075284.0623277
00000075284.1342377
00000075284.7393277
00000075284.8112377
00000075285.4563277
00000075285.5282377
00000075286.0763277
00000075286.1482377
00000075286.8623277
00000075286.9342377
00000075287.4963277
00000075287.5682377
00000075288.1133277
00000075288.1852377
00000075288.7663277
00000075288.8382377
00000075289.3903277
00000075289.4622377
00000075289·9873277
00000075290.0592377
00000075290.6633277
00000075290.7352377
00000075291.3033277
00000075291.3752377
00000075291.9213277
00000075291.9932377
00000075292.5343277
00000075292.6062377
00000075293.2443277
00000075293.3162377
00000075293·8673277
00000075294.0574577
00000075294.0711177

-99.9990000

0126S0URCE USER
11 50000.011811124

Figure C-7. Listing of FORT14 standard ASCII character file.

N
Ul
--'

NBS/ITS ARPANET TEST 0126S0URCE USER
NBS-U~IX (Gaithersburg) NT lA-ITS (Boulder) 811124
0000001 .0000001 .0004096.00000075277.31300000075277.31310000000000000000000000000
16384001640006608258041290414518456279201792809422066630405301474182950861121056
00105004622150431407087091163015232227542700814748295840609807416022701639601684
00793005291882904570093892372302405157262474317762003831358027819087500524010166
18217101422485918217205843056701047008552266220231155531842509584025880950407408
01598202831833109219253541635419316111210649129188260831138808666277742363300944
27155113512422722109271552422403295219152346920825277570052717739069523204207637
17980321431964307533160180025909436128440146831030139252735823429159491921400892
03831220712412202916099313160426784240222880904485300321727205297131922174620650
10479322921607321767149610441906881212481491031656118431424404198134790357711431
01264288071328715831085572175909928076211018505245100132293401911313002185010000
19011113922036225266119170122907351284652740226369015872007022136204351535207972
14259180241143028880206530016111712121072379701969234901796924183296743027320787
08430057963241504452029061085418558263982606805763234932653000336125491480217782
31811093712693931475048931995029865226960223130185273742915331849179932493703352
286010774911217241932050330860162412651801466.03290258750270323094258201682700831
23323279080143418149311500687015460096541664712673182230319003007122990748210378
12266087720933013347142841493707530152723092406879040431485816636077702086914445
00093000
0000001 .0000001 .0004096.00000075277.31300000075277.31320000000000000000000000000
0000002.0004097.0004096.00000075281 .04200000075281 .04210000000000000000000000000
16251216281267819001161640706306560259962334829172324300929129745235831377302951
25824241280941732336284082992012775094030542023681278182323919704253313172106945
01259167823200829619118010151614509195841064530397214711302225813009522715513959
22803028681684329514214471965525562225392331721981045932099131634138921176700285
26889261820441000768239880749619711119721159305323161551220506692167153147305456
11964007050208005082168471886513283262742900018983038320251926973024750190717903
15890295702861500364164252835404076016132033907870180200399031452133362243423295
17546112602676916049196653127110616275881975027366214041434726722300410774631917
29229042852735826571089942609803784243201318417214062011497500620208280875316097
24917218511351632113179962561921951321672920629201173082220406028166640504527226
19371156940195505116088683234329606034131575102400083750948218411091291020909332
31629098071055418361071403048114549049902037401821124972096114738020670276907733
21210281842255113530323362961013352200471379026898318501569616518306060404607532
03959081991798613230089032811927049206380410822005218111253702192048020740415999
08036074631950322860076751101030074122013097808948210381345513887148730444215004
16106108291164612917065061445106424313500796923157073472518811709282801824819056
26259309031523229957228020142806651034342236709735267682527822187178232157328313
~-------------..-....,.....~--------~~--..:.-~----~~------......-'------...-....._--

Figure C-8. Listing of FORT17 standard ASCII character file.

Overhead-information files:

Perfor. measur. ID = NBSIITS INITIAL ARPANET TEST
Run number = 73
Type = SOURCE
Information ID = USER
Source = NBS-UNIX (Gaithersburg)
Destination = NTIA-ITS (Boulder)
Mo/Day/Yr = 9/17/81
Start time (Hr:Min:Sec) = 22: 14: 18

Data from file sep/17-2214ov.x

Record Code Clock time Differences

1 23 22:14:18.196 sep/17-2214ov.x 1
2 32 22:14:19.942 1.746 1.746 sep/17-2214ov.x 1
3 23 22: 14 : 20 . 113 0.171 1 .917 sep/17-2214ov.x 1
4 32 22:14:20.428 0.315 0.486 sep/17-2214ov.x 1
5 45 22:14:20.639 0.211 0.526 sep/17-2214ov.x 1
6 11 22:14:20.646 0.007 0.218 sep/17-2214ov.x 1
1 23 22: 14: 31 . 198 10.552 10.559 sept 17-2214ov. x 2
2 32 22:14:32.552 1.354 11. 906 sep/17-2214ov.x 2
3 23 22:14:32.724 0.172 1.526 sep/17-2214ov.x 2
4 32 22:14:33.046 0.322 0.494 sep/17-2214ov.x 2
5 45 22:14:33.245 0.199 0.521 sep/17-2214ov.x 2
6 11 22:14:33.255 0.010 0.209 sep/17-2214ov.x 2
1 23 22:14:43.201 9.946 9.956 sep/17-2214ov.x 3
2 32 22:14:43.635 0.434 10.380 sep/17-2214ov.x 3
3 23 22:14:43.807 0.172 0.606 sep/17-2214ov.x 3
4 32 22:14:44.196 0.389 0.561 sept 17-2214ov. x 3
5 45 22:14:44.387 0.191 0.580 sep/17-2214ov.x 3
6 11 22:14:44.394 0.007 0.198 sep/17-2214ov.x 3

1 23 22:46:25.203 9.859 9.866 sept 17-2214ov. x 159
2 32 22:46:26.711 1.508 11. 367 sept 17-2214ov. x 159
3 23 22:46:26.882 0.171 1.679 sep/17-2214ov.x 159
4 32 22:46:27.324 0.442 0.613 sep/17-2214ov.x 159
5 45 22:46:27.520 0.196 0.638 sep/17-2214ov.x 159
6 11 22: 46: 27.528 0.008 0.204 sep/17-2214ov.x 159
1 23 22:46:38.311 10.783 10.791 sep/17-2214ov.x 160
2 32 22:46:40.168 1.857 12.640 sep/17-2214ov.x 160
3 23 22:46:40.339 0.171 2.028 sep/17-2214ov.x 160
4 32 22:46:40.747 0.408 0.579 sep/17-2214ov.x 160
5 45 22:46:40.937 0.190 0.598 sep/17-2214ov.x 160
6 11 22:46:40.945 0.008 0.198 sept 17-2214ov. x 160

Figure C-9. Listing of ACCESS. INFO text file.

252

3 23 22:14:20.113 0.171 1.917 sep/17-2214ov.x 1
3 23 22:14:32.724 0.172 1.526 sep/17-2214ov.x 2
3 23 22:14:43.807 0.172 0.606 sept 17-2214ov. x 3
3 23 22:14:55.725 0.172 1.527 sep/17-2214ov.x 4
3 23 22:15:06.853 0.171 0.653 sep/17-2214ov.x 5
3 23 22:15:18.795 O. 171 1.596 sep/17-2214ov.x 6
3 23 22:15:30.702 0.171 1 .506 sept 17-2214ov. x 7
3 23 22:15:41.899 0.171 0.700 sep/17-2214ov.x 8
3 23 22:15:52.873 0.180 0.670 sept 17-2214ov. x 9
3 23 22: 16: 05 .641 0.171 1.439 sept 17-2214ov. x 10
3 23 22:16:16.930 0.186 0.724 sept 17-2214ov. x 11
3 23 22:16:28.762 0.171 1 .557 sep/17-2214ov.x 12
3 23 22:16:39.952 0.171 0.749 sept 17-2214ov. x 13
3 23 22:16:52.672 0.171 1 .466 sep/17-2214ov.x 14
3 23 22:17:04.617 0.171 1 .414 sep/17-2214ov.x 15
3 23 22:17:15.865 0.171 0.657 sep/17-2214ov.x 16
3 23 22: 17: 26 .907 0.187 0.696 sept 17-2214ov. x 17
3 23 22:17:38.687 0.171 1 .481 sep/17-2214ov.x 18
3 23 22:17:50.004 0.191 0.792 sep/17-2214ov.x 19
3 23 22:18:02.640 0.171 1.432 sep/17-2214ov. x 20
3 23 22:18:14.696 0.171 1 .487 sep/17-2214ov.x 21
3 23 22:18:26.749 0.186 1 .539 sep/17-2214ov.x 22
3 23 22:18:39.365 0.171 2.033 sept 17-2214ov. x 23
3 23 22:18:51.459 0.170 1• 161 sept 17-2214ov. x 24

3 23 22:42:43.860 0.171 1 .649 sep/17-2214ov.x 141
3 23 22:42:55.953 0.171 1.744 sep/17-2214ov.x 142
3 23 22:43:08.890 0.171 1.682 sept 17-2214ov.. x 143
3 23 22:43:21,.946 0.171 1 .735 sep/17-2214ov.x 144
3 23 22:43:34.763 0.186 1.554 sep/17-2214ov. x 145
3 23 22:43:47.902 0.171 1.690 sep/17-2214ov.x 146
3 23 22:44:00.814 0.171 1.602 sep/17-2214ov.x 147
3 23 22:44:12.741 0.171 1 .534 sep/17-2214ov.x 148
3 23 22:44:24.,888 0.171 1.680 sep/17-2214ov.x 149
3 23 22:44:36.615 0.172 1 .409 sept 17-2214ov. x 150
3 23 22:44:48.903 0.171 1 .693 sep/17-2214ov.x 151
3 23 22:45:01.804 0.171 1.594 sep/17-2214ov.x 152
3 23 22:45:13.653 0.171 1 .446 sept 17-2214ov. x 153
3 23 22:45:25.932 0.171 1.722 sep/17-2214ov.x 154
3 23 22:45:38.715 0.171 1.5'10 sep/17-2214ov.x 155
3 23 22:45:50.886 0.171 1 .680 sept 17-2214ov. x 156
3 23 22:46:02.834 0.172 1.630 sept 17-2214ov. x 157
3 23 22: 46 : 14 .682 0.171 1.480 sep/17-2214ov.x 158
3 23 22:46:26.882 0.171 1 .679 sept 17-2214ov. x 159
3 23 22:46:40.339 0.171 2.028 sep/17-2214ov.x 160

Figure C-10. Listing of temporary text file TFIL.

253

22:14:43.807 0.606 sep/17-2214 3
22:23:39.861 0.642 sep/17-2214 48
22:24:39.872 0.650 sep/17-2214 53
22:15:06.853 0.653 sep/17-2214 5
22:17:15.865 0.657 sep/17-2214 16
22:25:02.888 0.664 sep/17-2214 55
22:20:50.877 0.665 sep/17-2214 34
22:25:13.889 0.666 sep/17-2214 56
22:23:28.888 0.668 sep/17-2214 47
22:15:52.873 0.670 sep/17-2214 9
22:17:26.907 0.696 sep/17-2214 17
22:15:41.899 0.700 sep/17-2214 8
22:19:27.928 0.717 sep/17-2214 27
22:16:16.930 0.724 sep/17-2214 11
22:16:39.952 0.749 sep/17-2214 13
22:20:26.971 0.760 sep/17-2214 32
22:22:03.997 0.778 sep/17-2214 40
22:17:50.004 0.792 sep/17-2214 19
22:20:03.037 0.825 sep/17-2214 30

22:19:16.263 1.054 sep/17-2214 26
22: 18:51.459 1 . 161 sep/17-2214 24
22:21 :52.406 1•190 sep/17-2214 39
22:21:02.570 1 .357 sep/17-2214 35
22:33:34.787 1.362 sep/17-2214 97
22:30:29.067 1 .832 sep/17-2214 82
22:33:22.211 1 .875 sep/17-2214 96
22: 19: 04 . 11 0 1 .894 sep/17-2214 25
22:41:28.243 1 .916 sep/17-2214 135
22:14:20.113 1.917 sep/17-2214 1
22: 42: 31 .216 1 .948 sep/17-2214 140
22:21 :40.176 1 .951 sep/17-2214 38
22:46:40.339 2.028 sep/17-2214 160
22:18:39.365 2.033 sep/17-2214 23
22:41:53.288 2.077 sep/17-2214 137
22:34:01.352 2.129 sep/17-2214 99
22:34:14.863 2.298 sep/17-2214 100
22:42:18.575 2.362 sep/17-2214 139
22:38:20.621 2.386 sep/17-2214 120
22:34:40.877 2.406 sep/17-2214 102
22:32:33.669 2.429 sep/17-2214 92
22: 22 : 41 . 715 2.485 sep/17-2214 43
22:35:31.713 2.487 sep/17-2214 106
22:26:50.862 2.628 sep/17-2214 64
22:40:39.166 4.836 sep/17-2214 131

Figure C-ll. Listing of TABLE.ACC text file.

254

Number of items: 160
Maximum: 4.836 Minimum: 0.606
Mean = 1.543 Std Deviation = 0.466

Histogram for Access Time File

0.000
0.000
0.100
0.100
0.100
0.200
0.200
0.200
0.300
0.300
0.300
0.400
0.400
0.400
0.500
0.500
0.500
0.600
0.600
0.600
0.700
0.700
0.700
0.800
0.800
0.800
0.900
0.900
0.900
1.000
1.000
1.000
1 .100
1 .100
1 .100
1.200
1.200
1.200
1.300
1.300
1 .300
1.400
1 .400
1.400
1.500
1.500
1 .500
1.600
1.600
1 .600
1.700
1.700
1.700
1.800

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
6.87
6.87
'0.00
4.37
4.37
0.00
0.62
0.62
0.00
0.00
0.00
0.00
0.62
0.62
0.00
1.25
1. 25
0.00
0.00
0.00
0.00
2.50
2.50
0.00

23.13
23.13

0.00
16 .. 88
16.88
0.00

26.88
26.88

0.00
4.37
4.37

Figure C-12. Listing of PLOT16ACC text file for access time histogram.
255

History-information files: Transmit Receive

Perfor. measur. ID = NBS/ITS ARPANET TEST NBS/ITS ARPANET TEST
Run number = 126 126
Type = SOURCE DESTINATION
Information ID = USER USER
Source = NBS-UNIX (Gaithersburg) NBS-UNIX (Gaithersburg)
Destination = NT lA-ITS (Boulder) NT lA-ITS (Boulder)
Mo/Day/Yr = 11/24/81 11/24/81
Start time (Hr:Min:Sec) = 20:54:37 20:54:36
**File prefix (dd-hhmm) = 24-2054

Times shown to nearest 1/1000 sec

512 20:54:37.313 1 64 20:54:37·588
2 448 20:54:38·480 1.167 nov/24-2054hs.r 1

2 512 20:54:41.042 3 512 20:54:41.837 0.795 nov/24-2054hs.r 2
3 512 20:54:41.862 4 64 20:54:42.111

5 448 20:54:42.748 0.886 nov/24-2054hs.r 3
4 512 20:54:42.795 6 512 20:54:43·418 0.623 nov/24-2054hs.r 4
5 512 20:54:43·448 7 512 20:54:44.027 0·579 nov/24-2054hs.r 5
6 512 20:54:44.134 8 512 20:54:44.768 0.634 nov/24-2054hs.r 6
7 512 20:54:44.811 9 512 20:54:45.462 0.651 nov/24-2054hs.r 7

N 8 512 20:54:45·528 10 512 20:54:46.120 0.592 nov/24-2054hs.r 8
()"1 9 512 20:54:46.148 11 512 20:54:46.772 0.624 nov/24-2054hs.r 90)

10 512 20:54:46.934 12 512 20:54:47·544 0.610 nov/24-2054hs.r 10
11 512 20:54:47.568 13 512 20:54:48.162 0·594 nov/24-2054hs.r 11
12 512 20:54:48.185 14 512 20:54:48.765 0·580 nov/24-2054hs.r 12
13 512 20:54:48.838 15 512 20:54:49.434 0.596 nov/24-2054hs.r 13
14 512 20:54:49.462 16 512 20:54:50.039 0.577 nov/24-2054hs.r 14
15 512 20:54:50.059 17 512 20:54:50.653 0'·594 nov/24-2054hs.r 15
16 512 20:54:50.735 18 512 20:54:51·350 0.615 nov/24-2054hs.r 16
17 512 20: 54: 51.375 19 512 20:54:51·972 0·597 nov/24-2054hs.r 17
18 512 20:54:51.993 20 512 20:54:52·587 0.594 nov/24-2054hs.r 18
19 512 20:54:52.606 21 512 20:54:53.214 0.608 nov/24-2054hs.r 19
20 512 20:54:53.316 22 512 20:54:53.913 0·597 nov/24-2054hs.r 20

+++ block xmit time = 16.003 with block rate = 1.25 blocks/sec, and bit rate = 5119.1 bits/sec
+++ block recv time = 15.433 with block rate = 1.30 blocks/sec, and bit rate = 5308.2 bits/sec
+++ block transmission time = 16.600 with block rate = 1.20 blocks/sec, and bit rate = 4935.0 bits/sec

Figure C-13. Listing of XFER.INFO text file.

2 448 20:54:38.480 1 .167 nov/24-2054hs.r 1
3 512 20:54:41.837 0.795 nov!24-2054hs.r 2
5 448 20:54:42·748 0.886 nov/24-2054hs.r 3
6 512 20:54:43·418 0.623 nov/24-2054hs.r 4
7 512 20:54:44.027 0·579 nov/24-2054hs.r 5
8 512 20:54:44.768 0.634 nov/24-2054hs.r 6
9 512 20:54:45.462 0.651 nov/24-2054hs.r 7

10 512 20:54:46.120 0.592 nov/24-2054hs.r 8
11 512 20:54:46.772 0.624 nov!24-2054hs.r 9
12 512 20:54:47.544 0.610 nov/24-2054hs.r 10
13 512 20:54:48.162 0.594 nov!24-2054hs.r 11
14 512 20:54:48.765 0.580 nov/24-2054hs.r 12

N 15 512 20:54:49.434 0.596 nov!24-2054hs.r 13(...,
-....J 16 512 20:54:50.039 0.577 nov!24-2054hs.r 14

17 512 20:54:50.653 0.594 nov/24-2054hs.r 15
18 512 20: 54: 51 .350 0.615 nov!24-2054hs.r 16
19 512 20: 54: 51 ·972 0.597 nov/24-2054hs.r 17
20 512 20:54:52.587 0.594 nov!24-2054hs.r 18
21 512 20:54:53·214 0.608 nov!24-2054hs.r 19
22 512 20:54:53.913 0.597 nov!24-2054hs.r 20

Figure C-14. Listing of temporary text file TFIL.

16 512 20:54:50.039 0.577 nov!24-2054hs.r 14
7 512 20:54:44.027 0.579 nov/24-2054hs.r 514 512 20:54:48.765 0.580 nov/24-2054hs.r 12

10 512 20:54:46.120 0.592 nov/24-2054hs.r 8
13 512 20:54:48.162 0.594 nov/24-2054hs.r 11
17 512 20:54:50.653 0·594 nov/24-2054hs.r 15
20 512 20:54:52·587 0.594 nov/24-2054hs.r 18
15 512 20:54:49.434 0.596 nov/24-2054hs.r 13
19 512 20: 54: 51 .972 0.597 nov/24-2054hs.r 17
22 512 20:54:53.913 0.597 nov/24-2054hs.r 20
21 512 20:54:53·214 0.608 nov/24-2054hs.r 1912 512 20:54:47.544 0.610 nov/24-2054hs.r 10

N 18 512 20:54:51·350 0.615 nov!24-2054hs.r 16U1 6 512 20:54:43.418 0.623 nov/24-2054hs.r 4C:>

11 512 20:54:46.772 0.624 nov/24-2054hs.r 98 512 20:54:44.768 0.634 nov!24-2054hs.r 6
9 5"12 20:54:45.462 0.651 nov/24-2054hs.r 7
3 512 20:54:41.837 0.795 nov/24-2054hs.r 2
5 448 20:54:42·748 0.886 nov/24-2054hs.r 32 448 20:54:38.480 1 .1'67 nov/24-2054hs.r 1

Figure C-15. Listing of TABLE. XFR text file.

Number of items: 20
Maximum: 1.167 Minimum:
Mean = 0.656 Std Deviation =
Histogram for Block Transfer File

0.000 0.00
0.000 0.00
0.050 0.00
0.050 0.00
0.050 0.00
0.100 0.00
0.100 0.00
0.100 0.00
0.150 0.00
0.150 0.00
0.150 0.00

0.500 0.00
0.500 0.00
0.550 0.00
0.550 0.00
0.550 50.00
0.600 50.00
0.600 0.00
0.600 30.00
0.650 30.00
0.650 0.00
0.650 5.00
0.700 5.00
0.700 0.00
9.700 0.00
0.750 0.00
0.750 0.00
0.750 5.00
0.800 5.00
0.800 0.00
0.800 0.00
0.850 0.00
0.850 0.00
0.850 5.00

0.577
0.139

Figure C-16. Listing of PLOT10ACC text file for block transfer time histogram.

259

260

APPENDIX D: SATEu.ITE RECEIVER TIME CORRECTIONS

As described in Section 4.1, performance-significant events at the

monitored user/system interfaces in the ARPANET tests corresponded to system

calls or system responses. The time of each interface event was obtained by

including, in the XMIT and RECV programs, a command to read the GOES satellite

clock receiver either immediately before the event, in the case of system

calls, or immediately after the event, in the case of system responses.

Because time information was transferred serially from the clock receiver to

the host, there was a significant difference between the time read from the

clock and the time at which the corresponding interface event actually

occurred. This appendix contains a detailed description of the procedures

used to correct event times for such differences, and is divided into five

parts:

1. Clock function via the serial port.
2. Definition of time correction terms.
3. Time correction approach.
4. Calibration program and measurements.
5. Calibration results.

The corrections took into account both the time required for serial

transmission of clock information and the average operating system response

time. The serial transmission delay depended on the RS-232-C bit rate setting

on the host computer communication cards, and these were different at the two

receiver locations. This necessitated separate calibrations for the ITS and

NBS sites. As a result of the calibrations, it is believed that the corrected

event times had an absolute accuracy normally better than 5 milliseconds.

Prior to running the ARPANET tests, the time available at the serial

communication port of each GOES satellite receiver and decoder was adjusted to

account for the mean transmission path delay from the Wallops Island, VA

transmitter to the Eastern GOES satellite and back down to the receiver site.
Including the daily cyclic variation, the absolute time accuracy of the clock

was about 1 millisecond.

1. Clock function via the serial port
In executing the command to read the clock, the computer software sends

the single character "T" to the clock. At the receipt of the stop bit of the

"T" character, the clock immediately takes a "snapshot" of the time (called

261

the time hack). The clock then transmits the time in a predefined format back

to the computer communication card. The character format used by the clock

varies, depending on the format statement last received from the computer.

The format may include Julian day, hour, minute, seconds, an~ thousandths of

seconds, as well as delimiters such as spaces and colons. The returned

character string might appear, for example, as follows:

123 17:52:07.894

A very short format of only minutes, seconds, and milliseconds (without

delimiters) may also be specified, resulting for instance, in the character

string

5207894

The format is specified by sending an "F" followed by a string of characters

which define the "picture" of the returned time.

2. Definition of time correction terms
A model representing the process of executing the command to read the

satellite clock is depicted in Figure D-1. The command is immediately

preceded and followed by interface events A and B, respectively, whose times

TA and TB are to be deduced from the observed time hack TH• After an initial

delay t 1 by the operating system, the trigger character "T" is sent to the

clock, requiring a transmission time t 2• The time hack TH is recorded, then

sent back to the computer communication card as a character string (according

to the specified format), requiring a transmission time t 3• The process ends

after a delay t4 by the operating system in returning from the call.

O.S.
Response

---.....~.... Time

Receive Time from Clock

Event B

-----t3----~·I-t4 --.j
Ts

Time Hack
Send

EventA

Figure D-1. Time correction diagram.

262

The desired event times TA and TB are related to the observed time hack

(D.1)

and

(D.2)

Thus, the time of an event immediately preceding a clock read is obtained by

subtracting the correction t1 + t 2 from the observed clock time, and the time

of a event immediately following a clock read is obtained by adding the
correction t 3 + t 4 to the observed clock time.

3. Time correction approach

To determine the time corrections for a given serial line speed and
format, it was necessary to estimate the four times t 1, t 2 , t 3, and t 4• An

empirical approach was followed by writing a calibration program which read

the clock 100 times in succession. In running this program, the event

corresponding to A in Figure D-1 was the return from the previous clock read,

and the event corresponding to B was the issuance of the subsequent clock

read. The average (mean) time (t1 + t 2 + t 3 + t 4) to execute a clock read

with n bytes of received clock data is equal to the average ~tn of the

observed differences between successive time hacks:

A second equation was obtained by relating the reception time t 3 of the n

bytes of clock data to the transmission time t 2 of the single trigger

character "T":

(D.4)

Using (D.4) and assuming that the two operating system delays (t1 and t 4) are

equal, (D.3) becomes

(D.5)

The latter assumption was not critical (since t 1 + t 4 « t 2 at the serial

speeds being used) and could cause only about a 5% error in the correction as

a worst case.

The time corrections were obtained by running the calibration program
twice, with two different values of n (the number of bytes of received clock

263

data), and observing the corresponding time hack difference flt n• The

r esul ting pair of equations, obtained from (0.5) by substituting the

appropriate values of nand xtn, was then solved for t 1 and t 2•
The time correction (t1 + t 2) for events preceding a clock read is

independent of format length, whereas the correction (t3 + t 4) for events

following a clock read are format dependent.

4. Calibration program and measurements

The calibration program consisted essentially of two statements, one

defining a loop, and the other a "read clock" subroutine call within the loop.

The "read clock" subroutine simply sent the trigger "T" to the clock and read
the characters as they were returned by the clock. This software is listed in

Figure 0-2. The "read clock" subroutine is identical to that used in the XMIT

and RECV test programs. Samples of calibration runs at a serial rate of 1200

bps are shown in Figure 0-3. The first 12 readings are for 10-byte formats,

the next 12 are for the 13-byte format used in the XMIT and RECV test

programs, and the last 12 readings are for the full 20-byte format. Any two

sets of readings serve to determine the time corrections, as described above;

the third serves as a consistency check.
For the 13-byte extraction format, the data shown in Figure 0-3 yield the

values

t 1 = 3 ms, t 2 = 9 ms, t 3 = 117 ms, t 4 =3 ms

a total of 132 ms at the 1200 bps rate.

5. Calibration results

Calibration results for both for both a 1200 bps and 2400 bps serial
interface are shown below in Table 0-1.

Table 0-1. Time Corrections for Observed Clock Times

t 1 + t 2 tt + ti
Serial (Event precedes (Even fol ows Total Clock

Rate (bps) clock read) clock read) delay

1200 12 ms 120 ms 132 ms
(at ITS)

2400 7 ms 65 ms 72 ms
(at NBS)

264

/* Main part of loop to read clock */

for
{

}

(i=O; i <numb; i++)

readclock(fd_clock,i);

/*
*
*
*
*/

procedure to read time from satellite clock and store it
in a buffer, timebuf. there are two arguments: fd and n,
fd is the file descriptor of the clock line; n is the
row in the buffer to store the current clock reading.

readclock(fd,n)

int fd;
int n;

int byteswritten;
int bytesread;

char *buffer;

/* the clock trigger is a "T" */
buffer = TRIGGER;
byteswritten = write (fd,buffer,1);
bytesread = read (fd,timebuf+n,CLOCKRECORDLENGTH);
if (bytesread != CLOCKRECORDLENGTH)

readerror(bytesread);

Figure D-2. Clock test program.

265

Serial rate = 1200 bps

Average time difference = 105 ms

initial satellite time: 338 20:45:57.144
The clock is now initialized and ready to read times when triggered.

0: 57:972
1 : 58: 077
2: 58: 182
3: 58:287
4: 58: 392
5: 58:497
6: 58:602
7: 58:707
8: 58: 812
9: 58: 917

10: 59:022
11: 59:127
12: 59: 232

0: 20464791 5
1: 204648047
2: 204648179
3: 204648313
4: 204648446
5: 204648578
6: 204648710
7: 204648842
8: 204648974 Serial rate = 1200 bps
9: 204649106

10: 204649238 Average time difference = 132 ms
11: 204649370
12: 204649502

0: 338 20:46:27:259
1: 338 20:46:27:454
2: 338 20:46:27:649
3: 338 20:46:27:844
4: 338 20:46:28:039
5: 338 20:46:28:234
6: 338 20:46:28:429
7: 338 20:46:28:624
8: 338 20:46:28:818 Serial rate = 1200 bps
9: 338 20:46:29:013

10: 338 20:46:29:208 Average time difference = 195 ms
11: 338 20:46:29:403
12: 338 20:46:29:598

Figure 0-3. Clock calibration test runs.

266

Note that the correction t 1 + t 2 is applied to all even-numbered times

(L,e., to T2, T4, T6 and R2 , R4 , R6 , Ra) in the session profile in Figure 25,

whereas t 3 + t4 is applied to all odd-numbered times (Le., to T1, T3, T5 and

R1, R3, R5, R7). At ITS, times for events preceding (or following) a cl.ock

read are obtained by subtracting 12 ms from (or adding 120 ms to) the observed

time hack. At NBS, the corresponding corrections are 7 ms and 72 ms,

respectively.

267

I
I

I
I

I
I

I
I

I
I

I

I

I

I

I

I

I

I

I

I
I

I
I

I
I

I
I

I

I

I

I

I

I

I

I

I

I

I

I
I

I
I

I
I

APPERDIX E: FILE STRUCTURE

This appendix provides a brief description of the file structure used in

the ARPANET experiment. The UNIX file structure is hierarchical (Le., it is

tree structured) in that directories may contain subdirectories in addition to

programs and data files. This structure can be nested with additional

directories, programs, and files in the subdirectories, etc.

As stated in Section 5.4, files used in the ARPANET measurements were

stored on a single disk. The attendant file structure began with a main

directory (called /DISK2) entered from the system directory. The main

directory in turn contained a set of subdirectories, as listed below:

main directory:

subdirectories:

/disk2

/disk2/assess

/disk2/progs
/disk2/doc
/disk2/sh
/disk2/data

/disk2/data/sh
/disk2/data/temp

/disk2/data/sep
/disk2/data/oct
/disk2/data/nov

ARPANET measurement subdirectories and
files
directory for standard FORTRAN performance
assessment files
"c" and FORTRAN source programs
ARPANET measurement documentation
command files to run test
subdirectori.es and files used in post­
test processing and aggregation
command files used in post-test processing
text version of temporary INFO, PLOT,
and TABLE files
monthly directory for raw data
monthly directory for raw data
monthly directory for raw data

A comprehensive pictorial representation of the UNIX file structure for

the NTIAIITS host is presented in Figure E-1. Representative listings of the

first eight SUbdirectories, plus a typical monthly directory (NOV), are shown

in Figures E-2 through E-10.

Ideally, all files (source and compiled programs, command files, raw and

processed data) used in the ARPANET experiment would have been stored on the

dedicated disk. However, as described in Section 5.4, the 2-1/2 Megabyte

storage of the disk was inadequate. To make some space available for'

conducting tests and processing the resulting data, source versions of the "c"
and FORTRAN processing programs were moved to another disk from the

/DISK2/PROGS subdirectory.

269

Most Recent
Processed Data Files

Command
Files

Executable
Programs &

Testing Files

Analysis Files
__-=:::-_ &Executable

Programs

Executable
Programs &

Processlnq Files

/disk2

ARPA Net Test Disk #2

"/" Root &
System Disk #0

Temp

/Disk 2/data
Command

Files

Raw Data Files
Named by

Date-Time Group

Sources of
Programs

- Directories

Files

Time-Shared User
Files & Programs,
Mailboxes, etc.

Figure E-l. UNIX file structure at the NTIA/ITS host.

270

Jan 13 09:19 1982 /disk2 Page 1

drwxrwxr-- 2 spies grp2 1072 Jan 5 18: 32 assess
drwxrwxr-- 8 davew grp2 7184 Jan 12 15: 21 data
-rw-rw-r-- 1 davew grp2 10112 Dec 31 13: 15 data.r
-r--r--r-- 2 davew grp2 10240 Oct 1 19: 18 data.x
drwxrwxr-- 2 davew grp2 208 -Jan 11 12: 42 doc
-rw-rw-rw- 1 dwight grp2 87 Dec 30 13: 47 preface.r
-rw-rw-r-- 1 davew grp2 81 Dec 30 13: 08 preface.x
drwxrwxr-- 2 davew grp2 800 Dec 31 17: 37 progs
-rwsr-sr-- 1 root grp2 5926 Oct 14 18: 12 qik_clock
-rwsr-sr-- 1 root grp2 7394 Dec 28 17: 02 recv.o
-rwsr-sr-- 1 davew grp2 7394 Dec 28 17: 02 recv.oslo
-rwsr-sr-- 1 root grp2 7256 Dec 28 17: 03 recv.u
-rwsr-sr-- 1 davew grp2 7256 Dec 28 17: 03 recv.uslo
-rwxr-xr-- 1 root grp2 7134 Dec 28 17:03 recv nbs vu
-rwxr-xr-x 1 davew grp2 3852 Apr 14 12: 03 runupdate
drwxrwxr-- 2 davew grp2 208 ,Jan 12 18: 08 sh
-rwsr-xr-x 1 root grp2 4232 Dec 28 17:05 testclock
-rwsr-sr-- 1 root grp2 7822 Dec 28 17:01 xmit.o
-rwsr-sr-- 1 davew grp2 7822 Dec 28 16:59 xmit.oslo
-rwsr-sr-- 1 root grp2 7738 Dec 28 17:01 xmit.u
-rwsr-sr-- 1 davew grp2 7738 Dec 28 16:59 xmit.uslo
-rwxr-xr-- 1 davew grp2 7822 Dec 28 16:59 xmit nba , o

1 davew grp2 7738 Dec 28 16:59 xmit- nb s vu-rwxr-xr--

Figure E-2. Main directory jDISK2.

271

May 14 11 : 37 1982 /disk2/assess Page 1

-rw-rw-r-- 1 davew grp2 1062 Mar 9 14:23 24-2054fort14
-rw-rw-r-- 1 davew grp2 1182 Mar 9 14:23 24-2054fort15
-rw-rw-r-- 1 davew grp2 32643 Mar 9 14:23 24-2054fort17
-rw-rw-r-'" 1 davew grp2 33129 Mar 9 14:23 24-2054fort18
-rwxr-xr-x 1 spies grp2 40448 Mar 25 17-: 36 ANALYZ.out
-rwxr-xr-x 1 spies grp2 32256 Mar 9 11 : 23 EPILOG.out
-rwxr-xr-x 1 spies grp2 37888 Mar 9 11 : 21 PROLOG. out
-rw-rw-r-- 1 spies grp2 359 Mar 25 17:15 fort10
-rw-r--r-- 1 spies grp2 412 Mar 9 18:40 fort11
-rw-r--r-- 1 spies grp2 412 Mar 25 17:37 fort12
-rw-rw-r-- 1 davew grp2 1062 Mar 17 18:44 fort13
-rw-rw-r-- 1 davew grp2 1102 Mar 17 18:44 fort14
-rw-r--r-- 1 spies grp2 2805 Mar 25 17:37 fort15
-rw-rw-r-- 1 davew grp2 32643 Mar 17 18:44 fort16
-rw-rw-r-- 1 davew grp2 32400 Mar 17 18:47 fort17
-rw-r--r-- 1 spies grp2 182 Mar 9 18:42 fort18
-rw-r--r-- 1 spies grp2 182 Mar 25 17:44 fort19
-rw-r--r-- 1 spies grp2 3010 Mar 25 17:44 fort20
-rw-r--r-- 1 spies grp2 156 Mar 25 17:44 fort21
-rw-r--r-- 1 spies grp2 4946 Mar 25 17:44 fort25
-rw-r--r-- 1 spies grp2 250 Mar 25 17:44 fort35
-rwxr-xr-- 1 spies grp2 278 Oct 8 17:24 passrun
-rw-r--r-- 1 spies grp2 250 Mar 25 17:44 ttimes

Figure E-3. Subdirectory /DISK2/ASSESS.

272

Jan 14 09:50 1982 /disk2/progs Page 1

-rw-r--r-- 1 davew system 3858 Jan 6 17: 23 accesstime.c
-rw-rw-r-- 1 davew system 2313 Jan 6 17: 23 clock.ovh.h
-rw-r--r-- 1 davew system 2313 Jan 6 17: 24 clock.usr.h
-rw-r--r-- 1 davew system 9260 Jan 6 17: 23 distr.c
-rw-r--r-- 1 davew system 9464 Jan 6 17: 23 histo.c
-rw-rw-r-- 1 davew system 9464 Jan 6 17: 24 histo2.c
-rw-r--r-- 1 davew system 24458 Jan 6 17: 23 merge.c
-rw-r--r-- 1 davew system 522 Jan 6 17: 23 net.h
-rw-rw-r-- 1 davew system 9460 Jan 6 17: 24 ovh.histo.c
-rw-rw-r-- 1 davew system 9460 Jan 6 17: 24 ovh.histo2.c
-rw-rw-r-- 1 davew system 9220 Jan 6 17: 25 qik_clock.c
-rw-rw-r-- 1 davew system 22660 Jan 6 17: 23 recv its.c
-rw-rw-r-- 1 davew system 22386 Jan 6 17: 23 recv-nbs.c
-rw-r--r-- 1 davew system 19690 Jan 6 17: 24 reform.c
-rw-r--r-- 1 davew system 4660 Jan 6 17: 24 runupdate.c
-rw-rw-r-- 1 davew system 3056 Jan 6 17: 23 show.c
-rw-r--r-- 1 davew system 2920 Jan 6 17: 24 show.overhd.c
-rw-rw-r-- 2 dWight grp2 502 Jan 13 17: 01 statacc.f
-rw-rw-r-- 1 davew grp2 502 Jan 13 17: 35 statxfr.f
-rw-r--r-- 1 davew system 3496 Jan 6 17: 23 tell.f
-rw-r--r-- 1 davew system 3200 Jan 14 12: 24 tell.overhd.f
-rw-r--r-- 1 davew system 3941 Jan 6 17: 23 times.c
-rw-rw-r-- 1 davew system 4644 Jan 6 17: 25 tweak.h12.c
-rw-rw-r-- 1 davew system 4642 Jan 6 17: 24 tweak.h24.c
-rw-rw-r-- 1 davew system 4563 Jan 6 17: 24 tweak.o12.c
-rw-rw-r-- 1 davew system 4561 Jan 6 17: 24 tweak.o24.c
-rw-rw-r-- 1 davew system 6299 Jan 6 17: 24 xfertime.c
-rw-rw-r-- 1 davew system 24277 Jan 6 17: 23 xmit.c
-rw-rw-r-- 1 davew system 24259 Jan 6 17: 24 xmit its.c
-rw-rw-r-- 1 davew system 24337 Jan 6 17: 23 xmit nbs.c

Figure E-4. Subdirectory jDISK2jPROGS.

273

May 14 10:25 1982 /disk2/doc Page 1

-rw-rw-r-- 1 davew grp2 5823 Jun 18 12:33 HOWTODOIT
-rw-rw-r-- 1 davew grp2 3348 Jun 18 12:33 README
-rw-r--r-- 1 davew grp2 635 Dec 31 18:08 clockcal.doc
-rw-rw-r-- 1 davew grp2 580 Jan 11 12:38 grfiles
-rw-rw-rw- 1 davew grp2 7818 Jun 18 12:34 how_to_run
-rw-rw-r-- 1 davew grp2 5823 Jun 18 12:33 howtodoit
-rw-rw-r-- 1 davew grp2 3348 Jun 18 12:33 readme
-rw-rw-r-- 1 davew grp2 615 Dec 18 13:23 report
-rw-rw-r-- 1 davew grp2 1274 Aug 17 17:43 whatfiles

Figure E-5. Subdirectory /DISK2/DOC.

Jan 13 09:20 1982 /disk2/sh Page 1

-rwxr-xr-- 1 davew grp2 183 Oct 6 09:32 movefort
-rwxr-xr-- 1 spies grp2 177 Oct 8 18: 19 moveinput
-rwxr-xr-- 1 davew grp2 469 Dec 30 11 : 57 runrecv
-rwxr-xr-- 1 davew grp2 400 Dec 30 11: 57 runxmit

Figure E-6. Subdirectory /DISK2/SH.

274

Jan 14 09:50 1982 /disk2/data Page 1

-rwxr-xr-x 1 davew grp2 7312 Oct 29 16: 53 accesstime
-rw-rw-r-- 1 davew grp2 10240 Jan 12 12:54 data. r
-r--r--r-- 2 davew grp2 10240 Oct 1 19: 18 data.x
drwxr-xr-x 2 davew grp2 368 Dec 30 15:43 dec
-rwxr-xr-x 1 davew grp2 9766 Nov 18 17: 27 distr
-rw-r--r-- 1 davew grp2 26478 Dec 30 14: 13 dtg
-rw-rw-rw- 1 davew grp2 3974 Dec 30 15:39 dtg.short
-rw-r--r-- 1 davew grp2 1314 Dec 21 12: 52 h.info.r
-rw-r--r-- 1 davew grp2 1314 Dec 21 12: 51 h.info.x
-rwxr-xr-x 1 davew grp2 10210 Jan 4 14: 01 histo
-rwxr-xr-x i davew grp2 9940 Nov 23 17: 11 histo2
-rw-rw-r-- 2 davew grp2 586 Jan 12 12: 40 history.r
-rw-rw-r-- 2 davew grp2 526 Jan 12 12: 40 history.x
-r-xr-xr-- 1 davew grp2 15320 Sep 9 12: 22 merge
drwxr-xr-x 2 davew grp2 2560 Jan 12 13:25 nov
-rw-r--r-- 1 davew grp2 1824 Dec 21 12:53 o.info.r
-rw-r--r-- 1 davew grp2 1656 Dec 21 12: 52 o.info.x
drwxr-xr-x 2 davew grp2 1472 Jan 11 12: 24 oct
-rw-rw-r-- 1 davew grp2 726 Jan 12 12: 30 overhead.r
-rw-rw-r-- 1 davew grp2 654 Jan 12 12: 36 overhead.x
-r-xr-xr-- 1 davew grp2 9936 Oct 1 19: 19 ovh.histo
-rwxr-xr-x 1 davew grp2 7150 Jan 4 18: 40 ovh.histo2
-r-xr-xr-- 1 davew grp2 13234 Oct 1 19: 17 reform
drwxr-xr-x 2 davew grp2 2400 Jan 5 16: 32 sep
drwxr-xr-x 2 davew grp2 400 Jan 12 17: 57 sh
-r-xr-xr-x 1 davew grp2 6962 Nov 12 17: 04 show
-r-xr-xr-x 1 davew grp2 6872 Oct 1 19: 16 show.overhd
-r-xr-xr-- 1 davew grp2 10752 Dec 30 12:26 tell
drwxr-xr-x 2 davew grp2 416 Jan 12 12: 45 temp
-r-xr-xr-- 1 davew grp2 7564 Oct 8 10:09 times
-r-xr-xr-- 1 davew grp2 7870 Oct 1 19: 17 tweak.h12
-r-xr-xr-- 1 davew grp2 7870 Oct 1 19: 17 tweak.h24
-r-xr-xr-- 1 davew grp2 7648 Oct 1 19: 17 tweak.o12
-r-xr-xr-- 1 davew grp2 7648 Oct 1 19: 17 tweak.o24
-rwxr-xr-x 1 da¥ew grp2 8768 Nov 20 20:19 xfertime

Figure E-7. Subdirectory jDISK2jDATA.

275

Jan 14 09: 45 1982 /disk2/data/sh Page

-rwxr-xr-- 1 davew grp2 1266 -J an 4 12:09 doit.o
-rwxr-xr-- 1 davew grp2 1332 Jan 4 12: 10 doit.u
-rwxr-xr-- 1 davew grp2 231 Sep 30 17: 21 getdtg
-rwxr-xr-- 1 davew grp2 486 Oct 14 16: 12 graph.acc
-rwxr-xr-- 1 davew grp2 431 Nov 17 11 : 56 graph.xfr
-rwxr-xr-- 1 davew grp2 264 Oct 15 23:36 mover
-rwxr-xr-- 1 davew grp2 242 Oct' 15 23:36 movex
-rwxr-xr-- 1 davew grp2 787 Nov 10 10: 14 process for
-rwxr-xr-- 1 davew grp2 924 Nov 10 09:51 process-qik
-rwxr-xr-- 1 davew grp2 347 Sep 30 17: 24 storem -
-rwxr-xr-- 1 davew grp2 77 Oct 22 15: 26 tab.acc
-rwxr-xr-- 1 davew grp2 151 Nov 17 11: 37 tab .xfr
-rwxr-xr-- 1 davew grp2 103 Oct 7 18: 44 trim. table
-rw-rw-r-- 1 davew grp2 246 Oct 23 "10: 49 wipeout

Figure E-8., Subdirectory /DISK2/DATA/SH.

May 13 13:23 1982 /disk2/data/temp Page 1

-rw-rw-rw- 1 davew system 67919 May 12 18:29 access.info
-rw-r--r-- 1 davew grp2 13224 May 12 18:33 bigtable.acc
-rw-r--r-- 1 davew grp2 6988 May 13 14: 16 bigtable.xfr
-rw-r--r-- 1 davew grp2 12 May 13 14: 14 date
-rw-r--r-- 1 davew system 1477 May 13 14:09 h.info.r
-rw-r--r-- 1 davew system 1348 May 13 14: 11 h.info.x
-rw-r--r-- 1 davew system 1825 May 13 14:09 o.info.r
-rw-r.--r-- 1 davew system 1657 May 13 14: 12 o.info.x
-rw-r--r-- 1 davew system 1010 May 13 14: 16 plot10xfr
-rw-r--r-- 1 davew system 1428 Mar 23 20:02 plot16acc
-rw-rw-rw- 1 davew grp2 6612 May 12 18": 33 table.acc
-rw-r--r-- 1 davew system 1371 May 13 14: 15 table.xfr
-rw-r--r-- 1 davew system 1371 May 13 14: 15 tfil
-rw-r--r-- 1 davew system 2840 May 13 14:14 xfer.info

Figure E-9. Subdirectory /DISK2/DATA/TEMP.

276

Jan 14 08:47 1982 /disk2/datal nov Page 1

-rw-r--r-- 1 davew grp2 1233 Dec 18 17: 42 03-1 432tab .xfr
-rw-r--r-- 1 davew grp2 1302 Jan 6 11 :52 03-1435tab.xfr
-rw-r--r-- 1 davew grp2 1233 Jan 6 12:1304-1625tab.xfr
-rw-r--r-- 1 davew grp2 1233 Jan 6 12:2804-1627tab.xfr
-rw-r--r-- 1 davew grp2 1233 Jan 6 12:46 05-2135tab.xfr
-rw-r--r-- 1 davew grp2 1302 Jan 6 13:05 05-2137tab.xfr
-rw-r--r-- 1 davew grp2 1233 Jan 6 13: 46 10-1418tab.xfr
-r-w-r--r-- 1 davew grp2 1302 Jan 6 14: 09 10-1421tab.xfr
-rw-r--r-- 1 davew grp2 1371 Jan 11 17: 32 12-1945tab.xfr
-rw-r--r-- 1 davew grp2 1371 Jan 11 13:26 13-1447tab.xfr
-rw-r--r-- 1 davew grp2 1371 Jan 11 14:38 13-1449tab.xfr
-rw-r--r-- 1 davew grp2 1422 Jan 12, 13: 21 18-1 553tab. xfr
-rw-r--r-- 1 davew grp2 1371 Jan 11 15: 11 18-1 557tab. xfr
-rw-r--r-- 1 davew grp2 966 -Jan 12 13:24 18-1 645tab. xfr
-rw-r--r-- 1 davew grp2 1371 Nov 19 18: 01 18-1651 tab .xfr
-rw-r--r-- 1 davew grp2 1371 Nov 20 13:59 20-1815tab.xfr
-rw-r--r-- 1 davew grp2 1371 Nov 20 15: 13 20-1818tab.xfr
-rw-rw-r-- 1 davew grp2 2560 Dec 1 10: 42 21-0131data.r
-rw-rw-r-- 1 davew grp2 966 Nov 20 20:45 21 -01 31 his. r
-rw-rw-rw- 1 davew grp2 926 Nov 20 20:45 21-0131his.x
-rw-rw-rw- 1 davew grp2 349 Nov 20 20:45 21-01311og.r
-rw-rw-rw- 1 davew grp2 390 Nov 20 20:45 21-01311og.x
-rw-rw-r-- 1 davew grp2 1230 Nov 20 20:45 21-0131ovh.r
-rw-rw-rw- 1 davew grp2 1182 Nov 20 20:45 21-0131ovh.x
-rw-r--r-- 1 davew grp2 1923 Nov 30 19: 12 21-0131tab.xfr
-rw-rw-r-- 1 davew grp2 2560 Dec 18 17:34 21-0138data.r
-rw-rw-r-- 1 davew grp2 706 Nov 20 20:46 21-0138his.r
-rw-rw-rw- 1 davew grp2 926 Nov 20 20:46 21-0138his.x
-rw-rw-rw- 1 davew grp2 349 Nov 20 20:46 21-01381og.r
-rw-rw-rw- 1 davew grp2 390 Nov 20 20:45 21-01381og.x
-rw-rw-r-- 1 davew grp2 918 Nov 20 20:46 21-0138ovh.r
-rw-rw-rw- 1 davew grp2 1182 Nov 20 20:46 21-0138ovh.x
-rw-r--r-- 1 davew grp2 1190 Dec 1 10: 51 21-0138tab.xfr
-rw-rw-r-- 2 davew grp2 586 Jan 12 12:40 24-2054hs.r
-rw-rw-r-- 2 davew grp2 526 Jan 12 12:40 24-2054hs.x
-rw-r--r-- 1 davew grp2 1371 Jan 12 12: 45 24-2054tab.xfr
-rw-r--r-- 1 davew grp2 894 Jan 12 13: 22 24-2057tab.xfr

Figure E-10. Representative monthly di rec tory jDISK2jDATAjNOV.

277

APPENDIX F: TEST LOG FILE

This appendix provides a brief description and a sample of a LOG file

recorded onto disk during an ARPANET test. The information in the LOG file

consists of:

1. System date and time.
2. Who is logged on.
3. The process status.
4. Clock times and comparisons prior to the test.
5. The name of the test program.
6. The narrative from the test.
7. Clock times and comparison following the test.
8. The comparison between the transmitted and received user

information.

All items above (except 2, 3, 4, and 7) are also displayed to the operator.

The LOG files become part of the permanent archive, with the raw data. A
sample LOG file from a user information transfer test, recorded at the

destination (ITS) site, is shown in Figure F-1.

279

Tue Nov 24 12:52:23 PST 1981
davew tty1 Nov 24 12:47
F SUID PPID PID NCE CPU PRI ADDR SZ WCHAN TTY TIME COMMAND

3S 0 0 0 o 145-100 1376 2 110456 ? 0:00 scheduler
1S 0 0 1 0 0 40 1453 4 110524 ? 0:00 /etc/init
1S 0 1 4866 0 0 10 1721 7 134762 ? 0:00
1S 0 1 17411 0 0 10 2134 7 135062 ? 0:00 - D
1R 0 1 4 0 o -50 1505 3 ? 0:00 letc/update
1S 41 1 24325 0 0 40 2220 11 110674 ? 0:00 -Shell
1S 41 24325 27657 0 4 40 2453 11 111044 ? 0:00 /bin/sh sh/runre
1R 41 27657 14858 0 80 104 3126 18 ? 0:00 ps axl
OS 0 1 774 0 0 10 10131 7 135162 ? 0:00 - D
1S 0 1 4103 0 0 13 1531 4 135376 ? 0:00 /etc/init
OS 0 1 11528 0 0 13 10101 4 135436 ? 0:00 /etc/init
1S 0 1 4620 0 0 2 2005 5 117352 ? 0:00 ftpsvr
1S 1 1 1294 0 0 1 5470 60 137216 ? 0:00 -Largedaemon
1S 1 1294 22288 -15 o -25 2655 5 137166 ? 0:00 smalldaemon
1S 0 1 529 0 0 13 1667 4 135476 ? 0:00 /etc/init
OS 0 1 18 0 0 13 10356 4 135536 ? 0:00 /etc/init
1S 0 1 17427 0 0 2 3614 14 117302 ? 0:00 svrtel
1S 0 1 19988 0 0 2 3767 6 117272 ? 0:00 srvrtelnet
1S 0 1 24341 0 0 90 5170 24 140000 ? 0:00 mailer 600 5 yes
1S 0 1 32279 0 0 2 4672 21 117322 ? 0:00 netpr

20 used, 10 unused

Initial satellite time: 328 20:53:28.345
timeoff =: -1 minutes
Computer clock reads Tue Nov 24 13: 52: 45 1981

starting recv.u

----------- network reception -------------
test beginning, Tue Nov 24 13:52:50 1981

Test to access network with 1 listens

Attempting open # 1, Opened, Recv complete, Transaction complete

10240 characters at 202 baud
test completed, Tue Nov 24 13:54:15 1981

Initial satellite time: 328 20:55:08.078
timeoff =: -1 minutes
Computer clock reads Tue Nov 24 13:54:25 1981

compare data.r and data.x

Figure F-l. Sample LOG file.

280

APPENDIX G: USTINGS OF COMMAND FILES

This appendix presents a brief summary and a listing of each of the

command files used in driving the data through the bubble chart of Figure 26.

The command files are grouped under three major functions: On-Line (Real­

Time) Data Extraction, File Consolidation, and Post-Test Processing and

Archiving. Figure numbers refer to listings, which are presented as a

complete set following the command file summaries.

I. On-Line (Real-Time) Data Extraction

A. RUNRECV (Figure G-1) runs RECV program:

1. Writes da4e and who is using the system into specified LOG
file.

2. Initializes and reads clocks, storing times in LOG file.
3. Runs RECV program with output going to temporary file.
4. Concatenates temporary file to LOG file and removes temporary

file.
5. Gets times from clocks and stores in LOG file.
6. Compares the received and transmitted data files for equality,

writing results in LOG file.
7. Increments test number in the PREFACE files.

B. RUNXMIT (Figure G-2) runs XMIT program:

1. Writes date and who is using the system into specified LOG
file.

2. Initializes and reads clocks, storing times in LOG file.
3. Runs XMIT program with output going to temporary file.
4. Concatenates temporary file to LOG file and removes temporary

file.
5. Gets times from clocks and stores in LOG file.
6. Increments test number in the PREFACE files.

II. File Consolidation

A. MOVER (Figure G-3) moves the four receive files created by a test
into the data directory, and appends test number.

B. MOVEX (Figure G-4) moves the three transmit files created by a test
into the data directory and appends test number.

C. GETDTG (Figure G-5) determines the date-time group prefix for use in
naming raw data files.

D. STOREM (Figure G-6) archives the seven files from the data directory
to a month directory with the dtg as a prefix to their name.

281

III. Post-test Processing and Archiving

A. DOIT.O (Figure G-7) performs post-test processing of
access/disengagement tests:

1. Compares transmitted and received data files and ~utputs

results to line printer.
2. Removes all temporary HISTORY, OVERHEAD and INFO files left

from previous processing.
3. Runs PROCESS_QIK on transmit and receive files and produces

ASCII files for standard FORTRAN processing (PROCESS_FOR).
4. Moves FORTRAN files to ASSESS directory.
5. Produces tables used for generating histograms of access times

(GRAPH.ACC) and outputs sorted table to line printer and stores
with raw data on disk.

B. DOIT.U (Figure G-8) performs post-test processing of user
information transfer tests:
1. Compares transmit and receive data files and outputs results

to line printer.
2. Removes all temporary HISTORY, OVERHEAD, and INFO files left

from previous processing.
3. Runs PROCESS_QIK on transmit and receive files and produces

ASCII files for standard FORTRAN processing (PROCESS_FOR).
4. Moves FORTRAN files to ASSESS directory.
5. Produces tables used for generating histograms of block

transfer time data with GRAPH.XFR and outputs sorted table to
line printer.and stores with raw data on disk.

C. PROCESS_QIK (Figure G-9) produces "quick-look" tables and the time­
corrected HISTORY and OVERHEAD files:

1. Prints out LOG files.
2. Creates temporary files containing corrected times.
3. Prints temporary information files on line printer.

D. PROCESS_FOR (Figure G-10) creates FORTRAN-readable files from
HISTORY and OVERHEAD files:

1. Merges HISTORY and DATA file.
2. Reformats OVERHEAD file.
3. Moves four pertinent FORT files to ASSESS directory.

E. GRAPH.ACC (Figure G-11) creates and maintains data files of access
times for histograms:
1. Runs ACCESSTIME on OVERHEAD file to obtain text files with

access times.
2. Selects only times that pertain to access times and sorts them

in ascending order of access time (TABLE.ACC).
3. Creates histogram data by running OVH.HISTO.
4. Updates cumulative access time tables.

F. GRAPH.XFR (Figure G-12) creates and maintains data files of block
transfer times for histograms.

282

1. Runs XFERTIME on HISTORY files to obtain test files with block
transfer times; prints table.

2. Selects only transfer times and sorts in ascending order of
transfer time (TABLE.XFR).

3. Creates histogram files by running HISTO.
4. Updates cumulative transfer time tables.

G. TAB.ACC (Figure G-13) edits and sorts table produced by ACCESSTIME
for use in making histograms.

H. TAB.XFR (Figure G-14) edits and sorts table produced by XFERTIME for
use in making histograms.

Ie TRIM.TABLE (Figure G-15) edits TABLE.ACC to a more condensed form.

J. WIPEOUT (Figure G-16) removes all raw data from referenced
test,leaving the processed table of times.

283

Dec 30 08:57 1981 runrecv Page 1

if $N != 1 goto start
echo "usage: %sh sh/runrecv <file name> <test #>"
goto end
: start
echo $1 program for test $2 will go into log.r$2
(date;who;ps axl) >log.r$2
qik clock »log.r$2
echo starting $1 for test $2 »log.r$2
echo "-----------------------"
$1 : tee log. r
echo $1 done
cat log.r »log.r$2
rm log.r
qik clock »log.r$2
echo compare data.r and data.x »log.r$2
cmp data.r data.x »log.r$2
echo II II

runupdate preface.x; runupdate preface.r
: end
echo

Figure G-l. Command file RUNRECV.

Dec 30 08:57 1981 runxmit Page 1

if $N != 1 goto start
echo "usage: %sh sh/runxmit <file name> <test #>"
goto end
: start
echo $1 program for test $2 will go into log.x$2
(date;who;ps axl) >log.x$2
qik clock »log.x$2
echo starting $1 for test $2 »log.x$2
echo "-----------------------"
$1 : tee log. x
echo $1 done
cat log.x »log.x$2
rm log.x
qik clock »log.x$2
echo II II

runupdate preface.x; runupdate preface.r
: end
echo

Figure G-2. Command file RUNXMIT.
284

Oct 15 20:36 1981 mover Page 1

if -r log.r$1 goto error
echo moving recv $1 files to data dir
mv .. /data.r data.r$1
mv .. /history.r history.r$1
mv .. /overhead.r overhead.r$1
mv .• /log.r$1 .
lsm *.[rx]$1
su chown davew *.[rx]$1
echo
exit
: error
echo files exist with $1 suffix, no moving done

Figure G-3. Command file MOVER.

Oct 15 20:36 1981 movex Page 1

if -r log.x$1 goto error
echo moving xmit $1 files to data dir
mv •• /~istory.x history.x$1
mv .. /overhead.x overhead.x$1
mv .. /log.x$1 .
lsm *. [rx] $1
su chown davew *.[rx]$1
echo
exit
: error
echo files exist with $1 suffix, no moving done

Figure G-4. Command file MOVEX.

285

Mar 24 08:38 1982 sh/getdtg Page 1

seta=i$1
: loop
echo getting dtg for test $a
show 0 history.x$a I tee junk
cat junk »dtg
set a + 1
echo looking for history.x$a
if -r history.x$a goto loop
rm junk
ed dtg
v/ A [*][*][DF]/d
w dtg.short
q
echo done

Figure G-5. Command file GETDTG.

Sep 30 14:24 1981 storem Page 1

if $N = 4 goto start
echo "usage: %sh/storem <month> <dd-hhmm> <test #>"
goto end
: start
echo moving test# $3 files to $1/$2names
mv log.x$3 $1/$2Iog.x
mv log.r$3 $1/$2Iog.r
mv history.x$3 $1/$2his.x
mv history.r$3 $1/$2his.r
mv overhead.x$3 $1/$2ovh.x
mv overhead.r$3 $1/$2ovh.r
mv data.r$3 $1/$2data.r
echo done all archiving
: end
echo " "

Figure G-6. Command file STOREM.

286

Jan 4 09:09 1982 doit.o Page 1

if $N = 4 goto start2
echo "usage: %sh sh/doit <mon> <dd-hhmm> [<receive site>]"
if $N = 3 goto start1
echo recv site default = its, otherwise use nbs
goto end
: start 1
set b = its
goto start
: start2
set b = $3
: start
echo comparing xmit and recv data files
set a = log. compare
date >$a
echo comparing $1/$2data.r with data.x »$a
cmp $1/$2data.r data.x »$a
echo done »$a
print $a
rm $a
echo compare done
if -r history.r rm -f history.r
if -r history.x rm -f history.x
if -r overhead.r rm -f overhead.r
if -r overhead.x rm -f overhead.x
if -r $1/*ov.x rm -f $1/*ov.x
if -r data.r rm -f data.r
ln $1/$2data.r data.r
echo process recv $1/$2 files for $b
sh sh7process qik r $1/$2 $b
echo create ascii fortran files for reev
sh sh/process for r $1/$2
echo process xmit $1/$2 files - the recv site was $b
sh sh7process qik x $1/$2 $b
echo create ascii fortran files for xmit
sh sh/process for x $1/$2
echo" " -
echo done all processing, moving fortran files to assess/$2fort
mv fort14 .. /assess/$2fort14
mv fort15 .. /assess/$2fort15
mv fort17 .. /assess/$2fort17
mv fort18 .. /assess/$2fort18
echo starting graphical analysis
echo $1 $2 >temp/date
sh sh/graph.acc $1 $2 16
cp temp/table.acc $1/$2tab.acc
pr -2 -w120 $1/$2tab.acc >/dev/lp
echo done
: end
echo " "

Figure G-7. Command file 001T.0

287

Jan 4 09:10 1982 doit.u Page 1

if $N = 4 goto start2
echo "usage: % sh sh/doit <mon> <dd-hhmm> [<receive site>]"
if $N = 3 goto start1
echo recv site default = its, otherwise use nbs
goto end
: start1
set b = its
goto start
: start2
set b = $3
: start
echo comparing xmit and recv data files
set a = log~compare

date >$a
echo comparing $1/$2data.r with data.x »$a
cmp $1/$2data.r data.x »$a
echo done »$a
print $a
rm $a
echo compare done
if -r history.r rm -f history.r
if -r history.x rm -f history.x
if -r overhead.r rm -f overhead.r
if -r overhead.x rm -f overhead.x
if -r $1/*ov.x rm -f $1/*ov.x
if -r $1/*hs.x rm -f $1/*hs.x
if -r $1/*hs.r rm -f $1/*hs.r
if -r data.r rm -f data.r
In $1/$2data.r data.r
echo process recv $1/$2 files for $b
sh sh7process qik r $1/$2 $b
echo create ascii fortran files for recv
sh sh/process for r $1/$2
echo process xmit $1/$2 files - the recv site was $b
sh sh/process qik x $1/$2 $b
echo create ascii fortran files for xmit
sh sh/process for x $1/$2
echo" " -
echo done all processing, moving fortran files to assess/$2fort
goto bypass
mv fort14 .. /assess/$2fort14
mv fort15 .• jassessj$2fort15
mv fort17 .. /assess/$2fort17
mv fort18 .. /assess/$2fort18
: bypass
echo starting graphical analysis
echo $1 $2 >temp/date
sh sh/graph.xfr $1 $2 10
cp temp/table.xfr $1/$2tab.xfr
print $1/$2tab.xfr
echo done
: end
echo " "

Figure G-8. Command file DOIT.U.
288

Nov 10 06:51 1981 process_qik Page 1

if $N != 4 goto message
set b = $3
goto begin
: message
echo "useage: %sh sh/process_qik <x or r> <:mon/dd-hhmm> [<recv site>]"
if $N != 3 goto end
set b = its
: begin
echo process for a test with $b as recv site
set a = $1
set c = $2
set d = 12
set e = recv
set f = 18
if $a = r goto start2
if $a = x goto start1
echo bad 1st parameter, use 'r' for recv or 'x' for xmit
goto end
: start1
set e = xmit
set f = 17
if $b != its goto start
set d = 24
goto start
: start2
if $b != nbs goto start
set d = 24
: start
echo $e $clog.$a printing out
pr $clog.$a >/dev7lp &
echo starting quick-look file info for $e at $dOO baud clock speed
tweak.h$d 160 $chis.$a >temp/h.info.$a
mv hist.tweak~d history.$a
echo file temp/h.info.$a now done
tweak.o$d 1280 $covh.$a >temp/o.info.$a
mv ovhd~tweaked overhead.$a
echo file temp/o.info.$a now done
: wrapup
echo all $e tweakin& of times done
pr temp/h.info.$a >/dev/lp
: end
echo

Figure G-9. Command file PROCESS_QIK.

289

Nov 10 07:14 1981 process_for Page 1

if $N = 3 goto begin
echo "useage: %sh sh/process_for <x or r> <mon/dd-hh> "
goto end
: begin
set a = $1
set c = $2
set e = recv
set f = 18
if $a = r goto start2
if $a = x goto start1
echo bad 1st parameter, use 'r I for r e.cv or I x' for xmi t
goto end
: start1
set e = xmit
set f = 17
: start2
date >log.merge.$1
echo start of $e merge for file histor1.$a and data.$a
if -r data.$a goto continue
In $cdata.$a data.$a
: continue
echo starting $e merge
merge history.$a data.$a »log.merge.$1
echo $e merge done
mv fort90 fort$f
: overhd
reform overhead.$a
if $a = r m~ fort80 fort15
if $a = x mv fort80 fort14
echo overhead.$a file reformatted to fortran readable file
: wrapup
echo all $e processing done
echo "directory of appropo files: "
Is -1 fort* history.* overhead.*
: end
echo

Figure G-10. Command file PROCESS FOR.

290

Oct 14 13:12 1981 graph.acc Page 1

if $N = 4 goto start
echo "useage %sh sh/graph.acc <mon> <dd-hhmm> <#bars>"
goto end
: start
In overhead.x $1/$2ov.x
accesstime 1280 $1/$2ov.x >temp/access.info
sh sh/tab.acc temp/access. info
we temp/table.acc
ovh.histo $3 temp/table.acc >temp/plot$3acc
if -r temp/slimtable.acc rm temp7s1imtable.acc
sh/trim.table
mv temp!slimtable.acc temp/table.acc
mv temp/bigtable.acc temp7big.acc
cat temp/table.acc »temp/big.acc
sort -n +1 temp/big.acc >temp/bigtable.acc
rm temp/big. ace
: end

Figure G-ll. Command file GRAPH. ACC.

Nov 17 08:56 1981 graph.xfr Page 1

if $N = 4 goto start
echo "useage %sh sh/graph.xfr <mon> <dd-hhmm> <#bars>"
goto end
: start
In history.x $1/$2hs.x
In history.r $1/$2hs.r
xfertime 24 $1/$2hs.x $1/$2hs.r >temp/xfer.info
print temp/xfer.info &
sh sh/tab.xfr temp/xfer.info
we temp/table.xfr
histo $3 temp/table.xfr >temp/plot$3xfr
mv temp/bigtable.xfr temp/big.xfr
cat temp/table.xfr »temp/big.xfr
sort -n +3 temp/big.xfr >temp/bigtable.xfr
rm temp/big. xfr
: end

Figure G-12. Command file GRAPH.XFR.

291

Oct 22 12:26 1981 tab.acc Page 1

ed - $1 >temp/tfil
1,$g/ 3 23/p
q
sort -n +4 temp/tfil >temp/table.acc

Figure G-13. Command file TAB.ACC.

Nov 17 08:37 1981 tab.xfr Page 1

ed - $1 >temp/tfil
g/hs\.r/p
q
ed temp/tfil
g/A[12][1234567890]/S/A ..
~A

W

.
/s///

//

q
sort -n +3 temp/tfil >temp/table.xfr

Figure G-14. Command file TAB.XFR.

292

Oct 7 15:44 1981 trim.table Page 1

ed temp/table.acc
1,$g/ 3 23 /s///
1 , $g/ ov , x / s/ / /
1,$g/ /s///
w temp/slimtable.acc
q

Figure G-15. Command file TRIM.TABLE.

Oct 23 07:49 1981 wipeout Page 1

if $N = 2 goto start
echo "useage: %sh sh/wipeout <mon/dd-hhmm>"
goto end
: start
echo remoVinr $1 files
rm -f $1 log. xr]
rm -f $1ovh. xr]
rm -f $1his. xr]
rm -f $1data.r
rm -f $1ov.x
echo all $1 files for log, his, ovh, and data removed
: end

Figure G-16. Command file WIPEOUT.

293

FORM NTIA-29
(4-80)

U.S. DEPARTMENT OF COMMERCE
NATIL. TELECOMMUNICATIONS AND INFORMATION ADMINISTRATION

BIBLIOGRAPHIC DATA SHEET

1. PUBLICATION NO. 2. Gov't Accession No. 3. Recipient's Accession No.

NTIA Report 82-lll

910 4120

10. ContracVGrant No.

5. Publication Date

November 1982
6. Performing Organization Code

NTIA/ITS
9. ProjecVTask/Work Unit No.

USER-ORIENTED PERFORMANCE MEASUREMENTS ON THE ARPANET:
THE TESTING OF A PROPOSED FEDERAL STANDARD

7. AUTHOR(S) D. R. Wortendyke, N. B. Seitz, K. P. Spies,
E. L. Crow, and D. S. Grubb

8. PERFORMING ORGANIZATION NAME AND ADDRESS

U.S. Department of Commerce, National Telecommunication~~ ~ -4

and Information Administration, Institute for Telecom­
munication Sciences, 325 Broadway, Boulder, CO 80303

4. TITLE AND SUBTITLE

11. Sponsoring Organization Name and Address 12. Type of Report and Period Covered

U.S. Department of Commerce, National Telecommunication~ NTIA Report
and Informati on Admini strati on, Institute for Tel ecom-
munication Sciences, 325 Broadway, Boulder, CO 80303 13.

14. SUPPLEMENTARY NOTES

15. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature
survey, mention it here.)

This report presents the results of a trial implementation of a newly
developed data communication performance measurement methodology which has
been proposed as Federal Standard 1043. In this experiment, a prototype data
communication performance measurement system was developed in accordance with
specifications defined in the standard. The system was used to assess the
data communication service provided to a typical pair of ARPANET end users
(host computer application programs). These user-oriented measurements
differed from earlier ARPANET measurements in that the host computer operating
systems and network control programs were regarded as providers of an end-to­
end data communication service, rather than as users of the subnetwork.

(continued)
16. Key Words (Alphabetical order, separated by semicolons)

American national standard; ARPANET; computer networks; data communications;
end user; federal standards; performance measurement

17. AVAILABILITY STATEMENT 18. Security Class. (This report}: 20. Number of pages

Qg Unclassified 293
UNLIMITED.

19. Security Class. (This page) 21. Price:

0 FOR OFFICIAL DISTRIBUTION.
Unclassified

15. ABSTRACT (continued)

Results of the experiment will be useful in three ways. First, the
prototype performance measurement system developed in this experiment will
facilitate future implementations of the measurement standard. Second, the
experience of implementing the measurement standard identified a number of
ways in which that standard could b,k improved. These improvem'ents will be
incorporated in a future revision. Finally, the user-oriented performance
values measured in this experiment will assist communication system planners
in relating end-to-end performance objectives to the performance of
subsystems.

>:l-U.S. GOVERNMENT PRINTING OFFICE:1983-677-279 I 77

	XEROX-41103479
	XEROX-41103480
	XEROX-41103481
	XEROX-41103483

